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A B S T R A C T   

Sewage sludge reuse in agriculture is increasing, however it can be an important route for contaminants to enter 
the environment. The aim of this study was to evaluate earthworm Eisenia fetida capability to reduce heavy metal 
content in the sewage sludge (SS) amended soil and increase soil fertility in terms of soil nutrients content. Adult 
earthworms were introduced into aged SS amended soil (0–200 Mg ha-1) and left for 65 days. Earthworms have 
stabilized soil pH and accelerated organic matter mineralization. The concentrations of most heavy metals during 
the vermiremediation sharply decreased, K and Mg decreased to a moderate extent, whereas Ca content has 
increased. The highest removal efficiency was detected for Ni, Co and Mn (> 80%), bioconcentration factors 
were as follows Zn > Co > Cu > Ni > Mn > Cr. The content of major nutrients (S, P) was substantially higher 
compared to the initial values. The most efficient remediation and soil quality improvement was achieved under 
the doses of 25–50 Mg ha-1. Higher (≥ 100 Mg ha-1) doses might restrict this technique application because of 
earthworm mortality and retarded growth. Overall, the study shows that vermiremediation might be a sus-
tainable technique for ecological stabilization of SS amended soil and converting to usable for agricultural needs.   

1. Introduction 

Rapid industrialization and urbanization rise concern on soil 
contamination. It has been estimated that in EU there are ~342 thou-
sand contaminated sites and most of it needs remediation (Van Liede-
kerke et al., 2014). Management of these contaminated sites, including 
remediation, is estimated to cost 6.53 billion Euros annually (Panagos 
et al., 2013). Heavy metals are the main contaminants contributing 
approximately 34.8% to soil contamination. Industry, transport, agri-
cultural fertilizers and pesticides, household and industrial waste, 
wastewater and sewage sludge are the main sources of heavy metals in 
the environment. 

Sewage sludge production is inevitably increasing worldwide, and 
sustainable sewage sludge disposal is of great concern. Agricultural or 
forestry reuse of sewage sludge (SS) is the dominant route of sewage 
sludge disposal in EU, in 2017 more than 50% of generated SS was used 
in agriculture or for land reclamation (Collivignarelli et al., 2019). 
However, in developing countries especially in those with extremely 
rapid industrialization and urbanization sewage sludge production and 
disposal has emerged as one of the major environmental challenge 

(Suanon et al., 2018). Agricultural SS reuse is highly encouraged 
because of high content of organic matter and nutrients (N, P) (Fytili and 
Zabaniotou, 2008). However, its application on land is strictly regulated 
and limited as it comprises different inorganic (heavy metals) and 
organic (such as PAH, PCB, PCDD, etc.) contaminants and pathogenic 
microorganisms. Along with positive influence of SS on soil quality and 
plant production (Singh and Agrawal, 2008; Wang et al., 2008), nega-
tive impact on environment was reported as well. Soil analysis after 
16-years of repetitive sewage sludge application in Spain has shown that 
SS amendment had led to an increase in organic matter, nitrogen con-
tent, microbial activity, improvement of carbon and nitrogen minerali-
zation processes and some enzymatic functions, but an increase in heavy 
metal, phenols and extractable nitrates was also recorded (Roig et al., 
2012). Another study has also highlighted that long-term SS land 
application may pose a risk of phosphorus and copper leaching (Kidd 
et al., 2007). Minimal leaching of nitrogen and phosphorous was found 
in Sweden after SS application to willows and poplars (Dimitriou and 
Aronsson, 2011). Accumulation of nutrients in soils and increased ni-
trates concentrations in soil water were found in Brazil after two years 
cultivation of corn in SS fertilized plots (Breda et al., 2020). Elevated 
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heavy metals (Cu, Hg, Pb, Zn) concentrations in superficial groundwater 
was found after SS application (5–20 t ha-1 y-1) to willow plantations 
(Hasselgren, 1998). Most of studies emphasize heavy metal accumula-
tion in soil and plants after SS application (Sharma et al., 2018; Wang 
et al., 2008), implying that the dose must be properly determined or the 
soil should be remediated after SS application. 

Current technologies for heavy metals contaminated site remedia-
tion are chemical treatment, biological treatment, soil washing, soil 
flushing, vitrification, incineration, and landfilling. Recently bioreme-
diation has become a popular and highly recommended technique as an 
alternative for traditional remediation technologies. Among bioreme-
diation technologies, most studies have focused on phytoremediation, 
whereas vermiremediation, i.e., the use of earthworms and/or their 
products (vermicompost) for contaminants removal or degradation, 
could be considered as one of the most promising bioremediation op-
tions (Shi et al., 2020; Zeb et al., 2020). As earthworms constantly are 
exposed to various contaminants present in the soil, they are featured as 
able to survive under unfavourable conditions and known as early col-
onizers and ecosystem engineers (Eijsackers, 2010; Lavelle et al., 1997). 
Research in the field of soil remediation using earthworms started before 
40 years, however the rapid development of this method started only in 
the last decade. 

Vermiremediation has many benefits over traditional soil remedia-
tion approaches. It is an environmentally friendly, sustainable, low cost, 
easy to construct and maintain technology. Firstly, is that by aerating 
the soil, increasing the content of organic matter, nutrient concentration 
and biological activity, vermiremediation can significantly improve soil 
quality (Chaoui et al., 2003; Sinha et al., 2008). Earthworms contribute 
significantly to the content of organic matter, increase mineral nitrogen 
content in soil, enhance carbon sequestration (Singh et al., 2020; Zeb 
et al., 2020). There is also an environmental and economic benefit of this 
remediation technology. Vermiremediation has shown a potential to 
remediate sites contaminated with hydrocarbons in less than one year 
(during several cycles of growth) (Kuppusamy et al., 2017). Addition-
ally, vermiremediation has an aesthetic benefit. During the cleaning 
process, environmental disturbance is very minimal (especially when 
applying in situ). Earthworms clean polluted areas without damaging 
topsoil, preserving and enhancing its productivity and fertility at the 
same time (Sanchez-Hernandez et al., 2019). Earthworms also minimize 
the amount of pathogens in soil due to the antibacterial properties of 
their coelomic fluid and use certain protozoa, bacteria and fungi as food 
sources (Balachandar et al., 2018; Huang et al., 2018; Sinha et al., 2010). 
Moreover, earthworms were shown to be efficient in soil remediation 
from broad range of contaminants: pesticides (Lin et al., 2019), hydro-
carbons (Koolivand et al., 2020; Rodriguez-Campos et al., 2019), metals 
(Suthar, 2008; Wu et al., 2020b) and various mixtures (Lacalle et al., 
2020). 

As other biological treatment methods, vermiremediation has 
drawbacks too. It could be applied only in low or moderately polluted 
soils causing no significant lethal toxicity to earthworms. Soil contam-
ination can induce diverse sublethal effects and disturb earthworm 
physiology, growth, behaviour and reproduction (Anderson et al., 2013; 
Spurgeon et al., 1994; Zaltauskaite and Miskelyte, 2018; Žaltauskaitė 
and Sodienė, 2014), thus remediation efficiency could also be impaired. 
Additionally, in situ vermiremediation is restricted to soil depths where 
earthworms are present (usually in the topsoil), depending on the 
ecological classes of the earthworm species used. Because of inadequate 
handling/control of the vermiremediation process, contaminants accu-
mulated in the earthworms may also be transferred via the food chain 
posing a risk to other species. Finally, environmental conditions need to 
be considered as earthworms are sensitive to climate, seasonal condi-
tions fluctuations which can impede earthworm survival, functioning 
and subsequent processes (Cheng et al., 2021; Svendsen et al., 2007). 

Most of studies analysing earthworms’ capability to clean soil from 
contaminants focus on single contaminant, only some analyse their 
capability to extract chemicals from soil contaminated with mixture of 

chemicals. Assessing earthworms’ potential to remediate sewage sludge 
or wastes amended soils, generally only heavy metals are addressed, 
and, in most studies, only freshly amended soils are in investigated. 
Aging of contaminants was shown to affect chemicals bioavailability and 
toxicity to soil dwelling organisms (Diez-Ortiz et al., 2015; Smolders 
et al., 2009) subsequently influencing toxicants removal from the soil. 
Moreover, soil amendment with sewage sludge results in substantial 
increase not only in heavy metals, but other metals (such as Ca, Mg, K) 
and essential nutrients (P, S) as well. In our previous study we have 
found that industrial hemp (Cannabis sativa L) grown in sewage sludge 
amended soil have substantially bioaccumulated not only heavy metals 
but alkaline earth and alkali metals as well (Praspaliauskas et al., 2020). 
Therefore, the aim of this study was to evaluate earthworm Eisenia fetida 
capability to reduce heavy metal, alkali and alkaline earth metal content 
in the aged sewage sludge amended soil and to increase soil fertility in 
terms of soil nutrients. In addition, the earthworm life cycle parameters 
and their relationship with remediation efficiency were investigated. 

2. Materials and methods 

Clay loam was collected from uncontaminated site, sieved, and 
mixed with perlite and fine sand (5:3:2, by volume). Soil mixture was 
amended with sewage sludge (SS) collected from the municipal waste-
water treatment plant (agglomeration of 10,000–20,000 PE). The 
following SS properties were determined: moisture – 9.84 ± 0.02%, ash 
– 34.57 ± 0.04%, C – 32.30 ± 1.26%, N – 4.23 ± 0.42%, S – 1.42 ±
0.04%, and P – 27.15 ± 1.00 g kg-1. Detailed physico-chemical charac-
teristics of the sewage sludge was presented in Praspaliauskas et al. 
(2018). The soil amendment with SS were as follows: 25, 50, 100 and 
200 Mg ha-1. All soil samples were watered with distilled water and left 
for 24 months for aging at 20 ± 1 ◦C. During the aging period, soils were 
aerated and periodically watered with distilled water. The aging of soil 
was performed to imitate the conditions of historically sewage sludge 
amended soil. All the treatments and control were executed in three 
replicates. 

The selected adult (with well-developed clitellum) earthworms 
Eisenia fetida were acclimatized for 7 days. Aged soil samples were 
weighted (500 g) into plastic containers and ten washed and weighed 
(420 ± 116 mg) earthworms were added to each container. Soil samples 
were watered with distilled water to obtain the final required water 
content (45–50% of the maximum water holding capacity). All con-
tainers were placed in closed-top growth chambers at 20 ± 1 ºC, 
photoperiod 14 h/10 h (day/night)), the relative air humidity (RH) of 
50–60%. The earthworms were kept in SS amended soil for 65 days. 
Water content in each container was checked weekly. The earthworms 
were weekly supplied with additional oatmeal (approximately 0.5 g per 
earthworm). The unconsumed food was removed prior to resupplying a 
new portion. Survival of earthworms was measured on a weekly basis by 
counting the survived earthworms in each container. The growth of 
earthworms was measured every week by weighing the surviving 
earthworms in each container. The earthworms were returned to the 
same test soil. 

Soil samples for chemical analysis were taken before the earthworms 
were added to the containers and after the whole experiment. Soil pHKCl 
was measured potentiometrically (inoLab 720, WTW). The method of 
Loss-on-ignition was used to determine soil organic matter (SOM) 
content. 

After the experiment earthworms were removed from the soil, 
washed with deionized water and placed on moistened filter paper in 
Petri dishes for 48 h to void their gut content. After the depuration, the 
earthworms were sacrificed by deep freezing and dried at 60 ◦C until 
constant weight for further analysis. In a Milestone Ethos One closed 
vessel microwave system earthworms were mineralized with mixture of 
HNO3 and H2O2. The soil samples were oven dried (at 60 ◦C), grounded 
and then digested in Milestone Ethos One closed vessel microwave 
system with mixture of HNO3, HCl, HF and H3BO3. Concentrations of 
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metals and non-metals, such as Ni, Co, Mn, Cu, Zn, Cr, K, S, P, Mg, Ca, 
were measured in soil and earthworms with PerkinElmer ® OptimaTM 
8000 ICP-OES. C, N and S concentrations were measured using a Flash 
2000 analyzer. 

The contaminant accumulation in earthworms was estimated with 
bioconcentration factors (BCF). BCF was calculated as the ratio between 
contaminant concentration in the earthworm and concentration in the 
soil. 

Chemicals’ remediation efficiency (RE) was calculated as RE = (ci- 
cf)/ci × 100, where ci and cf are initial and final chemicals concentration 
in the soil, respectively. 

The probability of earthworm survival (S(t)) was estimated using a 
surviving model (Jager et al., 2011): 

S(t) = exp− H(t), (1)  

where H(t) denotes the individual’s cumulative hazard at time t. H was 
estimated by using the following equation: 

H(t) = λ0t+αcwt, (2)  

where λ0 is background hazard rate, cw – sewage sludge concentration in 
the soil, α – slope parameter. The parameters of the model were esti-
mated using a log-likelihood function. 

The Statistica software was used to perform statistical analysis. In 
order to determine the sewage sludge concentration effect on the studied 
variables, one-way variance analysis (ANOVA) was performed. Two- 
way ANOVA was used to evaluate the SS dose and time of exposure 
interaction. Significant differences between the control and SS treated 
samples were determined by the Dunnett’s test. The LSD test was used to 
determine any significant differences between the treatments and sta-
tistically significant differences at p < 0.05 were considered. Regression 
and correlation analysis were used to assess the relationship between 
sewage sludge doses, chemicals concentration in the soil, earthworms, 
and remediation efficiency. 

3. Results 

3.1. Earthworms’ survival and growth 

As vermiremediation efficiency highly depends on survival and 
growth of earthworms, earthworms’ survival and growth was monitored 
during the whole experiment. Sewage sludge amendment dose had a 
significant effect on the earthworm survival after 9 weeks of exposure 
(F = 4.97, p < 0.05) (Fig. 1a). Significant reduction in earthworms’ 
survival (by 55%) in the soil amended with 200 Mg ha-1 of sewage 
sludge was recorded from the first week of exposure (Dunnett, 

p < 0.05). After four weeks of exposure, the survival in the treatment of 
200 Mg ha-1 has dropped to 10%. In the treatments with 25–50 Mg ha-1 

no significant impact on survival of earthworms was observed and 
exposure to 100 Mg ha-1 has reduced survival by 43.33% at the end of 
the experiment. Fitted survival model has shown that SS had posed a 
significant risk of the death of the earthworms. The risk of death of the 
earthworms increased significantly with SS concentration in the soil and 
with time (model parameters: λ0 = 2.12 ± 0.14, α = 0.0045 ± 0.0023, 
χ2 = 4.08, p < 0.05). 

Fresh earthworm weight varied significantly with time and SS con-
centration and their interaction (two-way ANOVA, time F = 47.67, 
p < 0.001, SS concentration F = 60.82, p < 0.001, time × SS concen-
tration F = 1.73, p = 0.017) (Fig. 1b). The growth pattern of earth-
worms in the 25 Mg ha-1 treatment was very similar to that of control 
earthworms and the earthworm weight in this treatment at the end of 
vermiremediation experiment was by 17.8% higher than in the control. 
During the first week of vermiremediation process, temporary signifi-
cant weight loss was recorded in the treatments with 50–200 Mg ha-1 

(p < 0.05). In the treatments with 100–200 Mg ha-1 weight loss per-
sisted until the 4th week and afterwards earthworms started to gain 
weight until the end of the experiment reaching up to 76.4–98.4% of 
control earthworm’s weight. 

3.2. Soil pH and organic matter content 

Soil amendment with SS had a highly significant affect to soil organic 
matter content (F = 46.21, p < 0.05) and pH value (F = 238.22, 
p < 0.05). SS application resulted in decreased soil pH and increased 
SOM (Table 1) values and the relationships were significant (R2 = 0.76 
and R2 = 0.89 for pH and SOM, respectively, p < 0.05). Soil pH after 
vermiremediation process was remarkably increased compared to initial 

Fig. 1. Survival (a) and changes in the fresh weight (b) of earthworm E. fetida exposed to SS amended soil for nine weeks. Error bars represent standard errors (SE).  

Table 1 
Initial and final soil pH and SOM in different SS treatments.  

Sewage 
sludge 
dose, 
Mg ha-1 

pHinitial pHfinal SOM 
contentinitial, (g/ 
kg-1 d.m.) 

SOM 
contentfinal, (g/ 
kg-1 d.m.) 

0 6.75 ± 0.02a* 7.09 ± 0.04a* 40.24 ± 1.15a* 6.69 ± 0.61a* 

25 6.60 ± 0.04b* 6.84 ± 0.03b* 61.24 ± 1.47a* 10.99 ± 0.45 *b 

50 6.07 ± 0.01c* 6.85 ± 0.01b* 100.07 ± 6.02b 11.87 ± 1.01b 

100 6.06 ± 0.02c* 6.25 ± 0.02c* 132.30 ± 6.45c* 19.51 ± 1.13c* 

200 5.81 ± 0.02d* 6.34 ± 0.02d* 174.05 ± 15.24d 19.62 ± 0.32d 

Different letters indicate significant differences (LSD, p < 0.05) between treat-
ments with different SS dose. * indicates significant differences between initial 
and final values 
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values, though remained significantly lower than that of control soil. 
During the vermiremediation SOM dramatically decreased (5.6–8.9- 
fold) and the magnitude of reduction increased with SS dose (R2 = 0.29, 
p = 0.04). 

3.3. Soil heavy metals and other chemicals concentrations 

Analysis of the chemical elements revealed that the SS used in the 
present study did not exceed permitted limits of agriculture and forestry 
use (Council of European Communities, 1986). SS application had a 
significant effect to all analysed alkaline earth, alkali metals and 
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non-metals concentrations in soil (One-way ANOVA, p < 0.05). In case 
of heavy metals only Ni and Cr levels did not change significantly after 
SS application (Fig. 2). Upon SS application the increase in heavy metals 
concentrations was in the range of 3.13–11.76-fold for Zn, 
1.44–3.41-fold for Cu and 1.11–2.59-fold for Mn, whereas Co concen-
trations slightly decreased. Alkali and alkaline earth metals 

concentration changes in soil after fertilization with SS were less 
expressed (Fig. 3). K changes were in the range of 1.1–13.4%, Mg and Ca 
concentrations increased by 14.9–32.0% and 16.6–52.3%, respectively, 
after SS fertilization. Very sharp increase in P and S level in soil was 
observed after SS amendment and their concentrations significantly 
increased along with SS dose (R2 = 0.99, p < 0.001) up to 10.8 and 27.7 
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times, respectively. 
After the vermiremediation period, Ni, Co and Cr soil concentrations 

were below the control level, though no clear dependence on the SS 
treatment dose was observed. Cu and Zn concentrations in the treatment 
with the lowest 25 Mg ha-1 dose after the vermiremediation period was 
by 8.5% and 19.5%, respectively, lower than in the control (p > 0.05). 
Whereas in the treatments with 50–200 Mg ha-1, their concentrations 
considerably exceeded that in the control (for Cu 26.8–65.7%, for Zn 
3.3–5.7 times). K concentrations in the soil after the vermiremediation 
was significantly lower (11.7–21.2%) than in the control. No significant 
difference was recorded in Ca and Mg level in the treatment of 25 Mg ha- 

1, but in the treatments with higher SS fertilization doses their concen-
trations remained significantly higher than in the control soil even after 
the vermiremediation. The concentrations of macronutrients S and P in 
the treatment with higher doses than 50 Mg ha-1 after vermiremediation 
remained above the control level (p < 0.05). 

Ni, Co and Mn concentrations sharply reduced (more than 80%) at 
the end of vermiremediation period as compared to the initial concen-
trations (Fig. 4). Zn was removed at the efficiency in the range of 
56.2–81.1%. Cu and Cr were remediated to a lesser extent and reme-
diation efficiency variated in the range of 28.8–45.6% and 9.0–43.9%, 
respectively. Despite considerable remediation efficiency for studied 
heavy metals, no clear relationship with applied SS dose was detected 
except for Mn (R2 = 0.51, p < 0.01). Regarding the macronutrients, it 
was noted that only K and Mg were removed from the SS amended soil 
during the experiment. K removal efficiency was between 9.3% and 
23.5% and its relationship with SS concentration was nearly significant 
(p = 0.059). Mg removal was somewhat greater than that of K and 
reached up to 38.7%, however no relationship with SS dose was detec-
ted. P, S and Ca, contrary to other elements, have increased after the 
vermiremediation period. Concentrations of S have increased in the 
treatments with 25–100 Mg ha-1, while a decline was observed in the 
treatment of the highest 200 Mg ha-1 SS concentration. An increase in 
final P concentrations in comparison with initials ones, were determined 
in all the treatments though the increment declined with SS dose (R2 

= 0.61, p < 0.01). 

3.4. Bioaccumulation in earthworms 

SS dose had a significant effect on heavy metal concentrations in the 
earthworms (ANOVA, F > 11.62, p < 0.05) except for Ni (F = 3.80, 
p = 0.06) (Fig. 5). The bioconcentrations of heavy metals could be 
ranked as follows Zn > Mn > Cu > Co > Ni > Cr. Most of heavy metals 
accumulation increased along with SS application rate (Zn, Cr: R2 

= 0.76, Cu: R2 = 0.74, Mn: R2 = 0.55, p < 0.05) and heavy metals soil 
concentration (Zn: R2 = 0.80, Co: R2 = 0.72, Mn: R2 = 0.55, Cu: R2 

= 0.54, p < 0.05). Co concentrations in earthworms decreased with SS 
(Co: R2 = 0.72) dose and no relationship was found for Ni accumulation. 

BCFs of heavy metals were ranked as follows: 
Zn > Co > Cu > Ni > Mn > Cr (Fig. 5). Only for Zn and Co in the con-
trol and treatment with the lowest 25 Mg ha-1 SS dose BCFs were above 
1. The BCFs of other heavy metals were in the range between 0.03 and 
0.79. In most cases BCFs have shown a tendency to decrease with 
applied SS dose and heavy metal soil content. Only for Cr a significant 
(p < 0.05) increase in BCF with SS dose was found, however the BCFs for 
Cr were very low and reached only 0.12 in the treatment of 200 Mg ha-1. 

SS dose had no significant effect on the bioconcentrations of mac-
ronutrients K, Mg and P (ANOVA, p > 0.05) whereas Ca and S bio-
concentrations increased with SS dose (Ca: R2 = 0.67, S: R2 = 0.96, 
p < 0.05) (Fig. 6). BCFs of macronutrients were in the order: 
S > P > K > Ca > Mg and values of BCFs of S and P always exceeded 1, 
indicating substantial accumulation. BCFs for Ca and Mg were low, in 
the range of 0.15–0.26 and 0.12–0.14, respectively, K was concentrated 
in the earthworms at the higher extent (BCFs 0.61–0.86). Phosphorous 
and potassium BCFs decreased along with SS dose, though only for P it 
was significant (R2 = 0.58, p < 0.05). BCFs for Ca (R2 = 0.28, p = 0.06) 
and Mg showed a tendency to increase with BCF dose. 

Soil physical-chemical characteristics, metal properties and earth-
worm physiology are major factors determining earthworms’ ability to 
take up and accumulate chemicals from the soil. Heavy metal bio-
concentrations in the earthworms were inversely correlated with soil pH 
(except for Co) indicating that higher acidity has led to the formation of 
more bioavailable forms and higher uptake. Uptake of S and P were also 
inversely related with soil pH, though K bioconcentrations were not 
affected by soil pH (p > 0.05). Consequently, lower bioaccumulation at 
higher soil pH might result in lower remediation efficiency, though 
significant relationship was determined only for Cu and Mn (Cu: 
r = − 0.77, Mn: r = − 0.74, p < 0.05). 

Heavy metals concentrations in earthworms positively correlated 
(p < 0.05) with soil OM with the exception of Co (r = − 0.88, p < 0.01) 
and Ni (r = 0.33, p = 0.29). No significant relationship was found be-
tween K bioconcentrations and soil OM, while other macronutrients 
bioconcentrations were positively related with soil OM content 
(p < 0.05). 

Uptake of heavy metals by earthworms is strongly influenced by the 
presence of other cations, especially Ca, in soil (Li et al., 2009), therefore 
we have investigated the relationship between heavy metal bio-
accumulation and soil Ca content. The strongest positive correlation was 
found between Cu and Zn bioconcentrations and Ca soil content 
(r = 0.88, p < 0.001), followed by Cr (r = 0.66, p = 0.013), while in 
case of Ni and Mn the correlation was insignificant (Ni: r = 0.25, 
p = 0.43, Mn: r = 0.53, p = 0.06). Bioconcentrations of Co were 

Fig. 4. Metal ((a) Ni, Co, Mn, Cu, Zn and Cr), (b) K, S, P, Mg and Ca) remediation efficiency in different SS treatments. Error bars represent standard errors (SE).  
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inversely correlated with soil Ca content (r = − 0.90, p < 0.01). 
As heavy metals removal efficiency varied depending on sewage 

sludge concentration and specific element (Fig. 4), we tried to elucidate 
whether heavy metals concentrations in the earthworms were related to 

earthworms’ growth and survival. Ni, Mn, Cu and Cr bioconcentrations 
were closely related with earthworm mortality (r > 0.59, p < 0.05), 
correlation for Zn was close to significant (r = 0.61, p = 0.06). Earth-
worms which accumulated higher amounts of heavy metals have shown 

Fig. 6. Ca, K, Mg, P and S earthworm concentrations and bioconcentration factors (BCF) in different SS treatments. Error bars represent standard errors (SE). 
Different letters indicate significant difference (p < 0.05) among the treatments: uppercase for BCF and lowercase for earthworm concentrations (LSD test). 
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a tendency to gain lower weight during the vermiremediation period, 
however the relationship was insignificant. 

4. Discussion 

For ensuring vermiremediation feasibility and efficiency, a balance 
between proper environmental conditions (climatic conditions, food 
availability, substrate compatibility, etc.) and pollution level must be 
maintained (Zeb et al., 2020). Therefore, during the vermiremediation 
process normal earthworm physiological activity and survival should be 
kept. SS application leads to significantly changed soil properties (pH, 
SOM) and nutrients, metals content. Changed soil pH and SOM might 
influence physico-chemical processes in the soil and affect physiology, 
behaviour of soil dwelling organisms. Our data are in line with other 
studies reporting pH reduction and SOM increase in SS amended soil 
(Bourioug et al., 2015; Méndez et al., 2012; Singh and Agrawal, 2010). 
As soil pH showed a significant decrease with increasing SS dose 
(Table 1), it might induce heavy metals activation and increase 
bioavailability as acidic condition usually facilitate their solubility and 
uptake (Giska et al., 2014). At the same time, decreasing pH might alter 
earthworm fitness. Neutral pH has been shown to be optimal for many 
earthworm species, while at pH < 5.2 inhibited E. fetida survival, 
growth, and reproduction was recorded (Wu et al., 2020a). Increasing 
SOM content with SS dose has been shown to decrease (Bradham et al., 
2006) and increase (Bai et al., 2017) chemicals bioavailability and this 
impact was chemical dependent. In our study, vermiremediation has 
stabilized soil pH and decreased SOM. Most studies have recorded that 
vermicomposting of different wastes leads to pH increase (Paul et al., 
2020) and SOM reduction and net organic matter stabilization is 
explained by organic matter mineralization and consumption by earth-
worms converting it to earthworm biomass (Lin et al., 2019; Mondal 
et al., 2020; Tripathi and Bhardwaj, 2004). 

Although SS used in the present study did not exceed heavy metals 
permissible levels for agricultural application, different intensity fertil-
ization has led to the significant changes in heavy metals, alkaline earth, 
alkali metals and nutrients concentrations in soil. Cr concentrations in 
SS amended soil in our study were around Northern Europe regional 
background level, Ni concentrations were below median Ni concentra-
tion in Europe (Albanese et al., 2015), Co concentrations were below 
mean Co topsoil Europe concentration (Tóth et al., 2016). Zn soil con-
centrations in SS amended soil exceeded EU guidelines when SS appli-
cation rate was more than 50 Mg ha-1 and soil Zn concentration 
increased along with SS dose (R2 = 0.84, p < 0.05). For Cu soil level, 
only the treatments with 200 Mg ha-1 of SS showed Cu soil concentra-
tions above the Northern Europe regional average Cu soil concentrations 
(20.1–20.2 mg kg) (Albanese et al., 2015), though did not exceed EU 
limit values (Council of European Communities, 1986). Mn concentra-
tion in SS amended soil did not exceed EU limit values (Reimann et al., 
2018), though at the highest SS dose the average background 
(300–600 mg kg-1) Mn level was slightly exceeded (Morgan et al., 
2007). Although Cu and Mn soil content after SS amendment were below 
the limit values established by EU regulations, significant increase in 
their amount with SS dose (Cu R2 = 0.86, Mn R2 = 0.95, p < 0.05) 
should be considered, especially in long-term applications. Significant 
increase in Cu and Zn soil concentration after 15 years SS amendment 
(in the range of 13–69 t FW ha-1 y-1) was recorded in experimental site in 
Spain (Iglesias et al., 2018). Considerable accumulation of Cu and Zn in 
the topsoil and plants was found after 3 years SS application in China 
(Wei and Liu, 2005). 

Plant macro- and micronutrient deficiency in soils is one of the key 
factors limiting crop productivity, therefore fertilization with SS rich in 
nutrients might increase soil nutrient pool and improve crop produc-
tivity. As north-central Europe region soils are characterized by having 
low Mg content (Négrel et al., 2021), fertilization with SS could help to 
increase the content of this essential plant nutrient. After SS application 
Mg soil level was in the range of 0.90–1.19 of median value in European 

agricultural soils (5488 mg kg-1). However, this increase in Mg content 
might be insufficient to meet plant requirements as decreasing soil pH 
with SS dose may interfere Mg uptake due to competition with H+ at the 
site of rhizosphere (Senbayram et al., 2015). S concentrations in SS 
amended soil were far above the background values in Europe (Mat-
schullat et al., 2018). High S content in SS amended soil was shown to 
increase heavy metal solubility due to lowered pH (Dede and Ozdemir, 
2016) and may lead to higher metal bioavailability to soil biota. This is 
in line with our data showing inverse relationship between soil pH and S 
content (r = − 0.82, p < 0.01) presupposing subsequent higher heavy 
metals bioavailability. Amount of K, Ca and P in SS amended soil were in 
the range of Q50-Q98 of concentrations in agricultural and grazing land 
soils of Europe (Reimann et al., 2012). Remarkable increase in P after 
soil amendment with SS might pose a risk of P runoff and leaching 
(Wang et al., 2020b). 

Present study has shown that SS fertilization doses did not induce 
risk of soil pollution with heavy metals, except for Zn, and enriched soil 
with macro- and micronutrients. Potential hazard assessment of SS 
application currently is based on the physicochemical parameters of SS 
and receiving soils, though chemical data alone do not allow evaluation 
of possible toxic effects to soil biota. Soil dwelling organisms’ response, 
in contrast to physico-chemical analysis, integrate the biological effects 
of all compounds present and other factors such as bioavailability, 
toxicants interaction and others. Therefore, earthworm survival and 
growth could be used as the indicators of vermiremediation suitability 
for soil cleaning and its efficiency. In all treatments metal concentrations 
were far below the previously determined lethal concentrations (LC50) 
for earthworms (56-days LC50 for Cu 555 mg kg-1, for Zn 745 mg kg-1 

(Spurgeon et al., 1994), 14-days LC50 for Cr 241.13 mg kg-1 (Yang et al., 
2018), for Ni 1069.32 mg kg-1 (Wang et al., 2020a), 28-days for Mn 
1970 mg kg-1 (Kuperman et al., 2004)). However, these LC50 were 
mostly determined when earthworms were exposed to single heavy 
metal, and in SS amended soils earthworms are subjected to the mixture 
of different substances. Furthermore, it should be considered that 
generally metal toxicity in field or aged soil is less pronounced than in 
freshly spiked soil even at the same metal concentrations (Lock et al., 
2006; Smolders et al., 2009). Previously we have shown that fresh SS 
was extremely toxic to E. fetida compared to aged SS (Žaltauskaitė et al., 
2017). Based on earthworm survival and growth data (Fig. 1), we pre-
sume that vermiremediation could be efficiently applied to remediate 
aged SS amended soil in case of low and moderate doses, up to 
100 Mg ha-1. Higher doses may temporarily inhibit earthworm growth 
or even cause a mortality, and this was proved by fitted survival model 
showing the significant increase in mortality with SS dose and time. 
Hence, even the single heavy metals concentrations in soil were far 
below reported LC50, significant earthworm mortality and retarded 
growth could be explained by the fact that earthworms were exposed to 
the mixture of chemicals and soil pH was slightly lowered. Retarded 
growth and mortality could be partially also linked to high soil S con-
tent. Highly significant effect of local S pollution gradient within 200 m 
from sulphur block in Canada on the number of earthworms was found 
and no earthworms were found in the site where S content in the soil was 
around 6673 mg kg-1 (Cárcamo et al., 1998). 

The main mechanisms of soil vermiremediation leading to chemicals 
content changes in the soil are (Rodriguez-Campos et al., 2014; 
Sanchez-Hernandez et al., 2019; Zeb et al., 2020): chemicals bio-
accumulation by earthworms, physical and physiological activity of 
earthworms, and leaching and runoff of chemicals. Vermiremediation 
had different impact to alkaline earth, alkali metals and non-metals 
concentration in soil than to heavy metals (Figs. 2–4). The concentra-
tions of heavy metals sharply decreased, K and Mg decreased to a 
moderate extent, whereas an increase was observed in Ca content. Final 
soil concentrations of all studied heavy metals were below the threshold 
posing an ecological risk, indicating high efficiency of vermir-
emediation. Similar high removal efficiency for heavy metals was 
recorded in case of different types of wastes, SSs, ashes as well as spiked 
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soils with single heavy metal (Cheng et al., 2021; Lacalle et al., 2020; Wu 
et al., 2020b) remediated with different earthworm species (E. fetida, 
Eudrilus eugeniae, Lumbricus rubellus) (Azizi et al., 2013; Paul et al., 2020, 
2018; Suthar et al., 2014; Usmani et al., 2017). The data on K changes 
during the vermitreatment are controversial: both an increase (Gupta 
and Garg, 2009; Usmani et al., 2017) and decrease (Mondal et al., 2020; 
Paul et al., 2018) were reported. An increase in Ca soil content after 50 
and 100 days of SS remediation with E. fetida was reported by Ahadi 
et al. (2020). To our knowledge where are no data on Mg changes during 
the vermiremediation, therefore we cannot compare our results. The 
substantial reduction in metal soil content upon vermiremediation could 
be attributed to metal bioaccumulation in earthworms (Figs. 5–6), 
showing close relationship both with SS dose and soil heavy metal 
content. The earthworms modify the physical and chemical structure of 
ingested substrate leading to accumulation and changed bioavailability 
of different substances in processed substrate. Although heavy metal 
earthworm concentrations increased with soil concentrations, the in-
crease in earthworm concentration was proportionally less than that in 
soil, thus illustrating earthworms’ ability to regulate uptake and pro-
ducing a negative relationship between BCFs and soil concentrations. 
Detected low values of BCFs (mostly < 1) and inverse relationship be-
tween BCFs and soil metal content are consistent with other field or 
laboratory studies (Coelho et al., 2018; Nahmani et al., 2009; Rorat 
et al., 2017; Suleiman et al., 2017; Suthar, 2008). Meta-analysis of 56 
studies has shown lower bioaccumulation factors at higher soil con-
centrations and this was likely driven by reduced uptake due to satu-
ration, more efficient detoxification and elimination (Ardestani et al., 
2014; Richardson et al., 2020). Inverse relationship between metal 
removal efficiency and BCFs suggests that metals adsorption, precipi-
tation or leaching might be also important during the vermiremediation 
(Paul et al., 2020; Rorat et al., 2016; Suthar et al., 2014). 

Earthworms metal uptake and bioaccumulation differ among earth-
worm genera, ecophysiological groups, metals and their speciation, 
exposure duration, soil properties and environmental conditions 
(Richardson et al., 2020). In most cases endogeic and epigeic earth-
worms because of different food preference, skin exposure and behav-
iour have shown distinct metal tissue concentrations and BCFs (Dai 
et al., 2004; Richardson et al., 2020). Hobbelen et al. (2006) examined 
15 field sites in Netherlands and found higher Cd, Cu and Zn concen-
trations in endogeic Aporrectodea caliginosa compared to those in epigeic 
L. rubellus. Similar pattern of Cd, Cu, Zn and Pb earthworm concentra-
tions was observed in Wales (Morgan and Morgan, 1999). On the con-
trary higher BCFs for Cd, Hg and Pb were found in endogeic A. rosea, 
O. cyaneum than in epigeic L. terrestris and E. fetida (Ernst et al., 2008). 

Distinct uptake and excretion kinetics are attributed to essential and 
non-essential metals, with rapid uptake and equilibrium for essential 
metals and slow excretion for non-essential ones (Spurgeon and Hopkin, 
1999). Continuous uptake of non-essential metals with time of exposure 
was observed in E.fetida and L. rubellus, whereas body concentrations of 
essential metals were regulated very efficiently (Giska et al., 2014; 
Spurgeon and Hopkin, 1999). This is in line with our results, showing 
that earthworms have regulated very efficiently Cu and Zn concentra-
tions as body concentrations has increased only up to 1.5-fold, while soil 
concentrations have increased 3.41- and 11.76-fold, respectively. 
Whereas SS addition had no effect on soil Ni and Cr concentrations, 
though earthworm concentrations have increased up to 1.64- and 
3.5-fold, respectively. Notwithstanding, Nahmani et al. (2007) observed 
a broad range of essential metals (Cu and Zn) in earthworms, suggesting 
that at high soil concentrations the regulation efficiency of essential 
metals weakens resulting in a higher influx and toxic effects subse-
quently. Different accumulation of metals in earthworms could also be 
explained by metal ions competition with other cations (Ca2+, Mg2+, 
etc.) for uptake or toxic site, i.e., biotic ligand model. Ca2+, Mg2+ and 
Na+ inhibited the uptake of Ni by Enchytraeus crypticus and mitigated its 
toxicity, while K+ and pH had no effect (He et al., 2014). Whereas no 
effects of Ca on Zn uptake by E. fetida suggesting that Zn uptake was not 

exerted at a Ca channel (Li et al., 2010). However, our results did not 
support this theory as only earthworm accumulation of Co and partially 
of K could be explained by the competition with Ca or Mg. 

Metal removal from SS amended soil due to bioaccumulation by 
earthworms is highly dependent on soil characteristics. Among soil 
properties pH was the most often explaining variable of the metal uptake 
and bioaccumulation (Spurgeon et al., 2006), followed by organic 
matter content, CEC and others. In our study decreasing soil pH and 
increasing SOM with increasing SS dose have facilitated the uptake and 
bioaccumulation of heavy metals and macronutrients (Mg, P and S). Soil 
OM increases forming of soluble organo-metal complexes (Rieuwerts 
et al., 2006) and P ad S labile forms in the soils (Breda et al., 2020) 
leading to changed chemical bioavailability and bioaccumulation in 
earthworms. However, the impact on the whole soil remediation effi-
ciency was significant only for Cu and Mn implying that soil pH and 
SOM only partially could be used for the prediction of remediation 
efficiency. 

High efficiency of heavy metals removal in the treatments with 
100–200 Mg ha-1, despite the slow growth and mortality from the 4th 
week could be explained by the rapid HM uptake and accumulation 
during the early phase of exposure (Bernard et al., 2010; Nahmani et al., 
2009; Spurgeon and Hopkin, 1999). Moreover, heavy metal earthworm 
concentrations were positively correlated with subsequent earthworm 
lower fresh weight and mortality. This is in agreement with Suleiman 
et al. (2017) who reported the most substantial decrease in heavy metal 
soil content in SS amended soil during the first 10 days of vermir-
emediation, afterwards the rate of heavy metal removal was dropped or 
remained constant. The negative SS impact on earthworms’ perfor-
mance could be partially counterbalanced by the addition of supple-
mented materials (organic waste, plant material, biochar, cow dung, 
etc.) to the SS amended soil (Kończak and Oleszczuk, 2018; Rorat et al., 
2016; Sanchez-Hernandez et al., 2019; Suleiman et al., 2017; Wang 
et al., 2013). 

The substantial increase in soil concentrations of Ca and nutrients (P, 
S) (Fig. 3) could be attributed to earthworms’ activity in the soil leading 
to enhanced microbial and enzymatic activities in the soil. Earthworm 
activity (borrowing, feeding, casting, mucus excretion) strongly increase 
microbial abundance and activities leading to the enzyme activation, 
nutrient elevation and changes in their bioavailability (Hoang et al., 
2017; Huang and Xia, 2018; Lavelle et al., 1997). An increase in Ca soil 
concentration after vermiremediation period could be explained by a 
secretion of intestinal Ca and NH4-N (Suleiman et al., 2017) allowing to 
maintain neutral pH and through neutralization of carboxylic and 
phenolic groups of humin acids. pH shift towards neutral range during 
vermiremediation was also observed in our study (Table 1). Moreover, 
during the vermiremediation process organically bound nutrients (such 
as P, K) are transformed into bioavailable forms (Sahariah et al., 2015). 
Therefore, even the K concentrations have change only moderately 
during the vermiremediation, though vermitreatment could be benefi-
cial as K was transformed to more bioavailable forms. Very sharp in-
crease in P and S soil concentration compared to initial values was 
recorded (Fig. 3), despite very prominent their accumulation in earth-
worms (Fig. 6). An increase in P and S level after vermiremediation was 
explained by the enhancement of enzyme activity in soil mediated by 
earthworms (Breda et al., 2020; Gupta and Garg, 2009; Suthar and 
Singh, 2008) The earthworm gut produces considerable amount of 
alkaline phosphatases, an essential enzyme of biogeochemical cycle of P, 
which facilitate the P mineralization process when soil passes through 
the worm gut (Le Bayon and Binet, 2006; Pramanik et al., 2007). 
Furthermore, long-term (5–9 years) field experiments with SS applica-
tion has shown that high rate SS application and high metal accumu-
lation reduced urease and phosphatase activities in soil (Garcıá-Gil et al., 
2000). This was supported by our data showing that the higher incre-
ment in P were found at low SS doses (Fig. 3) and no relationship were 
found between P earthworm concentration and soil P level (r = 0.5, 
p > 0.05). Therefore, we may conclude that the presence of earthworms 
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might be crucial in maintaining sufficient soil enzymes activity in SS 
amended soils. 

5. Concluding remarks 

The present study has shown that earthworms significantly improved 
the SS amended soil quality and resulted in a highly efficient remedia-
tion effect. Earthworms accelerated organic matter mineralization, sta-
bilized soil pH, significantly reduced heavy metals concentrations in the 
soil or their bioavailability and increased major nutrient soil content. 
However, the use of vermiremediation is limited under high load of 
sewage sludge. The obtained results confirmed that the most efficient 
vermiremediation and soil quality improvement at the same time could 
be achieved under the doses of 25–50 Mg ha-1. Higher (≥ 100 Mg ha-1) 
application doses have led to higher heavy metal content in earthworms 
tissue, lower weight increment and induced mortality. These adverse 
effect on earthworm life cycle parameters might further interrupt 
remediation process and its efficiency. Though we have not detected 
significant relationship between earthworms reduced survival and 
growth and remediation efficiency. This could be explained by the fact 
that SS had not imposed acute lethal toxicity and lethal consequences 
were recorded only after four weeks of exposure. Same tendence was 
found in the growth rate: growth rate decreased at the end of remedi-
ation process. However, questions of possible further heavy metal 
transfer to higher trophic level remain and future research in the 
mechanisms of earthworms’ abilities to cope with accumulated toxi-
cants are needed. 
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Haslinger, E., Hayoz, P., Hoogewerff, J., Hrvatovic, H., Husnjak, S., Jähne- 
Klingberg, F., Janik, L., Jordan, G., Kaminari, M., Kirby, J., Klos, V., Kwećko, P., 
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evaluation of sewage sludge and sewage sludge char soil amendment impact on the 
industrial hemp growth performance and heavy metal accumulation. Ind. Crops 
Prod. 150, 112396 https://doi.org/10.1016/j.indcrop.2020.112396. 

Reimann, C., Filzmoser, P., Fabian, K., Hron, K., Birke, M., Demetriades, A., Dinelli, E., 
Ladenberger, A., Albanese, S., Andersson, M., Arnoldussen, A., Baritz, R., Batista, M. 
J., Bel-lan, A., Cicchella, D., De Vivo, B., De Vos, W., Duris, M., Dusza-Dobek, A., 
Eggen, O.A., Eklund, M., Ernstsen, V., Finne, T.E., Flight, D., Forrester, S., Fuchs, M., 
Fugedi, U., Gilucis, A., Gosar, M., Gregorauskiene, V., Gulan, A., Halamic, J., 
Haslinger, E., Hayoz, P., Hobiger, G., Hoffmann, R., Hoogewerff, J., Hrvatovic, H., 
Husnjak, S., Janik, L., Johnson, C.C., Jordan, G., Kirby, J., Kivisilla, J., Klos, V., 
Krone, F., Kwecko, P., Kuti, L., Lima, A., Locutura, J., Lucivjansky, P., 
Mackovych, D., Malyuk, B.I., Maquil, R., McLaughlin, M.J., Meuli, R.G., Miosic, N., 
Mol, G., Négrel, P., O’Connor, P., Oorts, K., Ottesen, R.T., Pasieczna, A., Petersell, V., 
Pfleiderer, S., Ponavic, M., Prazeres, C., Rauch, U., Salpeteur, Schedl, A., Scheib, A., 
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Disla, J.M., Šorša, A., Svrkota, R., Stafilov, T., Tarvainen, T., Tendavilov, V., 
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