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Abstract. This model describes the heat equation in 3D domains, and this problem is reduced to a
hybrid dimension problem, keeping the initial dimension only in some parts and reducing it to one-
dimensional equation within the domains in some distance from the base regions. Such mathemati-
cal models are typical in industrial installations such as pipelines. Our aim is to add two additional
improvements into this methodology. First, the economical ADI type finite volume scheme is con-
structed to solve the non-classical heat conduction problem. Special interface conditions are defined
between 3D and 1D parts. It is proved that the ADI scheme is unconditionally stable. Second, the
parallel factorization algorithm is proposed to solve the obtained systems of discrete equations. Due
to both modifications the run-time of computations is reduced essentially. Results of computational
experiments confirm the theoretical error analysis and scalability estimates of the parallel algorithm.
Key words: hybrid dimension model, ADI scheme, parallel factorization algorithm, heat
conduction, piplines.

1. Introduction

An important trend in development of mathematical models, simulating various real world
applications, deals with new type nonlocal boundary and conjugation conditions. The non-
locality mechanism helps to simulate important physical processes more accurately. Still
the existence and uniqueness of the solution, its stability is very sensitive to approximation
of such nonlocal boundary conditions and require development and analysis of special
discrete approximation techniques and modifications of implementation algorithms. As
one important example we mention the simulation of enzyme-catalysed glucose oxidation
and redox reactions over inhomogeneous surfaces (Skakauskas et al., 2018; Čiegis et al.,
2018).

It is a standard situation in applications of the mathematical modelling technique that
systems of nonstationary 3D differential equations should be solved. Even if state of the
art high-order discrete approximations are constructed on adaptive meshes, the total com-
plexity of the obtained computational algorithms is very large. It restricts our possibility to
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include such models into general optimization routines or to use them in real time decision
making applications.

Recently, a new important technique has been proposed to solve such applied problems
more efficiently. A model reduction technique is applied to avoid the effects of curse of
dimensionality. The given 3D heat conduction problem is reduced to a hybrid dimension
problem, keeping the initial dimension only in some parts of the domain and reducing it
to one-dimensional equation within the domains in some distance from the base regions.
Such mathematical models are typical in industrial installations such as pipelines.

Our aim is to add two additional improvements into this methodology. First, the eco-
nomical ADI type finite volume scheme is constructed to solve the non-classical heat
conduction problem. It is proved that the ADI scheme is unconditionally stable. Second,
the parallel factorization algorithm is proposed to solve the obtained systems of discrete
equations. Due to both modifications the run-time of computations is reduced essentially.

The method of partial dimension reduction was first introduced in Panasenko (1998)
and then developed in Panasenko (2005). It is based on the asymptotic analysis of a so-
lution of a partial differential equation set in a thin domain and on a projection of the
variational model formulation on a subspace of functions having a form of the asymptotic
expansion in all zones of regular behaviour of the solution. Then the dimension of the
problem is reduced within the big part of the domain keeping the full dimension descrip-
tion only in small zones of a singular behaviour of the solution.

Applying this approach a model with nonlocal junctions of one dimensional and full
dimensional equations is obtained. Note that nonlocal conjugation conditions make the
main challenges in development of effective parallel numerical methods for this class of
problems of hybrid dimension. Let us mention some papers where different techniques
were used to discretize the obtained hybrid mathematical model. A finite volume setting
was studied in Panasenko and Viallon (2015). The method of asymptotic partial decompo-
sition of the domain was compared with several existing methods of dimension reduction
in Amar and Givoli (2018) and its effectiveness with respect to the precision and time
of the execution is shown. In a recent paper (Čiegis et al., 2020) ADI type finite volume
scheme was considered for a 2D heat conduction problem.

However, the question about the most effective parallel numerical solvers for such
problems of hybrid dimension is still an important topic. Non-classical conjugation con-
ditions require to develop special solvers to get the discrete solutions. A straightforward
way is to solve the obtained systems of linear equations by using general iterative solvers,
e.g. well-known multigrid solvers. For multidimensional parabolic problems an alterna-
tive and most popular way is to use splitting methods (Hundsdorfer and Verwer, 2003;
Samarskii, 2001). It is well-known that in many cases ADI type methods are the best
selection.

Thus in this paper we have developed and analysed special efficient ADI schemes to
solve the hybrid 3D partial dimension reduction models for a nonstationary heat con-
duction problem. Our second goal is to propose efficient parallel implementations of the
constructed ADI schemes. All main topics required in the analysis of discrete schemes, i.e.
the approximation, positivity and stability of the solution are investigated. The accuracy
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of the reduced dimension model and the scalability of the parallel algorithms are tested in
a series of computational experiments.

The approximation error is investigated quite straightforwardly, since the regularity
of the solution and dependence of it on the reduction parameter δ is known from results
given in Amosov and Panasenko (2018), Panasenko (2005). A more complicated step is
to investigate the stability of proposed parallel ADI schemes in the case of new non-local
conjugation conditions.

The rest of the paper is organized in the following way. In Section 2 the problem is
formulated. The nonstationary heat conduction equation is formulated in the 3D paral-
lelepiped and the initial and boundary conditions are specified. In this section also, the
partially reduced dimension model is constructed and an approximate solution is defined
by considering a simplified domain when 3D small size subregions are coupled with a 1D
line. The non-local conjugation conditions are defined at the truncations of the tube. In
Section 3 the full problem in the 3D domain is solved by using the ADI stability correction
scheme. It is proved that this scheme is unconditionally stable. Its implementation requires
solving many linear systems with tridiagonal matrix and the classical factorization algo-
rithm is used. The Wang parallel factorization algorithm also can be used for parallel
computers. In Section 4 the modified ADI stability correction scheme is constructed for
the reduced dimension heat conduction problem. It is proved that the unique solution of
the obtained system of linear equations exists for each time level. The efficient factor-
ization algorithm is defined, it is based on algorithms presented in Čiegis et al. (2020).
A parallel version of the modified factorization algorithm for implementation of the ADI
scheme approximating the reduced dimension heat conduction problem is constructed in
Section 5. A theoretical scalability analysis of this parallel algorithm is done. In Section 6
results of computational experiments are presented and analysed. Some final conclusions
are done in Section 7.

2. Problem Formulation

Let us consider a parallelepiped � ⊂ R
3, which has the following form � = (0, X1)×D,

where D is a rectangle D = {(x2, x3) : 0 < xj < Xj , j = 2, 3}.
We are interested to solve a linear heat equation in � × (0, T ]:

∂u

∂t
=

3∑
j=1

∂2u

∂x2
j

+ f (x1, x2, x3, t), (x1, x2, x3, t) ∈ QT = � × (0, T ], (1)

u(0, x2, x3, t) = g1(x2, x3, t), u(X1, x2, x3, t) = g2(x2, x3, t),

(x2, x3, t) ∈ D̄ × (0, T ], (2)
∂u

∂η
= 0, (x1, x2, x3, t) ∈ ∂�1 × (0, T ], (3)

u(x1, x2, x3, 0) = u0(x1, x2, x3), (x1, x2, x3) ∈ �, (4)
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where ∂�1 = ∂� \ (D × {x1 = 0} ∪ {x1 = X1}) denotes a part of the boundary, where
the Neumann boundary condition is specified.

Next, following Amosov and Panasenko (2018), we consider a modified approximate
problem. First, let S(u)

S(u) = 1

|D|
∫ X2

0

∫ X3

0
u(x1, x2, x3, t) dx2 dx3

denote the averaging operator. We assume that the initial condition u0 and source function
f satisfy the relations

u0(x1, x2, x3) = S
(
u0), f (x1, x2, x3, t) = S(f ), (x1, t) ∈ (0, X1) × (0, T ].

It means that u0 and f don’t depend on x2, x3 within �.
Denote a reduced dimension domain �δ = {(x1, x2, x3) ∈ (δ,X1 −δ)×D}. Function

U is called an approximate solution to problem (1)–(4) if it satisfies the following problem
(Amosov and Panasenko, 2018)

∂U

∂t
=

3∑
j=1

∂2U

∂x2
j

+ f (x1, t), (x1, x2, x3, t) ∈ (� \ �δ) × (0, T ], (5)

∂U

∂t
= ∂2U

∂x2
1

+ f (x1, t), (x1, x2, x3, t) ∈ �δ × (0, T ], (6)

U(0, x2, x3, t) = g1(x2, x3, t), U(X1, x2, x3, t) = g2(x2, x3, t),

(x2, x3, t) ∈ D̄ × (0, T ], (7)
∂U

∂η
= 0, (x1, x2, x3, t) ∈ ∂�δ,1 × (0, T ], (8)

U(x1, x2, x3, 0) = u0(x1, x2, x3), (x1, x2, x3) ∈ �, (9)

where ∂�δ,1 = ∂�δ \ (D × {x1 = δ} ∪ {x1 = X1 − δ}).
In �δ × (0, T ] the solution U doesn’t depend on x2, x3, i.e.

U(x1, x2, x3, t) = S(U), (x1, x2, x3, t) ∈ �δ × (0, T ].

Thus in the reduced domain it is sufficient to find 1D space function U(x1, t).
By analysing the weak form of the heat equation, it is shown in Amosov and Panasenko

(2018) that the following conjugation conditions are valid at the truncation points of the
space domain

U |x1=δ−0 = U |x1=δ+0, U |x1=X1−δ−0 = U |x1=X1−δ+0, (10)

∂S(U)

∂x1

∣∣∣∣
x1=δ−0

= ∂U

∂x1

∣∣∣∣
x1=δ+0

,
∂U

∂x1

∣∣∣∣
x1=X1−δ−0

= ∂S(U)

∂x1

∣∣∣∣
x1=X1−δ+0

. (11)
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The conditions (10) are classical and mean that U is continuous at the truncation points.
While the remaining two conditions (11) are nonlocal and they define the conservation of
full fluxes along the separation planes.

3. ADI Scheme for the 3D Differential Problem

The uniform spatial mesh �̄h = ω̄1 × ω̄2 × ω̄3 is defined as

ω̄k = {xkj : xkj = jhk, j = 0, . . . , Jk}, xkJk
= Xk, k = 1, 2, 3.

For simplicity of notations we also consider a uniform time mesh:

ω̄t = {
tn : tn = nτ, n = 0, . . . , N

}
, tN = T .

Let Un
ijk be a numerical approximation to the exact solution u(x1i , x2j , x3k, t

n) of problem
(1)–(4) at the grid point (x1i , x2j , x3k, t

n).
The following standard operators are defined for discrete functions:

∂x1U
n
ijk := Un

ijk − Un
i−1,j,k

h1
,

∂x2U
n
ijk := Un

ijk − Un
i,j−1,k

h2
, ∂x3U

n
ijk := Un

ijk − Un
i,j,k−1

h3
,

Ah
1Un

ijk := − 1

h1

(
∂x1U

n
i+1,j,k − ∂x1U

n
ijk

)
, 0 < i < J1

Ah
2Un

ijk :=

⎧⎪⎪⎨
⎪⎪⎩

− 2
h2

∂x2U
n
i1k, j = 0,

− 1
h2

(
∂x2U

n
i,j+1,k − ∂x2U

n
ijk

)
, 0 < j < J2,

2
h2

∂x2U
n
iJ2k

, j = J2,

Ah
3Un

ijk :=

⎧⎪⎪⎨
⎪⎪⎩

− 2
h3

∂x3U
n
ij1, k = 0,

− 1
h3

(
∂x3U

n
i,j,k+1 − ∂x3U

n
ijk

)
, 0 < k < J3,

2
h3

∂x3U
n
ijJ3

, k = J3.

The discrete approximation of diffusion operators is obtained by using the finite volume
method.

Then the heat conduction problem (1)–(4) is approximated by the following alternating
direction implicit (ADI) stability correction scheme (Hundsdorfer and Verwer, 2003)

U
n+ 1

4
ijk − Un

ijk

τ
+

3∑
l=1

Ah
l U

n
ijk = f

n+ 1
2

ijk , (x1i , x2j , x3k) ∈ ω1 × ω̄2 × ω̄3,

U
n+ l

4
ijk − U

n+ l−1
4

ijk

τ
+ 1

2
Ah

5−l

(
U

n+ l
4

ijk − Un
ijk

) = 0, l = 2, 3, 4. (12)
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At the first step the heat conduction problem (1)–(4) is approximated by the explicit Euler
scheme. It is well known that this scheme is only conditionally stable. The next three
steps of scheme (12) guarantee the unconditional stability of the discrete scheme and they
increase the accuracy of approximation in time until the second order.

At all three steps 3D systems are split into a set of 1D problems along x3, x2 and x1

coordinates respectively, and each subproblem is solved by using the classical fast factor-
ization algorithm.

Lemma 1. If a solution of the problem (1)–(4) is sufficiently smooth, then the approxi-
mation error of ADI scheme (12) is O(τ 2 + h2

1 + h2
2 + h2

3).

Proof. For a self-completeness of the text and in order to explain the approximation prop-
erty of the ADI scheme (12) we present a short proof of this result (for a detailed analysis
see Hundsdorfer and Verwer, 2003). By adding all equations (12) the following discrete
equation is obtained

Un+1
ijk − Un

ijk

τ
+

4∑
l=2

1

2
Ah

5−l

(
U

n+ l
4

ijk + Un
ijk

) = f
n+ 1

2
ijk . (13)

In order to compute the approximation error of (12), we use the relations

Un
ijk ∼ u

(
x1i , x2j , x3k, t

n
)
, U

n+ l
4

ijk ∼ u
(
x1i , x2j , x3k, t

n+1), l = 2, 3, 4.

Thus the approximation error of ADI scheme (12) with respect to time coordinate is the
same as of the classical Crank-Nicolson method. The second order accuracy of the con-
structed approximations of space derivatives is shown, e.g. in Hundsdorfer and Verwer
(2003), Samarskii (2001).

It is a straightforward task to show the result presented in the following lemma.

Lemma 2. The discrete operators Ah
1 , Ah

2 and Ah
3 are symmetric, Ah

1 is positive definite
and Ah

2 , Ah
3 are non-negative operators.

All operators Ah
1 , Ah

2 and Ah
3 commute, thus there exists a complete system of functions

{
φ1i (x1)φ2j (x2)φ3k(x3), 1 � i � J1 − 1, 0 � j � J2, 0 � k � J3

}
,

where φlm(xl) are eigenvectors of the operator Ah
l , l = 1, 2, 3:

Ah
l φlm = λlmφlm, l = 1, 2, 3

and λlm are eigenvalues

λ1i � λ11 > 0, λlj � 0, l = 2, 3. (14)
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Lemma 3. ADI scheme (12) is unconditionally stable.

Proof. For the given normal operators Ah
l , l = 1, 2, 3 the Fourier stability analysis can

be used. Let us consider the solution of ADI scheme (12) in the case when boundary
conditions gj = 0, j = 1, 2 and f (x, t) = 0. The solution of (12) can be written as

Un
ijk =

J1−1∑
l=1

J2∑
m=0

J3∑
r=0

cn
lmrφ1l (x1i )φ2m(x2j )φ3r (x3k).

Substituting this formula into equations (12), we obtain for each mode the stability equa-
tions

cn+1
lmr = qlmrc

n
lmr ,

where the discrete stability function qlmr is defined as

qlmr= (1− τ
2 (λ1l+λ2m + λ3r )+ τ 2

4 (λ1lλ2m + λ1lλ3r + λ2mλ3r )+ τ 3

8 λ1lλ2mλ3r )

(1 + 0.5τλ1l)(1 + 0.5τλ2m)(1 + 0.5τλ3r )
.

Since eigenvalues satisfy estimates (14), then |qlmr | < 1 and the ADI scheme (12) is
unconditionally stable in the L2 norm.

It is easy to see that the discrete stability function approximates the continuous stability
function of the differential equation (1) with the second order accuracy.

4. The ADI Scheme for the Partially Dimension Reduced Problem

Let K1 and K2 define the truncation points of the domain x1K1 = δ, x1K2 = X1 − δ. Then
the spatial mesh ω1 is splitted into three parts:

ω11 = {x1i : x1i = ih1, i = 1, . . . , K1 − 1},
ω̄12 = {x1i : x1i = ih1, i = K1, . . . , K2},
ω13 = {x1i : x1i = ih1, i = K2 + 1, . . . , J1 − 1}.

We note that more general meshes are used in Viallon (2013); Panasenko and Viallon
(2015), where some atypical cells along the interface are constructed, and that lead to
non-admissible meshes. In this paper we use the finite volume approach. For more general
non-uniform meshes it can be recommended to use a general framework of finite element
and finite difference schemes for construction of discrete approximations on non-matching
grids (Eymard et al., 2000; Faille, 1992). A numerical comparison of these methods for
1D-2D discrete schemes is done in Viallon (2013).
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The heat conduction problem (5)–(11) is approximated by the modified version of the
ADI scheme

U
n+ 1

4
ijk − Un

ijk

τ
+

3∑
l=1

Ah
l U

n
ijk = f

n+ 1
2

ijk , (x1i , x2j , x3k) ∈ (ω11 ∪ ω13) × ω̄2 × ω̄3,

U
n+ 1

4
i00 − Un

i00

τ
+ Ah

1Un
i00 = f

n+ 1
2

i00 , x1i ∈ ω̄12 \ {x1K1 , x1K2}, (15)

U
n+ 1

4
K100 − Un

K100

τ
+ 1

h2
1

(−Sh

(
Un

K1−1

) + 2Un
K100 − Un

K1+1,0,0

) = f
n+ 1

2
K100,

U
n+ 1

4
K200 − Un

K200

τ
+ 1

h2
1

(−Sh

(
Un

K2+1

) + 2Un
K200 − Un

K2−1,0,0

) = f
n+ 1

2
K200,

U
n+ l

4
ijk − U

n+ l−1
4

ijk

τ
+ 1

2
Ah

5−l

(
U

n+ l
4

ijk − Un
ijk

) = 0, l = 2, 3, (16)

(x1i , x2j , x3k) ∈ (ω11 ∪ ω13) × ω̄2 × ω̄3,

Un+1
ijk − U

n+ 3
4

ijk

τ
+ 1

2
Ah

1

(
Un+1

ijk − Un
ijk

) = 0, (17)

(x1i , x2j , x3k) ∈ (ω11 ∪ ω13) × ω̄2 × ω̄3,

Un+1
i00 − U

n+ 3
4

i00

τ
+ 1

2
Ah

1

(
Un+1

i00 − Un
i00

) = 0, x1i ∈ ω̄12 \ {x1K1 , x1K2}, (18)

Un+1
K100 − U

n+ 3
4

K100

τ
+ 1

2h2
1

(−Sh

(
Un+1

K1−1

) + 2Un+1
K100 − Un+1

K1+1,0,0

+ Sh

(
Un

K1−1

) − 2Un
K100 + Un

K1+1,0,0

) = 0, (19)

Un+1
K200 − U

n+ 3
4

K200

τ
+ 1

2h2
1

(−Sh

(
Un+1

K2+1

) + 2Un+1
K200 − Un+1

K2−1,0,0

+ Sh

(
Un

K2+1

) − 2Un
K200 + Un

K2−1,0,0

) = 0. (20)

Here Sh denotes the discrete averaging operator:

Sh

(
Un

i

) = 1

|D|
J2∑

j=0

J3∑
k=0

d2j d3kU
n
ijkh2h3,

where dlm = 1, if 0 < m < Jl and dlm = 0.5, if m = 0, Jl , l = 2, 3. Notation of
the argument Un

i indicates that the two dimensional average of discrete function Un is
computed at the grid point x1i .

Note that equations (19), (20) approximate the nonlocal flux conjugation conditions
(11).
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We define two discrete meshes �h,RD = (ω̄2 × ω̄3 × (ω11 ∪ ω13)) ∪ ω̄12 and
�̄h,RD = �h,RD ∪ (ω̄2 × ω̄3 × (x10 ∪ x1J1)). Let us consider discrete functions
Uijk = U(x1i , x2j , x3k) defined on the spatial mesh �̄h,RD . We denote the set of such
vectors by Dh.

Let us define three operators for U ∈ Dh:

Ah
2U =

{
Ah

2U, (x1i , x2j , x3i ) ∈ (ω11 ∪ ω13) × ω̄2 × ω̄3,

0, x1i ∈ ω̄12,

Ah
3U =

{
Ah

3U, (x1i , x2j , x3i ) ∈ (ω11 ∪ ω13) × ω̄2 × ω̄3,

0, x1i ∈ ω̄12,

Ah
1U =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ah
1U, (x1i , x2j , x3i ) ∈ (ω11 ∪ ω13) × ω̄2 × ω̄3,

Ah
1Ui00, x1i ∈ ω̄12 \ {x1K1 , x1K2},

1
h2

1
(−Sh(UK1−1) + 2UK100 − UK1+1,0,0), x1 = K1,

1
h2

1
(−Sh(UK2+1) + 2UK200 − UK2−1,0,0), x1 = K2.

Then we can write the ADI scheme as

Un+ 1
4 − Un

τ
+ (

Ah
1 + Ah

2 + Ah
3

)
Un = f n+ 1

2 , (21)

Un+ l
4 − Un+ l−1

4

τ
+ 1

2
Ah

5−l

(
Un+ l

4 − Un
) = 0, l = 2, 3, 4. (22)

Next, our goal is to prove that the discrete operators Ah
1 , Ah

2 and Ah
3 are symmetric.

For U,V ∈ Dh, such that U0jk = UJ1jk = 0, V0jk = VJ1jk = 0, (x2, x3) ∈ ω̄2 × ω̄3

the formulas

(U, V ) =
J2∑

j=0

J3∑
k=0

d2j d3k

(K1−1∑
i=1

UijkVjk +
K−1∑

i=K2+1

UijkVijk

)
h1h2h3

+ |D|
K2∑

i=K1

Ui00Vi00h1,

‖U‖ = (U,U)1/2

define a scalar product and a norm in this vector space. We remind that dlm = 1, if 0 <

m < Jl and dlm = 0.5, if m = 0, Jl , l = 2, 3.

Lemma 4. The discrete operators Ah
1 , Ah

2 and Ah
3 are symmetric, Ah

1 is positive definite
and Ah

2 , Ah
3 are non-negative operators.



486 R. Čiegis et al.

Proof. First, we investigate the operator Ah
2 . Applying the summation by part formula,

we get

(
Ah

2U,V
) =

J2∑
j=0

J3∑
k=0

d2j d3k

( K1−1∑
i=1

Ah
2UijkVijk +

K−1∑
i=K2+1

Ah
2UijkVijk

)
h1h2h3

+
J2∑

j=1

J3∑
k=0

d3k

( K1−1∑
k=1

∂x2Uijk∂x2Vijk +
K−1∑

k=K2+1

∂x2Uijk∂x2Vijk

)
h1h2h3

= (
U,Ah

2V
)
,

(
Ah

2U,U
)
� 0.

In a similar way we get the estimates

(
Ah

3U,V
) =

J2∑
j=0

J3∑
k=0

d2j d3k

( K1−1∑
i=1

Ah
3UijkVijk +

K−1∑
i=K2+1

Ah
3UijkVijk

)
h1h2h3

+
J2∑

j=0

J3∑
k=1

d2k

( K1−1∑
k=1

∂x3Uijk∂x3Vijk +
K−1∑

k=K2+1

∂x3Uijk∂x3Vijk

)
h1h2h3

= (
U,Ah

3V
)
,

(
Ah

3U,U
)
� 0.

It follows from the obtained estimates that Ah
2 and Ah

3 are symmetric and non-negative
definite operators.

Next, we investigate the operator Ah
1 . Applying the summation by parts formula and

taking into account the boundary conditions for vectors U , V , and the nonlocal conjuga-
tion conditions (19), (20) we get

(
Ah

1U,V
)

=
J2∑

j=0

J3∑
k=0

d2j d3k

(K1−1∑
i=1

Ah
1UijkVijk +

K−1∑
i=K2+1

Ah
1UijkVijk

)
h1h2h3

+ |D|
( K2−1∑

i=K1+1

Ah
1Ui00Vi00h1+ 1

h1

(−Sh(UK1−1)+2UK100−UK1+1,0,0
)
VK100

+ 1

h1

(−Sh(UK2+1) + 2UK200 − UK2−1,0,0
)
VK200

)

=
J2∑

j=0

J3∑
k=0

d2j d3k

( K1∑
i=1

∂x1Uijk∂x1Vijk +
K∑

i=K2+1

∂x1Uijk∂x1Vijk

)
h1h2h3

+ |D|
K2∑

i=K1+1

∂x1Ui00 ∂x1Vi00 h1 = (
U,Ah

1V
)
,

(
U,Ah

1U
)

> 0.

Here we use the notation UK1jk = UK100, UK2jk = UK200 for (x2j , x3k) ∈ ω̄2 × ω̄3.
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It follows from the obtained estimates that Ah
1 is a symmetric and positive definite

operator.

Due to nonlocal conjugation conditions (19), (20) the classical factorization algorithm
should be modified in order to solve 1D subproblems (17)–(20).

Lemma 5. The unique solution of the linear system of equations (15)–(20) exists and it
can be computed by using the efficient factorization algorithm.

Proof. The given proof also defines the constructive algorithm to solve (17)–(20). Since
the first part (15) of the discrete ADI scheme defines an explicit algorithm and 1D sub-
problems (16) in the second part of the scheme are efficiently solved by using the classical
factorization algorithm, then it is sufficient to consider in detail the subproblem (17)–(20).
For each (x2j , x3k) ∈ ω̄2 × ω̄3 the solution is factorized separately in subdomains ω11,
ω12 and ω13. Let us write equations of the system (17)–(20) as

− aijkU
n+1
i−1,j,k + cijkU

n+1
ijk − bijkU

n+1
i+1,j,k = dijk,

aijk, bijk, cijk � 0, cijk � aijk + bijk.

1. Domain ω11. The solution is presented in the following form:

Un+1
ijk = αijkU

n+1
i+1,j,k + γijk, 0 � i < K1, (23)

α0jk = 0, γ0jk = g1
(
x2j , x3k, t

n+1),
αijk = bijk

cijk − aijkαi−1,j,k

, γijk = dijk + aijkγi−1,j,k

cijk − aijkαi−1,j,k

. (24)

By induction it can be proved that the estimates 0 � αijk � 1 are valid.
2. Domain ω12. The solution is presented in the following form:

Un+1
i00 = αi00U

n+1
K100 + βi00U

n+1
K200 + γi00, K1 < i < K2. (25)

This factorization is done in two steps. First, the solution is written in the form

Un+1
i00 = α̃i00U

n+1
K100 + β̃i00U

n+1
i+1,0,0 + γ̃i00, K1 < i < K2, (26)

α̃K1+1,0,0 = aK1+1,0,0

cK1+1,0,0
, β̃K1+1,0,0 = bK1+1,0,0

cK1+1,0,0
, γ̃K1+1,0,0 = dK1+1,0,0

cK1+1,0,0
,

α̃i00 = ai00

ci00 − ai00β̃i−1,0,0
α̃i−1,0,0, β̃i00 = bi00

ci00 − ai00β̃i−1,0,0
,

γ̃0k = ai00γ̃i−1,0,0 + di00

ci00 − ai00β̃i−1,0,0
. (27)

Let us assume that 0 � α̃i−1,0,0, β̃i−1,0,0 � 1 and α̃k−1,0,0 + β̃k−1,0,0 � 1. Then it follows
from the given formulas that 0 � β̃i00 � 1 and α̃i00 � 0. It remains to prove that α̃i00 � 1
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and α̃i00 + β̃i00 � 1. It follows from simple inequalities

ai00α̃i−1,0,0 + bi00 + ai00β̃i−1,0,0 = ai00(α̃i−1,0,0 + β̃i−1,0,0) + bi00

� ai00 + bi00 � ci00,

that ai00α̃i−1,00 + bi00 � ci00 − ai00β̃i−1,0,0. Thus we get the estimate

0 � α̃i00 + β̃i00 � 1. (28)

The proof by induction is completed.
Next, we compute coefficients αi00, βi00 and γi00 in formula (25)

αK2−1,0,0 = α̃K2−1,0,0, βK2−1,0,0 = β̃K2−1,0,0, αi00 = α̃i00 + β̃i00αi+1,0,0,

βi00 = β̃i00βi+1,0,0, γi00 = γ̃i00 + β̃i00γi+1,0,0, i = K2 − 2, . . . , K1 + 1.

(29)

From estimates for α̃0k , β̃0k and (29) it follows that

0 � αi00, βi00 � 1, 0 � αi00 + βi00 � 1.

3. Domain ω13. For each (x2j , x3k) ∈ ω2×ω3 the solution is presented in the following
form:

Un+1
ijk = βijkU

n+1
i−1,j,k + γijk, K2 < i � J1, (30)

βJ1jk = 0, γJ1jk = g2
(
x2j , x3k, t

n+1),
βijk = aijk

cijk − bijkβi+1,j,k

, γijk = dijk + bijkγi+1,j,k

cijk − bijkβi+1,j,k

.

By induction it can be proved that the estimates 0 � βijk � 1 are valid.
Substituting (23)–(30) into equations (19) and (20) we get a linear system of two equa-

tions to find Un+1
K100, Un+1

K200:

{
A11U

n+1
K100 + A12U

n+1
K200 = B1,

A21U
n+1
K100 + A22U

n+1
K200 = B2,

(31)

where coefficients are defined by

A11 = 1

τ
+ 1

2h2
1

(
2 − αK1+1,0,0 − Sh(αK1−1)

)
, A12 = − 1

2h2
1

βK1+1,0,0,

A21 = − 1

2h2
1

αK2−1,0,0, A22 = 1

τ
+ 1

2h2
1

(
2 − βK2−1,0,0 − Sh(βK2+1)

)
,
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B1=
U

n+ 3
4

K100

τ
− 1

2h2
1

(
Sh

(
Un

K1−1

)−2Un
K100+Un

K1+1,0,0+γK1+1,0,0 − Sh(γK1−1)
)
,

B2=
U

n+ 3
4

K200

τ
− 1

2h2
1

(
Sh

(
Un

K2+1

)−2Un
K200+Un

K2−1,0,0 + γK2−1,0,0 − Sh(γK2+1)
)
.

From the estimates given above we have that

2 − αK1+1,0,0 − Sh(αK1−1) � βK1+1,0,0,

2 − βK2−1,0,0 − Sh(βK2+1) � αK2−1,0,0,

thus the determinant of the matrix of system (31) is positive and the unique solution Un+1
K100,

Un+1
K200 exists. Then the backward factorization step is applied and Un+1

ijk are computed.

It is noted in Hundsdorfer and Verwer (2003) that the stability analysis of such ADI
schemes for three dimensional cases is far from easy and even the linear commuting case
needs a closer attention. Since in our case operators Ah

1 , Ah
2 , Ah

3 don’t commute, we can’t
apply the spectral stability analysis.

Here we restrict to writing the stability matrix

R =
(

I + τ

2
Ah

1

)−1(
I + τ

2
Ah

2

)−1(
I + τ

2
Ah

3

)−1(
I − τ

2

(
Ah

1 + Ah
2 + Ah

3

))
.

It follows from Lemma 4, that∥∥∥∥I + τ

2
Ah

j

∥∥∥∥ � 1, j = 1, 2, 3.

Then it is sufficient to assume that the discrete problem is such that the stability estimate
∥∥Rn

∥∥ � C, n � 1 (32)

is satisfied. The validity of this assumption should be tested for each case of the discrete
problem experimentally.

5. Parallel Algorithm

In this section a parallel version of the ADI algorithm (15)–(20) is presented. We note
that development of efficient parallel algorithms for implementation of ADI type solvers
is quite a non-trivial task. First the factorization algorithm for 3D problems severely de-
pends on data movement in the memory of computers (from and to in different levels of the
memory). Only few arithmetical operations are done with each small size portion of data,
therefore cost of data movement is very important issue (see, Guo and Lu, 2016; Otero
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et al., 2020). Second, nonlocality of some parts of the discrete scheme lead to modifi-
cations of the standard factorization algorithm and these changes should be resolved effi-
ciently by the parallel algorithm (see Čiegis et al., 2014, where a parallel ADI algorithm is
constructed to solve multidimensional parabolic problems with nonlocal boundary condi-
tions). Third, different approaches of parallelization can be used for different architectures
of parallel computers. At least three main classes can be considered, including GPU pro-
cessors (Imankulov et al., 2021; Xue and Feng, 2018; Otero et al., 2020), shared memory
processors (multicore processors) and general global memory parallel machines, when
implementation of parallel algorithms can be done, e.g. by using MPI library (Čiegis et
al., 2014). In this paper we restrict to the construction of parallel algorithms for general
distributed memory computers. It is obvious that these algorithms can be efficiently used
also for multicore computers and distributed clusters of multicore nodes.

First, in defining a parallel version of the ADI algorithm for the reduced dimension
model we restrict to a a simple modification of the standard sequential factorization algo-
rithm. Only two parts are used to decompose the domain �h in each dimension. Therefore
the maximum number of parallel processes is restricted to eight processes.

We start by defining a parallel algorithm for the solution of a tridiagonal system of
linear equations:⎧⎪⎪⎨

⎪⎪⎩
c0U0 − b0U1 = F0,

−ajUj−1 + cjUj − bjUj+1 = Fj , j = 1, . . . , J − 1,

−aJ UJ−1 + cJ UJ = FJ .

(33)

Let us assume that two processes are used to solve it in parallel. System (33) is partitioned
among both processes. The first process is responsible for the first (J + 1)/2 equations
0 � j < (J +1)/2 and the second process solves the remaining equations. Both processes
implement the classical sequential factorization algorithm in parallel but in different di-
rections. The first process applies this algorithm from left-to-right:

Uj = αjUj+1 + βj , j = 0, . . . , (J + 1)/2 − 1

while the second process computes in the opposite direction:

Uj = αjUj−1 + βj , j = J, . . . , (J + 1)/2.

Then both processes exchange coefficients (α J+1
2 −1, β J+1

2 −1), (α J+1
2

, β J+1
2

), solve 2 × 2

dimension systems and find solutions UJ+1
2 −1, UJ+1

2
. The second backward part of the

factorization algorithm is again implemented in parallel.
Now we are ready to describe the main decomposition details of the parallel version

of ADI algorithm (15)–(20).
1. The case of p = 2 processes. The discrete grid ω̄1 is splitted into two parts ω̄1 =

ω1,p0 ∪ ω1,p1, where

ω1,p0 = ω11 ∪ ω̄12, ω1,p1 = ω13.
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The first process computes the solution on the discrete grid (ω11 × ω̄2 × ω̄3) ∪ ω̄12, and
the second process computes the solution on the grid ω13 × ω̄2 × ω̄3.

Before computations of the explicit step (21), the first process sends the value Un
K200

to the second process, and the second process computes the value of S(Un
K2+1) and sends

it to the first process. Then both processes compute their parts of Un+ 1
4 in parallel.

The l = 2, 3 steps of the ADI scheme (22) don’t require any communication between
processes and can be done in parallel.

The last step l = 4 of the ADI scheme (22) is implemented in the following way.
The first process computes the factorization coefficients of (23) and (25), and the second
process computes coefficients of (30). These computations can be done in parallel. Then
the second process computes the values of S(βn

K2+1), S(γ n
K2+1) and sends them to the first

process. The latter solves system (31) and sends the value Un+1
K200 to the second process.

Then both process compute their parts of Un+1 in parallel.
A simple but still accurate complexity model of the parallel ADI algorithm can be

constructed

T2 = c
J1J2J3

2
+ 2(α + 2β), (34)

where T2 is computation time of the one time step of the parallel algorithm, α is data
communication start-up time, β defines time required to send one element.

We note that this model takes into account only main computational and data commu-
nication costs. In real computations the values of these parameters can vary. One more
important detail, i.e. automatic memory caching is also not estimated in this formula.
Thus efficiency estimates of such models are only asymptotically valuable, but exactly
such information is sufficient in most cases.

Let us define the speed-up Sp and efficiency Ep of the parallel algorithm

Sp = T0

Tp

, Ep = Sp

p
,

where p is the number of processes, T0 is the computation time of the sequential algorithm.
Since T0 = cJ1J2J3 and additional data communication costs are constant, then even

for moderate size grids ω1 × ω2 × ω3 it follows from (34) that

S2 ≈ 2, E2 ≈ 1,

i.e. the parallel algorithm is scalable.

2. The case of p = 4 processes. In addition to splitting the discrete grid ω̄1, the grid
ω̄2 is also divided into two parts ω̄2 = ω2,p0 ∪ ω2,p1, where

ω2,p0 =
{
x2j , 0 � j � J2

2

}
, ω2,p1 =

{
x2j ,

J2

2
+ 1 � j � J2

}
.
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The first process computes the solution on the grid (ω11 × ω̄2,p0 × ω̄3) ∪ ω̄12, the second
process computes the solution on the grid ω13 × ω̄2,p0 × ω̄3, the third process computes
the solution on the grid (ω11 × ω̄2,p1 × ω̄3) ∪ ω̄12, and the fourth process computes the
solution on the grid ω13 × ω̄2,p1 × ω̄3.

Before parallel computations of the explicit step (21), the first process sends the
value Un

K200 to the second and fourth process, these two processes compute their part
of S(Un

K2+1) and send the obtained values to the first process. In a similar way the first
process sends the value Un

K100 to the third process, which computes its part of S(Un
K1+1)

and sends the obtained value to the first process.
The second part of data communication is done among two pairs of processes: the

first and third processes exchange the values of Un
i,J2/2,k and Un

i,J2/2+1,k , 0 < i < K1,
0 � k � J3, and the second and fourth processes exchange the values of Un

i,J2/2,k and
Un

i,J2/2+1,k , K2 < i < J1, 0 � k � J3. These communications are done in parallel. Then

all four processes compute their parts of Un+ 1
4 in parallel.

The l = 2 step of the ADI scheme (22) don’t require any communication between
processes and can be done in parallel.

The l = 3 step of the ADI scheme (22) is implemented by using the parallel factoriza-
tion algorithm, which is described above for the system of linear equations (33). The data
communication part between the given pairs of the processes is equivalent to the one de-
fined for the explicit part of the ADI algorithm (21). This step again can be done in parallel.

The last step l = 4 of the ADI scheme (22) is implemented as for p = 2 processes with
one small modification. The second and fourth process compute the values of S(βn

K2+1),
S(γ n

K2+1) and the third process computes the values of S(αn
K1−1), S(γ n

K1−1). Then they
send these values to the first process. It solves system (31) and sends the values Un+1

K100,
Un+1

K200 to the remaining three process. Then all four process compute their parts of Un+1

in parallel.
The complexity model of the parallel ADI algorithm for p = 4 processes is given by

T4 = c
J1J2J3

4
+ 4α + J1J3

2
β. (35)

It follows from this theoretical model, that now the data communication costs depend
linearly on the size of J1J3. Thus only for sufficiently large J2 these costs can be neglected
and estimates

S4 ≈ 4, E4 ≈ 1

are valid. We get that the parallel algorithm is scalable for sufficiently large J2 and this
specific size depends on both parameters – computational complexity c and data commu-
nication costs β.

3. The case of p = 8 processes. In addition to splitting discrete grids ω̄1, ω̄2 the
discrete grid ω̄3 is also divided into two parts ω̄3 = ω3,p0 ∪ ω3,p1, where

ω3,p0 =
{
x3k, 0 � k � J3

2

}
, ω3,p1 =

{
x3k,

J3

2
+ 1 � k � J3

}
.
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The parallel algorithm is modified to include data distribution steps in the x3 dimension,
all communications are defined by using analogous formulas given for p = 4 case in the
x2 dimension.

The complexity model of the parallel ADI algorithm for p = 8 processes is given by

T8 = c
J1J2J3

8
+ 4α +

(
J1J3

4
+ J1J2

4

)
β. (36)

It follows from this model that for sufficiently large grid sizes, when J1J2J3 	 J1(J2 +
J3), the estimates

S8 ≈ 8, E8 ≈ 1

are valid and the parallel algorithm is scalable.

Remark 1. Let us consider the case when the number of processors/cores is larger than 8.
In order to use all p processors, we modify the constructed parallel algorithm. We assume
that p is an even number and factorize it as p = 2 × p2 × p3. The decomposition of the
discrete grid �h is done in two steps. First, the ω̄1 grid is divided into two parts following
the algorithm defined for p � 8 processes. Thus the implementation of the parallel algo-
rithm in x1 dimension remains unchanged. Next, we divide the grids ω̄j into pj , j = 2, 3
parts. If pj > 2, then in this dimension the proposed parallel factorization algorithm is
changed to a more expensive but general algorithm. We recommend to use Wang’s or
Cyclic reduction parallel factorization algorithms (Kumar et al., 1994; Imankulov et al.,
2021).

6. Computational Experiments

Consider the problem (1)–(4) in the domain � with geometry parameters X1 = 6, X2 = 1,
X3 = 1. We solve this problem till T = 1 with given initial, boundary conditions and the
zero source function

u0(x1, x2, x3) = 0, g1(x2, x3, t) = 5te−10((x2−0.5)2+(x3−0.5)2),

g2(x2, x3, t) = 2te−6((x2−0.5)2+(x3−0.5)2), f (x1, x2, x3, t) = 0.

The accuracy of time integration of ADI schemes. First, we have tested the time integration
accuracy of the ADI solver for the full dimension model. A uniform space grid �h with
J1 = 120, J2 = 20, J3 = 20 is used. Table 1 gives for a sequence of decreasing time
step widths τ the errors e(τ ) and the experimental convergence rates ρ(τ) of the discrete
solution for ADI scheme (12) in the maximum norm:

e(τ ) = max
(x1i ,x2j ,x3k)∈�h

∣∣UN
ijk − U(x1i , x2j , x3k, T )

∣∣, ρ(τ ) = log2
(
e(2τ)/e(τ )

)
,
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Table 1
Errors e(τ ) and experimental convergence rates ρ(τ)

for the discrete solution of ADI scheme (12) for a
sequence of time steps τ .

τ e(τ ) ρ(τ )

0.002 3.0352 × 10−5 2.016
0.001 7.5272 × 10−6 2.012
0.0005 1.8549 × 10−6 2.021
0.00025 4.411 × 10−7 2.072

Table 2
Errors e(δ) of the discrete solution of the reduced dimension model

(5)–(11) for a sequence of truncation parameter δ.

δ = 1 δ = 1.5 δ = 2 δ = 2.8

e(δ) 4.304 × 10−3 1.748 × 10−4 7.201 × 10−6 4.522 × 10−8

CPU 19.4 29.1 40.8 60.2

where the reference solution U(x1i , x2j , x3k, T ) is computed by using the very small time
step τ = 6.25 × 10−5. Then the integration error introduced by the ADI scheme can be
measured accurately.

It follows from the presented results, that the accuracy of ADI scheme agrees well with
the theoretical prediction.

The accuracy of the reduced dimension model. Next we investigate the accuracy of the
reduced dimension model (5)–(11). For the space discretization a uniform grid �h with
J1 = 300, J2 = 50, J3 = 50 is used, and integration in time is done with τ = 0.001.

The numerical tests have been performed on the computer with Intel® Xeon® proces-
sor E5-2670, 8GB RAM, and the algorithms have been implemented using C++ language.

We note that CPU time for computing the full model solution by using the ADI scheme
(12) is 55.9 seconds.

Table 2 gives for a sequence of reduction parameter δ errors e(δ)

e(δ) = max
(x1i ,x2j ,x3k)∈�hh

∣∣UN
ijk − UN

ijk(δ)
∣∣

of the reduced dimension model (5)–(11) discrete solution in the maximum norm, where
UN

ijk is the solution of the ADI scheme (12) and UN
ijk(δ) is the solution of the reduced

dimension ADI scheme (15)–(20). CPU times are also presented for the scheme (15)–(20).
It follows from the presented results, that starting from δ = 1 the accuracy of the

reduced dimension model is sufficient for most real world applications, while CPU time
for the reduced dimension model is reduced up to 3 times.

The efficiency of the parallel ADI scheme (15)–(20). In this section we present results
of the parallel scalability tests. All parallel numerical tests in this work were performed
on the computer cluster “HPC Vanagas” at the High Performance Computing Laboratory
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Table 3
Scalability analysis of the parallel algorithm. The speed-up Sp and

efficiency Ep coefficients for two problems of dimension
450 × 75 × 75 and 600 × 100 × 100.

Tp(450) Sp(450) Ep(450) Tp(600) Sp(600) Ep(600)

p = 1 77.4 – – 254.1 – –
p = 4 17.5 4.42 1.12 57.79 4.40 1.10
p = 8 9.85 7.86 0.97 29.2 8.70 1.08

of Vilnius Gediminas technical university. We have used up to 8 cores of Intel® Xeon®

processor E5-2630 with 20 cores (2.20 GHz) and 32 GB DDR4 of RAM. The parallel
algorithms have been implemented using MPI library.

Our goal is to investigate the efficiency of the proposed parallel version of the ADI
scheme (15)–(20). We have solved two problems with different sizes of the discrete meshes
450 × 75 × 75 and 600 × 100 × 100. The CPU time Tp, speed-up Sp and efficiency Ep

coefficients are presented in Table 3.
Two conclusions follow from the presented results of computational experiments. First,

the constructed parallel algorithm scales well even for problems of moderate sizes.
Second, MPI library enables efficient usage of the allocated local memory for each

process, thus the efficiency of the parallel algorithm Ep over 1 is achieved.
As a future task, it is interesting to consider the scalability of the modified parallel

algorithm from Remark 1, when the number of processes is larger than 8.

7. Conclusions

In this paper we have applied the new efficient approach how to solve the heat equation in
3D domains. This problem is reduced to a hybrid dimension problem, keeping the initial
dimension only in some parts and reducing it to one-dimensional equation within the
domains in some distance from the base regions. Such mathematical models are typical in
industrial installations such as pipelines. We added two additional improvements into this
methodology. First, the economical ADI type finite volume scheme is constructed to solve
the non-classical heat conduction problem. A finite volume method is used to approximate
space differential operators with non classical conjugation conditions between the 3D and
1D parts. It is proved that the ADI scheme is unconditionally stable.

Second, the parallel factorization algorithm is proposed to solve the obtained systems
of discrete equations. The ADI scheme leads to non-iterative implementation algorithm
and a set of one dimensional linear systems are solved by using the parallel versions of
the factorization algorithm for the parallel solving tridiagonal equations systems in each
direction. An efficient modification of the basic factorization algorithm is developed to
resolve non-local conjugation conditions.

The presented results of numerical experiments confirm both main theoretical conclu-
sions. Due to both modifications the run-time of computations is reduced essentially. First,
the hybrid reduced dimension models can be used to simulate heat conduction models for



496 R. Čiegis et al.

a broad set of domains and CPU time of the serial algorithm is reduced up to factor 3.
Second, the developed parallel version of the ADI algorithm enables to achieve effective
acceleration of computations and it scales well even for discrete problems of moderate
sizes.
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