

Jointly organized with ICC On the occasion of the World Expo Milan 2015

BOOK OF ABSTRACTS

University of Milan, Via Festa del Perdono

Milan, Italy

P96. Use of extruded rye wholemeal for selected lactobacilli multiplication and its influence on dairy cows rumen fluid parameters, milk yield and composition

<u>Vita KRUNGLEVICIUTE</u>¹, Elena BARTKIENE¹, Rasa ZELVYTE², Ingrida MONKEVICIENE³, Rolandas STANKEVICIUS³, Jone KANTAUTAITE² and Grazina JUODEIKIENE⁴

¹ Department of the Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas Lithuania

² Department of Anatomy and Physiology, Research Center of Digestive Physiology and Pathology. Veterinary Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania

³ Department of Animal Nutrition, Veterinary Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania

⁴ Department of Food Technology, Kaunas University of Technology, Kaunas, Lithuania E-mail: vitakrungleviciute@gmail.com

The use of live bacterial cultures in the animal industry, whether to improve resistance to specific pathogens or to non-specifically enhance animal health, improves production parameters (Kenny et al., 2011). Different lactic acid bacteria (LAB) strains belonging to similar species have different properties and so effects/benefits can be different from one strain to another within the same species (Fukushima et al., 2011).

The aim of this study was to investigate the influence of *Lactobacillus sakei* multiplied in extruded rye substrate on dairy cows rumen fluid parameters, milk yield and milk composition.

Extruded rye wholemeal (moisture content 8.6%) produced by a single-screw extruder (Ustukiu malunas Ltd, Lithuania) was used as the fermentation medium for LAB multiplication. The fermented extruded rye (65 % moisture content) has been prepared by using 30 kg of extruded rye whole meal flour and 45 L of water. LAB cell suspension (600 mL) containing about 1011cfu/mL was added, followed by fermentation for 24 h at 30rC temperature. The final cfu/g in the fermented product was on average 109 cfu/g.

The experiment was performed in the winter at the farm of Black & White Holstein dairy cattle. Trial and control groups received identical diets, however the trial group received also 100g of fermented rye flour (containing 109 cfu/g of LAB) per head of the supplement (daily, during 65 days).

Results showed, that ruminant pH, total and individual FFA, total N and NH₃-N, D(-) lactate, reduction activity of bacteria, glucose fermentation reaction, protozoa number, TLC and TCE in trial group had no significant difference (P>0.05) from those characteristics in control group and in trial group at the beginning of the experiment, but L(+) lactate and TCM were different. At the end of the experiment L(+) lactate in trial group decreased by 0.28 mmol/L (P<0.05). Though this parameter decreased in the control group (data were not statistically significant (P>0.05)). Total count of aerobic and facultative anaerobic microorganisms in the trial group increased by 1.25 log cfu/mL (P<0.05) in compare with the trial group at the beginning of the experiment and 0.64 log cfu/mL (P>0.05) in compare with the control group. At the end of the experiment, milk fat, protein, lactose yield and milk urea content in the trial group did not differ significantly compared to the control group (P>0.05).

We conclude that LAB supplementation may not be beneficial for dairy cows, as positive effect on the activity of the ruminant fermentation and microorganisms of rumen fluid, on the milk yield and milk composition was not observed.

Keywords: lactic acid bacteria, dairy cows, ruminant parameters, milk yield, milk composition

P97. Italian

Francesco CONTI Giustina PELLEGRI Department of Econo E-mail: francesco.com

Italian consumers : terms of higher an concentration of ess content of minerals absorption is higher analysis assumes III nutritional value. His mellitus, cardiovaso milling) level, price. modeling technique by a limited number constructed based a option from a small such as extrinsic am choices that represe The aim of the wom through a question Respondents were supermarkets in Am variable, our data represents a first at possibility to make a Through interviews different characters strategy was adopte the survey correspon shelves of the retail Questionnaires wer the second was all procedure were trie The results suggested that the absence of Policy implications should not be confidence toward

E W . 44: 134: 135

B. E. 35 25 155

I 125

BMA 6. 50 87

25 IN 202

207

- 166

-T-SE

LONG 5 202 103

Z5 125 202 三五二年

200, 01, 161, 169

五 龄 132, 138, 155, 170 190

ML E : 35

A. 245

7,5,51

K.: 253

112-140

ML: 140 0,0:88

W-143; 171

A. 55

40

E2

D; 146

50 MO, V., 165

DEZ

W. 54, 156

153

1.88 4, P.: 90

. 90

OPEZ, G.; 209

R. 20

RÓMIMO R. 209

560, M.; 100

154

118 119

ACOMINO, G.; 128

IAMETTI, S.; 178; 213

IANDOLO, L.; 94

IANNUCCI, A.; 86

INGA, M.C.; 130

INGEGNO, B.; 112

IORI, A.; 92; 106 IORIZZO, M.; 182

IRAKLI, M.; 116; 204

IURLARO, A.; 125

JAKUBCZYK, A.; 169

JAYASENA, V.; 57

JHA, P.; 174

JOHNSON, S.; 57

JONES, M.J.; 22 JULIETA, S.; 113

JUODEIKIENE, G.; 172

JURY, V.; 93

KANTAUTAITE, J.; 172

KASSAHUN, D.; 21

KIDANE, Y.; 21

KING, L.R.; 58

KOCIRA, A.; 211 KOCIRA, S.; 211

KOEHLER, P.; 63

KOERNER, T.; 63

KOOT, A.; 52

KORDOWSKA-WIATER, M.; 161

KRAMER, G.; 23

KRONBERGA, A.; 205

KRUMA, Z.; 141

KRUNGLEVICIUTE, V.; 172

LABANOVSKA, L.; 205

LAMACCHIA, C.; 42

LAMONACA, E.; 127; 173

LANDRISCINA, L.; 42

LANZANOVA, C.; 101

LARTEY, M.; 83

LATTANZIO, V.M.T.; 100

LAUS, M.; 164

LAVINI, A.; 95; 158; 159

LE-BAIL, A.; 56; 93; 174

LEIDWEIN, A.; 107

LENUCCI, M.S.; 85; 125

LESZCZYŃSKA, J.; 160

LETEY, M.; 78

LEWANDOWSKA, S.; 115

LIBERTINI AL , G.; 103

LICCIARDELLO, S.; 133

LIMONTA, M.; 208

LINDHAUER, M.; 115

LINS, P.; 108; 109

LOCATELLI, M.; 146

LOCATELLI, S.; 101; 110

LOMBARDI, F.; 190 LOMBARDI, S.; 182

LORUSSO, A.; 54

LOURENÇO, D.; 120

LUCISANO, M.; 96; 149; 175

LULLIEN-PELLERIN, V.; 30; 153

MACCAFERRI, M.; 132

MADDIONA, S.; 138; 139

MAIANI, G.; 131; 206

MAMONE, G.; 35; 94; 128

MANDALÀ, C.; 114

MANFUL, J.; 178

MANINI, F.; 176

MARABELLI, B.; 26

MARCONI, E.; 37; 94; 95; 129; 137; 158; 159;

177; 182

MARCONI, O.; 36; 136

MARENGO, M.; 178; 213

MARINACCIO, F.; 111; 112

MARINI, F.; 132

MARINO, M.; 27; 97

MARIOTTI, M.; 96; 149; 175

MARRA, M.; 122

MARRESE, P.P.; 125

MARTI, A.; 60; 96; 149; 175; 178; 213

MARTI, M.; 192

MARTIN, M.; 47

MARTINA, A.; 38

MARTINEZ, M.J.; 113; 130; 156

MARTINI, D.; 154; 179

MASCHERONI, S.; 110

MASSELTER, S.; 108