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Abstract: The growing food demand, the tendency for organic food, and the adaptation of the
e-commerce business model require new food supply chain management approaches. On the one
hand, 30% of the world’s produced food is wasted, and CO2 emissions are rapidly growing due to
transport. On the other hand, the increasingly complex and dynamic environment is decreasing the
effectiveness of food supply chains. Because of these trends, sustainability and resilience are becoming
more relevant to food supply chains. Therefore, the objective of this paper is to propose a strategy
based on information exchange to improve food quality and decrease the level of CO2 emission in
last-mile deliveries of food products. To achieve this goal, an agent-based model of last-mile deliveries
was developed. The model simulated traffic flow and traffic accidents as disturbances in the system
while measuring the level of CO2 emission and food quality of the network. The simulation compares
information sharing between all vehicles in the urban area and without information sharing in four
scenarios of the food industry. In practice, information sharing is achieved by using connected vehicle
technology. The use of information sharing between vehicles in last-mile delivery processes allows
the development of a self-organizing system, which would adapt to disturbances and lead to the
development of sustainability in the long run.
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1. Introduction

The food industry faces challenges due to changing consumer trends and the business
environment. On the one hand, the demand for food products is growing due to the
growing world population and the increasing life expectancy rate. The world population
is expected to reach 9.8 billion by 2050 [1]. The average life expectancy in Europe will be
82 years by 2050 [2]. The demand for organic food products is also growing, which requires
reducing lead time in order to maintain better product quality [3]. On the other hand,
constant disturbances and a changing business environment decrease the efficiency of the
food supply chain. Urbanization will continue at an accelerated pace, and approximately
70% of the world’s population will be urban compared to 49% today [4]. The complex-
ity of the food supply chain will increase because the United Nations is promoting the
collaboration of SMEs (small-scale farmers produce more than 70% of the world’s food
needs) [5]. The last mile of the supply chain is less efficient, comprising up to 28% of the
total logistics cost [6]. Food losses and waste cost the global economy approximately USD
990 billion annually [7]. Part of the waste is generated in the household stage, and the other
part is generated in the storage and delivery stage. “While it is clear that major calamities
and disasters can have a considerable effect on traffic and transport systems, there is a
knowledge that more minor disturbances in traffic and transport systems can also play
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an important role in reducing the efficiency of such systems” [8]. “Travel times between
customers are not deterministic, but uncertain and differ during the day with respect to
traffic volumes and stochastic events such as congestion” [9].

From another perspective, these issues raise concerns about the environmental effect
of the reduction of CO2 emissions. “The distribution of goods in urban areas, together
with the flow of private traffic, are among the main sources of energy consumption, air
pollution and noise” [10]. Most of the research conducted has focused on reducing CO2
emissions from genetically modified products, rather than specifically on food supply
chains. Seebauer et al. (2016) found that the use of cars for the final delivery leg, known
as the “last mile,” significantly affected overall carbon emissions in retail channels [11].
Carling et al. (2015) found that consumers who switch from traditional to e-retail can
reduce their transport-related CO2 emissions by an average of 84% [12]. Nabot and Omar
(2016) conducted a study comparing the environmental impact of online and in-person
retailing and found that online shopping plays a significant role in reducing CO2 emissions
due to the efficiency of last-mile deliveries [13]. Kellner (2016) analyzed the impact of traffic
congestion on CO2 emissions but did not consider the impact on food quality [14].

These trends influence the sustainability aspect of the food supply chain in terms of en-
vironmental and social aspects. From an environmental perspective, disturbances increase
CO2 emission levels, and from a social perspective, disturbances increase the duration of
delivery and reduce nutritional value. When disturbances are very intense, food waste
can even have an economic effect related to lost profits. Therefore, the concept of resilient
and sustainable supply chains has gained more recognition in recent years. For example, a
research paper focused on how to develop a resilient/sustainability index [15]. The paper
analyzed the relationship between resilience and food waste and determined that resilience
elements, which help reduce food waste, are anticipation and consideration. These ap-
proaches are important because food has a short shelf life, and it loses its value completely
if it is not sold. Other research papers have focused more on force majeure and promoting
the horizontal collaboration of food supply chains. However, the proposed approaches
have several practical problems with regard to collaboration management. For example,
research indicated that the effectiveness of collaboration as a supply chain resource has
been questioned due to concerns associated with collaborative technologies [16]. Another
paper stated that firm strategy and behavior in supply chain collaborations are identified
as the main reasons for supply chain failure [17]. Therefore, the research conducted by the
authors attempts to analyze the missing gap in the approaches and suggest a management
framework for resilient and sustainable food supply chains. A previous publication of the
authors analyzed the disturbances with regard to demand fluctuation. The publication
proposed a redundancy approach based on collaboration demand forecasting to increase
collaboration between supply chain members and increase the effectiveness of redundancy
usage [18]. This publication addresses disturbances from the perspective of transport in
urban logistics. “Minor disturbances in traffic and transport systems can also play an
important role in reducing efficiency” [8]. In this publication, disturbances are defined as
traffic accidents that are irregular and cannot be estimated from the usual traffic flow data
analysis. The influence of traffic jams and congestion on CO2 emissions has previously been
analyzed [19]. However, only a limited number of research papers analyzed food quality
and CO2 emission levels in the food supply chain, and essentially no research has examined
the relationship of sustainability with disturbances in the food supply chains [20–25].

Therefore, the aim of this article is to propose a system based on information sharing to improve
food quality and decrease the level of CO2 emission in last-mile deliveries of food products.

2. Perspective on Sustainable and Resilient Food Supply Chains

The trend for healthier food products is changing the competitive environment drastically.
“With the world’s population rising and expected to reach 9 billion by 2050, a plan for the
development of the organic sector is needed to meet this demand” [26]. “Industrial food
has changed from being ‘scientific’ and ‘safe’ to being ‘toxic’ and potentially harmful to our
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long-term health” [27]. Furthermore, the trend for e-commerce and direct delivery to homes
is creating even more difficulties in the food industry. “Direct selling of food from producers
to consumers is not a new development. The possibility of buying food through regional
markets, through catalogues, or directly at the farm existed before. But the Internet improves
direct access to the consumer” [28]. The growing trend of directly delivering organic food
products to consumers also raises concerns about the levels of CO2 emissions due to the
increased travel distance. Therefore, it is necessary to develop new delivery techniques to
address this issue [13]. A research paper compared meal-kit deliveries with conventional
grocery shopping [29], they stated that meal-kit deliveries can reduce food waste; however, a
comparison with conventional groceries requires the comparison of energy demand. Another
paper analyzed electronic grocery deliveries in last-mile deliveries and concluded that “a
prominent finding is that home delivery of food and groceries is associated with fewer trips to
physical grocery stores and reduced car use on these trips” [30]. The market size of internet
retail was USD 1.17 trillion in 2016 and is estimated to grow to a size of 2.1 trillion with an
AAGR of 13.33% by 2020 [3]. “By 2025, the share of online grocery spending could reach 20%,
representing $100 billion in annual consumer sales” [31].

However, currently, there is a great deal of food waste due to ineffective supply chain
processes and household behavior. Food losses and waste cost the global economy approxi-
mately USD 990 billion annually [7]. The European Commission has launched a project for
the development of food systems, focusing on increasing nutrition levels and promoting
local production [32,33]. The growing complexity of the food industry further increases the
challenges of management. The complexity of the food supply chain will increase because
the United Nations is promoting the collaboration of SMEs (small-scale farmers produce
more than 70% of the world’s food needs) [5]. From the perspective of the supply chain,
these changes should consist of more local distribution facilities and local farmer initia-
tives [34]. Research conducted empirical research regarding the development of short food
supply chains, which they considered a novel trend to ensure sustainable agriculture [35].
Due to this growing complexity and the increased demand for healthy food, the concepts
of resilient and sustainable food supply chains are growing. “The sustainability of agrifood
systems is most often defined with reference to the three pillars of sustainability (environ-
mental, economic and social), in an often static and normative way, while the notion of
resilience is defined in reference in a more dynamic way, in terms of the ability to cope
with shocks and stresses.” [36]. To cope with this growing challenge, a system approach
should be adapted to the management of food supply chains. “Complexity economics
sees the economy as in motion, perpetually ‘computing’ itself, perpetually constructing
itself anew. Where equilibrium economics emphasises order, determinacy, deduction, and
stasis, complexity economics emphasizes contingency, indeterminacy, sense making, and
openness to change” [37]. “The key to ensuring a sustainable and resilient supply of es-
sential ecosystem services on which humanity depends is by enhancing the resilience of
socioecological systems, instead of optimizing isolated components of the system” [38].
To implement system thinking in food supply chains, collaboration between supply chain
members should be promoted and official logistic groups formed. “Collaboration ensures
the exchange of information between supply chain partners and reduces uncertainties and
complexities. Collaboration through appropriate partnership and information exchange
in the early stage of supply chain operations would reduce uncertainties and complexi-
ties” [39]. Only by integrating information and innovative technologies can a resilient and
sustainable supply chain be achieved. Integration of such approaches can provide self-
organizing capabilities to the food supply chain. “The adaptive capacity of a supply chain
to reduce the probability of facing sudden disturbances, resist the spread of disturbances by
maintaining control over structures and functions, and recover and respond by immediate
and effective reactive plans to transcend the disturbance and restore the supply chain to a
robust operation state” [40]. Cordes and Hulsmann indicated that from a CAS perspective,
supply chains obtain self-healing processes, which is related to robustness for supply chain
resilience. In addition, they imply that additional research is needed related to empirical
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and simulation-based methods [41]. Thus, the proposed application of information sharing
provides adaptation abilities to the logistic cluster members, which, in the long run, trends
towards sustainable and resilient food supply chains. There may be difficulties in sharing
information between all vehicles in the urban environment due to issues of collaboration.
These issues from a technical perspective can arise due to large amounts of data flow and
latency issues, while from a social perspective, not all companies might agree to share their
vehicle data due to competition. However, research by Los et al. (2020) found that sharing
full route plans is always beneficial for individual carriers, regardless of the level of route
information shared by other carriers [42].

In this paper, we will focus on the urban logistics context because, currently, it is
the least efficient area, comprising up to 28% of the total logistic cost [6]. In addition,
last-mile deliveries dramatically contribute to CO2 emission levels [11]. The concept of
resilience is mainly analyzed from the perspective of force major; however, Calvert and
Snelder indicated that “Minor disturbances in traffic and transport systems can also play
an important role in reducing efficiency” [8]. Other researchers also indicated that traffic
congestion and road accidents are several aspects of disturbances in the supply chain that
decrease the effectiveness of the system [43]. Due to the complex and rapidly changing
environment, it is important for a supply chain to have the ability to quickly adapt to
disturbances. To achieve flexibility, supply chain processes must be completely visible,
and the information should be used to make decisions independently without constant
human interference. In 2008, Osvald and Stirn conducted research on a vehicle-routing
problem involving perishable products using time-dependent optimization and including
the costs of food waste in the goal function [25]. Research focused on optimizing the supply
chain from production to retail, making a significant contribution by measuring the loss
of food quality based on product flow and quantity [44]. A more recent study examined
the impact of food quality loss in urban logistics, with a particular focus on inventory
management strategies and delivery time [20,21]. Part of the approach described in the
research by Fikar and Waitz will be included in this research, such as the measurement
of food quality and inventory management strategy [21]. However, in our research, we
expand the model by including traffic flow and accident information and focusing mainly
on urban logistics rather than the whole supply chain as in Fikar’s research [20]. One of
the possible approaches to reducing the effect of disturbances on food quality and the
level of CO2 emissions is to use information sharing between all vehicles in the urban
environment, which could adapt in real time to the changing environment. Today, there
are solutions in the market that obtain traffic information mainly from mobile phones or
sensors in the city. In this publication case, we focus on vehicles collecting information
from the environment and sharing it between all vehicles in the urban environment. This
approach allows for maintaining information sharing between all vehicles in real time and
can gather more information than just traffic flow. In practice, information sharing between
vehicles is called a connected vehicle concept. Research paper amplified the benefits of
connected vehicle applications for fleet management functions of vehicle routing and
scheduling [45]. Chandra and Nguyen (2020) analyzed the benefits of connected vehicle
technology to reduce freight truck emissions, while in this publication, we focus on last-
mile logistics [46]. Yao et al. (2020) noted that much of the existing research on connected
automated vehicles focuses on improving the performance of the transportation system but
does not consider the impact on gasoline consumption and transportation emissions [47].
They found that the optimization method can reduce both gasoline consumption and
transportation emissions [48]. Heard et al. (2018) noted that the food distribution industry
is likely to be an early adopter of connected and autonomous vehicles, which will have
significant effects on the environmental and economic profiles of the food supply chain [23].
Haass et al. (2015) conducted research on an autonomous logistics approach for delivering
bananas by sea rather than by land transport, which involved measuring initial food quality
and optimizing the quality level to determine routes [49]. This research exemplifies the use
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of information sharing in urban logistics. In a similar approach, information exchange can
be used in the context of urban logistics to improve food quality levels.

Therefore, our research focuses on urban logistics and measures food quality and CO2
emission levels in a dynamic environment by considering traffic accidents that cannot be
overseen by regular data analysis and are seen as disturbances to the system. We propose
increasing information sharing between all vehicles, which can then be used to optimize
delivery routes by developing a self-organizing system. In practice, vehicle sensors can
gather more information than traffic flow and accidents. Tan et al. (2019) developed a
pollution routing algorithm for last-mile deliveries to minimize negative environmental
impacts [50]. Velázquez-Martnez et al. (2016) optimized routes based on CO2 levels taking
into account altitude, cargo weight, and truck power [49]. Therefore, the information
collected can be expanded to include various sources for improved optimization.

3. Materials and Methods

The agent-based model is described following the Overview, Design Concepts, and
Details (ODD) protocol [51]; however, the design concept is omitted because it is covered
in the introduction and literature analysis sections.

3.1. Purpose

The purpose of the agent-based model is to simulate the logistic processes of the food
industry and test the proposed system to improve food quality and decrease the level of
CO2 emissions. In this publication, the resilience of the system is related to disturbances,
which are defined as traffic accidents and cannot be supervised by regular data analysis.
Meanwhile, sustainability is the quality of food products, food waste, and CO2 emission
levels. Therefore, the idea is to provide systems adaptation possibilities, which would
provide resilience and maintain a higher level of sustainability. The secondary goal of the
model is to perform a sensitivity analysis to identify the relationship between resilience
and sustainability in different scenarios of the food industry. The food industry will be
distinguished by categories of market type and population density. The general concept of
the model is provided in Figure 1.
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3.2. Main Variables and Scale

Table 1 represents four scenarios in total, which will be used for testing information
sharing between all vehicles and no information sharing; therefore, there will be a total of 8
scenarios. The aim of the publication is to identify the relationship between food quality,
CO2 emission level, and disruptions; therefore, exact numbers are not necessarily required
to represent precise cases; it is important to maintain the relationship between them and
change only the analyzed variables, which is defined as ceteris paribus in economics. The
number of households in the simulation was set to 400. The distance between consumers
was a fixed number of grids, which were used for spatial modelling in NetLogo. The
proposition of these indicators was derived from the macro-indicator analysis described
above. The average speed of a car is 100%, which represents 60 km per hour with no traffic
flow and accidents. In the case of low population density, the speed was set to 90%, while
in the case of high population density, it was set to 75%. Then the type of market is based
on household interactions. In a small market, it is assumed that the cluster works with
80% of the market, since there are only a few producers, while in the large market type,
only 20% of the market share was maintained. The truck number in the large market type
was set to 2, while in the small market type, it was set to 4. The number of trucks was set
based on the number of households in the market; the purpose was to use as few trucks as
possible to fully meet the market demand, otherwise there would be no food waste. More
detailed argumentation of the traffic speed is provided in Section 3, “Disturbances”.

Table 1. Scenario Description.

Scenario Market Type Population Density

1 Small Low density

2 Small High density

3 Large Low density

4 Large High density

3.3. Process Overview and Scheduling

Firstly, during the initialization of the model, the road network distance was defined
based on population density, household number, and fulfilment center. In this simulation
case, the harvesting and processing stages were not considered. Distribution centers are
placed outside city limits in the suburbs. There were seven types of disturbance levels
depending on the level of traffic accidents and the relationship with speed reduction and
conjunction time. A more precise description of disturbance types is presented in the input
section. The truck scheduling process will depend on whether the information is shared
between all vehicles or not. If the information is not shared at all, it essentially represents
a simple routing approach only considering the historical speed information. However,
in the case of information sharing, traffic flow information is shared in real time between
all vehicles.

Figure 2 shows the agent-based model, which is based on the research of Hubner et al.
(2016) [52] and Fikar (2018) [20]. First, households make orders, which consist of demand
distribution and a 2 h time window for delivery between 8:00 a.m. and 6:00 p.m. based
on binominal distribution. Then this order is received at the fulfilment center. With this
information, the number of trucks is planned, and depending on the selected truck type,
route schedules for individual trucks are generated. Then the deliveries are made, and
at 7:00 p.m., the trucks return to the fulfilment center, after which the process is repeated.
During deliveries, traffic flow and accidents will be generated, which will disrupt the
logistic processes and cause deviations from the planned food quality levels. The speed
of the trucks will decrease due to traffic accidents and the influence on food quality will
be measured. In practice, companies usually allocate trucks to a particular region for
deliveries. However, in this case, the companies need more trucks than necessary. Another
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difference in practice is that smaller hubs start to be placed within city limits to minimize
the distance travelled by trucks. In this simulation, we propose placing a fulfilment center
in the suburbs to minimize the costs of land and assets.
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The main difference in agent behavior is related to the scheduling of the truck route,
which is influenced by the information level of the network. In the case of no information
sharing, only general information about the traffic flow and speed limits is used. In the
case of information sharing, the quantity of information between the vehicles increases.
In practice, information can be gathered related to various sources such as pedestrian
flow, traffic light malfunctions, road quality, and so on. In this simulation, we limited the
disturbance information to only the traffic flow, which is caused by traffic accidents and
cannot be foreseen from historical data analysis. Data analysis of traffic flow can provide
information about travelling time and speed reduction; however, additional data on traffic
accidents in the route-planning process could lead to the system being more resilient.

Figure 3 represents the theoretical and ideal routing case depending on the level of
information exchange. In the case of no information sharing, routing is based on ideal
conditions and historical speed data; however, in practice, due to disruptions in the system,
the delivery takes longer than planned. However, by allowing information to be shared
between all vehicles, the routing process can be improved, which will influence the food
quality and CO2 emission level.

This concept can be explained as the use of cyber-physical systems in the management
of the supply chain. Guo et al. (2020) conducted research focusing on the application of
cyber-physical systems for production-logistics systems [53], while in this publication, we
amplify the benefits of cyber-physical systems in last-mile logistics. Cyber-physical systems
can be defined in 3 layers. The first layer is the physical world, from which information
is gathered with sensors and transmitted to the cyber layer. In between them, there is a
network that connects the physical layer to the cyber layer. In this case, autonomous trucks
have in-built sensors, which gather information. Then, traffic accidents are estimated in the
cyber layer from historical data. Afterward, the recommended decision is sent back to the
physical layer, and the system adjusts itself.
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In this case, the flexibility approach to achieve system resilience is provided, which
can be defined as a self-learning system.
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3.4. Design Concept

The agent-based model attempts to reproduce the process of food delivery to the
end consumer. We model the main processes related to last-mile logistics and make some
assumptions about agricultural aspects. The second environment that we reproduce is the
specifics of the city related to traffic lights, other cars, traffic accidents, congestion, and
households (see Figure 4). More specifically, the model primarily has 3 agents involved
and 2 types of patches (which is 1 grid representation in Netlogo).

The first type of agent is the household (orange), which is the main actor in the
simulation. The household places the orders for food products and selects a time window
for delivery; the truck is also assigned to the household. The second type of agent is the
truck (yellow), which is responsible for the delivery of the products from the warehouse to
the home. The main variables of the truck are related to speed, the type of accident, and
other movement variables such as the wait time in the direction near traffic lights. The car
agent type (blue) is similar to the truck from the variable perspective; however, cars drive
randomly through the city to simulate traffic congestions. When multiple cars and trucks
are on the road, it is not possible for the truck to overtake the car, thus deliveries tend to
be delayed. This choice was made to limit the complexity of the model and maintain a
proper run time. The statement means that when a truck is moving on the road, if the car
ahead has been in a traffic accident (that is, speed is reduced), the truck’s speed is also
reduced, and the truck cannot overtake the car ahead. The Netlogo interface is modelled in
grids, which are called patches. In the simulation, we have 2 main types of patches with
which agents interact. The first type is the warehouse, which is responsible for loading and
unloading cargo from the truck (white). When the truck reaches the warehouse location,
the database with the inventory list is updated with the status of the delivery, waste levels,
and so on. The second type of patch is an intersection, which is responsible for simulating
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traffic accidents and traffic lights (red, green, and black). The main patch is the middle
of the interaction, which defines the behavior of the side patches to simulate traffic lights.
Traffic lights change color at fixed intervals from red to green, and when the red is shown,
trucks and cars must stop and wait for the light to change. The middle of the intersection is
responsible for the simulation of traffic accidents. Through predefined probabilities, the
intersection can change color to black, indicating that a traffic accident occurred; because
of this, the average speed of trucks and cars is reduced. Other patches are simply the
representation of the industrial location (dark brown), roads (white), and the warehouse
(larger area white). The trucks are shown in yellow and the cars in blue. Households are
represented in orange.
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The model might seem too abstract; however, to simulate multi-agent behavior and
properly understand the analyzed phenomena, the main trade-off between simple and
complex must be solved. If the model is too complex, it might be infeasible to simulate it;
however, if the model is too simple, it cannot provide insight into the analyzed phenomena.
Thus, in this case, a more abstract approach was chosen to present the initial methodological
approach for analysis. In future research, the methodological approach will be applied to an
actual case study. However, in this simulation, the proposed model provides information on
how the consideration of information sharing between vehicles can improve route planning
and allow the development of higher food quality levels and reduction of CO2 emissions.

3.5. Initialization, Inputs, and Sub-Models

The simulation of urban logistics focuses on online grocery ordering and aims to
determine the relationship between disturbances and food quality. The model uses whole-
sale data, representing different product categories represented in Table 2. However, the
generic food quality model developed by Tijksens and Polderdijk (1996) focuses only on
vegetables [54]. The data represent different product categories. A generic approach to
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products in the simulation will be used, i.e., conclusions for specific product supply chains
will not be made, but general conclusions for the food industry will be developed.

Table 2. Fitted Distribution Functions Based on empirical data.

Product Category Distribution Coefficient 1 Coefficient 2

Frozen products Pareto 8.02 10.83

Flour products Log logistics 0.53 1.03

Ice products Burr 0.84 2.11

Meat products Burr 0.89 1.81

Milk products Pareto 8.02 10.83

Pasta products Log logistics 0.56 0.99

Spices Log normal 0.56 0.99

3.6. Demand of Consumers

Data were collected from 5 food companies, comprising 7 product categories and 838
products [55]. The fitdistrplus package in R (Delignette-muller and Dutang, 2015) was
used to fit the distributions [56]. The package analyzes the Pareto, Log Log Logistics, Burr,
and Log Normal distributions to the data, and the distributions are chosen based on the
goodness of fit statistic. The chosen distributions are presented in Table 2.

During the simulation, the household randomly selects one type of category per order.
A fixed random seed is set for all scenarios to maintain validity for comparison.

3.7. Food Quality

Food quality is evaluated following the same approach as Fikar (2018) developed in
an agent-based model [18,19]. The approach uses the generic shelf-life model of Tijksens
and Polderdijk (1996) [54].

k = kre f ∗ e
Ea
R ∗(

1
Tre f
− 1

T ) (1)

k—spoilage rate in days.
T—temperature in Kelvin.
kre f —spoilage rate at reference temperature Tre f and is equal to 1.
Ea—energy activation.
R—gas constant.

KQ =
Q0 −QL

k
(2)

KQ—remaining shelf life.
Q0—current quality.
QL—quality limit.

The reference temperature Tre f is equal to 283.15 K (or 10 ◦C). The energy activation
and gas constant ratio ( Ea

R ) is set to 12,067.5, based on the average value of the table
presented by Tijskens and Polderdijk (1996) [54]. The spoilage rate (kre f ) is equal to 1. The
current quality Q0 of product is equal to 1. The QL quality limit is equal to 1 day. The
storage temperature of the products in the fulfilment center is equal to 283.15 K, while
the storage temperature during delivery is equal to 277.15 K. The remaining shelf life KQ
decreases by 1 for each day, assuming linear kinetics.

The simulation does not include the harvesting and food processing stages; therefore,
it is assumed that 40% of the food quality is assumed to be lost in the initial stage and
only 60% reach the distribution center [57]. Since the simulation uses generic products and
does not distinguish categories, we assume that the average shelf life is equal to 5 days.
Therefore, once in the distribution center, the shelf life of the product will have already
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lost 40% of its initial shelf life, therefore the reference shelf life (KQre f ) would be equal to
3 days. Therefore, if deliveries are made late and the product reaches the end consumer
when the remaining shelf life is 1 day, the product is considered food waste. In an organic
food market, the consumer desires high-quality food; therefore, this criterion is met to
provide higher consumer satisfaction. When a product is returned to the fulfilment center
due to disturbances, the next day, we ignore the products that could not be delivered on
time before being assigned as waste and select other products. Shelf life is continuously
updated, while the total amounts are calculated before running the next-day simulation.
Food quality is expressed as the remaining shelf life; food waste is assigned only when the
shelf life reaches 0. The number of food waste is the number of products that have a shelf
life of less than 0.

3.8. Disturbances

Some researchers might argue that daily disturbances do not influence the efficiency
of the system as much as force majeure. However, Calvert and Snelder (2018) indicated
that minor disturbances in traffic and transport systems can also play an important role
in reducing efficiency [8]. In this simulation, disturbances are defined as traffic accidents
and accidents that cannot be controlled by regular data analysis. Traffic flow statistics are
used from the traffic grid model, which is included in NetLogo [58]. The number of cars
running in the city is set at 60% of the market size. Then the speed of traffic is reduced by
64% between 8:00 a.m. and 9:00 a.m. and reduced by 68% between 5:00 and 6:00 p.m. [59].

Table 3 represents the levels of traffic accidents, which are derived from the UK traffic
accident statistics [60]. The higher the intensity, the higher the speed reduction. The
probabilities are derived from the analysis of UK traffic accident statistics in the period 2009
to 2014, considering only the London region. Statistics provides an evaluation of traffic
severity, the scale of which is a categorical variable from 1 to 3, where 1 is a fatal condition
and 3 is slight. In our case, the severities are related to the intensity levels of low, medium,
and high. Then the statistics provided the number of vehicles involved in the accident,
and the best evaluation interval was estimated to be more than 4 or less. Subsequently,
the accident statistics of the London region were clustered using the k-mean algorithm,
and using the elbow method, the optimal number of clusters was determined. Then the
frequency of events in every cluster group was evaluated. The quantity of conjunction
in accident statistics was determined using the DBSCAN algorithm with the haversine
metric and a radius of 100 meters. Then the influence of these speed disturbances was
evaluated by analyzing the Finnish Transport Agency analysis [61]. Lastly, the probabilities
per conjunction increased by 2 because traffic conflict increases with an increase in traffic
density [62]. The conjunction is assigned to a cluster with a specific accident probability
derived from the statistics used in Table 3.

Table 3. The level of traffic accidents.

Cluster ID Traffic
Accident

Vehicles
Involved

Probability Per
Conjunction

Reduction
to Speed

Accident
Duration (min)

0 Low Less than 4 0.000628 15% 60

1 Low Less than 4 0.000596 15% 60

2 High Less than 4 0.000008 70% 150

2 Medium Less than 4 0.000128 30% 90

3 High More than 4 0.000004 85% 180

3 Medium More than 4 0.000006 65% 120

3 Low More than 4 0.000046 30% 90

Every tick conjunction will have a probability based on the traffic accident level to
change its state to the level, and once it changes state, the next cars driving through the
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conjunction will be affected by the speed reduction for a fixed amount of time. In reality,
all traffic should stop and try to overtake congestion, but in this case, the speed will be
reduced, affecting all cars behind and causing a ripple effect across the network. This
simplification helps to reduce the complexity of the model and reduce run time.

3.9. Measurement of the Environmental Impact

We assume that in the model, 100% speed is equal to 60 km per hour, and it decreases
according to traffic and accidents. The simulation is modelled in seconds, where 1 tick is
equal to 6 s.

The modelling approach in NetLogo is a patch, where 1 patch is equal to 0.1 km. Based
on these assumptions, the emission level (g/km) can be evaluated by Formula (3) [63].

E = 0.0343 ∗ v2 − 5.1159 ∗ v + 367.86 (3)

where E is the emission level (g/km) and v is the speed (km per hour).
Then the CO2 emission level for the refrigerator unit is added to the emission level

caused by the fuel consumption of driving. Products are delivered with the temperature
controlled at 277.15 K or 4 ◦C (chilled), and the refrigerator unit consumes 1 liter of diesel
per hour, which is obtained from the publication of Navickas et al. (2015) which evaluated
fuel consumption by trailer area to fit the type of light vehicle type [64]. In this case, 1 liter
of diesel consumed for the refrigerator generates 2900 g of CO2 emissions [65]. Therefore,
the total amount of CO2 emission is defined in Formula 4. The generation of the level of
CO2 emission from warehousing is not considered in this publication because the change in
operations is performed in the stage of product distribution and not inventory management.

TEL =
K

∑
k

Ek ∗ TDk + RUEk (4)

where TEL is the total emission level, TD is the total distance travelled, RUE is the emission
level of the refrigerator unit, and K is the maximum truck quantity, k ⊆ K.

3.10. Route Scheduling Approaches

The model uses first principal rules to define the main processes of ordering and
delivery. Then the environment is reproduced as a city with traffic flow and accidents.
Figure 5 provides a brief explanation of the importance of information sharing and the
possibility of estimating traffic jams. In this part, the mathematical expression of the route
scheduling approach will be elaborated.

In the beginning, two grids representing the suburbs region and the urban region
will be generated. In the suburban region, we create a fulfilment center and connect it
with a road to the urban region. The size of the urban region is generated based on the
selected market size. Currently, there is a tendency to focus on decentralized warehouse
networks and place hubs in urban areas, but in our case, we want to show how it is possible
to improve effectiveness through information sharing by minimizing costs. Of course,
pick-up places can be allocated in the city for increased customer satisfaction. Furthermore,
we allowed the traffic to flow freely in the region without disturbances and without any
deliveries. We ran this simulation for 5 days and evaluated the average speed per patch
per time. By doing this, we obtained a graph (G) with households, fulfilment centers, and
intermediate stops with averaged times between neighboring stops at each hour. Afterward,
we reevaluated the graph to fit only households and fulfilment centers by time travelled
for every hour and obtained a set of RN nodes. Using the initial simulation results, we
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constructed the graph time travelling matrix as an approximation function set, which
represents the travel time between the graph nodes at a specific time (see Formula (5)).

RNM =

 f (RN1,1, t) . . . f (RN1,n, t)
. . . . . . . . .

f (RNn,1, t) . . . f (RNn,n, t)

 (5)

where function f
(

RNi,j, t
)

represents the travel time from the i− th node to the j− th node
at time t.
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Figure 5. Route-scheduling process of information sharing and no information sharing.

In this way, we represent the practice that is currently being used: Companies analyze
historical traffic data and plan their routes based on that. Then we receive the orders from
the households, which consist of the order size and selected 2 h delivery time window
between 8:00 a.m. and 6:00 p.m. based on multimodal distribution. We determine the truck
number considering the maximum number of customers served per truck (the maximum
number of customers is 25) and order information and obtain the travelled time. In this
case, we are not specifying capacity constraints based on weight or product quantity
but rather on customers served since the online grocery industry does not have large
weights. Then, by considering the truck quantity, delivery time window, and the obtained
graph, we formulate the final schedules (SH) for every truck. The algorithmic approach is
based on the large neighborhood search for the pickup and delivery problem with time
windows [22,24,25]. The final schedule evaluation E for the traditional truck approach is
described as the remaining shelf life of household orders, which depends on the storage
duration and the delivery duration (see Formula (6)).

E =
|HO|

∑
i=1

KQHOi (6)
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where |HO| is the amount of the set of scheduled household orders HO and KQHOi repre-
sents the value of the remaining shelf line indicator (see Formula (2)).

When the routes are planned, we evaluate the food quality, food waste, and emission
levels and save them as planned indicators. The deliveries in our situation must be
made from 8:00 a.m. to 6:00 p.m.; afterward, the trucks are returned to the fulfilment
center and the products that were not delivered on time are sent back to the fulfilment
center. The quality of the products decreases with the passage of time, while the level
of CO2 emission is evaluated only during deliveries. This assumption is made because
the inventory management strategy is always the same and the optimization approach
changes only for deliveries. During the next day, products that expire before the start of the
delivery time window are ignored during this selection, and others are selected based on
the first-expiration-first-out (FEFO) rule [21].

During this process, we also evaluate the number of trucks and their utilization, i.e., the
percentage of customers served per truck, and save the food quality, food waste, and CO2
emission levels as actual indicators, while the final actual evaluation Ea of the traditional
truck approach is expressed as

Ea =
|AHO|

∑
i=1

KQAHOi (7)

Here, |AHO| is the amount of the set of actually served household orders AHOHO.

4. Results

A constant random seed is set to maintain variability in the model, and only different
scenarios influence the output of the model. In this way, the main environmental variables
are constant, and only the analyzed variables are changed (ceteris paribus). One simulation
scenario was run for 67,500 ticks or 10 days considering that all deliveries can be made
from 8:00 a.m. until 7:00 p.m. The results of the model output are presented in Tables 4–7.

Table 4. Model output of planned and actual values obtained of the model (numbers represent day
average of the simulated period).

Scenario

No Information Sharing Information Sharing

Food Quality Food Waste Food Quality Food Waste

Planned Actual Planned Actual Planned Actual Planned Actual

1 84,413 77,474 15,257 19,047 81,417 80,163 18,158 18,975

2 86,666 79,356 14,975 19,181 79,270 77,956 18,156 18,997

3 31,046 29,544 507 1154 30,827 30,687 782 829

4 31,568 30,475 514 909 30,876 30,519 772 953

Table 5. MAPE by main model scenarios, food quality, and waste of actual and planned.

Scenario
No Information Sharing Information Sharing

Food Quality Food Waste Food Quality Food Waste

1 10.04 25.50 1.78 4.82

2 10.46 28.20 2.33 3.61

3 4.69 115.61 0.46 6.09

4 3.38 81.02 1.17 37.59
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Table 6. Model output of the planned CO2 emission level and actual values obtained by the model
(numbers represent the average simulated period).

Scenario

No Information Sharing Information Sharing

CO2 Emission Level

Planned Actual Planned Actual

1 224,142 189,524 175,261 171,425

2 224,100 189,466 173,125 167,777

3 127,403 129,370 119,003 115,219

4 128,883 129,250 118,516 115,016

Table 7. MAPE by main model scenarios and CO2 emission level of actual and planned.

Scenario
No Information Sharing Information Sharing

CO2 Emission Level CO2 Emission Level

1 15.40 2.16

2 15.41 3.09

3 1.87 3.20

4 2.65 2.95

Table 4 represents the actual and planned food quality and food waste. The planned
variables are obtained by creating a theoretical schedule based on the orders and available
trucks, while the actual is the execution of the schedule in the environment with disruptions.
It can be seen that the largest difference between the planned and actual values is in
Scenarios 1 and 2. These scenarios represent a small market size; the difference with no
information sharing is 8.96% for a low population density and 9.21% for a high population
density. Meanwhile, with information sharing, the difference is 1.56% and 1.69%. A
similar improvement can be seen when comparing food waste with Scenarios 1 and 2; the
difference is 19.90% and 21.93%, while with information sharing it is 4.31% and 4.43%.
In some scenarios, the actual food quality of noninformation sharing is better than the
actual food quality with information sharing (e.g., scenario 2). The reason behind these
results is that, essentially, when using information sharing, we are estimating possible
traffic accidents and distributions during the delivery process. It may be the case that we
expect to encounter a disruption during the process, but during the actual delivery, it might
be that no disruptions occurred.

Table 5 shows the absolute percentage error (MAPE) of information sharing and non-
information sharing. It can be seen that in the levels of the majority of cases, the food
quality and waste are lower in the case of information sharing.

Table 6 represents the average level of CO2 emissions per day. Scenarios 1 and 2 with no
information sharing showed a difference of 18.27% and 18.28% between planned and actual
information sharing, while with information sharing, the difference was 2.24% and 3.19%.

When comparing the MAPE of CO2 levels between information sharing and no in-
formation sharing, it can be seen that in the majority of cases, information sharing is
more effective.

5. Discussion

Food systems have gained more recognition in recent years due to the trend of con-
sumers requiring more local and healthier products [66]. Most research conducted on food
systems focused on horizontal collaboration and attempts to integrate agents involved in
the decision-making process from farms to government institutions [36,67]. Mulcahy (2017)
conducted research regarding the analysis of food systems, indicating several important
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questions, which are addressed in this paper. The first question is related to methods to
increase collaboration between small and large food companies to provide more sustain-
able and local production. The second question amplifies the fact that there is a limited
number of practices with which to implement food systems in large population centers
(urban areas) [68]. Our research fills the gap from this perspective. On the other hand,
we focus on distribution to end-consumers. One of the key practices to increase food
access in urban regions and maintain higher food quality levels is to shorten the supply
chain. Aubry and Kebir (2013) indicated the importance of shortening the food supply
chain. There is a tendency to promote the e-commerce channel for the food industry to
decrease the length of the system even more [35]. Collison et al. (2019) analyzed fresh
food product delivery and emphasized the need to shorten the supply chain to reduce
food waste [69]. On the other hand, we provide a collaborative approach, which involves
information sharing and the application of cyber-physical systems in the management of
the food supply chain. Ambulkar (2015) analyzed supply chain disturbances from the
perspective of a strategic focus on innovations and indicated that although they may be
committed to innovation, firms may differ in the degree to which they actively support
the innovation efforts taking place across the network on its behalf [70]. If suppliers are
not well integrated or if there are alignment issues with the firm’s strategy, innovation
focus can lead to less coordinated actions within the supplier network and, thus, greater
disturbances in fulfilling market demand.”

The flexibility approach aimed to optimize the transportation planning process to
improve food quality in a dynamic environment. Osvald and Stirn (2008) conducted re-
search on a vehicle routing problem involving perishable products using time-dependent
optimization and incorporating the cost of food waste into the goal function [25]. Rong et al.
(2011) focused on optimizing the supply chain from production to retail, making a signif-
icant contribution through the measurement of food quality loss based on the flow and
quantity [45]. A more recent study analyzed the impact of food quality loss in urban
logistics, with a particular focus on inventory management strategies and delivery time
mboxciteB20-mathematics-2137560,B21-mathematics-2137560. Haass et al. (2015) con-
ducted research on an approach to delivering bananas by sea rather than by land transport,
which involved measuring the initial quality of the food and optimizing the quality level
to determine the routes [50]. However, no simulation was found that would integrate
transportation into the food industry considering traffic jams and accidents [8,71]. Due to
this reason, the agent-based model of flexibility provides several contributions. Several
limitations of the research can be stated. Firstly, we did not consider different inventory
management policies and focused solely on the scheduling process. The limitation of
the scheduling process is that it only considers traffic flow and accidents; however, a
wider range of information from the environment can be gathered, which would allow
for optimizing the routes more effectively. Such integration of information sharing with
reinforcement learning can allow adaptation possibilities for members of the logistic cluster
members. Another limitation of the scheduling process is that the schedules were generated
at the beginning of the day and were not changed during actual delivery, which should be
implemented in real-life applications, but at the simulation level, due to model complexity,
it would be difficult to implement and validate as the computational resources may be
too large to perform a large-scale simulation. The third limitation of the simulation is
that validation with actual deliveries is not possible, which is commonly used in discrete
event simulations. However, the processes and input data of the simulation are grounded.
Additionally, the model was validated by applying ‘Animation’ [72], where all agent be-
havior may be tracked graphically during the simulation; therefore, this limitation does not
reduce the insight obtained from the simulation. The fourth limitation is that autonomous
vehicles (or connected vehicles) can, by themselves, lead to a reduction of the negative
environmental impact from a technological view. However, our research focus was mainly
on information sharing and route scheduling rather than technological aspects. If both of
these aspects were combined, a bigger reduction in CO2 emission could be achieved. The
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reader is directed to the Autonomous Vehicles overview provided by Wiseman (2020) for
details [73].

6. Conclusions

In this publication, we proposed a system to increase food quality and decrease the
level of CO2 emission during the last-mile delivery of food products. We identify that daily
disturbances influence food quality and CO2 emission levels; therefore, it is important
to maintain system resilience in order to reduce the negative effect of disturbances on
sustainability. The system focuses on applying cyber-physical systems in the food industry.
In this case, vehicles with sensors are represented in the physical layer of the cyber-physical
systems. In the cyber layer, routing simulations are conducted to decide the most optimal
routes. Subsequently, the decisions are executed by the vehicles, thus creating a self-
learning system. The described approach explains how, by applying resilience approaches,
flexibility and sustainability of the food industry can be achieved, i.e., increased food
quality and decreased CO2 emission levels. It is important to note that the proposed system
focuses on increasing information sharing without increasing the number of trucks or
warehouses. The possibility of increasing system effectiveness with the same number of
assets would allow companies to achieve a competitive advantage. To fully utilize the
system, it is recommended to form a logistic cluster between the involved members to allow
better use of trucks and gathered information. In practice, connected vehicle technology
should be applied and integrated with the infrastructure to encourage the variety of data
sources even further, which is a promising research area for the future. The present study
introduces a route scheduling approach that can be implemented in a range of autonomous
vehicles, with a particular emphasis on trucks in the simulation case. This approach may
be particularly applicable to densely populated urban areas. Prior research by Figliozzi
(2020) highlighted the potential for the use of drones, autonomous delivery robots, and
autonomous road autonomous delivery robots [74]. It is suggested that the proposed
approach to information sharing and enhanced route scheduling could be adapted to other
types of autonomous vehicles, which represents a promising direction for future research.

The main theoretical novelty of the publication is the evidence provided that traffic
accidents and congestions (i.e., resilience) do influence sustainability (i.e., food quality and
CO2 emission level). Some researchers argue that minor disruptions do not influence logis-
tics processes; however, the identified relationship between resilience and sustainability
provides the grounding that minor disruptions are important in food delivery processes.
Thus, the concept of supply chain resilience, which primarily focuses only on macro-level
analysis, can be expanded to focus on micro-level disruptions as well.

In future research, the methodological approach developed will be applied to a precise
case by considering the actual road infrastructure, warehouse and supermarket locations,
and online purchasing behavior.
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