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Abstract: This paper aims to put forward an integrated decision approach, with generalized fuzzy 

information for the viable selection of zero- and low-carbon materials for construction. In countries 

such as India, the construction sector accounts for high pollution levels and high carbon emissions. 

To restore sustainability and eco-friendliness, the adoption of low-carbon materials for construction 

is essential and, owing to the multiple attributes associated with the selection, the problem is viewed 

as a multi-criteria decision-making problem. Earlier studies on material selection have faced certain 

issues, such as the following: (i) the modeling of uncertainty is an ordeal task; (ii) the flexibility 

given to experts during preference elicitation is lacking; (iii) the interactions among the criteria are 

not well captured; and (iv) a consideration of the criteria type is crucial for ranking. To alleviate 

these issues, the primary objective of this paper was to develop an integrated framework, with de-

cision approaches for material selection in the construction sector that promote sustainability. To 

this end, generalized fuzzy information (GFI) was adopted as the preference style as it is both flex-

ible and has the ability to model uncertainty from the following three dimensions: membership, 

non-membership, and hesitancy grades. Furthermore, the CRITIC approach was extended to the 

GFI context for calculating criteria weights objectively, by effectively capturing criteria interactions. 

Furthermore, the COPRAS technique was put forward with the GFI rating for ranking zero- and 

low-carbon construction materials, based on diverse attributes. The usefulness of the framework 

was demonstrated via a case example from India and the results showed that the design cost, the 

financial risk, safety, water pollution, and land contamination were the top five criteria, with 

blended cement, mud bricks, and bamboo as the top three material alternatives for zero- and low-

carbon construction. Finally, a sensitivity analysis and a comparison with other methods revealed 

the theoretical positives of this framework’s robustness and consistency–but it also revealed some 

limitations of the proposed framework. 

Keywords: complex proportional assessment; generalized fuzzy set; low-carbon materials;  

sustainable construction; COPRAS; CRITIC 

 

1. Introduction 

Construction is a very important industry in any developing country. In India, the 

gross domestic product from construction was approximately INR 2240.16 billion (EUR 
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27.77 billion) between 2011 and 2021 (www.tradingeconomics.com, accessed on 10 Febru-

ary 2022). It is estimated to be approximately 78% of the gross capital formation. With this 

strength comes the issue of pollution within the country. As it may be noted, India is 

ranked third out of 106 countries in terms of pollution (www.iqair.com, accessed on 10 

February 2022). Indian cities, such as Ghaziabad, Bulandshahr, Bisrakh, and Bhiwadi, 

rank within the top ten in terms of pollution and such inferences clearly throw light upon 

the urgent need for the sustainable growth of the nation. In a recent report by Bold Busi-

ness, it was found that approximately 25% to 40% of the world’s pollution comes from 

construction, and in India construction accounts for 59% of the pollution, which causes 

air-borne diseases and affects the lives of the people within the nation [1]. 

Although there are negative impacts from the construction activities within the coun-

try, the industry is a powerful driving force of the economy. Therefore, for developing 

countries, such as India, it is important to strike a balance between the economy and sus-

tainability, hence, sustainable construction seems to be an essential option, as it will not 

hinder the growth of the nation and it will keep the balance of the ecosystem [2,3]. Sus-

tainability is the concept of “meeting the present needs without impeding the needs of 

future generation”. With a strong notion, the nation committed to reducing their signifi-

cant carbon trace by 2030, in the Paris Accord [4]. As part of the sustainability mission in 

the construction domain, the usage of green materials or materials with low- or zero-car-

bon is a useful and effective idea [5]. Because of the present ecological theme in construc-

tion, which strongly supports the usage of sustainable materials for construction, many 

materials, such as geopolymers, blended cement, fly ash, straw bale, and bamboo, are 

gaining much attention [6]. 

Motivation and Contributions 

Along with the advent of such materials, there also comes confusion in choosing the 

proper materials for the construction process. To further add to the confusion, there are 

many attributes associated with these materials in terms of social, environmental, and 

economic categories. Typically, this is seen as a multi-attribute decision problem (MADP). 

Rahim et al. [7], Emovon and Oghenenyerovwho [8], and Zindani et al. [9] provided in-

teresting reviews that suggest the following: (i) the construction sector contributes signif-

icantly towards the nation’s growth; (ii) material selection with a sustainability and low 

carbon emissions focus is gaining attention in the recent times; (iii) decision-making ap-

proaches, such as the analytical hierarchy process and simple additive weights, are pop-

ular for the material selection and application; and (iv) fuzzy sets and its variants are a 

commonly used preference style for rating alternative materials and criteria, as they can 

handle uncertainty flexibly. Some challenges that the authors encountered in the extant 

material selection models were as follows: (i) uncertainties are not effectively modeled 

with the restrictions placed on experts regarding preference elicitation, thereby affecting 

their freedom to express their views and opinions on a specific decision entity; (ii) the use 

of the generalized orthopair structure as rating information is widely unexplored, which 

affects the notion of sharing membership and non-membership grades; (iii) the hesitation 

of experts during rating is not captured effectively, which could intuitively aid in the ra-

tional estimation of entity values; (iv) owing to the implicit nature of trade-offs in such 

decision problems, criteria interaction is inevitable and capturing such interactions is cru-

cial for the rational weight estimation that is lacking in the extant models; and (v) finally, 

such problems have criteria from both benefit and non-benefit types that must be effec-

tively reflected in the formulation of the ranking of alternative materials by presenting 

complex proportional determination from different angles. 

Motivated by these challenges and to tackle the issue, the following contributions 

have been highlighted: 

• The generalized fuzzy structure (GFS) [10] was adopted in this study for the decision 

process, which can effectively represent uncertainty in three dimensions–such as the 



Sustainability 2022, 14, 7691 3 of 24 
 

degree of truthfulness, the degree of falsity, and the degree of hesitation. Besides, the 

structure can flexibly allow experts to share their preference by increasing or shrink-

ing the window size of preference articulation. It may also be noted that the orthopair 

structure allows the mitigation of subjective randomness during the decision process. 

• Criteria importance–through the inter-criteria correlation (CRITIC) technique [11], 

which comes under the objective weight calculation category–was extended to the 

GFS for the methodical determination of criteria weights. As claimed by Kao [12], it 

is clear that the estimation of weights by using a method reduces biases and inaccu-

racies, which motivated the authors to propose a stepwise procedure for weight cal-

culation. Besides, the claim from Kao [12] towards the variability in the preference 

distribution mimics the hesitation of the experts, which is also considered in the 

CRITIC approach and supports the rational calculation of the weights of the criteria. 

• Furthermore, the popular complex proportional assessment (COPRAS) technique 

was extended to the GFS for ranking zero- and low-carbon materials, which could 

support the construction industry in expediting their sustainability goals. 

• Finally, a real case example has been demonstrated to illustrate the usefulness of the 

integrated model and a comparative study, from both the theoretical and numerical 

perspectives, is presented to realize both the superiority and the limitations of the 

model. 

In this study, an integrated decision approach was attempted for the rational selec-

tion of zero- and low-carbon materials for the construction business. The proposed model 

intends to reduce human intervention by presenting methods for the systematic calcula-

tion of entities. Some of the rationale behind these methods (in the study) is provided 

below, as follows: 

• The GFS [10] is a generalized structure for preference elicitation that mitigates sub-

jective randomness and provides a flexible window for sharing the degree of prefer-

ence and the degree of non-preference. In the GFS, an adjustable factor (q) is consid-

ered and is used to expand or shrink the rating window, allowing experts to flexibly 

share their views. 

• Moreover, the CRITIC technique [11] is an objective weight-calculation approach that 

not only allows the methodical estimation of weights, but also captures the interac-

tion among criteria and the variability in the preference distribution, which models 

the hesitation of experts during preference articulation. In this way, it can be intui-

tively inferred that a criterion with a high interaction with other criteria and a higher 

variability in the distribution will have a high importance or weight. This indicates 

that the criterion contains potential information or semantics that are essential or use-

ful for the decision process. 

• COPRAS [13] is a popular and powerful ranking technique that effectively considers 

the nature of the criteria during the ordering of alternatives. Furthermore, the COP-

RAS method offers ranking from different angles and considers the complex propor-

tionality of the opinions in its formulation of ranking alternatives [14]. 

The main objective of this research was to develop an integrated decision approach 

by considering GFI as the preferred style for the rational selection of zero- and low-carbon 

materials, by considering diverse criteria for evaluation by different experts. Based on the 

identified challenges, the authors were motivated to propose contributions that aimed to 

alleviate the challenges. Towards this end, the CRITIC and COPRAS approaches were 

combined and used as an approach for decision making under the GFI context, with the 

aim of properly capturing the criteria interactions and the types of criteria. 

The rest of the article is structured as follows: Section 2 reviews the literature pertain-

ing to CRITIC, COPRAS, and material selection models. Later, the methodology is ex-

plained in detail in Section 3, where the formulae and the implementation steps are pro-

vided for the developed framework. A real case example, along with a comparative study 
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is provided in Section 4, which aims to showcase the practical use and the pros and cons 

of the model. Finally, in Section 5, a conclusion and future research directions are given. 

2. Literature Review 

In this section, the authors present existing works from the method and application 

perspectives. 

2.1. CRITIC Technique 

Weight calculation is a key step in the decision-making process. Generally, weights 

are calculated by using apriori knowledge (partial) or no prior knowledge. In the former, 

experts assess the importance of a criterion or criteria in the form of inequality constraints. 

In the latter, such information is not available and in practical situations the latter context 

is more common, owing to external factors, such as time limitations, a lack of expertise, 

pressure, hesitation, and so on [12]. 

CRITIC [11] is one such objective weight calculation technique, which comes under 

the latter category. Inspired by its simplicity and its ability to capture interactions among 

criteria, CRITIC was used by researchers for weight assessment. Rostamzadeh et al. [15] 

used a hybrid CRITIC-TOPSIS method in the risk assessments of sustainable supply 

chains, for the effective management of businesses. Babatunde and Ighravwe [16] used a 

hybrid fuzzy decision model of CRITIC-TOPSIS for a renewable energy system evalua-

tion, with the help of technology and economic factors. Tuş and Aytaç Adalı [17] put for-

ward a hybrid model using CRITIC-WASPAS for software evaluation that manages at-

tendance and time with fuzzy data. Peng et al. [18] ranked 5G industries by adopting an 

integrated Pythagorean fuzzy framework with CRITIC-CoCoSo, which utilized the newly 

proposed score function in its formulation. Rani et al. [19] developed a model with single-

valued Neutrosophic numbers for food waste treatment method evaluation, by adopting 

a hybrid method using CRITIC-MULTIMOORA approaches. Wu et al. [20] developed an 

improved CRITIC and cloud model for safety assessment in urban rail transit applications 

with uncertain preference information. Žižović et al. [21] developed a novel extension to 

the CRITIC technique by changing the aggregation and normalization form for the ra-

tional calculation of the weights of entities in an objective fashion. Peng and Huang [22] 

developed a CRITIC-CoCoSo approach with fuzzy data for assessing risk in the financial 

domain to aid business growth within the sectors. Saraji et al. [23] recently developed an 

integrated framework that extends CRITIC-COPRAS to Fermatean fuzzy data for ranking 

challenges that impede the adoption of Industry 4.0, for achieving sustainable digital 

transformation. Recently, Puška et al. [24] presented a market assessment within Serbia 

for the pear varieties from farms by adopting a fuzzy-based CRITIC and a distance-based 

ranking technique. Wang et al. [25] prepared an integrated framework with CRITIC and 

grey relational projection for hospital evaluation under the probabilistic variant of uncer-

tain linguistic data. Kahraman et al. [26] developed a spherical fuzzy-based CRITIC pro-

cedure for ranking criteria associated with supplier selection. Wu et al. [27] developed a 

multidimensional cloud model with a CRITIC technique for assessing the quality of eu-

trophic water. Lu et al. [28] put forward a CRITIC-entropy approach with a GRA-TOPSIS 

combination for ranking agricultural machinery to encourage better farming practices. 

2.2. COPRAS Method 

Zavadskas et al. [13] gave the inception to the popular ranking method, COPRAS, 

which considers the nature of criteria and complex proportions to determine the ranks of 

options. Zavadskas and Antucheviciene [29] utilized the COPRAS method for assessing 

building redevelopment alternatives with uncertain information. Following its inception, 

many researchers actively adopted the method for solving different decision problems 

[30]. Some of the diverse decision applications and areas in which COPRAS is effectively 
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used are as follows: risk analysis [31–33], supplier selection [34,35], ecofriendly aspects 

[36–39], and the health domain [40], etc.  

In recent times, the popularity of the COPRAS method has increased, owing to its 

ease and elegance. Alinezhad et al. [41] prepared an interesting discussion on COPRAS 

and showcased its importance and usefulness in diverse applications. Tolga et al. [42] 

adopted fuzzy COPRAS for prioritizing innovative projects within the air cargo sector 

with fuzzy data. Sivagami et al. [43] put forward a new probabilistic linguistic framework 

using the COPRAS method for cloud vendor selection, to manage IT services. Ghose et al. 

[44] performed material selection for solar vehicles by considering fuzzy data and the 

COPRAS method. Krishankumar et al. [45] prepared an integrated model with mathemat-

ical programming and COPRAS for clean energy selection, by using q-rung orthopair 

data. Roy et al. [46] evaluated hotels by acquiring data from the web and adopting the 

COPRAS method to rank hotels under uncertain preference information. Darko and Liang 

[47] put forward an integrated decision approach with the Maclaurin mean aggregation 

function and COPRAS, under a dual hesitant context, for evaluating mobile payment plat-

forms. Rani et al. [48] ranked sustainable suppliers by presenting an integrated SWARA-

COPRAS method, with hesitant fuzzy data. Roozbahani et al. [49] prepared a framework 

with fuzzy and grey COPRAS for planning inter-basin water transfers, by considering the 

case of the Iranian plateau. Aydin [50] evaluated foreign deposit banks by considering 

uncertain information and the COPRAS method. Mercangzo et al. [51] developed a time 

period based on COPRAS for assessing the performance index of logistics. Alkan and Al-

bayrak [52] developed the fuzzy-based decision framework for clean energy evaluation 

within Turkey by extending entropy, COPRAS, and MULTIMOORA approaches. 

Pamučar and Savin [53] prepared a hybrid model with BWM and COPRAS for off-road 

vehicle selection to promote passenger transportation. Kumari and Mishra [54] selected 

green suppliers based on sustainable criteria, under an intuitionistic fuzzy context by ex-

tending the COPRAS approach. Shaikh et al. [55] presented fuzzy COPRAS in selecting 

suitable materials for enhancing braking systems in the automotive sector. Krishankumar 

et al. [56] selected green suppliers for the purchase of raw materials by considering sus-

tainable criteria and an integrated model with double hierarchy information and the COP-

RAS method. Nadhira and Dachyar [57] put forward a DEMATEL-, ANP-, and COPRAS-

based hybrid framework for factor analysis selection to set up an IoT application. Gos-

wami and Mitra [58] evaluated mobile phones by developing an AHP-COPRAS inte-

grated decision approach with fuzzy data. Lu et al. [59] developed a framework, under a 

picture fuzzy set for green supplier selection by presenting the COPRAS method. Hezer 

et al. [60] performed a comparative study of decision methods, such as TOPSIS, COPRAS, 

and VIKOR, towards the assessment of regional safety measures during the COVID-19 

outbreak. Narayanamoorthy et al. [61] prepared an integrated DEMATEL-COPRAS 

framework for choosing a suitable alternative fuel for sustainable processes. Balali et al. 

[62] evaluated the risk to human resource, associated with the natural gas supply chain in 

Shiraz, by presenting a framework with ANP-COPRAS. Hasheminezhad et al. [63] put 

forward a framework with DEMATEL and COPRAS in the fuzzy context for prioritizing 

the risk involved in the collision of two passenger trains. Saraji et al. [64] gave a hybrid 

framework under the Pythagorean fuzzy context by extending the SWARA-CRITIC-COP-

RAS approaches and evaluating the challenges that affect business intelligence innova-

tions. Wei et al. [65] put forward a new extension to the COPRAS method under a single-

valued, neutrosophic, 2-tuple linguistic environment for assessing construction projects’ 

safety aspects. Rajareega and Vimala [66] presented new arithmetic operations with the 

complex variants of orthopair sets to improve the theoretical foundation and extended the 

COPRAS method for equipment selection. Thakur et al. [67] developed a new entropy 

measure and extended COPRAS under the fuzzy context for hospital evaluation. Varatha-

rajulu et al. [68] evaluated the drilling parameters of AZ91 (magnetism) by adopting the 

COPRAS and TOPSIS methods. Nweze et al. [69] analyzed the properties of mild steel 

weld for improving performance by adopting the integrated COPRAS-ARAS method.  
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Jaferzadeh Ghoushchi et al. [70] put forward an integrated BWM-COPRAS frame-

work for health and safety and environmental risk assessment. Guner et al. [71] utilized 

the spherical fuzzy set to put forward a model with the Hamacher function, AHP, and 

COPRAS methods for group decision making. Masoomi et al. [72] selected renewable en-

ergy suppliers for effective sustainability strategically, by combining the BWM, WASPAS, 

and COPRAS methods under the fuzzy context. Mishra et al. [73] performed a selection 

of a desalination technology to support demand by extending the COPRAS method to an 

interval-valued, hesitant, Fermetean fuzzy environment. Bahrami et al. [74] adopted 

BWM with COPRAS for the better modeling of the prospectivity of minerals from the 

spatial context. Ramana et al. [75] prepared a nonlinear, fuzzy-based decision framework 

for prioritizing the challenges that impede sustainability adoption in industries, by pro-

posing a framework with a variance measure and COPRAS. Xiang et al. [76] developed a 

combined approach, using SWARA and COPRAS with fuzzy preference information to 

assess coal transportation firms. Subba and Shabbiruddin [77] utilized the COPRAS 

method under a fuzzy context in choosing the right material for phase changing, to im-

prove solar energy. Bathrinath et al. [78] adopted fuzzy COPRAS to rank the factors af-

fecting sustainability in snip ports. Omerali and Kaya [79] utilized a spherical fuzzy set 

and the COPRAS method for the rational selection of augmented reality applications. Ku-

sakci et al. [80] made an assessment of metropolitan cities within Turkey for sustainability 

aspects, by adopting the AHP and COPRAS method, under an interval-valued, type-2 

fuzzy context.  

2.3. Material Selection with Decision Approaches 

Many researchers applied decision algorithms and models for construction material 

selection. The main interesting contributions are as follows: Sarpong-Nsiah et al. [81] pre-

sented a multi-criteria decision approach to define the best rooftop material for a house; 

Chama et al. [82] offered a model to identify the finest pallet material of construction 

(MOC), as perceived by the end consumer, by means of a multi-criteria technique; Obra-

dović and Pamučar [83] presented a new approach, based on fuzzy logic, to support in 

the decision-making process for the selection of building materials; Haruna et al. [84] used 

an analytical network process (ANP) to assess the real strategy for materials’ effects on 

the environment; Aghazadeh and Yildirim [85] identified the main principles in the ma-

terial selection procedure from the perspective of sustainable development; Rajak et al. 

[86] proposed to apply the VIKOR method to support civil engineers in their choice of 

sustainable construction materials; Churi and Biswas [87] used an AHP method for the 

selection of plastering material for a residential building; Maghsoodi et al. [88] ap-

proached the selection of the optimal cement material problem using a hybrid decision-

making method, based on the step-wise weight assessment ratio analysis (SWARA) and 

the combinative distance-based assessment (CODAS) models; Roy et al. [89] proposed to 

extend the CODAS method with interval-valued intuitionistic fuzzy numbers for brick 

selection in sustainable building design; Czarnigowska et al. [90] proposed a linear pro-

gramming approach for optimizing the provision of construction materials; Cengiz et al. 

[91] offered a new approach to suppliers’ selection of wall and roofing materials, using an 

ANP method; Govindan et al. [92], using a hybrid, multi-criteria method and a set of sus-

tainable indicators, proposed to evaluate the finest construction material. Balali et al. [93] 

applied the PROMETHEE method to the selection of materials and building techniques 

for the Kashkhan bridge, in Iran; Safa et al. [94] developed an integrated construction ma-

terials management (ICMM) model through implementation on the TOPSIS (technique 

for order preference by similarity to ideal solution); Jiang et al. [95] proposed to support 

the choice of various wireless technologies for tracking construction materials, using 

fuzzy decision making; Zavadskas et al. [96] and Zavadskas et al. [97] wrote pioneer pa-

pers regarding the use of the decision-making methods in the choice of building materials; 

Flórez et al. [98] explored the impact of sustainability in an optimization model that can 

help decision makers to select materials; Jadid and Badrah [99] implemented a decision 
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support system for materials information management for projects under construction by 

owners; Sefair et al. [100] offered a multiple-criteria decision method to rank candidate 

materials in building construction, on the basis of their environmental impact, design, and 

cost; Littidej et al. [101] applied an integrated multi-objective decision analysis (MODA) 

and a GIS method to choose the possible sites for building material delivery centers (DCs) 

in a municipality of Thailand; Primova et al. [102] suggested an approach for optimizing 

the choice of construction material using nonlinear regression equations; Mathiyazhagan 

et al. [103] selected materials on the basis of a sustainability concept using best–worst 

methodology (BWM) and a fuzzy TOPSIS approach; Krivogina et al. [104] proposed a 

multi-criteria approach for the optimal control of the production of building materials. 

The applications of crisp and fuzzy multiple-criteria decision-making methods in con-

struction, including the domain of building material selection, were reviewed by Wen et 

al. [105]. 

2.4. Research Insights 

From the review presented above, the following inferences can be drawn: (i) material 

selection with a green focus is an urgent issue to be tackled in the construction business, 

to effectively reduce environmental pollution; (ii) CRITIC is an attractive approach for 

methodically determining objective weights; and (iii) COPRAS is a popular and effective 

approach for ranking alternatives by properly considering the nature of the criteria. These 

inferences have driven the authors to propose an integrated decision framework for ra-

tional material selection that would reduce environmental hazards and improve green 

habits, creating a sustainable construction business. 

3. Research Methodology 

This section presents notions about the proposed framework, which uses integrated 

approaches to decision making with a GFS.  

3.1. Preliminaries 

Below, some elementary notions about the q-ROFSs are discussed. 

Definition 1 [10]. Let 𝛯 = {𝑧1, 𝑧2, . . . , 𝑧𝑛} be a finite discourse set. A q-ROFS ‘M’ in 𝛯 is defined 

by 𝑀 = {(𝑧𝑖, 𝜇𝑀(𝑧𝑖), 𝜈𝑀(𝑧𝑖))|𝑧𝑖 ∈ 𝛯}. 

Here, 𝜇𝑀 and 𝜈𝑀 signify the BD and NBD of 𝑧𝑖 ∈ 𝛯, respectively, ( )  0,1M iz 

𝜈𝑀(𝑧𝑖) ∈ [0,1], 0 ≤ (𝜇𝑀(𝑧𝑖))
𝑞
+ (𝜈𝑀(𝑧𝑖))

𝑞
≤ 1,

 
with 𝑞 ≥ 1.

 
The hesitation degree is de-

fined as𝜋𝑀(𝑧𝑖) = √1 − (𝜇𝑀(𝑧𝑖))
𝑞
− (𝜈𝑀(𝑧𝑖))

𝑞𝑞

, ∀𝑧𝑖 ∈ 𝛯. . The pair (𝜇𝑀(𝑧𝑖), 𝜈𝑀(𝑧𝑖))  is re-

ferred to as a q-ROF number, denoted by 𝜑 = (𝜇𝜑, 𝜈𝜑). For q-ROFNs ( ), ,   = 𝜑1 =

(𝜇𝜑1 , 𝜈𝜑1) and 𝜑2 = (𝜇𝜑2 , 𝜈𝜑2), the operations can be represented as 

𝜑𝑐 = (𝜈𝜑, 𝜇𝜑),  

𝜑1⊕𝜑2 = (√𝜇𝜑1
𝑞
+ 𝜇𝜑2

𝑞
− 𝜇𝜑1

𝑞
𝜇𝜑2
𝑞𝑞
, 𝜈𝜑1𝜈𝜑2),  

𝜑1⊗𝜑2 = (𝜇𝜑1𝜇𝜑2 , √𝜈𝜑1
𝑞
+ 𝜈𝜑2

𝑞
− 𝜈𝜑1

𝑞
𝜈𝜑2
𝑞𝑞
),  

𝜍𝜑 = (√1 − (1 − 𝜇𝜑
𝑞
)
𝜍𝑞

, 𝜈𝜑
𝜍
) , 𝜍 > 0,  

𝜑𝜍 = (𝜇𝜑
𝜍
, √1 − (1 − 𝜈𝜑

𝑞
)
𝜍𝑞

) , 𝜍 > 0.  
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Definition 2 [106]. Let 𝜑 = (𝜇𝜑, 𝜈𝜑) be a q-ROFN. Then, score and accuracy functions of 𝜑 are 

presented as 

𝕊(𝜑) =
1

2
((𝜇𝜑

𝑞
− 𝜈𝜑

𝑞
) + 1) and ℏ(𝜑) = 𝜇𝜑

𝑞
+ 𝜈𝜑

𝑞
. (1) 

For any q-ROFNs 𝜑1 = (𝜇𝜑1 , 𝜈𝜑1) and 𝜑2 = (𝜇𝜑2 , 𝜈𝜑2): 

(i) If 𝕊(𝜑1) > 𝕊(𝜑2), then 𝜑1 > 𝜑2, 

(ii) If 𝕊(𝜑1) = 𝕊(𝜑2), then  

(iii) if ℏ(𝜑1) > ℏ(𝜑2), then 𝜑1 < 𝜑2, 

(iv) if ℏ(𝜑1) = ℏ(𝜑2), then 𝜑1 = 𝜑2. 

Definition 3 [107]. Let 𝜑1 = (𝜇𝜑1 , 𝜈𝜑1) and 𝜑2 = (𝜇𝜑2 , 𝜈𝜑2) be the q-ROFNs. The distance 

measure for 𝜑1 and 𝜑2 is presented as 

𝐷(𝜑1, 𝜑2) =
1

2
(|𝜇𝜑1

𝑞
− 𝜇𝜑2

𝑞
| + |𝜈𝜑1

𝑞
− 𝜈𝜑2

𝑞
| + |𝜋𝜑1

𝑞
− 𝜋𝜑2

𝑞
|). (2) 

3.2. Q-ROF-CRITIC-COPRAS Framework 

Zavadskas et al. [13] discussed COPRAS as an effective tool that can offer an opti-

mum result, related to the ideal solution (IS) and the anti-ideal solution (A-IS). For that 

reason, it can be considered as a flexible MCDM technique. The assessment procedure of 

the proposed method is given by the following steps: 

Step 1: Create a linguistic decision matrix (LDM).  

A set of ℓ “decision makers (DMs)” 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑ℓ} determine the sets of 𝑚 op-

tions 𝑂 = {𝑜1, 𝑜2, . . . , 𝑜𝑚}  and 𝑛  criteria 𝐵 = {𝑏1, 𝑏2, . . . , 𝑏𝑛},  respectively. Let ℤ(𝑘) =

(𝜉𝑖𝑗
(𝑘))

𝑚×𝑛
, 𝑖 = 1,2, . . . , 𝑚, 𝑗 = 1,2, . . . , 𝑛  be the LDM, suggested by the DMs, where 𝜉𝑖𝑗

(𝑘) 

mentions the assessment of an alternative oi, with respect to criterion bj, given by kth DM. 

Step 2: Estimate the weights of the DMs. 

To obtain the weight of kth DM, let 𝑑𝑘 = (𝜇𝑘, 𝜈𝑘) be a q-ROFN. Now, the weight 

values are calculated as  

𝜛𝑘 =

(𝜇𝑘
𝑞
+ 𝜋𝑘

𝑞
× (

𝜇𝑘
𝑞

𝜇𝑘
𝑞
+ 𝜈𝑘

𝑞))

∑ (𝜇𝑘
𝑞
+ 𝜋𝑘

𝑞
× (

𝜇𝑘
𝑞

𝜇𝑘
𝑞
+ 𝜈𝑘

𝑞))
ℓ
𝑘=1

, 𝑘 = 1(1)ℓ. (3) 

Here, 𝜛𝑘 ≥ 0 and ∑ 𝜛𝑘 = 1.
ℓ
𝑘=1  

Step 3: Aggregate all the q-ROF-DMs. 

To create the q-ROF-aggregated decision matrix (q-ROF-ADM), a q-ROF weighted 

averaging (q-ROFWA) operator is used and then ℤ = (𝜉𝑖𝑗)𝑚×𝑛, where 

𝜉𝑖𝑗 = 𝑞 − 𝑅𝑂𝐹𝑊𝐴𝜛(𝜉𝑖𝑗
(1)
, 𝜉𝑖𝑗
(2)
, . . . , 𝜉𝑖𝑗

(ℓ)
) =

(

 √1 −∏(1 − 𝜇𝑘
𝑞
)
𝜛𝑘

ℓ

𝑘=1

𝑞

,∏(𝜈𝑘)
𝜛𝑘

ℓ

𝑘=1
)

  (4) 

Step 4: Use the CRITIC tool for the estimation of criteria weights. 

Let 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛)
𝑇

 
be the criteria weight, such that 𝜔𝑗 ∈ [0,1] 

and ∑ 𝜔𝑗 =
𝑛
𝑗=1

1.
 

In this line, the intensity contrast of the criteria is estimated by the “standard deviation 

(SD)”, and the conflict among the criteria is computed by the “correlation coefficient 

(CRC)”. The steps for CRITIC on q-ROFSs are given by the following:
 

Step 4a: The estimation of the score matrix 𝑆 = (𝜉𝑖𝑗)𝑚×𝑛, 𝑖 = 1
(1)𝑚, 𝑗 = 1(1)𝑛,

 
where 

𝜉𝑖𝑗 =
1

2
((𝜇𝑖𝑗

𝑞
− 𝜈𝑖𝑗

𝑞
) + 1). (5) 
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Step 4b: Construct the standard q-ROF-matrix �̃� = (𝜉𝑖𝑗)𝑚×𝑛 

𝜉𝑖𝑗 =

{
 
 

 
 
𝜉𝑖𝑗 − 𝜉𝑗

−

𝜉𝑗
+ − 𝜉𝑗

− , 𝑗 ∈ 𝑠𝑏

𝜉𝑗
+ − 𝜉𝑖𝑗

𝜉𝑗
+ − 𝜉𝑗

− , 𝑗 ∈ 𝑠𝑛

 (6) 

wherein 𝜉𝑗
+ = 𝑚𝑎𝑥

𝑖
𝜉𝑖𝑗 and 𝜉𝑗

− = 𝑚𝑖𝑛
𝑖
𝜉𝑖𝑗 . 

Step 4c: The SDs for each criterion in the given expression: 

𝜎𝑗 = √
∑ (�̃�𝑖𝑗−�̄�𝑗)

2𝑚
𝑖=1

𝑚
, wherein �̄�𝑗 = ∑

�̃�𝑖𝑗

𝑚

𝑚
𝑖=1 . (7) 

Step 4d: Assess the CRC between the criteria pairs: 

𝑟𝑗𝑡 =
∑ (𝜉𝑖𝑗 − �̄�𝑗)(𝜉𝑖𝑡 − �̄�𝑡)
𝑚
𝑖=1

√∑ (𝜉𝑖𝑗 − �̄�𝑗)
2
∑ (𝜉𝑖𝑡 − �̄�𝑡)

2𝑚
𝑖=1

𝑚
𝑖=1

. 
(8) 

Step 4e: Estimate the quantity of information for each criterion as 

𝑐𝑗 = 𝜎𝑗∑(1− 𝑟𝑗𝑡)

𝑛

𝑡=1

. (9) 

Step 4f: The objective weights of the criteria are obtained by 

𝑤𝑗 =
𝑐𝑗

∑ 𝑐𝑗
𝑛
𝑗=1

. (10) 

Step 5: The sum of the cost- and benefit-type criteria ratings.  

Each option is estimated with the addition of rating (𝜏𝑖) for the benefit-type criterion 

and the assessment rating (𝜄𝑖) for the cost-type criterion. Let 𝛺 = {1,2, . . . , 𝑙}  be the crite-

rion, then the benefit-type criterion-based rating (𝜏𝑖) for each alternative is given as 

𝜏𝑖 =∑𝑤𝑗𝜉𝑖𝑗 , ∀𝑖.

𝑙

𝑗=1

 (11) 

Let ℧ = {𝑙 + 1, 𝑙 + 2, . . . , 𝑛}  be the cost-type criteria set, then the cost-type criterion-

based rating (𝜄𝑖) for each option is described as  

𝜄𝑖 = ∑ 𝑤𝑗𝜉𝑖𝑗 , ∀𝑖.

𝑛

𝑗=𝑙+1

 (12) 

In Equations (11) and (12), 𝑙 is the number of the benefit-type criteria, n is the whole 

criteria and 𝑤𝑗 
is the weight. 

Step 6: Computation of the relative degree of alternatives.  

To evaluate the relative degree 𝛾𝑖 of ith option, the procedure is as follows:  

𝛾𝑖 = 𝜑(𝜏𝑖) 𝕊(𝜏𝑖) + (1 − 𝜑)
𝑚𝑖𝑛
𝑖
 𝕊(𝜄𝑖)∑ 𝕊(𝜄𝑖)

𝑚
𝑖=1

𝕊(𝜄𝑖)∑
𝑚𝑖𝑛
𝑖
𝕊(𝜄𝑖)

𝕊(𝜄𝑖)
𝑚
𝑖=1

, ∀𝑖, 
(13) 

wherein 𝕊(𝜏𝑖) and 𝕊(𝜄𝑖) 
present the score degrees of 𝜏𝑖  

and 𝜄𝑖 , respectively. Besides, 

the parameter 𝜑 denotes the strategy value of the DE in a unit interval. 

Another form of Equation (13) is presented as 

𝛾𝑖 = 𝜑𝕊(𝜏𝑖) + (1 − 𝜑)
∑ 𝕊(𝜄𝑖)
𝑚
𝑖=1

𝕊(𝜄𝑖)∑
1

𝕊(𝜄𝑖)
𝑚
𝑖=1

, ∀𝑖. (14) 
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Step 7: Prioritize the alternatives. 

The maximum relative degree of an alternative is described as the higher priority. 

Hence, the optimum option is obtained as follows: 

𝛾𝑚𝑎𝑥 = 𝑚𝑎𝑥
𝑖
𝛾𝑖 , 𝑖 = 1,2, . . . , 𝑚. (15) 

Step 8: Evaluate the utility degree. 

Now, the process for the assessment of the degree of utility of the alternatives is de-

fined by 

𝛿𝑖 =
𝛾𝑖
𝛾𝑚𝑎𝑥

× 100%, ∀𝑖. (16) 

Here, 𝛾𝑖 
and 𝛾𝑚𝑎𝑥 are given by Equations (14)–(15). 

The figures presented in Figure 1 show the proposed integrated model with qROF 

settings that initially acquire Likert scale rating data, which are converted to qROF data, 

based on the tabular form.  

 

Figure 1. Integrated qROF decision framework for zero- and low-carbon material selection. 

The importance of the experts was methodically determined, based on the data from 

the officials (who constituted the panel) and the Boran rule. The CRITIC method was put 

forward for determining the weights of the criteria by efficiently capturing the interrela-

tionship among the criteria. By using the importance of the experts, the preferences were 

aggregated, and these were used, along with the weights of the criteria for determining 

the ordering of materials via the qROF-COPRAS method. From a mathematical view-

point, the 𝑎 matrices of 𝑏 × 𝑐 order were considered along with a criteria weight calcu-

lation matrix of 𝑎 × 𝑐  order. The experts’ importance was calculated and a vector of 

1 × 𝑎 was obtained. Later, an aggregated matrix of 𝑏 × 𝑐 was obtained via the aggrega-

tion function, by utilizing the preference data and the calculated experts’ weights. By us-

ing the CRITIC method, 1 × 𝑐 was obtained, which was used along with an aggregated 

matrix for ranking the materials via the COPRAS method, which yielded a vector of 1 × 𝑏. 
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4. Real Case Example 

This section puts forward a case example to demonstrate the usefulness of the pro-

posed model. In developing countries, such as India, the construction industry contrib-

uted approximately INR 2250.13 billion (EUR 27.89 billion) between 2011–2021, as per the 

claim from tradingeconomics.com (accessed on 15 April 2022). Evidently, the market is 

high and there is great scope for development. However, with this abundant opportunity, 

there also comes the issue of pollution. As discussed earlier, India is affected by this prob-

lem of pollution and is ranked below average in terms of eco-health and safety. In order 

to boost its ranking and attain the global safety threshold, India has made strong commit-

ments; one such commitment is the resolution of India to reduce its carbon footprint by 

35–38%, made in the Paris Accord [4]. To achieve this goal, the nation plans to adopt sus-

tainable habits and green practices in developmental and daily activities. The adoption of 

six sigma and lean concepts are crucial in such industries as they not only manage pollu-

tion, but also aid in profit making [108]. 

In line with this train of thought, an academic institution plans to construct a building 

for research activities, setting up research centers with sophisticated infrastructure for fac-

ulties and students to become actively involved in research and development. The civil 

department of the institute prepared a detailed proposal for the building, keeping in mind 

the core sustainability aspects, which would adhere to the green policies of the nation and 

would target an ecofriendly design and construction of the building, without causing 

damage to the ecosystem. One essential step towards this goal is the selection of materials 

that follow green or sustainable paradigms. The institution, after scrutinizing the pro-

posal, decided to opt for green building constructions by utilizing low-carbon materials 

for its construction. The officials of the institute constitute a panel of four experts, who 

participated in the decision problems for the rational selection of low-carbon materials. 

The four experts are well qualified and have adequate expertise in the construction do-

main. A senior professor from the sustainable construction department, a research scien-

tist from the material science field, a construction engineer, and finance and audit person-

nel, form the expert panel. First, an initial list of low-carbon materials were gathered, these 

are then revised based on their need. The following five low-carbon materials were chosen 

for the present study: blended cement, geopolymers, bamboo, grapheme-induced con-

crete, and mud bricks. For brevity, we have denoted them as 𝑂1, 𝑂2, 𝑂3, 𝑂4, and 𝑂5. Fur-

thermore, the panel prepared a list of criteria, upon which these materials would be rated. 

Based on the voting principle, 13 criteria were finalized. The following criteria were con-

sidered for this study: safety, opportunities for jobs, culture and heritage, stakeholder sat-

isfaction, air pollution, eco-friendliness, water pollution, waste generation, soil contami-

nation, labor costs, maintenance costs, design costs, and socio-economic risks. Pollutions, 

costs, and risks are of cost-type criteria and the others are benefit-type criteria. The authors 

have denoted them as 𝑏1, 𝑏2,…, 𝑏13. The four experts are denoted as 𝑑1, 𝑑2, 𝑑3, and 𝑑4, 

respectively. The rating was done qualitatively, by using linguistic scales.  

Steps 1–2: Table 1 depicts the significance of the DEs and the criteria in the form of 

LVs, which are then converted into q-ROFNs. Table 2 presents the DEs weight, based on 

Table 1 and Equation (3). Table 3 describes the importance of the DEs in evaluating the 

options and the assessments of the options, concerning each attribute. 

Table 1. Performance degree of alternatives and criteria in the form of LVs. 

LVs  q-ROFNs 

Absolutely high (AH)/Extremely significant (ES) (0.95, 0.20, 0.240) 

Very high (VH)/Very significant (VS) (0.80, 0.35, 0.487) 

High (H)/Significant (S) (0.70, 0.45, 0.554) 

Moderate high (MH)/Moderate significant (MS) (0.60, 0.55, 0.581) 

Moderate (M)/Average (A) (0.50, 0.60, 0.624) 

Moderate low (ML)/Moderate insignificant (MI) (0.40, 0.70, 0.592) 

Low (L)/Very insignificant (VI) (0.30, 0.75, 0.589) 
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Very low (VL)/Very very insignificant (VVI) (0.20, 0.85, 0.487) 

Absolutely low (AL)/Extremely insignificant (EI) (0.10, 0.95, 0.296) 

Table 2. Weight of Des for evaluation of the alternatives. 

DEs LVs  q-ROFNs Weights 

d1 Significant (S) (0.70, 0.45, 0.554) 0.2321 

d2
 

Very very significant (VVS) (0.80, 0.35, 0.487) 0.2753 

d3 Very significant (VS) (0.95, 0.20, 0.240) 0.3143 

d4
 

Moderate significant (MS) (0.60, 0.55, 0.581) 0.1783 

Table 3. LDM of alternative over different criteria by DEs. 

 O1 O2 O3 O4 O5 

b1 (ML, MH, L, L) (H, MH, A, A) (AL, VL, L, A) (VL, MH, A, A) (A, L, L, VL) 

b2 (H, A, VL, MH) (ML, AL, L, MH) (L, A, ML, ML) (ML, VL, AL, ML) (AL, L, L, MH) 

b3 (MH, AL, ML, AL) (AL, VL, A, L) (ML, L, H, VL) (ML, ML, A, MH) (MH, L, H, H) 

b4 (MH, ML, AL, A) (ML, ML, ML, A) (H, MH, A, H) (ML, L, L, VL) (H, AL, A, A) 

b5 (A, L, ML, L) (A, ML, MH, A) (VL, MH, VL, MH) (L, A, H, ML) (VL, L, ML, ML) 

b6 (ML, A, AL, A) (ML, VL, VL, MH) (L, ML, ML, H) (L, A, ML, ML) (L, A, VL, L) 

b7 (A, MH, H, A) (ML, H, A, MH) (ML, ML, ML, H) (MH, L, L, L) (H, VL, VL, MH) 

b8 (AL, L, L, VL) (ML, MH, L, H) (H, L, A, ML) (VL, L, H, A) (MH, A, H, VL) 

b9 (ML, VL, A, AL) (AL, L, ML, MH) (MH, VL, MH, A) (ML, MH, VL, A) (AL, L, L, MH) 

b10 (VL, ML, MH, L) (H, ML, VL, ML) (A, VL, A, ML) (MH, ML, A, VL) (A, VL, L, L) 

b11 (VL, VL, VL, A) (A, VL, A, ML) (H, VL, MH, ML) (A, ML, A, MH) (VL, A, VL, ML) 

b12 (VL, VL, H, H) (L, A, ML, L) (L, L, MH, H) (AL, MH, A, ML) (H, VL, MH, A) 

b13 (AL, MH, VL, MH) (MH, MH, ML, MH) (A, A, AL, AL) (VL, A, ML, VL) (A, A, MH, A) 

Step 3: The LDM provided by four DEs have been combined by Equation (4) for each 

option, over diverse criteria of zero-carbon construction material selection into an A-q-

ROF-DM 𝐴 = (𝜉𝑖𝑗)𝑚×𝑛, and is depicted in Table 4. 

Table 4. A-q-ROF-DM for options over different criteria of zero-carbon construction material selec-

tion. 

 O1 O2 O3 O4 O5 

b1 (0.435, 0.678, 0.593) (0.586, 0.548, 0.597) (0.322, 0.761, 0.563) (0.490, 0.635, 0.597) (0.349, 0.728, 0.590) 

b2 (0.529, 0.617, 0.583) (0.376, 0.745, 0.551) (0.413, 0.682, 0.604) (0.287, 0.813, 0.507) (0.358, 0.750, 0.556) 

b3 (0.388, 0.760, 0.521) (0.337, 0.765, 0.549) (0.498, 0.643, 0.582) (0.477, 0.639, 0.603) (0.608, 0.543, 0.580) 

b4 (0.432, 0.709, 0.558) (0.420, 0.681, 0.600) (0.622, 0.521, 0.585) (0.313, 0.755, 0.576) (0.510, 0.637, 0.578) 

b5 (0.389, 0.697, 0.602) (0.514, 0.609, 0.604) (0.449, 0.698, 0.559) (0.539, 0.593, 0.597) (0.338, 0.746, 0.573) 

b6 (0.400, 0.718, 0.569) (0.366, 0.752, 0.548) (0.466, 0.657, 0.592) (0.413, 0.682, 0.604) (0.350, 0.734, 0.582) 

b7 (0.603, 0.535, 0.591) (0.572, 0.566, 0.594) (0.481, 0.647, 0.592) (0.402, 0.698, 0.593) (0.478, 0.679, 0.557) 

b8 (0.251, 0.810, 0.530) (0.518, 0.619, 0.590) (0.512, 0.613, 0.601) (0.508, 0.632, 0.585) (0.575, 0.572, 0.585) 

b9 (0.366, 0.743, 0.560) (0.387, 0.734, 0.558) (0.514, 0.630, 0.583) (0.451, 0.677, 0.581) (0.358, 0.750, 0.556) 

b10 (0.439, 0.687, 0.578) (0.469, 0.672, 0.574) (0.425, 0.679, 0.599) (0.470, 0.653, 0.594) (0.342, 0.737, 0.583) 

b11 (0.285, 0.799, 0.530) (0.425, 0.679, 0.599) (0.536, 0.618, 0.575) (0.498, 0.616, 0.610) (0.352, 0.746, 0.565) 

b12 (0.545, 0.621, 0.563) (0.398, 0.690, 0.604) (0.515, 0.621, 0.591) (0.468, 0.670, 0.577) (0.549, 0.601, 0.581) 

b13 (0.442, 0.716, 0.540) (0.550, 0.593, 0.587) (0.374, 0.752, 0.542) (0.374, 0.727, 0.576) (0.535, 0.584, 0.610) 

Step 4: To estimate the criteria weights, the CRITIC tool was used on q-ROFSs. Using 

Equation (5) and Table 4, firstly we obtained the score-matrix 𝑆 = (𝜉𝑖𝑗)𝑝×𝑞 . 
After, we 

computed the standard q-ROF-matrix �̃� = (𝜒𝑖𝑗)𝑝×𝑞by Equation (6). By using Equations 

(7)–(9), the SD, CRC, and quantity of information of each criterion were estimated. The 

weights of criteria were estimated by using Equation (10) and referred to in Table 5. 
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Table 5. The standard q-ROF-matrix �̃� = (𝜉𝑖𝑗)𝑚×𝑛,
 
SD, quantity of information, and weight val-

ues. 

Criteria O1 O2 O3 O4
 

O5

 
𝝈𝒋 𝒄𝒋 𝒘𝒋 

b1 0.397 1.000 0.000 0.602 0.130 0.355 5.325 0.0891 

b2 1.000 0.344 0.595 0.000 0.303 0.334 3.756 0.0628 

b3 0.079 0.000 0.560 0.532 1.000 0.363 4.417 0.0739 

b4 0.264 0.314 1.000 0.000 0.554 0.336 4.018 0.0672 

b5 0.715 0.121 0.588 0.000 1.000 0.373 3.979 0.0666 

b6 0.346 0.000 1.000 0.634 0.072 0.370 4.716 0.0789 

b7 0.000 0.175 0.656 1.000 0.767 0.374 5.041 0.0843 

b8 1.000 0.198 0.198 0.244 0.000 0.346 4.137 0.0692 

b9 0.948 0.849 0.000 0.408 1.000 0.382 4.779 0.0799 

b10 0.334 0.116 0.337 0.000 1.000 0.346 3.896 0.0652 

b11 1.000 0.401 0.000 0.082 0.731 0.380 4.353 0.0728 

b12 0.114 1.000 0.236 0.661 0.000 0.373 5.823 0.0974 

b13 0.711 0.000 1.000 0.899 0.014 0.433 5.535 0.0926 

Here, Figure 2 indicates the weights of the diverse criteria of zero-carbon construc-

tion material selection, with respect to the goal. The design cost (b12) with the weight value 

0.0974, have come out to be the most significant criteria of zero- and low-carbon construc-

tion material selection. The financial risk (b13) with the weight value 0.0926, was the second 

most important criteria of zero- and low-carbon construction material selection. Safety (b1)  

was in third position (significance), with the value 0.0891. Water pollution (b7) was placed 

fourth, with the weight value 0.0843. Soil/land contamination (b9), with the significance 

value 0.0799, was the fifth most important criteria of zero- and low-carbon construction 

material selection. This ranking follows for the other criteria as well, which are also con-

sidered crucial criteria of zero- and low-carbon construction material selection. 

 

Figure 2. Significance values/weight of the different criteria of zero-carbon construction material 

selection. 

Steps 5–8: In the process of the assessment of the criteria of zero-carbon construction 

material selection, all risk factors are the maximum type. Using Equations (11)–(16), the 

values of ,i 𝜄𝑖 ,  
𝛾𝑖  

and 𝛿𝑖  of 𝑂𝑖(𝑖 = 1(1)5)  were computed over the criteria 𝑏𝑗(𝑗 =

1(1)13),
 
and specified in Table 6. As seen in Table 7, the ranking order of the material 
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alternatives is 𝑂1 ≻ 𝑂3 ≻ 𝑂5 ≻ 𝑂4 ≻ 𝑂2 and, thus, O1 is the best material, based on the rat-

ings of the different criteria for the zero- and low-carbon construction material selection 

problem. 

Table 6. The outcome of q-ROF-CRITIC-COPRAS model. 

Option 𝝉𝒊 𝕊(𝝉𝒊) 𝜾𝒊 
𝕊(𝜾𝒊) 

𝜸𝒊 𝜹𝒊 Ranking 

O1 (0.275, 0.874, 0.400) 0.1559 (0.361, 0.792, 0.492) 0.2516 0.2261 100.00 1 

O2 (0.278, 0.869, 0.409) 0.1609 (0.395, 0.758, 0.520) 0.2910 0.2086 92.24 5 

O3 (0.301, 0.854, 0.425) 0.1807 (0.389, 0.768, 0.509) 0.2812 0.2229 98.58 2 

O4 (0.261, 0.873, 0.412) 0.1529 (0.375, 0.771, 0.514) 0.2728 0.2131 94.25 4 

O5 (0.285, 0.864, 0.415) 0.1675 (0.376, 0.775, 0.507) 0.2703 0.2217 98.02 3 

4.1. Comparative Discussion 

The outcomes of the q-ROF-CRITIC-COPRAS tool are compared with the extant ap-

proaches. Towards this end of demonstrating the efficacy and the unique advantages of 

the introduced method, the q-ROF-TOPSIS [107] and q-ROF-WASPAS [48] methods were 

used to treat the same problem.  

4.1.1. Q-ROF-TOPSIS Approach 

Steps 1–4: The same as the aforementioned model. 

Step 5: Assess the “q-ROF-ideal solution (q-ROF-IS)” and the “q-ROF-anti-ideal so-

lution (q-ROF-AIS)”. 

Let 𝜁+ and 𝜁− present the q-ROF-IS and the q-ROF-AIS, and they are given by  

𝜁+ = (𝜇𝜁
+, 𝜈𝜁

+) = {
𝑚𝑎𝑥
𝑖
𝜇𝑖𝑗 , 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑏𝑏

𝑚𝑖𝑛
𝑖
𝜈𝑖𝑗 , 𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑏𝑛

𝑓𝑜𝑟 𝑗 = 1(1)𝑛, (17) 

𝜁− = (𝜇𝜁
−, 𝜈𝜁

−) = {
𝑚𝑖𝑛
𝑖
𝜇𝑖𝑗 , 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑏𝑏

𝑚𝑎𝑥
𝑖
𝜈𝑖𝑗 , 𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑏𝑛

𝑓𝑜𝑟 𝑗 = 1(1)𝑛. (18) 

Step 6: Obtain the distances of the options from q-ROF-IS and q-ROF-AIS. 

From Equation (2), we computed the distances 𝐷(𝑦𝑖 , 𝜁
+) between the option 𝑂𝑖 and 

q-ROF-IS 𝜁+. 

𝐷(𝑂, 𝜁+) =
1

2
∑[𝑤𝑗 (|𝜇𝜉𝑖𝑗

𝑞
− (𝜇𝜁

+)
𝑞
| + |𝜈𝜉𝑖𝑗

𝑞
− (𝜈𝜁

+)
𝑞
| + |𝜋𝜉𝑖𝑗

𝑞
− (𝜋𝜁

+)
𝑞
|)]

𝑛

𝑗=1

 (19) 

and the discrimination 𝐷(𝑂𝑖 , 𝜁
−) between the option 𝑂𝑖 and q-ROF-AIS 𝜁− was given 

by 

𝐷(𝑂𝑖 , 𝜁
−) =

1

2
∑[𝑤𝑗 (|𝜇𝜉𝑖𝑗

𝑞
− (𝜇𝜁

−)
𝑞
| + |𝜈𝜉𝑖𝑗

𝑞
− (𝜈𝜁

−)
𝑞
|  + |𝜋𝜉𝑖𝑗

𝑞
− (𝜋𝜁

−)
𝑞
|)]

𝑛

𝑗=1

 (20) 

Step 7: Assess the closeness index (CI). 

The CI of each alternative can be calculated as follows: 

𝑅𝐶(𝑦𝑖) =
𝐷(𝑂𝑖 , 𝜁

−)

𝐷(𝑂𝑖 , 𝜁
+) + 𝐷(𝑂𝑖 , 𝜁

−)
, ∀𝑖. (21) 

Step 8: Choose the maximum degree, 𝑅𝐶(𝑂𝑘), among the degrees 𝑅𝐶(𝑂𝑖). This val-

idates that 𝑂𝑘 is the optimal choice. 

Now, the q-ROF-IS and q-ROF-AIS are obtained by Equations (17)–(18), as follows: 

𝜁+ = {(0.586, 0.548, 0.597), (0.529, 0.617, 0.583), (0.608, 0.543, 0.580), (0.622, 0.521, 0.585), 

(0.338, 0.746, 0.573), (0.466, 0.657, 0.592), (0.402, 0.698, 0.593), (0.251, 0.810, 0.530), (0.358, 

0.750, 0.556), (0.342, 0.737, 0.583), (0.285, 0.799, 0.530), (0.398, 0.690, 0.604), (0.374, 0.752, 

0.542)}, 
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𝜁− ={(0.322, 0.761, 0.563), (0.287, 0.813, 0.507), (0.337, 0.765, 0.549), (0.313, 0.755, 0.576), 

(0.539, 0.593, 0.597), (0.366, 0.752, 0.548), (0.603, 0.535, 0.591), (0.575, 0.572, 0.585), (0.514, 

0.630, 0.583), (0.470, 0.653, 0.594), (0.536, 0.618, 0.575), (0.549, 0.601, 0.581), (0.550, 0.593, 

0.587)}. 

The outcomes of q-ROF-TOPSIS are presented by Equations (19)–(21) and are de-

picted in Table 7. Lastly, the ranking of the alternatives was obtained as 𝑂1 ≻ 𝑂5 ≻ 𝑂3 ≻

𝑂4 ≻ 𝑂2; therefore, of all the different criteria of zero-carbon construction material selec-

tion, the best option is O1. 

Table 7. Prioritization of alternative, with a q-ROF-TOPSIS model  

Options 𝑫(𝑶𝒊, 𝜻
+) 𝑫(𝑶𝒊, 𝜻

−) 𝑹𝑪(𝑶𝒊) Ranking 

O1 0.103 0.127 0.5540 1 

O2 0.149 0.096 0.3901 5 

O3 0.124 0.116 0.4836 3 

O4
 

0.146 0.110 0.4296 4 

O5 0.126 0.124 0.4972 2 

4.1.2. Q-ROF-WASPAS Model  

Steps 1–4: Similar to the aforesaid model. 

Step 5: For each option, we estimate the degrees of the “weighted-sum method 

(WSM)” 𝐶𝑖
(1)

, as follows: 

Ci
(1)
=∑wjξij

n

j=1

. (22) 

Step 6: For each option, we compute the degrees of the “weighted-product method 

(WPM)” 𝐶𝑖
(2)

, as follows: 

𝐶𝑖
(2)
=∏𝑤𝑗𝜉𝑖𝑗

𝑛

𝑗=1

. (23) 

Step 7: For each option, we obtain the degree of WASPAS measure as 

𝐶𝑖 = 𝜆𝐶𝑖
(1)
+ (1 − 𝜆)𝐶𝑖

(2)
, (24) 

where 𝜆 stands for the parameter of the decision mechanism and 𝜆 ∈ [0,1]. 

Step 8: Rank the alternatives according to the decreasing ratings (i.e., score values) 

of 𝐶𝑖 . 

Steps 5–8: By applying Equations (22)–(24), the WSM (𝐶𝑖
(1)
), the WPM (𝐶𝑖

(2)
), and 

the WASPAS (𝐶𝑖) measures for each option were obtained and are depicted in Table 8. 

Therefore, the prioritization of the material was assessed as follows: 𝑂1 ≻ 𝑂5 ≻ 𝑂3 ≻ 𝑂4 ≻

𝑂2, with O1 being the best option. On the other hand, the outcomes were slightly different 

between the developed and the extant models. Therefore, the q-ROF-CRITIC-COPRAS 

method is more robust and is steadier than the q-ROF-TOPSIS and q-ROF-WASPAS tools 

and, thus, has wider applicability. 

Table 8. Outcomes of q-ROF-WASPAS approach. 

Options 
WSM WPM  

WASPAS 𝑪𝒊(𝝀) Ranking 
𝑪𝒊
(𝟏)

 
𝕊 (𝑪𝒊

(𝟏)
)
 

𝑪𝒊
(𝟐)

 
𝕊 (𝑪𝒊

(𝟐)
)
 

O1 (0.637, 0.499, 0.588) 0.5782 (0.579, 0.570, 0.5831) 0.5054
 

0.542 1 

O2 (0.589, 0.544, 0.598) 0.5258 (0.546, 0.588, 0.5962) 0.4762
 

0.501 5 

O3 (0.606, 0.533, 0.590) 0.5417 (0.568, 0.566, 0.5971) 0.5014
 

0.522 3 

O4
 

(0.596, 0.533, 0.601) 0.5356 (0.547, 0.580, 0.6040) 0.4811
 

0.508 4 

O5 (0.616, 0.515, 0.596) 0.5569 (0.561, 0.570, 0.5997) 0.4947 0.526 2 



Sustainability 2022, 14, 7691 16 of 24 
 

As compared to the above-discussed methods, the q-ROF-CRITIC-COPRAS method 

is more robust and, thus, has wider applicability. The key benefits of the q-ROF-CRITIC-

COPRAS method are as follows (see Figure 3): 

• The q-ROFSs can reflect the DE’s hesitancy more objectively than other classical ex-

tensions of FS. Therefore, the use of the developed q-ROF-CRITIC-COPRAS ap-

proach gives a more flexible way to express the uncertainty when evaluating the cri-

teria of zero-carbon construction material selection. 

• The CRITIC method is employed to evaluate the objective weights of each criterion 

in the evaluation of the criteria of zero-carbon construction material selection, which 

makes the introduced q-ROF-CRITIC-COPRAS method a more reliable, efficient, and 

sensible tool. 

• The proposed q-ROF-CRITIC-COPRAS method can process the information in a 

more useful and a more suitable way and from different perspectives, such as benefit-

type and cost-type criteria.  

Based on the rank values from the proposed and extant methods, it was inferred that 

the ordering was determined as 𝑂1 ≻ 𝑂5 ≻ 𝑂3 ≻ 𝑂4 ≻ 𝑂2. With obviously different rank 

values but the same ordering, this indicates the intact nature of the rank orders of zero- 

and low-carbon materials for construction. Based on the ordering from the different qROF 

methods, the Spearman correlation was applied, and the consistency coefficients were de-

termined as unity, with respect to the proposed and the other methods. This implies that 

the model is highly consistent with other extant models in the qROF setting. Figure 4 de-

picts the coefficients and confidence value when the rank orders of the proposed and ex-

tant methods were fed into the Spearman correlation approach. 

 

Figure 3. Comparison of utility degree of each approach for zero-/low-carbon construction material. 
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Figure 4. Variation in the utility degree of options over diverse parameters  (𝜑) values. 

4.2. Sensitivity Investigation  

In this section, we present the sensitivity of the method base to diverse parameter 

 (𝜑) values. In this respect, the diverse values of 𝜑 ∈ [0,1] were considered for analysis, 

with the variation of 𝜑 aiding us in considering the sensitivity of the COPRAS tool. The 

prioritization of the options over the diverse parameter values are referenced in Table 9 

and Figure 5. We observe that in Figure 3, the option, O1 , has the maximum rating when 

𝜑 = 0.0 to 0.5, while the option, O3 , has the maximum rating when 𝜑 = 0.6 to 1.0. More-

over, the option, O2 , has the minimum rating when 𝜑 = 0.0 to 0.6, and the option, O4 , 

has the minimum rating when 𝜑 = 0.7 to 1.0. Therefore, the q-ROF-CRITIC-COPRAS ap-

proach has more stability for diverse parameter 𝜑 values. Furthermore, the criteria ob-

jective weights obtained by CRITIC were preserved to improve the sensitivity of the de-

veloped approach. In the aforesaid discussion, we observed that the utilization of different 

parameter (𝜑) values would provide more stability in the developed method.  

 

Figure 5. Variation in the UD of options over diverse parameter  (𝜑) values. 
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Table 9. Utility degree of options with diverse parameter values. 

φ O1 O2 O3 O4 O5 Ranking Order 

φ = 0.0 0.2964 0.2563 0.2652 0.2733 0.2758 𝑂1 ≻ 𝑂5 ≻ 𝑂4 ≻ 𝑂3 ≻ 𝑂2 

φ = 0.1 0.2823 0.2467 0.2567 0.2613 0.2650 𝑂1 ≻ 𝑂5 ≻ 𝑂4 ≻ 𝑂3 ≻ 𝑂2 

φ = 0.2 0.2683 0.2372 0.2483 0.2492 0.2542 𝑂1 ≻ 𝑂5 ≻ 𝑂4 ≻ 𝑂3 ≻ 𝑂2 

φ = 0.3 0.2542 0.2277 0.2398 0.2372 0.2433 𝑂1 ≻ 𝑂5 ≻ 𝑂3 ≻ 𝑂4 ≻ 𝑂2 

φ = 0.4 0.2402 0.2181 0.2314 0.2252 0.2325 𝑂1 ≻ 𝑂5 ≻ 𝑂3 ≻ 𝑂4 ≻ 𝑂2 

φ = 0.5 0.2261 0.2086 0.2229 0.2131 0.2217 𝑂1 ≻ 𝑂3 ≻ 𝑂5 ≻ 𝑂4 ≻ 𝑂2 

φ = 0.6 0.2121 0.1991 0.2145 0.2011 0.2108 𝑂3 ≻ 𝑂1 ≻ 𝑂5 ≻ 𝑂4 ≻ 𝑂2 

φ = 0.7 0.1980 0.1895 0.2060 0.1891 0.2000 𝑂3 ≻ 𝑂5 ≻ 𝑂1 ≻ 𝑂2 ≻ 𝑂4 

φ = 0.8 0.1840 0.1800 0.1976 0.1770 0.1892 𝑂3 ≻ 𝑂5 ≻ 𝑂1 ≻ 𝑂2 ≻ 𝑂4 

φ = 0.9 0.1699 0.1705 0.1891 0.1650 0.1783 𝑂3 ≻ 𝑂5 ≻ 𝑂1 ≻ 𝑂2 ≻ 𝑂4 

φ = 1.0 0.1559 0.1609 0.1807 0.1529 0.1675 𝑂3 ≻ 𝑂5 ≻ 𝑂1 ≻ 𝑂2 ≻ 𝑂4 

Table 10 provides a summarized view of different material selection decision models. 

It can be seen that the proposed model is unique and follows the common aspects of ra-

tional decision making. Some of the novelties of the model are listed below: 

• q-ROFN was considered as the preferred style for this study It is not only flexible but 

also represents uncertainty from three degrees–membership, non-membership, and 

hesitancy. The factor, clearly controls the preference window by aiding experts in 

sharing their opinions flexibly. 

• The criteria weights were methodically determined to properly model the competi-

tion and conflicts among the criteria. Unlike in the extant models, the interrelation-

ships that the criteria implicitly incur were well captured by the proposed work. 

• Furthermore, the hesitation of the experts during preference articulation was cap-

tured via the variability in the preference distribution. Specifically, if all experts pro-

vide the same preference for a criterion, the variability is zero, indicating that the 

experts have no considerable difference of opinion towards that particular criterion. 

A higher variability signifies a high dispersion of preferences, indicating some sense 

of hesitation towards a particular criterion. 

• During the rank estimation, the type of criteria is actively considered, which plays a 

crucial role in the decision process. Unlike the extant models, the proposed work fol-

lowed utility measures and ranked the alternatives from the benefit- and cost-type 

criteria separately. It can be seen that the proposed rank scheme is simple and ele-

gant, with the ability to determine ranks from different angles, based on the complex 

proportions. Cumulatively, based on the strategy values, the rank of the alternatives 

is determined using the different weights for the benefit criteria and the cost criteria. 

Table 10. Comparison of features of different material selection models. 

Factors Proposed [86] [88] [89] 

Data q-ROFN Fuzzy Fuzzy Interval-valued intuitionistic fuzzy 

Criteria weights Calculated Directly assigned Calculated Calculated 

Apriori information Not needed Not needed Not needed Needed 

Flexible preference window Provided Not provided Not provided Not provided 

Criteria interrelationship Captured Not captured Not captured Not captured 

Criteria type Considered Considered Considered Considered 

Total preorder Yes Yes Yes Yes 

Solution measure Utility-driven Compromise-driven Compromise-driven Compromise-driven 

4.3. Results and Discussion 

The proposed qROF-CRITIC-COPRAS framework is the first of its kind for zero- and 

low-carbon material selection in a construction project at an academic institution. The in-

tegrated approaches that form the framework primarily focus on reducing human inter-

vention so that subjectivity and biases are mitigated. By utilizing the qROF setting, the 
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subjective randomness was resolved, and flexibility improved, thereby, supporting the 

experts during the preference articulation process. Moreover, the weights of the experts 

were determined methodically by using the Boran principle; the criteria weights were de-

termined by adopting the CRITIC method, which effectively captures the interactions 

among the criteria; and, finally, the COPRAS approach was used for ranking the zero- and 

low-carbon materials for construction by effectively considering the nature of each crite-

rion. 

Based on the case example considered in this article, it can be observed that the de-

sign cost and the socio-economic risk contributed to approximately 20% of the signifi-

cance, which implies that these two criteria played a crucial role in determining the order-

ing of materials for the construction project. Both these criteria belong to the cost-type 

criteria and have a potential role in rank determination. Following this, criteria such as 

safety and water pollution contributed to approximately 17% of the significance. In this, 

safety is of the benefit-type criteria and pollution is of the cost-type criteria. Apart from 

these, the other criteria were also ranked based on their significance. It can also be noted 

that blended cement was the highly preferred material for construction, as per the prefer-

ence data in the case example discussed in this paper. This preference was followed by 

bamboo, mud bricks, grapheme-induced concrete, and geopolymers. This was the order-

ing of the materials for promoting low-carbon construction. 

Some implications from the construction managers are listed below: 

1. The framework is a supportive tool that considers qualitative rating information and 

aids in the selection of a rational material for a construction project, which is of zero- 

or low-carbon content. The concept of sustainable construction is fundamentally sup-

ported by the proposed framework. 

2. The framework can be used by a customer who is planning a construction activity, 

the contractor who helps the customer in the construction project, and the material 

designer who manufactures such low-carbon materials for sustainable construction. 

Each of these entities can use the model for validating their pros and cons and can 

effectively refine their strategies to compete with the global market. 

3. The framework can be used as a ready-made tool to assess the performance of zero- 

and low-carbon materials and it can be seen that the framework can be extended to 

different decision applications. Furthermore, the tool attempts to reduce the subjec-

tivity and human intervention that affects the rationality of the decision process. 

4. For the effective utilization of the framework in different decision problems, the 

stakeholders must be trained so that they gain a sense and a feel of the rationality 

and the mathematical support that aids their decision-making process. 

5. The model primarily focuses on handling uncertainty effectively by adopting three 

grades–namely membership, hesitancy, and non-membership–that could effectively 

model uncertainty, with a flexible window for adjusting the preference zone. 

5. Conclusions 

The model presented in this paper is a valuable addition to the zero- and low-carbon 

material selection problem, which mainly concentrates on sustainable construction to pro-

mote eco-friendliness and green practices. A framework with a qROF setting was devel-

oped that not only manages subjective randomness, but also reduces human intervention, 

via the methodical estimation of entities. Interactions among the criteria were captured 

effectively and the nature of each criterion was considered during the rank determination. 

Specifically, the importance of experts, the weights of each criterion, and the ranking of 

the zero- and low-carbon materials for construction were performed stepwise, to reduce 

human subjectivity and the biases that would eventually arise through direct assignment. 

From the comparison and sensitivity analysis, it can be observed that the proposed 

model is highly consistent with extant methods. Furthermore, the reliability of the method 
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is also realized from the adequate changes to the criteria weights. Apart from these statis-

tical benefits, the method is also theoretically attractive as it handles uncertainty effec-

tively by reducing human intervention, capturing the interactions among the criteria, and 

ranking the options by properly considering the nature of the criteria. This study contrib-

utes to the promotion of zero- and low-carbon material selection, which mainly concen-

trates on sustainable construction in promoting eco-friendliness and green practices. The 

proposed model was used to evaluate five different low-carbon materials. It was distin-

guished that geopolymers (O2), with an overall utility degree of 0.2261; blended cement 

(O1), with an overall utility degree of 0.2229; and bamboo (O3), with an overall utility de-

gree of 0.2217, achieved a higher overall performance, compared to the other low-carbon 

materials. Some limitations of the proposed work are as follows: the data are assumed to 

be complete so if there is non-availability then the present system cannot handle the situ-

ation; though experts’ weights are methodically determined, their interdependency is not 

captured effectively; and the conversion of qualitative data to qROF numbers uses prede-

termined values that might restrict experts in using different grades flexibly. 

In the future, the authors plan to tackle the limitations mentioned above. Further-

more, different integrated approaches with diverse fuzzy settings may be used in solving 

the zero- and low-carbon material selection problem. Furthermore, the proposed model 

can also be used for other civil applications, such as the contractor-selection problem, the 

supplier-selection problem, the site- or location-selection problem, and may also be ap-

plied to other domains, such as business, health, and engineering. Finally, plans have been 

made to combine the recommendation paradigms with the decision models to solve large-

scale decision problems, using reviews from web sources. 
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