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Abstract: Microservice architecture is a preferred way to build applications. Being flexible and 

loosely coupled, it allows to deploy code at a high pace. State, or, in other words, data is not only a 

commodity but crucial to any business. The high availability and accessibility of data enables com-

panies to remain competitive. However, maintaining low latency stateful microservices, for exam-

ple, performing updates, is difficult compared to stateless microservices. Making changes to a state-

ful microservice requires a graceful failover, which has an impact on the availability budget. The 

method of graceful failover is proposed to improve availability of a low latency stateful microservice 

when performing maintenance. By observing database connection activity and forcefully terminat-

ing idle client connections, the method allows to redirect database requests from one node to an-

other with negligible impact on the client. Thus, the proposed method allows to keep the precious 

availability budget untouched while performing maintenance operations on low latency stateful 

microservices. A set of experiments was performed to evaluate stateful microservice availability 

during failover and to validate the method. The results have shown that near-zero downtime was 

achieved during a graceful failover. 

Keywords: stateful microservice; availability; database; cluster; Kubernetes; failover;  
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1. Introduction 

Microservices, an implementation variant of Service-Oriented Architecture, are sin-

gle-purposed, loosely coupled, autonomous services that constitute an application. They 

are designed to be resilient and independent from other services. Components of micro-

services are built to handle failures rather than prevent them. Techniques such as graceful 

degradation, decoupling, retries, caching, and redundancy allow to improve reliability of 

microservices [1]. According to ISO 25010 availability, a subcharacteristic of reliability, is 

“the degree to which a system, product or component is operational and accessible when required 

for use” [2]. Availability of a microservice is affected by maintenance time if it is treated as 

a repairable item [3]. To minimize the impact on availability, maintenance of stateful mi-

croservices requires graceful failover between components that provide high availability. 

Thus, high availability is important to ensure elasticity and flexibility of stateful micro-

services. 

Relational database management systems remain the cornerstone of many software 

applications, whether in a Monolith on in a Microservice-based application, even with the 

emergence of data storage management systems such as non-relational databases [4] or 

distributed file systems [5]. Adoption of containers, OS-level virtualization–grows in the 

industry as they were built with microservices in mind. By abstracting the OS level, con-

tainers allow one to simplify the software deployment process. The performance of con-

tainer-based software is better compared to Virtual Machine (VM) based software [6]. 
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Orchestration systems, such as Kubernetes or Docker Swarm, further reduce the effort 

required to manage containers. Container orchestration systems introduced persistent, 

non-ephemeral storage to support stateful services since many applications need a data-

base. It is suggested that transient data is stored on containers running databases [7] as 

containers provide more flexibility with regards to scaling and high availability [8,9]. 

Shorter downtime allows an organization to remain competitive in the market or, for 

a public organization, to provide better services. Reduced manpower requirements result 

in smaller teams that work faster than larger teams [10]. The saved-up availability budget 

can then be used for other purposes such as upgrades, security patches, and other im-

provements [11]. 

Many studies focus on increasing availability or reliability of database systems. How-

ever, modern database high availability solutions, including the aforementioned ones, fo-

cus on reducing the failover time. Either by increasing consistency of replicas by means of 

sharing storage [12] sharing memory [13], novel persistence framework for container 

based deployments [14], novel replication algorithm [15],. or by improving connection 

pooling towards persistent systems [16,17]. We find that research on availability increase 

during managed failover operations is lacking. 

Reusing connections allows to reduce the latency for database requests. Avoiding the 

time-consuming cycle of connection establishment allows to increase throughput and re-

duce latency towards a database [16]. Reused connections are always open towards a da-

tabase, thus it becomes a challenge to tell if they are active or not. 

In this research we are focusing on improving database availability during managed 

graceful failover–switchover–operation. Maintenance is an important aspect in the life cy-

cle of a microservice. Performing preventive maintenance on a stateful microservice may 

have an impact on its availability. Reused connections allows to reduce the latency to-

wards a database. However, it brings additional complexity to the application and its 

maintenance. We propose a method that allows to mitigate the effect of managed database 

failover on the availability of a low latency application. In this paper we have shown that 

the proposed method allows to achieve near-zero downtime with minimal impact on a 

low latency application. Managed failover becomes nearly transparent to database clients 

using connection pooling. Thus, with employment of the proposed method, maintenance 

of low latency stateful microservices can be performed with minimal impact on availabil-

ity. 

The rest of the paper is organized as follows: Section 2 presents a literature review 

on the topics of stateful microservice availability and reliability, and the principles the 

proposed method is based upon; Section 3 describes the method we propose; Section 4 

outlines the investigated architecture; Section 5 contains results of the experiment; con-

clusions are presented in Section 6. 

2. Background and Related Work 

Applications use database systems to store and maintain their data. The system in-

volves large numbers of objects, such as storage mechanisms, query and programming 

languages, drivers, logic, and mapping between an application and its database(s). One 

important object is the connection. Establishing a connection to a database requires nu-

merous resources and actions: back-and-forth authentication process between client and 

server, authorization, memory allocation, etc. The object-relational persistence framework 

suggests that a connection should serve one transaction and be terminated afterwards. 

However, since connection creation is time-consuming, connection pooling supports 

short-lived connections. A connection pool allows to reuse already established connec-

tions: the connection is returned to the pool after being used [16]. Reusing connections 

from a pool allows to reduce request latency as there is no need to perform the time-con-

suming process of connection establishment. 

A database server process either creates a new thread or assigns an idle thread for 

each client connecting to it. The server-process, or rather the threads it allocates, execute 
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requests coming from connected clients. A thread then executes a query sent by the con-

nection allocated to it. Subsequently, the thread either closes the socket or, in the case of 

reused connections, keeps the socket open and waits for additional incoming queries [18]. 

As the socket waits for more incoming queries, the connection remains open. Thus, 

without explicitly checking its status on either the database or the client side, it is unclear 

if a query is being executed or not. Closing a socket without knowing if it is active or not 

may result in a failed query. 

An additional challenge is routing requests to different nodes of a distributed data-

base cluster. There are two high-level approaches to routing requests [19]: 

• Allowing clients to send requests to any node of a cluster. The node then either pro-

cesses the request or forwards the request to another appropriate node. 

• Client sending requests via routing level. At the routing level a decision is made on 

which node the client should connect to. 

Regardless of which routing approach is taken, the challenge of making the decision 

of where to route the request remains. This challenge is commonly known as service dis-

covery [19]. 

Request routing and load balancing are important parts of high availability assurance 

for database systems. Marinho et al. has presented a LABAREDA service for predictive 

and elastic load balancing. Its purpose is to predict Service Level Agreement (SLA) viola-

tions using prediction models [20]. The service uses Autoregressive Integrated Moving 

Average and Exponential Moving Average prediction models to predict and balance 

workloads against a replicated database. Although the proposed service has sufficient ca-

pacity to predict SLA violations and take necessary action to keep performance metrics 

within SLO, its impact on database availability during a failover is limited. 

A replication-based middleware system, Hihooi, presented by Georgiou et al., includes 

a novel routing algorithm [21]. The system itself is designed to enable high scalability, con-

sistency, and elasticity for transactional databases. Hihooi is a middleware system which is 

positioned between database engines and applications. It intercepts requests towards a da-

tabase and routing algorithms direct them to the most consistent replica(s). The algorithm, 

based on inspection of request transactions, allows to avoid delays of read requests by di-

recting them to replicas with consistent data. The method proposed in this research is based 

on inspection of transaction contents as well. However, the inspection is done on the data-

base level rather than on Transaction manager level as is the case with Hihooi. 

The availability of the databases is ensured by distributing the data over multiple 

nodes. Consistency between distributed nodes is ensured by replicating the data. There 

are two replication strategies [22]: 

Single-Primary replication. This strategy implies that all writes are directed to a sin-

gle node in a distributed database and then replicated to the remaining nodes. This kind 

of setup reduces the risk of consistency conflicts. However, in case of failure of the pri-

mary node, it takes time to elect a new primary to take writes. Single-Primary failover is 

not a trivial operation. Additional actions, such as reconfiguration of distributed database 

nodes to change the source of replication, pause application traffic, reconfiguration of ap-

plication clients, etc. have to be taken to failover a replicated database with one Primary 

node [11]. 

Multi-Primary replication. This strategy implies that more than one node in a distrib-

uted database can take writes and distribute them across the remaining nodes. In case of 

failure of one of the nodes any other node in the multi-Primary distributed database can 

take over. Additional load balancing solutions or proxies can be used to further minimize 

downtime and mask incompleteness of a multi-Primary distributed database in the event of 

a disaster. An important drawback is the need for conflict resolution. Writes coming from 

multiple sources increase the risk of conflicts which have to be resolved. On the other hand, 

writes can be directed to one of the nodes of the multi-Primary distributed database, thus 

creating a pseudo-Single-Primary setup [11]. As Multi-Primary replication allows writes to 

be taken by any node in the cluster, transitioning a connection from one node to another is 
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an option. Connections can be gradually shifted towards other database nodes while main-

taining constant throughput. However, in that case, conflict resolution may have an impact 

of response time due to multiple nodes in the cluster processing write requests. 

Distributed database node outage can be unexpected, such as caused by failure or 

expected, for example when taken down for maintenance. In this research, we consider 

only expected outage. 

The mechanism of taking down a node in a distributed database depends on the rep-

lication strategy. In single-Primary setups any node except for the Primary node can be 

taken out of the cluster at any time. Upon returning online to the cluster it has to catch up 

on the changes happened since last known transaction. 

Taking down the Primary node in Single-Primary setup is not a trivial matter. The 

Primary node has to step down, and a new Primary has to be elected before it can be taken 

offline. Stepping down requires connections to be drained from the stepping down Pri-

mary node. Clients them have to be reconfigured to use the newly elected Primary node 

[19]. 

In Multi-Primary setup connections have to be drained from node to be taken out of 

the cluster. Applications should not be able to connect to the node that is in the process of 

being taken out. Adding a node back to the cluster implies that applications can connect 

to the node again. Various techniques are used to allow or disallow applications to connect 

to a node: changing the connection setting in an application, changing the Domain Name 

System (DNS) records, and/or changing the node pool in a proxy or load balancer layer 

[11]. 

In both cases the cluster becomes out of sync–data have to be replicated to nodes 

returning or being added to the distributed database cluster. Out-of-sync nodes have to 

catch up for database cluster to become consistent again. 

Taking a distributed database node down for maintenance has an impact on the da-

tabase cluster. The latency between the replicated data on distributed database nodes is 

called Replication lag [11]. In addition to describing the degree of inconsistency of a data-

base cluster, replication lag may also result in a negative user experience manifested in 

inconsistent reads and/or writes [19,23]. Thus taking down a node in a cluster, built for 

reliability, may have impact on availability. Time to return back to the cluster is important 

to reduce the impact of replication lag. 

In certain cases the data must be fully copied onto a node returning to the distributed 

database cluster. For example due to replication lag exceeding the set Service Level Ob-

jective (SLO) [11]. Copying data from one to another may take a significant amount of 

time on larger databases. There is a risk that the copied data will not be consistent if the 

database is being actively written [19]. In addition, copying data can result in degraded 

performance of a distributed database cluster, which, in turn, is a risk to SLO. 

Deployment of certain database changes, such as memory setting or minor software 

version changes, requires a restart. Replication allows to have the service to stay online 

and process requests. However, pooled connections pose a challenge when they have to 

be drained from a database node There are two approaches on what to do with the con-

nections already established towards a database node: forcefully terminate or drain them 

by reconfiguring the application [11]. In the first case, connections are terminated, the op-

erator has to accept the impact to availability. In the second case, the operator has to make 

changes to the client application, for example, change the data source or reload the con-

figuration. Client application reconfiguration is a sound approach to drain connections 

from a database node as impact to availability is avoided. Although it involves more com-

ponents and increases coupling of microservices. 

Causes of failing requests can be of two types: transient and persistent. Transient 

failures are caused by non-permanent conditions, for example, interim loss of connection, 

reconfiguration, temporary resource exhaustion, etc. Persistent failures are caused by con-

ditions that cannot be resolved without human intervention [24]. 
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Microsoft recommends configuring retries to handle different types of exceptions. 

Exception handing based on the cause allows to provide more reliable service by mitigat-

ing transient failures. If properly configured retries allow self-correcting faults to have less 

significant impact on the availability of an application [24,25]. 

There are three exception handling strategies [26]: 

• Cancel the failing request. A failed request is canceled in case it is caused by a persis-

tent condition. 

• Retry immediately. A failed request was caused by a transient condition that allows 

it to be immediately repeated. The failure condition, such as network packet corrup-

tion, is unlikely to be encountered again, and thus it is safe to retry the request im-

mediately. 

• Retry after delay. A failed request was caused by a transient condition that cleared after 

a certain amount of time. The failure condition, for example, a network connectivity 

issue or request throttling, needs time to be corrected. Within that time, it prevents a 

request from being executed successfully. Therefore, retries are issued after a delay. 

The fact that retries are an important factor of error handling was demonstrated by 

Dai [27]. The Retryer by Dai [27] verifies if requests should be retried against the database. 

It introduces a retry logic on the client side which verifies if a failed request needs to be 

attempted again. It demonstrates that a retry mechanism, although a complex one, can 

improve database recovery after transient errors. 

3. The Method for Transparent Failover 

In this section we present the proposed method and how it functions towards im-

proving availability of stateful microservices during failover in low latency applications. 

Given that a connection pool is used by a client when a node of a database cluster has to 

be shut down, its orchestrator, whether a person or an automated script, has to drain the 

connections either from the application side or on the database side. In the first case, the 

orchestrator needs to have access to the application. In the latter case, there is a risk of 

terminating actively used connections. The idea behind the proposed method is to force-

fully close only idle (sleeping) client connections to a database node. The flow diagram 

below (Figure 1) compares the graceful failover method we propose (Figure 1a) with force-

ful failover method (Figure 1b), and failover by reconfiguring application (Figure 1c). 
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(a) (b) (c) 

Figure 1. Flow diagrams of proposed graceful failover method (a) forceful failover (b), and failover 

requiring changes on application side (c). 

The first step in the proposed method (Figure 1a) is taken by the orchestrator. It 

marks the node set for shutdown as being taken down. Next the database proxy, or a load 

balancer, takes the node out from the database cluster: new connections towards the da-

tabase node are disallowed. Yet the existing connections towards the database node are 

kept alive, whereas all incoming connections are redirected towards other nodes in the 

cluster. 

As the database proxy may not be aware of connection content the forceful closure 

of connections is taken care of by the database node. The status of all client connections is 

read on the database node. The database node loops thru the statuses of the established 

client connections and terminates if status shows idle until all are closed. Since terminated 

connections were not actively used by a client application–they were in a free connection 

pool–its termination does not make any impact on the client application. Only an attempt 

to reconnect is made. Once all connections are drained from the database node, the or-

chestrator proceeds with shutting it down. A pooled connection is reestablished after 



Electronics 2022, 11, 3936 7 of 16 
 

 

being closed by the database. The application can continue querying the database since 

new connections are routed by database proxy to other nodes in a database cluster but the 

one that is being shut down. 

Figure 2 illustrates how application client connections transition from one database 

node to another. In the given example a pooled connection is transitioned from db-node-1 

to db-node-2. Transition events are shown as e1 through e6 in Figure 2. 

 

Figure 2. Client connection transition. 

At the first event e1, the db-node-1 is marked as being shut down. However, no other 

action is taken against it. At e2, the database proxy cordons the db-node-1 disallowing new 

connections towards it. The db-node-1 begins terminating incoming client connections at 

e3. The pooled-connection-n connection to enters ‘sleeping’ state. This state of the connection 

is then detected by the db-node-1, and at e4 it is terminated. Once pooled-connection-1 is 

reestablished, the database proxy directs it to db-node-2 at e5. Once all connections have 

been transitioned to db-node-2, db-node-1 is marked as ready to shutdown at e6. 

4. Implementation of the Method 

The method we propose allows to transition low latency database connections from 

one node to another. However, the distributed database cluster and its clients has to have 

a certain setup for the aforementioned method to function. As shown in Figure 3, the setup 

consists of: 

• Database cluster setup for multi-Primary replication 

• Proxy layer that can direct client requests to a specific node 

• A client connection termination mechanism 

• A connection pool to enable low latency database connections 

• A retry mechanism on the client side to handle terminated connections 

• An orchestrator to oversee the failover. 
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Figure 3. Components of the proposed method. 

Multi-Primary replication would allow distributed database cluster to continue serv-

ing client requests while a graceful failover is happening. 

A proxy layer, whether an appliance or a service, would allow to balance requests 

between nodes while switchover is performed (Listing 1). Once switchover is started new 

and re-established client connections are directed towards another node in the cluster but 

not the one being taken out. 

Listing 1. Pseudocode of the connection directing algorithm at proxy layer. 

directDBConnections 

Input: dbNode, connectionAction 

begin 

 // higher weight increases the node priority 

 defaultNodePriority = 10 

 if connectionAction == ‘disallow’ 

  // weight valued 0 disallows new connections towards the node 

  nodePriority = 0 

  call setNodePriority (dbNode, nodePriority) 

  returnMsg = ‘connectionsDissallowed’ 

 end 

 if connectionAction == ‘allow’ 

  call setNodePriority (dbNode, defaultNodePriority) 

  returnMsg = ‘connectionsAllowed’ 

 end 

 return returnMsg 

end 
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Output: returnMsg 

The client connection termination mechanism has to read the content of a database 

process to decide on its termination. The algorithm is quite straightforward (Listing 2): 

1. Collect a list of active client connections 

2. If there are client connections, iterate through the list and check their status: 

• Terminate the connection if status is ‘sleeping’ 

• Skip to next connection if status is other than ‘sleeping’ 

3. Refresh the list of client connections and check the status again 

Listing 2. Pseudocode of the connection termination algorithm. 

terminateClientConnections 

Input: clientConnectionIdentifier 

begin 

 // create list of client connections 

 clientConnectionList ← getClientConnections(clientConnectionIdentifier) 

 while LEN(clientConnectionList) > 0 do 

  // loop thru client connections 

  for clientConnection in clientConnectionList 

  clientConnectionState ← getClientConnectionState(clientConnection) 

   if clientConnectionState == ‘sleeping’ 

    terminateConnection(clientConnection) 

   else 

    skipToNext() 

   end 

  end 

  // refresh list of client connections 

  clientConnectionList ← getClientConnections(clientConnectionIdentifier) 

 end 

 returnMsg = ‘connectionsDrained’ 

 return returnMsg 

end 

Output: returnMsg 

Connections that handle internal cluster traffic, such as replication or heartbeat, are 

not affected by the orchestrator. Interfering with these kinds of connections may produce 

unwanted results. The internal cluster connections are handled by the cluster. Client con-

nections can be identified by different parameters such as host name, target database, or 

username. 

The client is configured to retry failed requests upon loss of connection towards the 

database. 

The failover orchestrator, as the name suggests, oversees the failover of client con-

nections between database nodes. The orchestrator issues commands to database nodes 

and database proxy during the entire managed failover process (Listing 3). By knowing 

the status of client connections along with cluster configuration appropriate and timely 

commands allow to limit the impact of managed failover on availability of a database 
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cluster. It can be part of a microservice orchestrator that manages microservices. For ex-

ample, the failover orchestrator can be implemented as part of the Kubernetes Operator. 

Listing 3. Pseudocode failover orchestrator. 

failoverOrchestrator 

Input: dbNodeList, proxyNode 

begin 

 for node in dbNodeList 

  clientConnectionState ← proxyNode.directDBConnections(node, ‘disallow’) 

   if clientConnectionState == ‘connectionsDissallowed’ 

    terminateClientConnections.state ← node.terminateClientConnections() 

   end 

   if terminateClientConnections == ‘connectionsDrained’ 

    // call a generic maintenance procedure 

    call performDBNodeMaintenance(node)  

   end 

  clientConnectionState ← proxyNode.directDBConnections(node, ‘allow’) 

   if clientConnectionState == ‘connectionsAllowed’ 

    // start maintenance of other database nodes  

    skipToNext() 

   end 

 end 

 return SUCCESS  

end 

Output: none 

There are a couple of advantages of the proposed method compared to other tech-

niques for error-free managed failover: 

• Support for connection pooling. Connection pooling allows to achieve higher 

throughput and lower latency compared to reopened connections [16]. 

• Low risk of double-write or other unwanted result upon request retry [27]. Since the 

connection is terminated between request execution, there is no need to retry a re-

quest;. it is sufficient to re-establish a connection. Even if Retryer by Dai [27] is a 

sound approach, it is more complex as, unlike the proposed method, it requires com-

plex logic on the client side. 

One of the ‘traditional’ approaches to managed failover is the acceptance of impact 

on availability. The proposed method allows to perform a managed failover with near-

zero loss of availability. 

The other approach to managed failover is rerouting requests by changing the con-

nection string on the client side. The proposed method eliminates the need to make 

changes on the client side in order for switchover to happen without a failing request. This 

reduces coupling if application consists of many microservices. 

5. Evaluation of the Method 

We performed an experiment to analyze how the proposed method operates under 

different conditions and compare it to forceful failover method. We created a prototype 

environment with all the necessary components: database cluster behind a proxy, failover 
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orchestrator, and a client. We evaluated the two aforementioned failover methods under 

varying database load and retry delays. 

The prototype environment was set up on a three-node Kubernetes cluster in Google 

Cloud Platform (GCP). The three nodes were identical: E2 cost-optimized instances with 

6 GB of memory, 4 CPUs, and 50 GB standard persistent disk (PD). The MySQL Galera 

cluster was chosen as this database management system has capability of multi-master 

replication. ProxySQL was used as the database proxy. The investigated architecture is 

displayed in Figure 4. 

 

Figure 4. The investigated architecture of the multi-master database cluster. 

The database client was set up on a VM in GCP. The VM was an E2 cost-optimized 

instance with 4 CPUs and 8 GB of RAM, running Ubuntu 18.04. The failover orchestrator 

was set up on an E2 cost-optimized instance with 1 CPUs and 1 GB of RAM, running 

Ubuntu 18.04. Software versions and resource allocation for MySQL Galera cluster and 

ProxySQL nodes are listed in Table 1. 

Table 1. Software Versions and Resource Allocation. 

Software and Version Number of Pods CPU Limit Memory Limit 

MySQL Galera Cluster 8.0.25 3 600 m 1024 MB 

ProxySQL 2.0.18 2 300 m 256 MB 

Different numbers of simultaneous requests towards the database were issued. It is 

important to know how load (saturation) impacts the performance and effectiveness of 

the method. 

The proxy layer has capability to assist in graceful failover of underlying database 

nodes. Thus we used this feature of the proxy layer when performing our experiment. 

Incoming requests were redirected to the appropriate database nodes. Database node was 

put into ‘OFFLINE_SOFT’ state in ProxySQL to disallow connections towards it. The state 
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disallows new connections to the database node, however already established connections 

are kept intact. 

The probe request executes the probeRequest stored procedure. The stored procedure 

inserts data that indicate a successful request. After the failover is complete the count of 

records per session is compared to the number of requests issued per session. The number 

of issued requests is the maximum ordinal_number of a session. The database objects are 

listed in Listing 4. We assume that Select statements would not be affected by managed 

failover. Retry of read-only requests have a limited risk of encountering an exception com-

pared to write request. In addition, a retry of a Select statement has insignificant impact 

on availability of read-only requests. 

Listing 4. Database objects. 

CREATE TABLE IF NOT EXISTS logtable( 

 id INT NOT NULL AUTO_INCREMENT, 

 log_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP, 

 session_id VARCHAR(64), 

 ordinal_number INT, 

 PRIMARY KEY (id) 

); 

 

CREATE PROCEDURE probeRequest (sessionID VARCHAR(64), ordinalNumber INT) 

BEGIN 

 INSERT INTO logtable (session_id, ordinal_number) 

 VALUES (sessionID, ordinalNumber); 

END 

In addition two types of retries were evaluated: an immediate retry and a backed-off 

retry after 1 s. Immediate retry is the simplest retry pattern. We expect the error causing 

condition would allow to retry the request immediately when the proposed failover 

method is used. A backed off retry is recommended in case the error condition is expected 

to clear after a certain delay [26]. We assume that 1 s is a sufficient amount of time before 

retrying the request. The other two nodes in the cluster will be ready to accept incoming 

requests within the 1 s of delayed retry. 

Parameters of the experiment: 

• Number of parallel requests (saturation): 100, 200, 300, 400. 

• Connection termination: graceful termination (the method), forceful termination. 

• Exception handling pattern: immediate retry, delayed retry (1 s). 

We are evaluating all possible parameter sets. Availability is affected by maintenance 

time and failure rate (occurrence of failures) [3]. We consider the time needed to move all 

connections from one node to another as failover duration. As suggested by Hauer et. al., 

we will use the ratio of failed and successful requests to measure availability [28]. The 

failure ratio is the percentage of failed requests to the number of parallel requests. Given 

how connections are directed from one database node to another, we assume that the 

maximum number of failed requests per experiment execution will likely not exceed the 

saturation. 

failure ratio =  
number of failed requests∗100

number of parellel requests
  (1) 

We ran the experiment five times with each parameters set to compare mean failover 

duration and failure ratio. 



Electronics 2022, 11, 3936 13 of 16 
 

 

6. Results and Discussion 

As expected the proposed method had an insignificant impact on availability com-

pared to the forceful failover mechanism. The mean failure rate during forceful failover 

for different parameter sets ranges from 53 to 94 (Figure 5). It increases along with the 

number of parallel requests. The proposed method of graceful failover allows to reduce 

the mean failure rate to near zero: the highest mean failure rate is 3 with deviation up to 

9. Although failure rate is still affected by saturation, the impact is insignificant compared 

to forceful failover. 

 

Figure 5. Dependency of failure rate on failover method, saturation and retry delay. 

Backed-off retries make an insignificant impact on availability during graceful failo-

ver. Retries backed off by 1 s have a positive impact on forceful failover at higher satura-

tion. At 300 parallel requests mean failure rate drops to 93 and at 400 to 87. 

We have inspected the failed requests and found that the reason for failure was a 

deadlock. At high concurrency requests saturate the database node and queries block one 

another resulting in deadlocks. Deadlocks did not occur with graceful failover as clients 

moved from one node to another in a gradual manner not overloading the target database 

node. Although, in the case of forceful failover, database host overload could be alleviated 

by gradual reconnection so that contention for database resources is lower. However, it 

may require additional modifications to exception handling on the client side. 

Failover from one database node to another takes more time when failing over grace-

fully (Figure 6). While the mean forceful failover time ranges from 54 to 63 s, graceful 

failover may take up to three times longer with a mean ranging from 58 to 197 s. Failover 

duration increases along with saturation, and the process is slowed down by the necessity 

to inspect the high number of connections. No action may be taken against a connection 

since it can be actively used by the client at the time of connection termination process. 

Thus, it is inspected multiple times during prep for failover. The inspection is done in 
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round robin fashion therefore the duration depends on the number of established connec-

tions which is high in a highly saturated database cluster. Although graceful failover 

needs more time to complete there is a certain benefit to it. Client connections are moved 

to another node in gradual manner and thus the target node is not overloaded. 

 

Figure 6. Dependency of failover duration on failover method, saturation and retry delay. 

As the other methods and techniques to improve availability have their own ad-

vantages the proposed method has its own. First of all the proposed method works with 

pooled connections allowing to reduce database request latency while giving the flexibil-

ity to failover between database cluster nodes with negligible impact on availability. Also 

managed failover is transparent to an application. Not only is there no action needed on 

the client side, but, quite importantly, no other exceptions are raised. This reduces cou-

pling between the database cluster and its client in a microservice application. Since no 

action has to be taken on the client side an operator of the database cluster can perform 

maintenance on it independently. In addition the method was proved to be functional 

using open-source software such as MySQL Galera Cluster and ProxySQL. However, the 

possible implementation options are not limited to the listed software as long as its func-

tionality allows the support of the proposed method. 

The method we propose has several drawbacks. A drawback we have identified is 

the prerequisite of quite a specific architecture for the method to work. A Multi-Primary 

database setup is needed to achieve a high degree of availability during managed failover. 

Compared to Single-Primary replication setup a Multi-Master setup is more complex. 

Complexity results in slower performance due to communication latency and conflict res-

olution algorithms. However, if the requirements of an application permit, impact of the 

aforementioned drawback can be limited when database cluster is configured as pseudo-

Single-Primary. That would limit the need for conflict resolution as only one database 

node would accept write workloads. In addition failover time increases when the pro-

posed method is used. In certain setups, as experiments have shown, it may take three 

times longer to shift connections from one node to another. Although the graceful failover 

time is longer compared to forceful failover, how big of a disadvantage it is would depend 

on the real world scenario. Since maintenance is an activity usually planned in advance 

additional minutes needed to perform the failover may be insignificant in the grand 

scheme of things. Yet another important aspect is that the proposed method has limited 

impact on fault-tolerance. Despite allowing to achieve near-zero availability during man-

aged failover, the method is not designed for disaster recovery. 
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7. Conclusions 

The proposed method based on observation and timely connections termination al-

lows to keep failure rate near-zero at high concurrency; only inactive pooled connections 

are terminated and gradually re-established towards another node without overloading 

it. 

The results have shown that the method we propose can significantly reduce the im-

pact of managed failover on availability. While forceful failover results in no less than half 

of the parallel requests failing, the proposed graceful failover method allows to achieve 

near-zero failure rate during failover of a low latency stateful microservice–a clustered 

database with pooled connections established towards it. Forceful failover failure rates 

increase as saturation increases. Although graceful failover failure rate increases as well, 

it is not that significant compared to the other failover type. The achieved results show 

that retry delay makes an impact only on the forceful failover while graceful failover is 

unaffected by it. Even with a delayed retry forcefully terminated connections overload the 

database node upon reconnection resulting in failed requests. With the proposed method 

the failure rate remains near zero despite a high number of simultaneous connections. 

However, the time needed to gracefully failover from one database node to another in-

creases along with the number of simultaneous client connections towards a database 

node. Forceful failover time is affected insignificantly by the number of parallel requests. 

Implementation of the method does not require substantial modifications on the client 

side–it needs to retry requests upon a transient connection fault. In addition managed 

failover operation can be scripted out or, in the case of Kubernetes, can function as part of 

Kubernetes Operator. Near-zero failure rate during a managed failover operation enables 

database developers and administrators to perform different maintenance operations at 

will: change resource allocation or database options. 

In this research we have shown that database maintenance operations could have 

negligible impact on availability in systems requiring low latency while observing a low 

degree of coupling. 
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