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Abstract

A problem of wide-band radio spectrum analysis in real time was solved and
presented in the dissertation. The goal of the work was to develop a spec-
trum sensing method for primary user emission detection in radio spectrum
by investigating new signal feature extraction and intelligent decision making
techniques. A solution of this problem is important for application in cognitive
radio systems, where radio spectrum is analyzed in real time.

In thesis there are reviewed currently suggested spectrum analysis meth-
ods, which are used for cognitive radio. The main purpose of these methods
is to optimize spectrum description feature estimation in real-time systems and
to select suitable classification threshold. For signal spectrum description ana-
lyzed methods used signal energy estimation, analyzed energy statistical differ-
ence in time and frequency. In addition, the review has shown that the wavelet
transform can be used for signal pre-processing in spectrum sensors. For clas-
sification threshold selection in literature most common methods are based on
statistical noise estimate and energy statistical change analysis. However, there
are no suggested efficient methods, which let classification threshold to change
adaptively, when RF environment changes.

It were suggested signal features estimation modifications, which let to
increase the efficiency of algorithm implementation in embedded system, by
decreasing the amount of required calculations and preserving the accuracy of
spectrum analysis algorithms.

For primary signal processing it is suggested to use wavelet transform
based features extraction, which are used for spectrum sensors and lets to in-
crease accuracy of noisy signal detection. All primary user signal emissions
were detected with lower than 1% false alarm ratio. In dissertation, there are
suggested artificial neural network based methods, which let adaptively select
classification threshold for the spectrum sensors. During experimental tests,
there was achieved full signals emissions detection with false alarm ratio lower
than 1%.

It was suggested self organizing map structure modification, which in-
creases network self-training speed up to 32 times. This self-training speed
is achieved due to additional inner weights, which are added in to self organiz-
ing map structure. In self-training stage network structure changes especially
fast and when topology, which is suited for given task, is reached, in further
self-training iterations it can be disordered. In order to avoid this over-training,
self-training process monitoring algorithms must be used. There were sug-
gested original methods for self-training process control, which let to avoid
network over-training and decrease self-training iteration quantity.
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Reziumė

Disertacijoje sprendžiama plačios juostos radijo spektro analizės realiuoju laiku
problema. Analizės metu siekiama spektre nustatyti sritis (juostas, kanalus)
kuriuose nėra jokio pirminio vartotojo (angl. Primary User) signalo ir nuolat
stebėti, ar analizuojamoje srityje neatsiranda nežinomas pirminio vartotojo sig-
nalas. Tokio pobūdžio problemos sprendžiamos kognityvinio radijo uždavini-
uose, kai radijo dažnių ruožas analizuojamas realiuoju laiku.

Disertacijoje apžvelgti šiuo metu siūlomi signalo spektro analizės me-
todai, skirti kognityviniam radijui. Šių metodų pagrindiniai iššūkiai – op-
timizuoti signalo spektro apibūdinimui naudojamų požymių skaičiavimą re-
aliojo laiko sistemose ir parinkti tinkamą signalų klasifikatorius slenkstį. Sig-
nalų spektrui apibūdinti naudojamas signalo energijos skaičiavimas, analizuo-
jamos statistinės energijos pokyčio laike savybės. Taip pat gali būti taiko-
mas ir vilnelių transformacija grįstas signalų pirminis apdorojimas. Klasi-
fikatoriaus slenksčiui parinkti literatūroje sutinkami metodai, grįsti statistiniais
triukšmo įverčiais, energijos pokyčio analize, tačiau nėra pasiūlytų efektyvių
metodų, leidžiančių klasifikatoriaus slenksčio reikšmes keisti adaptyviai, pak-
itus triukšmo lygiui analizuojamoje aplinkoje.

Buvo pasiūlytos signalų požymių skaičiavimo patobulinimai, leidžiančios
padidinti įgyvendinimo įterptinėje sistemoje efektyvumą, sumažinant reikiamų
atlikti skaičiavimų apimtis, ir išlaikyti šiuos požymius naudojančio spektro
analizės algoritmo efektyvumą.

Pirminiam signalų apdorojimui pasiūlyti nauji vilnelių transformacija grįsti
požymiai, skirti taikyti spektro jutikliuose ir leidžiantys padidinti signalų at-
pažinimo triukšme tikslumą. Naudojantis šiais požymiais pirminio vartotojo
signalo visos emisijos aptiktos su mažesniu nei 1% klaidos santykiu. Pasiūlyti
saviorganizuojančių neuronų (Kohonen) tinklų mokymusi grįsti metodai, lei-
džiantys spektro jutiklyje adaptyviai parinkti klasifikatoriaus slenkstį. Tinklų
eksperimentuose pirminio vartotojo visos emisijos aptiktos su mažesniu nei
1% klaidos santykiu.

Pasiūlyta saviorganizuojančio neuronų tinklo struktūros patobulinimai, lei-
džianti paspartinti tinklo mokymąsi iki 32 kartų. Tokia tinklo mokymosi sparta
pasiekta dėl papildomų vidinių ryšių, kuriais buvo papildyta Kohonen tinklo
struktūra. Mokymosi metu tinklo struktūra kinta ypač sparčiai ir pasiekusi
topologiją, tinkamą iškeltam uždaviniui spręsti, tolesnio mokymosi metu šią
topologiją gali išardyti. Siekiant išvengti tokio Kohonen tinklo persimokymo,
reikia taikyti mokymo eigos stebėjimo algoritmus. Pasiūlyti originalūs me-
todai saviorganizuojančio neuronų tinklo mokymui sustabdyti, leidžiantys iš-
vengti tinklo persimokymo ir sumažinti mokymui skirtų iteracijų skaičių.
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Notations

Symbols

α log-sigmoid activation function slope coefficient;
bij ij neuron bias;
CW
f spectral coherence coefficient estimated in W frequency window;

D variance;
Dk modified variance, when k: N – variance without FIFO, M – variance

without square operation;
D desired network output;
bij ij neuron bias;
dij distance between ij neuron weights and and input;
d⊥ distance between winner neuron weights and input;
∆init initial SOM self-training change;
E mean square error;
e(n) network instant output error;
η(n) self-training ration in n iteration, or neuron weight adjustment factor;
η0 initial self-training ratio;
ηnb neighboring neuron self-training ratio;
f radio spectrum component frequency;
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viii NOTATIONS

FC radio spectrum center frequency;
Gn radio noise component;
γ(n) neighboring Gaussian function slope parameter;
Hk wavelet transform high-pass filter coefficients, when k: Haar, Deb –

Daubechies and Sym – Symlet transforms;
hkH wavelet transform high-pass filter output, when k: Haar, Deb – Dau-

bechies and Sym – Symlet transforms;
hkL wavelet transform low-pass filter output, when k: Haar, Deb – Dau-

bechies and Sym – Symlet transforms;
κ self-training depth;
L quantity of network layers;
Lk wavelet transform Low-pass filter coefficients, when k: Haar, Deb –

Daubechies and Sym – Symlet transforms;
N quantity of samples;
Nwind endpoint estimation window;
Nij ij neuron;
N⊥ winner neuron identity;
n sample (reference) index;
nb neighborhood function;
Y neuron network output;
i, j, h, l input, neuron weight, network layer and output index;
ωij ij neuron weight;

s
(l)
ij ij neuron output before activation function;

s̃
(l)
ij ij neuron in l layer output after activation function;

Φ
(l)
k (�) neuron activation function in l layer, when k: S – Heaviside (thresh-

old) or LS – Log-sigmoid;
N⊥ winner neuron identity;
φk spectrum features extraction, when k: A – average, D – variance,

DN – variance without FIFO, DM – variance without square, σ –
std. deviation, σN – std. deviation without FIFO, H – Haar, Deb
– Daubechies, Deb3 – Daubechies without LL branch, S – Symlet,
AD – average and variance, ADN average and variance without FIFO
extractors;



NOTATIONS ix

SW
f discrete spectral correlation coefficient estimated in W frequency

window;

s
(l)
ij ij neuron output before activation function;

s̃
(l)
ij ij neuron in l layer output after activation function;
σ standard deviation;
σN standard deviation without FIFO buffer;
T time period;
t sample (reference) index in time;
τ self-training time constant;
θend SOM self-training suspension parameter;
un primary user signal component;
W radio spectrum frequency window, or cycle frequency;
xn radio signal component.

Operators and Functions

� average;
F( � ) discrete Fourier transform;
∂( � ) partial derivative;
|| � || Euclidean distance;
min( � ) minimum;
�
⊤, �⊥ maximum and minimum.

Abbreviations

ADC Analog Digital Converter;
ANN Artificial Neural Network;
AWGN Additive White Gaussian Noise;
CFE Cyclostationary Features Extraction;
DSCF Discrete Spectral Correlation Function;
DSP Digital Signal Processing;
FFT Fast Fourier Transform;
FIFO First in First out;
FPGA Field-Programmable Gate Array;
FSM Finite-Stat Machine;
RAM Random Access Memories;
RF Radio Frequency;
ROC Receiver operating characteristic;



x NOTATIONS

SCC Spectral Coherence Coefficient;
SDR Software Defined Radio;
SNR Signal to Noise Ratio;
SOM Self Organizing Maps;
THD Decision threshold.
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Introduction

The Investigated Problem

The problem of low SNR∼ 0 dB signal detection in the wide frequency band,
when just few samples for features estimation are used, is addressed in this
dissertation (Penna et al. 2009; Rasheed et al. 2010; Srinu et al. 2011; Zhuan
et al. 2008). The exclusive attention is gained on the automatic detection of
the signal without any prior knowledge about the content of the signal, neither
the type of signal modulation nor the carrier frequency of the signal (Joshi et

al. 2011a; Nair et al. 2010). This kind of problems usually appear in cognitive
radio applications. In order to add a secondary user transmission to the radio
channel already occupied by another user, the spectrum sensor should be able
to detect primary user signal in order to avoid the collision (Stankevičius et

al. 2015). Therefore spectrum sensing systems must ensure full or near to full
primary user detection (Nastase et al. 2014).

Currently different spectrum analysis methods are investigated in order
to increase the efficiency of the primary user signal (emission) detection in
real-time (Chantaraskul, Moessner 2010; Kyungtae et al. 2010; Young, Bostian
2013). Especially problematic is the detection of the primary user signals with
low energy level, comparing to channel noise level, when noise distribution
is not entirely white Gaussian (Bagchi 2014; Wang, Salous 2011). Therefore
sensor must continuously or periodically adjust to changing RF environment.

1



2 INTRODUCTION

Importance of the Thesis

Currently there is very little RF spectrum space (up to 3 GHz), which is not
appointed for service providers (Communications Regulatory Authority of the
Republic of Lithuania 2015, Electronic Communications Committee within the
European Conference of Postal and Telecommunications Administrations 2015).
Occupancy in the very-high and ultra-high frequency bands is 10–15% even in
densely populated territories. It means that more than 85% of RF spectrum
is not used (Taher et al. 2011).However occupancy in some unlicensed radio
spectrum bands like 2.4 GHz are high (Statkus, Paulikas 2012).

A number of papers in recent years focus on the effective utilization of the
unused radio spectrum even if it is assigned for primary user (De Vito 2012;
Jayavalan et al. 2014; Mehdawi et al. 2013; Seshukumar et al. 2013; Sun et

al. 2013; Sunday et al. 2015; Yucek, Arslan 2009). A spectrum sensor added
to a physical layer of communication systems in cognitive radio solution is
responsible on the detection of primary user in noisy environment. Spectrum
access should be provided for secondary users only if primary user is absent.

The sensitivity of the sensor, which detects the gap in the spectrum, di-
rectly depends on the algorithm used in cognitive radio solution. In addition,
the influence of continuously changing environment should be taken into ac-
count by the sensor. Therefore, the spectrum sensor should have a possibility
to adapt to current environment state.

The Object of Research

The object investigated in thesis is a spectrum sensor, able to detect all primary
users signals emissions in 25 MHz spectrum band-with, minimizing the false
alarm rate. The primary user emission can be populated anywhere up to 3 GHz
in RF spectrum:

• in analyzed signal spectrum there may be noise component with a pri-
mary user signal or noise component only;

• there is no prior knowledge about what kind of primary user signal
may be present in the analyzed spectrum band together with noise.

The Goal of the Thesis

The goal of the thesis is to develop a spectrum sensing method for primary
user emission detection in radio spectrum by investigating new signal feature
extraction and intelligent decision making techniques.
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The Tasks of the Thesis

After the review of the current researches results, two hypothesis were formu-
lated:

1. Wavelet transform based signal spectrogram feature extraction can in-
crease the primary user emission detection rate in comparing with sig-
nal energy based features extractors.

2. Self-adaptation of the spectrum sensor to continuously changing radio
environment can be achieved by the application of intelligent methods,
modifying the self-training algorithms for implementation in embed-
ded system.

In order to confirm both hypothesis, the following tasks were formulated
in the dissertation:

1. Investigate the application of wavelet transform to increase the perfor-
mance of spectrum sensor.

2. Investigation of the neural network with binary activation functions
suitability for spectrum sensing applications.

3. Development of the spectrum sensing method based on a self-organi-
zing map and investigate its modifications to decrease the duration of
self-training preserving the primary user emission detection perfor-
mance.

Research Methodology

There are two signal processing stages investigated in dissertation: signal fea-
ture extraction and signal detection by classification. The extraction of the sig-
nal features was performed by the use of methods for digital signal processing
in time domain and methods for digital signal processing in frequency domain.

The methods for signal detection by classification were investigated by the
use of artificial neural networks with supervised training algorithms and a self-
organizing map with un-supervised self-training algorithm.

The offline experimental research were performed using MATLAB™, Py-
thon-based software tools. The FPGA based implementations using VHDL
were performed for experimental investigation in real RF environment.

Scientific Novelty

The scientific novelty of this dissertation is following:
1. The original modifications of the signal feature extraction algorithms

for efficient implementation with low latency in FPGA based systems,
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preserving the primary user signal detection rate of the radio spectrum
sensor.

2. Proposed spectrum features extraction technique based on wavelet trans-
form decreases the false alarm ratio 2–9 times comparing to energy
average, standard deviation or variance based spectrum sensors.

3. Proposed decision making technique, based on a self-organizing map
is able adapt to radio spectrum with signals having different spectral
features and preserve the false alarm ratio of 1%, estimated by receiver
operating characteristics.

4. An original modification of the self-organizing map requires 32 times
less self-training interations comparing to number of iterations recom-
mended in literature according to lattice size.

5. Proposed original self-organizing map self-training endpoint selection
technique reduces the numbet of iterations by 2.6–44.6% comparing
to cluster quality estimation based technique.

Practical Significance of Achieved Results

In thesis are suggested new methods, which are adjust for implementation in
embedded systems. These methods are implemented in MATLAB™ environ-
ment, and them are implemented in FPGA. Real time experimental researches
helped to determinate and compare RF spectrum occupancy in (two different
RF bands: licensed unlicensed) various areas: city, countryside and village.
From experimental results was determined, that 954 MHz RF band is 38–74%
occupied by primary user signals, although 433 MHz band channel capacity is
used just by 8.6 · 10−5–6.275 · 10−3%.

The Defended Statements

1. The application of the Daubechies wavelet transform in blind spectrum
sensing application may decrease the false alarm rate below 1%, pre-
serving full detection of primary user signals with SNR above 0.8 dB.

2. Self-adaptation of the spectrum sensor to continuously changing ra-
dio environment can be achieved by the application of self-organizing
map, ensuring the false alarm rate below 1% and preserving full de-
tection of primary user signals with SNR above 0.8 dB.

3. The modification of the self-organizing map topology during self-trai-
ning phase increases the efficiency of the sensor implementation in



INTRODUCTION 5

FPGA based embedded systems and decreases the number of self-
training iterations up to 32 times comparing to number of iterations
recommended in literature according to lattice size.

Approval of the Results

The main results of the doctoral dissertation were published in 10 scientific
papers: 1 paper in foreign journal indexed in Thomson ISI Web of Science
(Stasionis, Serackis 2015a); 3 papers in local journal indexed in Thomson ISI
Web of Science (Serackis et al. 2014; Stasionis, Serackis 2011, 2014); 2 papers
in journal indexed in other databases, including ICONDA and IndexCoperni-
cus (Sledevic, Stasionis 2013; Stasionis, Sledevic 2013); 4 papers in conference
proceedings (Serackis, Stasionis 2014; Stasionis, Serackis 2012, 2013, 2015b).
The main results of the thesis were reported at the following scientific confer-
ences:

• International Conference Electronics, 2011, 2013, 2014, Palanga, Lit-
huania;

• Young Scientist Conference Science – Future of Lithuania, 2012–2015,
Vilnius, Lithuania;

• 22nd International Conference Electromagnetic Disturbances, 2012,
Vilnius, Lithuania;

• 15th International Conference EUROCON, 2013, Zagreb, Croatia;

• 22nd International Conference Nonlinear Dynamics of Electronic Sys-

tems (NDES), 2014, Albena, Bulgaria;

• 16th International Conference EUROCON, 2015, Salamanca, Spain.

Structure of the Dissertation

Thesis consist of: introduction, three chapters and general conclusions. In ad-
dition in thesis are: used notations and abbreviations lists also material index.
Volume of thesis is 165 pages, in which are: 45 formulas, 123 figures and
30 tables, also in thesis 157 references are used.
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1
Literature Survey on Spectrum

Sensing Methods

In this section the overview of main current research directions in dissertation
theme are presented. The purpose of spectrum sensor, analyzed in this disser-
tation, is to find free windows in radio environment (in time and frequency),
which are not used by primary users.

1.1. Classification of Primary User Signal
Detectors

In literature, the spectrum sensing detectors usually are divided in to two groups
(Perera, Herath 2011; Seshukumar et al. 2013; Yucek, Arslan 2009):

• Spectrum sensing without prior knowledge. This type of detectors
does not require prior information about primary user signal. Detectors
are adapted to RF channel.

• Spectrum sensing with prior knowledge. For this type of detectors
an additional information about primary user signals (e.g., modulation
type, signal shape, transceiver characteristics and etc.) is needed.

To detectors without prior knowledge are assigned: energy detectors and
detectors based on Wavelet transform (Fig. 1.1). Energy detectors are least
complex spectrum sensing algorithms (Axell et al. 2012; Sun et al. 2013).
Energy calculation can be based on estimation of spectrum average or devia-
tion/variance. Higher processing complexity, comparing to energy estimation,

7
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has detectors based on Wavelet transform (De Vito 2012). However, using
wavelet transform more signal features can be extracted from RF spectrum.

P
re

ci
si

on
of

re
su

lt
s

Complexity of algorithms

E
ne

rg
y

de
te

ct
or

s

D
et

ec
t.

ba
se

d
on

W
av

el
et

tr
an

sf
.

S
ig

na
ls

ha
pe

de
te

ct
or

s

C
yc

lo
st

at
io

na
ry

fe
at

ur
es

de
te

ct
or

s

T
ra

ns
m

it
te

r
id

en
ti

fi
ca

ti
on

de
te

ct
or

s

M
at

ch
ed

fi
lt

er
de

te
ct

or

Fig. 1.1. Primary user signal detectors classification by complexity and
accuracy

Other detector’s group are the detectors with prior knowledge about pri-
mary user signal. To this group there are assigned: signal shape recognition
based detectors, cyclostationary feature extraction based detectors, transmitter
identification based detectors and detectors based on application of matched
filters (Yucek, Arslan 2009). In most cases, the detector’s with prior knowl-
edge algorithms has higher complexity than those, used in detectors without
prior knowledge (Fig. 1.1). However, these detectors has greater accuracy po-
tential (Moosavi, Larsson 2014; Sun et al. 2013). For the signal shape and
transmitter recognition algorithms there are needed huge data bases in which
the signal references or transmitter parameters are stored (Perera, Herath 2011).
Detectors based on application of matched filters have big collections of dif-
ferent filter sets, which need to match various primary user signals. The least
amount of prior knowledge is used in detectors based on estimation of signal
cyclostationary features (Sabat et al. 2010). These detectors needs to extract
only the values of primary user signal carrier frequency periodicity.

Main disadvantage of the detectors, which needs prior knowledge is the
lack of configuration flexibility and self-configuration capabilities. They are
adapted for particular signals or signal types. Therefore, in the wide-band
RF spectrum sensing applications they should have large data sets available to
perform efficiently.
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The cyclostationary feature estimation based detectors in comparison with
other detectors, that use prior knowledge, has significantly lower amount of
information about the primary user signal. Therefore, in this thesis the detec-
tors based on extraction of cyclostationary features should be compared with
energy detectors and Wavelet transform based detectors (in Fig. 1.1 marked
gray). In order to compensate the lack of prior knowledge about the radio sig-
nal (e.g. no signal data base is available), the possibility to apply intelligent
methods, such as neural networks and self-organizing maps, in combination
with spectrum detectors should be investigated in dissertation.

1.2. Spectrum Sensors based on the Signal
Energy Estimation

Detectors based on energy estimation consist of three parts (Fig. 1.2):
• Receiver with a band-pass filter. This is a part of the receiver, where

there is determined, in which radio spectrum areas detector will oper-
ate. The band-pass filter also defines the width of the analyzed spec-
trum band.

• Energy estimator (marked as |x|2 in Fig. 1.2). In this part the features
(signal parameters) are estimated for selected spectrum sub-band (Bin
et al. 2008; Imani et al. 2011).

• Decision maker (marked as THD in Fig. 1.2). This part is used to
make a hypothesis about the spectrum occupancy or primary user pres-
ence. The decision is made by analyzing estimated energy parameters
(Rasheed et al. 2010; Srinu, Sabat 2010).

Receiver

I baseband

Q baseband

Σ |x|2 THD 1
0

Fig. 1.2. Energy estimation from radio samples structure

The configuration of all spectrum sensor parts can make the influence to
detector’s performance. Therefore, all these parts must be discussed.

1.2.1. Signal Energy based Features Extraction

Usually the energy detectors are based on the estimation of one of three pa-
rameters or all of them (Elramly et al. 2011; Sun et al. 2015):
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• average of the power spectrum;
• variance;
• standard deviation.

The parameters are estimated for currently analyzed sub-band. According
to the estimated parameter values and their changes in time, the detection of
primary user signal is performed in the later stages of the detector. Each radio
sample xn consist of primary user signal component un (if it is present) and
noise Gn component (Arshad, Moessner 2010; Chen et al. 2011; Elramly et al.

2011; Yi et al. 2009):
xn = un +Gn. (1.1)

In most cases, the radio signal samples can be composed only from noise
components xn = Gn. If the statistics of radio signal noise is same or sim-
ilar to additive white Gaussian noise (AWGN), then the signal feature based
on calculation of average of signal spectrum components could be effectively
applied in detector. Because the average of AWGN is close to zero (Chen et al.

2011), the average value of the spectrum components for the analyzed sub-band
is estimated according to equation:

xn =
1

N

N−1
∑

n=0

x2n, (1.2)

where n is the sample number, N total number of samples.
Average of the signal spectrum components gives worse detection results

when the signal has a noise of different type, comparing to AWGN (Zhuan et

al. 2008). Therefore, the detector based on this feature can be inefficient in
real radio environments, where the statistics of noise can vary in time and even
change it’s type to impulsive (Sanchez et al. 2007). To overcome this limita-
tion, additional parameters must be calculated for sub-band, such as variance
and standard deviation (Bin et al. 2008; Zhuan et al. 2008). The analysis of
these two estimated features can highlight changes in sub-band and also indi-
cate the presence of primary user signal.

In order to estimate the variance D and standard deviation σ, the average
value of signal spectrum components should be calculated in advance. There-
fore, D or σ can be used in combination with xn:

D =
1

N

N−1
∑

n=0

(xn − xn)
2. (1.3)

Main difference between D and σ used as features from implementation
perspective is the square root operation:
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σ =

√

√

√

√

1

N

N−1
∑

n=0

(xn − xn)2. (1.4)

In order to estimate σ, an additional operation is needed, which prolongs
the calculation of this feature. Therefore, the application of σ has significant
disadvantage comparing to application of D. In addition, D and σ estimates
can be calculated only after average xn is already calculated. Therefore, there
could be investigated new modifications of σ orD calculation implementations
in order to estimated these, or similar parameters in parallel with average xn
estimation.

1.2.2. Decision Threshold Selection Methods

After the calculation of signal features for energy detector, the decision about
RF band occupancy must be made (Penna et al. 2009; Yixian et al. 2010).
However, in most cases it is hard to decide which decision threshold THD
should be selected for various RF spectrum environments (Bin et al. 2008;
Larsson, Skoglund 2008). There are several models proposed to solve this
problem and also some simulations were made to prove the proposed solution
(Joshi et al. 2011b; Srinu, Sabat 2010; Yonghong et al. 2008; Zhang et al.

2011). However, only few experimental researches were performed taking the
real measured signal data (Cabric et al. 2006; Kyungtae et al. 2010).

In order to select proper THD value, first there should be evaluated: the
changes of the RF noise (Bin et al. 2008), the shadow fading effects (Rasheed
et al. 2010) and the changes of location (Arshad, Moessner 2010). In order to
overcome these factors, a cooperative sensing approach (Chen et al. 2011; Yi
et al. 2009) and adaptive threshold selection approach were suggested (Imani
et al. 2011; Joshi et al. 2011b). However, the performance of these methods
was not tested in real RF environments and the efficiency of these methods
application in changing RF spectrum is questionable.

One of important issues that should be taken into account when the THD
selection algorithm is considered, is the complexity of algorithm implemen-
tation. Cooperative sensors systems are too complex and consists of many
receivers (Yi et al. 2009). The implementation of these systems requires more
computational resources and are less energy efficient. Therefore, further devel-
opment of the spectrum sensor by adding additional signal analysis algorithms
would be limited. In addition, the optimal THD selection should be oriented
in to improving the accuracy and complexity of single node sensors.
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1.2.3. Spectrum Sensors for Single Band Analysis

Quadrature parameters can be calculated directly after band-pass filter (Ar-
shad, Moessner 2010; Bin et al. 2008; Imani et al. 2011). These parameters
will be valid just in band-pass filter frequency range (Fig. 1.3). This approach
is most common in currently most popular systems like wireless access points,
bluetooth, zigbee and etc. Main disadvantages of this approach are frequency
operation range and channel width accuracy inflexibility, because they are lim-
ited by filter parameters. In order to change spectrum sensing system operating
bandwidth, a band-pass filter parameters should be changed. Therefore, in this
approach the energy estimation should be performed in the fixed bandwidth.

Receiver

Ibaseband

Qbaseband

Σ or |x|2 THD 1
0

Fig. 1.3. Narrow-band energy detector structure

Bandwidth inflexibility can be overcome by using band-pass filter bank
with different filter parameters (Fig. 1.3)(Farhang-Boroujeny 2008). System
can switch between filters and work in different bandwidths. However, still
with this filter bank energy estimation can be made just for one channel. To
have more than one channel more additional filters are needed. Therefore,
good bandwidth and channel selection flexibility can be achieved with large
filter banks. However, large filter banks would require additional hardware and
memory resources and the implementation of the filter bank based solution
would be inefficient. In addition, such spectrum sensing systems have lower
flexibility, because only small filter banks are used in practical applications.

1.2.4. Spectrum Sensors for Analysis of Multiple Bands

More commonly detectors calculations are implemented after Fourier trans-
form (Fig. 1.4). Especially this way of implementation is efficient on FPGA
and systems on a chip (Srinu et al. 2011; Wen-Bin et al. 2011). The selection of
these chips gives a possibility to implement large FFT. After selection of the
wide band-pass filter, a large FFT can help to achieve accurate RF spectrum,
which can be divided in sub-channels for further analysis. Therefore, width and
accuracy of sub-channels are determined by the size of FFT. For example, a
50 MHz band-width with 16 384 points FFT can be divided in to sub-channels
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of approximately 20 kHz width. In comparison, in order to achieve the same
sub-channel accuracy, a filter bank approach would require 250 filters.
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Fig. 1.4. Wide-band energy detector structure

FFT coefficients F(xn) are calculated from radio signal xn, which is fil-
tered with wide band-pass filter (Fig. 1.4):

Ff (xn) =
N−1
∑

n=0

xne
−i2πfn/N , (1.5)

where N is the number of FFT elements, n is the number of radio signal
sample. The radio spectrum coefficients from (1.5) are grouped in sub-bands,
which size can be chosen from few kHz to MHz. Accuracy and size of sub-
band is limited by FFT size. Therefore, this approach is more flexible than
parameter calculation straight after band-pass filter.

1.3. Spectrum Sensors based on the Wavelet
Transform

Discrete wavelet transform is a linear operation, which transforms data vec-
tor into two different frequency components (Fig. 1.5). Lower and higher fre-
quency components of the signal are separated by two filters. Filter impulse re-
sponse characteristics are determined by wavelets. Each wavelet transform has
its unique filter coefficients. However, they properties may vary. Extensively
wavelet transforms are used for image processing (Janušauskas et al. 2005;
Valantinas et al. 2013; Zhao et al. 2014a) signal classification (Kannan, Ravi
2012), signal generation (Čitavičius, Jonavičius 2006) and also for spectrum
sensing (Youn et al. 2007). Three different wavelet transforms are discussed in
this section:

• Haar;
• Daubechies;
• Symlet.
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Fig. 1.5. One stage wavelet transform structure

where 2 ↓ marks the downsampling by two times, LPF is a low-pass filter and
HPF is a high-pass filter.

1.3.1. Wavelet Transform based Feature Extraction

Wavelet transform can extract more features from radio environment than en-
ergy estimation (Ariananda et al. 2009; Tian, Giannakis 2006). The time-fre-
quency analysis of radio environment can be performed using this transform.
The wavelet transform can be calculated directly after the application of the
band-pass filter (Fig. 1.6) (Chu et al. 2014; Zhao et al. 2014b), or after the FFT
is performed.
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Fig. 1.6. Wavelet transform of I/Q data after band-pass filter

The structure of the spectrum sensor with wavelet transform based feature
extraction, performed after application of band-pass filter, is similar to energy
estimator based on a filter bank (Fig. 1.3). In order to implement wavelet trans-
form based spectrum sensor, a large filter bank is needed (Adoum et al. 2010).
The main disadvantage of this approach is the same as in similar energy estima-
tion based solution. In order to obtain good sub-channel resolution (few kHz)
in the wide-band, large filters banks should be used. The number of these fil-
ters in wavelet transform based spectrum sensor can be lowered by the use of
the multiresolution feature (Jaspreet, Rajneet 2014). Wavelet transform filters
(Fig. 1.5) can be connected into a series of filters, providing better resolution
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in lower, higher or both frequency ranges (Jaspreet, Rajneet 2014; Wang et al.

2009). The multiresolution feature give ability to process less important RF
bands by using less number of filters and more filters could be applied for the
processing of the important RF bands (Fig. 1.7). However, such filter bank
adjustment reduces the flexibility of the spectrum sensing system, because the
filters are adjusted only for a particular RF band.

T
im

e

Frequency

L

H
LH

LL
L

L
L

L
L

H

Fig. 1.7. Example of wavelet transform multiresoliution property

The spectrum sensor, based on a wavelet transform, performed after esti-
mation of FFT, can be implemented using a small set of filters (Fig. 1.8). The
wavelet transform based Smoothing, edge detection and detection of singular-
ities are applied to RF spectrum – FFT coefficients (Chantaraskul, Moessner
2010; Mathew et al. 2010; Tian, Giannakis 2006). In such spectrum sensor
the detection of the RF spectrum changes is performed only in frequency do-
main, when the FFT is already performed. Therefore, the wavelet transform is
applied to the changes of FFT coefficients in time (Szadkowski 2012).

In time domain FFT coefficients are filtered by wavelet transform into 2–3
groups of fast, intermediate speed and slowly changing spectrum components
(Dinesh Kumar, Thomas 2003). In this case, a RF spectrum noise can be fil-
tered out, significantly lowered or concentrated in high-pass filter branch. In
most cases noise components are quite different in neighboring time moments.
The main disadvantage of this spectrum sensor structure from the implemen-
tation viewpoint is the requirement to use additional memory blocks to store
the coefficients of FFT.

The application of wavelet transform give the ability to analyze the FFT
spectrum in different slices. Therefore, more explicit signal features can be
extracted in comparison to energy estimation based solutions.

An application of the wavelet transform after FFT gives better accuracy of
feature extraction in comparison to a solution where the wavelet transform is
performed after a band-pass filter. In order to receive the same accuracy, the



16 1. LITERATURE SURVEY ON SPECTRUM SENSING METHODS

 

 

 

 

 

 

Receiver
I baseb.

Q baseb.
Σ

LPF

LPF

LPF

HPF

HPF

HPF

hL(n)

hH(n)

hLL(n)

hLH(n)

hHL(n)

hHH(n)
2↓

2↓

2↓

2↓

2↓

2↓

0

0

1
12.5 25

0.5

FFT

T
im

e,
s

Frequency, MHz

Fig. 1.8. Wavelet transform estimation structure after FFT

narrower sub-channel wavelet transform filters should be used and it signifi-
cantly increases the complexity of implementation.

1.3.2. Haar Wavelet Transform

Haar wavelet is the least complex and oldest wavelet. First time it was men-
tioned by Haar in 1920. It consist of mother and scaling wavelets.
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Fig. 1.9. Haar: a) mother; b) scaling wavelets

Mother wavelet compares two neighboring samples of the input signal
by calculating the difference x(n) − x(n − 1) (Fig. 1.9a). Scaling wavelet
scales two neighboring samples of the input signal by calculating average of
x(n)+x(n−1) (Fig. 1.9b). Therefore, the mother wavelet and scaling wavelet
represents high-pass and low-pass filters in time domain.
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Haar wavelets can be represented by the following expressions:

HHaar(n) =







1/2, 0 ≤ n < 1;
−1/2, 1 ≤ n < 2;

0, otherwise.
, (1.6)

LHaar(n) =

{

1/2, 0 ≤ n < 2;
0, otherwise.

. (1.7)

To summarize discrete Haar low-pass filter, it is expressed in frequency
domain:

hHaar
L (f) =

Ff (x) + Ff−1(x)

2
, (1.8)

where f is the FFT coefficient frequencies. A high-pass filter is expressed in
frequency domain by equation:

hHaar
H (f) =

Ff (x)−Ff−1(x))

2
. (1.9)

In time domain, the Haar filters are expressed by equation:

hHaar
L (n) =

x(n) + x(n− 1)

2
, (1.10)

hHaar
H (n) =

x(n)− x(n− 1)

2
, (1.11)

where n indicate the signal sample number.
In practical applications the Haar wavelet transform is usually used for

spectrum compression (Egilmez, Ortega 2015) and spectrum edge detection
(Karthik et al. 2011). The main motivation to apply this wavelet transform for
spectrum sensing is a low computational complexity (Stojanović et al. 2011).
However, in order to achieve better detection performance on a wavelet trans-
form based spectrum sensor, a prior knowledge about RF spectrum is needed,
unless some modifications of the spectrum sensing algorithm are performed.

1.3.3. Daubechies Wavelet Transform

Daubechies wavelet transform is the result of Ingrid Daubechies work. The
wavelet transform has maximum vanishing moments of all wavelet transforms,
analyzed in thesis (Valantinas et al. 2013). Therefore, more complex signals
can be represented with less number of wavelet transform coefficients. How-
ever, the smoothness of the signal is lost (Satiyan et al. 2010). The mother
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and scaling wavelets are shown in Fig. 1.10. The coefficients of the mother
wavelets are used in a high-pass filter, according to (1.12) and (1.14) equations.
The coefficients of the scaling wavelets are used in low-pass filter, according
to (1.13) and (1.15) equations. The coefficients of the FFTcan be transformed
by Daubechies wavelet according to the frequency and time (Fig. 1.8).
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Fig. 1.10. Daubechies: a) mother; b) scaling wavelets

Daubechies transform filters in frequency domain are given in following
equations:

hDeb
L (f) =

W−1
∑

n=0

HDeb(n)x(f − n), (1.12)

hDeb
H (f) =

W−1
∑

n=0

LDeb(n)x(f − n), (1.13)

where W is the frequency window, which is used for transform. Daubechies
transform filters in time domain are given in following equations:

hDeb
L (t) =

T−1
∑

n=0

LDeb(n)x(t− n), (1.14)

hDeb
H (t) =

T−1
∑

n=0

HDeb(n)x(t− n), (1.15)

where T is time period, which is used for transform.

Like the Haar wavelet transform, the practical applications of the Daube-
chies transform includes spectrum compression and spectrum edge detection.
However, the better detection performance can be achieved by using the Dau-
bechies wavelet transform (El-Khamy et al. 2013; Mathew et al. 2010).
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1.3.4. Symlet Wavelet Transform

Symlet wavelet transform is similar to Daubechies wavelets. This wavelet
transform is a modification of Daubechies wavelet transform, which helps to
achieve better symmetry, orthogonality and biorthogonality (Aboaba 2010; Ya-
dav et al. 2015). Symlet wavelets are also suggested by Ingrid Daubechies.
The mother and scaling wavelets are shown in Fig. 1.11. Like in Daubechies
wavelet transform case, the coefficients are used with high-pass filter equa-
tions (1.12), (1.14) (mother wavelet) and low-pass filters equations (1.13), (1.15)
(scaling wavelet). The coefficients of the FFT also can be transformed by Sym-
let wavelet transform according to the frequency and time (Fig. 1.8).
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Fig. 1.11. Symlet: a) mother; b) scaling wavelets

In practical applications the Symlet wavelet transform is also used for
spectrum compression and spectrum edge detection (El-Khamy et al. 2013;
Mathew et al. 2010). The performance of the Symlet wavelet transform for
spectrum sensing applications is similar to the performance received using
Daubechies wavelet transform.

1.4. Spectrum Sensors based on the
Cyclostationary Features

The cyclostationary features are present in communications signals as a side
product of the transmitting systems (e.g., the signal carrier in AM). It can be
detected after short observation of the RF signal (Cohen et al. 2011; Lin, He
2008; Yano et al. 2011). In addition, the spectrum sensors, based on Cyclo-
stationary Features Extraction (CFE) may search for some periodicity in the
primary user signal. Those features are extracted from signal mostly by ap-
plying the correlation after the FFT is performed (Fig. 1.12). in order to accu-
rately extract Cyclostationary features, the results of the correlation should be
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averaged over time T (Ali Tayaranian Hosseini et al. 2010; Du, Mow 2010;
Feng, Bostian 2008). The CFE based spectrum sensing methods can make de-
cision, which signal is in the analyzed channel. However, the prior information
about signal or it’s features is needed for this type of spectrum sensors (Choi
et al. 2009; Javed, Mahmood 2010; Lin et al. 2009).

 

    

  

Receiver
I baseb.

Q baseb.
Σ FFT

Correlation
AVG
over T

Features
extraction

Fig. 1.12. Spectrum sensor structure based on cyclostationary features
extraction

The main advantage of the CFE based spectrum sensors (comparing to
energy estimation and wavelet transform based methods) is the ability to extract
a signal from noisy RF spectrum band. This advantage is achieved, because in
most cases the noise is not correlated with itself and the communication signal
is (Umebayashi et al. 2011; Wang et al. 2010). The features from the signal
spectrum are extracted by applying the Discrete Spectral Correlation Function
(DSCF):

SW
f =

1

N

N−1
∑

n=0

Ff+W (xn)Ff−W (xn)
∗, (1.16)

where ∗ in (1.16) equation marks a complex conjugate, W is the cycle fre-
quency, f is the spectral frequency. The complexity of DSCF lays in 1

4N
2

number of complex multiplications needed. In comparison, in order to calcu-
late FFT, a N(log2N) complex multiplications are needed (Derakhshani et al.

2010). E.g. if the CFE should be calculated for 1024 FFT points, 25 complex
multiplications are required.The spectral coherence coefficient (SCC) between
signal components f+−W for the DSCF is calculated by equation:

CW
f =

SW
f

√

S0
f+W/2S

0
f−W/2

. (1.17)

The SCC can vary form 0 to 1. Which modulation of signal is in the chan-
nel can be decided by combining DSCF and SCC. However, for the identi-
fication, the prior knowledge about the features of the primary user signal is
needed (Derakhshani et al. 2010; Kokkeler et al. 2007; Kyouwoong et al. 2007).
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The requirement to have some prior knowledge about the primary user signal
and the computational complexity are biggest disadvantages of the CFE based
spectrum sensors.

1.5. Intelligent Spectrum Sensors

During the spectrum sensing application, the decision should be made about
channel occupancy according to the estimated features (energy based features,
wavelet transform based features or cyclostationary features). In the currently
proposed spectrum sensing solutions based on artificial neural networks, the
prior knowledge about radio spectrum (what signals are in RF band, what pa-
rameters they have) is required for estimation of the sensor parameters (Yu-
Jie et al. 2010). However, such approach is not suitable enough in the radio
environments where regulation of signal population is not strict and it is dif-
ficult to have a good prior knowledge about the signals in RF bands (espe-
cially in unlicensed ones). In these cases, the self learning intelligent decision-
making methods may have more advantages (Fig. 1.13) (Matuzevičius et al.

2010; Popoola, Van Olst 2011; Tumuluru et al. 2010). In addition, the super-
vised training can be applied using features, that can be used with different
types of signals in different RF environments. After the training of the neural
network is performed, the intelligent spectrum sensor may successfully classify
RF spectrum.
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Fig. 1.13. Spectrum sensor structure based on intelligent decision maker

1.5.1. Spectrum Sensing based on Artificial Neural Network

One type of the intelligent decision-making methods is based on an artificial
neural network (ANN). The way of information processing in ANN is based on
biological nervous systems, like a human brain. First experiments with ANN
were performed in 1943 by W. McCulloch and W. Pits. However, in that time
the solution was too simple for wide spread of ANN. More significant results
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in ANN research were achieved by F. Rosenbllat in 1957. After that year, more
and more theoretical and practical research results were received in this area
(Sledevič, Navakauskas 2015; Tamaševičiūtė et al. 2012).
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Fig. 1.14. Multilayer feedforward neural network structure

The ANN consist of interconnected processing elements – Neurons. They
are working in a cooperation in order to solve specific problem or task. Mostly
ANN are used for the specific types of applications: classification, pattern
recognition and function approximation. The parameters of the network are
adapted for a specific task through the training process. In ANN, the train-
ing state weights are adjusted for all neurons like in human brain (Paukštaitis,
Dosinas 2010; Pikutis et al. 2014; Ramirez et al. 2011; Vaserevičius et al. 2012).

The training of the ANN is performed an an example or example set:
measurement results, features extracted from images or statistical data. The
successfully trained ANN have an ability to find the meaning even in inex-
act or corrupted data. The main requirement for training data is that it must
represent a state of the measured system in all possible situations (Ivanovas,
Navakauskas 2012; Laptik, Navakauskas 2005; Levinskis 2013). When the
ANN is trained properly it can be used as an expert for a particular task (Plonis
et al. 2005).

The ANN has few advantages in comparison to ordinary decision-making
algorithms (Katkevičius et al. 2012; Serackis, Navakauskas 2008):

• the ANN has an ability to train from given data;
• some types of ANN may self-organize it’s structure during training

process;
• the calculation of the ANN coefficients can be accelerated by FPGA,

because the mathematical operations can be implemented for process-
ing in parallel.

Therefore, the decision-making solution based on an ANN is more supe-
rior than the threshold based or prior knowledge based algorithms. All at-
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tributes of ANN gives more versatility for network to decide about the occu-
pancy of the channel even in non-standard radio environment.

1.5.2. Architectures of the Artificial Neural Network

Two ANN architectures were analyzed in this work: single-layer and multi-
layer feedforward networks (Fig. 1.15). The recurrent neural networks were not
considered, because the ANN architecture with recurrent connections between
neurons lacks of stability in comparison to feedforward networks (Huaguang et

al. 2014). Especially the FPGA based implementation of the recurrent neural
network is a challenging task (Sicheng et al. 2015).
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Fig. 1.15. Single layer and multilayer feedforward neural network structures

The single-layer feedforward network is a simplest form of neural network.
This architecture can be used in applications, where each neuron can represent
unique situation in the radio environment (Yu-Jie et al. 2010). Such structure of
the ANN may be used where the problem do not require higher neural network
complexity (Ramirez et al. 2011).

The structure of the Multilayer feedforward network can be divided into
tree parts: input layer, output layer and the hidden layer. One or more hidden
layers help network to obtain higher-order statistics from RF spectrum param-
eters (Liang et al. 2011; Xiang-lin et al. 2008; Zhao et al. 2011).

Main component of the ANN is a single artificial neuron, which can be
used separately as a decision-maker or, in large networks, as a single node of
the neural network. If the neuron is used as a single decision-maker, it uses a
weighted sum of RF sub-channel parameters, passed to an activation function
(Yu-Jie et al. 2010). In the larger neural network structures the purpose of the
neuron can vary depending on a layer in which it is situated. The structure of
a single neuron based decision-maker is shown in Fig. 1.16.
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Fig. 1.16. Single neuron structure

During the estimation of the weighted sum, all inputs xj are multiplied by
a different weight variable ωij . In spectrum sensor, the inputs of the neuron can
be the energy values of the RF spectrum, the outputs of the wavelet transform
or the estimated cyclostationary features of the signal (Li et al. 2010). The
multiplication of the inputs with the corresponding weights can be performed
in parallel, because all multiplication operations can be made separately:

x1ωi1, x2ωi2, ..., xnωij , (1.18)

si = bi +
N
∑

j=1

xjωij . (1.19)

The summation stage si combines all weighed inputs and bias bi. The bias
helps for activation function to decrease or increase the input level. It gives
more flexibility in interpretation of the network inputs. In the activation stage
the weighted sum si is sent to an activation function:

s̃i = Φ(si). (1.20)

The most frequently used in practical applications activation functions are:
threshold (Heaviside) and sigmoid.

The threshold can take two values: 0 or 1 (Fig. 1.17) (Jun 2010):

ΦT(si) =

{

1 si ≥ 0;
0 si < 0.

. (1.21)

This activation function is more suitable for one neuron based decision-
making solution. In addition, it could be used in the output layer of the multi-
layer network to produce a final decision:
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Fig. 1.17. Heaviside (threshold) function
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Fig. 1.18. Sigmoid function with diffrent slope coeficients

The Sigmoid function has S shape (Fig. 1.18). It is most common activa-
tion function in ANN. Sigmoid is defined as a strictly increasing function that
has equilibrium between a linear and non-linear behavior (Fu et al. 2012). It
can produce an output, which may vary from 0 to 1:

ΦS(si) =
1

1 + e−αsi
, (1.22)

here α is a slope coefficient. If it reaches ∞ then the sigmoid function will
act like a threshold function. In contrast to the threshold function it has a
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derivative and can be used with gradient descent based training methods, such
as least mean square (LMS) algorithm. Considering the properties of a sigmoid
function, the function is more suitable for the inner layers of the multilayer
ANN based spectrum sensor (Popoola, van Olst 2013).

1.5.3. Supervised Training of the Spectrum Sensor

The weights of the neural networks are estimated during training process.
The single layer networks are usually trained by a LMS algorithm. However,
the training of the multilayer network is more computationally complicated
(Ibrahim 2008). One training iteration of the multilayer network consists of
two stages: estimation of the output followed by calculation of the global error
and error back-propagation.

The global error e(n) is estimated by comparing the output of the ANN
with the desired response:

e(n) = D(n)− Φ

( L
∑

l=1

I
∑

i=1

J
∑

j=1

(xlij(n)ωlij(n)) + bli

)

, (1.23)

where D(n) is a desired output, l is the network layer index, i is the neu-
ron index, j is the neuron weight index. The estimated global error is back-
propagated to each neuron. Error is used for weight update:

ωlij(n+ 1) = ωlij(n) + η
∂e(n)

∂ωlij
xlij(n), (1.24)

where η is weight adjustment factor. The network convergence speed depends
on η. It is clear from equation (1.24) that the implementation of the training
algorithm should be adjusted for each network configuration, because the error
expression will be different for each layer. The goal of the backpropagation
training algorithm is to minimize the mean square error (MSE):

E =
1

N

N−1
∑

n=0

e2(n), (1.25)

when the algorithm reaches defined E boundary, the network weight updates
are stopped.

The most challenging part in error back-propagation stage is calculation of
the activation function derivative. For example, the derivative of the sigmoid
function, used in inner ANN layers, is estimated according to the formulas:
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ΦS(si) =
1

1 + e−αsi
, (1.26)

∂ΦS(si)

∂si
= ΦS(si)(1− ΦS(si)). (1.27)

In order to implement (1.26) and (1.27) equations in the hardware, the
large lookup tables or approximations of these should be used (Aliaga et al.

2008). The implementation of the whole backpropogation algorithm in most
cases should be adapted to particular ANN architecture and task, solved by the
network.

1.5.4. Unsupervised Training of the Spectrum Sensor

Self organizing map (SOM) is a neural network, for which the weights are es-
timated during a self-training process. Usually no initial knowledge about the
desired response of the network is used. This is main difference between SOM
and the ANN trained by the supervised algorithms (Stefanovic, Kurasova 2011;
Villmann et al. 2011). SOM is widely used in classification or clustering tasks
(Ivanikovas et al. 2008; Serackis et al. 2010; Stankevičius 2001; Stefanovič,
Kurasova 2014). In addition, there are several examples of SOM application
for prediction (Merkevičius, Garšva 2007; Merkevičius et al. 2004) and reduc-
tion of data dimensionality (Kurasova, Molytė 2011). The self-training algo-
rithm of the SOM is based on competition (Pateritsas et al. 2004). First, all
neurons compete with each other in order to be selected as a winner neuron.
Next, the weights of the winner neuron and it’s neighbors are updated in order
to increase the outputs for these neurons.

SOM has an advantage against classical ANN in RF environments where
the situation is unpredictable, especially in noisy and unlicensed spectrum ar-
eas (Cai et al. 2010; Khozeimeh, Haykin 2012). In spectrum sensing applica-
tions, the SOM can perform an interpretation of the statistical parameters dur-
ing self-training process, without knowledge that some input features indicates
the presence or absence of the primary user. Therefore, this type of network
can be self-trained even for harsh radio surroundings (Yang et al. 2012, 2014).

The most common SOM structures used in practical applications are one
dimensional and two dimensional (Fig. 1.19). The practical applications of the
higher dimension SOM are rare. There are two strategies for self-training of
the SOM: the winner-takes all and the neighborhood. In the first strategy only
the winner neuron weights are adjusted during self-training process (Nasci-
mento et al. 2013). In the second strategy, the weights of the winner and some
neighboring neurons, selected according to the on neighborhood function, are
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updated (Herrmann, Ultsch 2007; Sharma, Dey 2013). In this case more than
one neuron are updated during one self-training iteration.
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Fig. 1.19. Self organizing map 2 dimensional structure

The winner neuron is selected by estimating Euclidean distance between
the input and current SOM weights:

N⊥(xxx) = argmin
ij
||xxx−ωωωij ||. (1.28)

The winner neuron is selected according to the minimal Euclidean dis-
tance (Gunes Kayacik et al. 2007). the weights of the neuron are updated with
self-training ratio η, which is exponentially decreased during the self-training
process. The current value of η depends on two parameters: initial self-training
ratio η0 (usually η0 ≤ 1) and time constant τ , which controls the slope of the
exponent:

ωωωij(n+ 1) = ωωωij(n) + η(n)(xxx(n)−ωωωij(n)), (1.29)

η(n) = η0e
−

n
τ . (1.30)

In summary, SOM self-training algorithm can be divided into four steps:
1. Initialization of the weights. Small random values (different) are as-

signed to all neurons’ weights.
2. Competition. The Euclidean distance is estimated for each neuron ac-

cording to equation (1.28).
3. The update of the weights. The weights of the winner neuron are up-

dated according to equation (1.29).
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4. Repetition of the 2nd and 32rd step. The Self-training ratio is updated
and algorithm is started from second step over again.

The main advantage of SOM in comparison to alternative ANN is a low
complexity of the digital implementation (Dlugosz et al. 2011; Tamukoh et al.

2004). SOM doesn’t have complex activation functions (Appiah et al. 2012;
Oba et al. 2011) and the estimation of neuron output can be performed easier,
in parallel to output estimation for other neurons (Caner et al. 2008; Franzmeier
et al. 2004).

1.5.5. Unsupervised Training using Neighborhood Neurons

In neighborhood self-training strategy more neurons are involved in compar-
ison to winner-takes all strategy (Stankevičius 2001). Therefore, the strategy
with neighboring neurons has a greater potential to converge faster. Topology
based structure, for which in the center is a winning neuron, is created and
adjusted during the self-training process (Fig. 1.20 and 1.21). Winning neu-
ron and it’s neighbors are self-trained using different self-training ratio η. The
more distant neighbors have lower initial value of η (e.g., η1, η2, η3). There-
fore, the changes of neuron weights during the self-training iteration is less
significant (Zhang et al. 2013).
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Fig. 1.20. Self organizing map square and rhombus neighborhood
topologies

The weights of the neurons in self-training process with neighbors are
updated according to the equation (2.4). The initial value of the self-training
ratio η(n) is changed for neighboring neurons to ηnb(n), according to equation
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Fig. 1.21. Self organizing map hexagonal neighborhood topology

(1.31). Neighboring topologies can be square, rhombus (Fig. 1.20) and hexag-
onal (Fig. 1.21). Index nb designates the distance from the winner. When
the distance is 0, it marks a winning neuron. The higher index is, the lower is
self-training ratio is used. Therefore, in most cases η0 > η1 > η2 > · · · > ηnb:

ωωωij(n+ 1) = ωωωij(n) + ηnb(n)(xxx(n)−ωωωij(n)). (1.31)

Topologies differ from each other by the number of neurons taken into
neighborhood. Most neighbors have square topology and least has rhombus.
Hexagonal topology is nearest to radial neighborhood.

ηnb(n) = η(n)hij,N⊥(xxx). (1.32)

Self-training ratio ηnb for the neighboring neurons can be decreased using
Gaussian function, according to equations (1.32) and (1.33) (Gorunes cu et

al. 2010). The self-training ratio ηnb depends on a distance estimate d2
ij,N⊥(xxx)

exponentially. In addition, the convergence of the self-training depends on the
parameter γ, which is also changing exponentially during self-training process.
The slope of the changes depends on the chosen τnb:

hij,N⊥(xxx)(n) = exp
(

−
d2
ij,N⊥(xxx)

2γ2(n)

)

, (1.33)

γ(n) = γ0 exp
(

−
n

τnb

)

. (1.34)
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The application of neighborhood functions can increase the self-training
speed of the SOM. However, the implementation of these functions requires
additional algorithm blocks, in comparison to winner-takes all strategy (Ma-
nola kos, Logaras 2007; Yamamoto et al. 2011). Therefore, during the imple-
mentation, all SOM topologies should be optimized, especially the Gaussian
function (Caner et al. 2008).

1.6. Conclusions of Chapter 1 and Formulation of
the Tasks

1. Spectrum sensors are used to make a decision: do the primary user
signal is present in the analyzed signal frequency band or not. Two
types of spectrum analysis methods are most dominant in reviewed
literature: methods based on the estimation of the channel noise level,
methods based on the specific feature search in the received signal.

2. In the first type of methods, the channel noise level in the spectrum sen-
sors is measured by estimating the received signal energy. A threshold
of the detector is selected manually or calculated accordingly to the
current transmission channel noise characteristics. The main advan-
tage of the spectrum sensors based on signal energy estimation is a low
computational cost, comparing to alternative spectrum sensing meth-
ods. The main disadvantage of the spectrum sensors based on signal
energy estimation is the selection of the decision threshold.

3. The second type of methods uses different types of additionally esti-
mated features during the signal pre-processing stage. The features are
estimated by application of the specific signal transform (e.g. wavelet
transform) or by the analysis of the signal cyclostationary features. For
both types of the spectrum sensors, the threshold of the detector is
used for the estimated values of each feature in order to make a final
decision: do the primary user signal is present or not.

4. Wavelet transform based signal spectrogram feature extraction can in-
crease the primary user emission detection rate in comparing with
signal energy based features extractors.

5. Decision about radio spectrum occupancy can be made by applying
pre-estimated threshold, or by using self-adapting intelligent methods
like artificial neural networks or self-organizing maps. Self-adaption
property of self-organizing maps can be efficiently used for various
signal types detection, about which there is no prior knowledge.



32 1. LITERATURE SURVEY ON SPECTRUM SENSING METHODS

Two hypotheses were formulated as a result of the performed literature
review:

1. Wavelet transform based signal spectrogram feature extraction can in-
crease the primary user emission detection rate in comparing with
signal energy based features extractors.

2. Self-adaptation of the spectrum sensor to continuously changing radio
environment can be achieved by the application of intelligent meth-
ods, modifying the training algorithms for implementation in embed-
ded system.

In order to confirm both hypothesis, three tasks should be completed:
1. Investigate the application of wavelet transform to increase the perfor-

mance of spectrum sensor.
2. Investigation of the neural network with binary activation functions

suitability for spectrum sensing applications.
3. Development of the spectrum sensing method based on a self-organizing

map and investigate its modifications to decrease the duration of self-
training preserving the primary user emission detection performance.



2
Spectrum Sensing Methods

Theoretical Researches

In this chapter the theoretical research results are presented. Two approaches
are proposed for automatic selection of the spectrum sensor’s threshold. In
addition, the investigation results of the signal feature extractor modifications
for efficient implementation and modification of the classical SOM topology
to increase the self-training speed are also presented in this chapter.

The results of investigations, presented in this chapter are published in five
papers (Stašionis, Serackis 2013; Stašionis, Serackis 2014; Serackis, Stašio-
nis 2014; Stašionis, Serackis 2015a; Stašionis, Serackis 2015b) and presented
at four international conferences (ELECTRONICS’2013; EUROCON’2013;
NDES’2014 and EUROCON’2015).

2.1. Architecture of Spectrum Sensing System

The spectrum sensing system can be divided into two parts: signal receiver
and digital signal processing (DSP) unit. There are two main components in
the signal receiver part: IQ signal receiver and a band-pass filter. The charac-
teristics of the IQ signal receiver defines the RF spectrum part, in which the
spectrum sensor can operate. The DSP unit performs FFT, signal feature ex-
traction and performs signal analysis based on estimated features. The DSP
part may have different complexity of the signal processing algorithms and
also may introduce different latency to the spectrum sensor output.

33
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In this dissertation the attention was focused to the development of the
new and more effective signal processing methods for spectrum sensing appli-
cations. In addition, the methods, proposed in this dissertation were specially
adapted for FPGA based implementation.

DSP part will be implemented in FPGA. Therefore, implementation of
all components must be adapted to these technology. From these components
depends:

• FFT block. On it depends accuracy of radio component estimation.
• Feature extraction. On this component depends quality of features,

which will be extracted from radio spectrum. Main features which
will be used in research is energy – variance estimates and wavelet
transform.

• Decision maker. On this module depends accuracy of decision. Hy-
pothesis about channel occupancy will be made by neural network and
SOM.

As base of DSP part is used Zynq 7020 system on chip, which is a combi-
nation of ARM and FPGA. All implementations would be tested in this chip,
therefore, all limitations which will be mentioned in design is dictated by Zynq
7020.

2.2. Radio Spectrum Feature Extractors in Field
Programmable Gate Array

This section focuses on the implementation of signal feature extraction meth-
ods using field programmable gate array based embedded systems. Two al-
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ternative FPGA based implementations of the FFT are compared. In order to
efficiently implement selected signal spectrum feature extractors (reduce the
number of calculations performed by a hardware), the modifications of the
calculation formulas are proposed. A wavelet transform was considered as a
feature extractor. Therefore, the FPGA based implementation of the wavelet
transform is also analyzed in this section.

2.2.1. Analysis of the Different Implementations of Fast
Fourier Transform

The FPGA based implementation of the wide-band FFT (Fig. 2.1) may have a
high influence to the performance of the spectrum sensor. The amount of hard-
ware resources, dedicated to wide-band FFT block, should be small enough to
leave room form the implementation of the rest signal processing applications
(Bury et al. 2008; Pupeikis 2015). Two types of FFT implementation are avail-
able in intellectual property (IP) core, found in Xilinx environment standard
library:

• Pipelined implementation. In this implementation there are applied
several Radix-2 butterfly processing engines. Data stream is pipelined
through these processing engines and it allows to perform a continuous
processing of the radio signals.

• Radix implementation. In this implementation only one Radix-4 but-
terfly engine is used. There is a possibility to use a Radix-2 butterfly
engine, which is more suitable for less powerful FPGA based systems.
In this implementation the radio signals cannot be processed continu-
ously. The first signal frame should be fully loaded into the block input
RAM. The coefficients of the FFT are available for further processing
only after the complete estimation of FFT for the whole selected signal
frame is performed.

Table 2.1. FPGA resource utilization dependency on FFT length

FFT length DSP slice Block RAM Latency, µs
20 MHz
BW,Hz

15 MHz
BW,Hz

4096 45 11 27 9765 7324
8192 52 20 55 4882 3662

16 384 54 37 109 2441 1831
32 768 61 69 218 1220 915
65 536 63 134 437 610 457

The Pipelined implementation of FFT requires two times more resources.
However, the latency of FFT estimation is two times lower than received using
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Radix implementation. The main disadvantage of Radix implementation is
that the input of the FFT block should have additional buffer to load the signal
frame. Therefore, in case of higher input rates, the Radix implementation may
suffer from data loss. Whereas, the pipelined implementation is able to process
an unbuffered data streams taken directly from ADC.

Taking into account the ability to process an unbuffered data streams and
the lower latency the pipelined FFT implementation was selected for spectrum
sensor design. The dependency on the demand for hardware resources to the
number of estimated FFT samples are shown in Table 2.1.

The latency, received in the FFT block, is directly proportional to the num-
ber FFT samples. For signal frame with 65 536 samples the latency of the FFT
block reached ∼0.5ms. However, for signal frame with 4096 samples, the la-
tency was just 27 µs (clock rate if the block was 300 MHz). The number of
DSP slices did not vary so much like latency. The number of DSP slices,
needed for FFT implementation, varied in the range from 45 to 63. The mem-
ory dependency increases proportionally to the length of FFT. The maximum
number of 18 kb memory blocks, equal to 134, was required for the biggest
analyzed signal frame.

The resolution of the estimated spectrum depends on the sampling fre-
quency, which is selected accordingly to the analyzed bandwidth. Two band-
widths were compared during theoretical investigation: 20 MHz and 15 MHz.
In larger bandwidths, such like 20 MHz and 15 MHz, more signal frame sam-
ples should be used. E.g. 16 384 samples provides signal spectrum resolution
of 2440 Hz for 20 MHz frame and 1831 Hz for 15 MHz frame.

The maximum number of DSP slices (28%) and 18 kb block RAM (49%)
was required to implement the FFT for 65 536 signal samples. The minimum
suggested number of samples (16 384) will require 24% of DSP slices and
13% block RAM. The amount of hardware resources was calculated according
to the FPGA based system, used in experimental environment.

If the FPGA based embedded system has enough block RAM components
and the latency of ∼0.5 ms is acceptable for application, it is possible to use
65 536 signal samples for FFT. However, the FFT window can be reduced up
to 16 384 in order to optimize RAM utilization and reduce the latency caused
by calculation.

2.2.2. Implementation of the Energy based Feature
Extraction

Energy based spectrum features extractors also called quadrature extractors
are based on channel power calculation. Main task of these extractors is to
highlight signals from noisy environments like shown in Fig. 2.2.
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Fig. 2.2. 25 MHz bandwidth radio spectrum record

In presented radio spectrum are many signals, which are covered by ran-
dom nature noise. Therefore, all energy extractors implementations will be
tested with this radio spectrum sample. In this section will be tested on chan-
nel power average, variance, standard deviation and their modifications based
extractors, which will be implemented in FPGA equations (1.2), (1.3), (1.4),
(2.1), (2.2).
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Fig. 2.3. Channel power average – φA implementation in FPGA

In Fig. 2.3 is shown coarse structure of power average extractor – φA
FPGA implementation (1.2). In its beginning and its end are 2 state registers –
St. reg. These registers set input and output in each rising edge of synchroniza-
tion (clock) impulse. These registers are mandatory in each design, because
they prevent systems from uncertain conditions. Another important element of
this design is multiplier, which is implemented by DSP slice. This component
quantity is very limited in hardware, therefore, all multiplication operations
must be used carefully. After multiplication operation signal is accumulated in
ACC component. Accumulator collects input samples for predefined window,
which is equal to channel size. Channel length is iterative to 2n, because in
this case, there is no need of more DSP slice to calculate average. Division
can be implemented by bit shifting operation. So if channel length is set to 8
spectrum samples, then to calculate its average value, accumulated sum must
be shifted by 3 bits. This implementation latency is proportional to channel
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length. If channel length is 8, then latency will be 12 clock cycles. 4 cycles are
used for multiplication and signal setting, other 8 for accumulation.
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Fig. 2.4. 25 MHz bandwidth radio spectrum record after φA extraction

In test RF spectrum sample 6 areas are marked (Fig. 2.2), where signals
level is to low. SNR for these areas vary from 1–5 dB. After φA (Fig. 2.4) noise
level is lowered. In first marked spectrum case are 3 signals and for them SNR
is raised up to 7 dB. In second is just one signal and for it SNR is achieved 5.5
dB. In 3,4 and 6 radio areas SNR lifted significantly up to 12 dB, 10 dB and
16 dB. Lowest SNR 5 dB is achieved in 5 area. This implementation of φA
increased low level signals SNR by 4–11 dB.
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Fig. 2.5. Chanel power variance – φD implementation in FPGA

To φA (Fig. 2.3) can be added variance calculation part – φD (Fig. 2.5).
It additional has First in first out – FIFO buffer and subtraction element. For
channel variance calculation first mean value of same area must be estimated
(equation (1.3)). Therefore, time gap forms between these calculations, which
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is equal to average calculation window. FIFO buffer is used to delay vari-
ance calculation. This buffer length is a same as channel length. Through
FIFO passed powered spectrum samples are delayed. Until average value for
new channel is calculated, those delayed samples are subtracted from same
channel average. So φA and φD calculations are paralleled. After subtraction
φD implementation is similar to average structure. Main disadvantages of this
variance implementation are:

• It has longer delay than average calculation. For 8 samples variance is
calculated after 21 clock cycles. Additional delay is caused by FIFO
buffer 8 cycles and subtraction operation 1 cycle.

• It uses additional multiplication operation. This operation can utilize
more than 1 DSP slice.

By φD noise level was lowered even more, see Fig. 2.6. In 1, 2 and 5
marked areas low level signals SNR is lifted to 8–11 dB. And SNR is up to 4 dB
more, than it was achieved with φA. Significantly better results are achieved
in 3 and 4 areas. There SNR achieved 19 dB and 20 dB accordingly. In 6
signal case φD shown result worse by 1dB, than it was in average estimate. Yet
overall φD performed better than φA.
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Fig. 2.6. 25 MHz bandwidth radio spectrum record after φD extraction

φD calculation is almost 2 times longer than φA, because FIFO buffer
brings additional delay. This disadvantage can be corrected with one assump-
tion, that the neighboring channel doesn’t change much. With this idea vari-
ance – φDN

or std. φσN deviation can be calculated by using old or neighboring
channel average value. If average value is used of neighboring channel n− 1,
then DN will be:
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DN =
1

W

W−1
∑

f=0

(Ff,n(x)−Ff,n−1(x))
2, (2.1)

and standard deviation σN:

σN =

√

√

√

√

1

W

W−1
∑

f=0

(Ff,n(x)−Ff,n−1(x))2. (2.2)

These two variance and std. deviation expressions can be implemented
without additional FIFO buffer.
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Fig. 2.7. 25 MHz bandwidth radio spectrum record after φDN
extraction

When neighboring channel mean value is used for variance calculation
– φDN

, noise level of processed radio spectrum sample slightly increases in
comparison with original estimation – φD (Fig. 2.7). With this modification
SNR for most signals is lower too. In areas 1, 2 and 5 low level signal SNR
ratio is by 1.2–2 dB lower, than it was with φD. Biggest difference between
results is in 3 and 4 cases, where SNR is dropped to 13 dB and 12 dB. In 6 case
SNR is 15 dB and it is same as in original calculation.

Another modification (2.3) for variance can be made by removing second
multiplication element (Fig. 2.5):

DM =
1

W

W−1
∑

f=0

| Ff,n(x)−Ff,n−1(x)|, (2.3)

in this modification – φDM
comparison between mean value and spectrum

component must be made before subtraction in order to receive positive dis-
tance. Lower value mus be always subtracted from bigger.
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Fig. 2.8. 25 MHz bandwidth radio spectrum record procesed by variance
without square – φDM

extractor

In general φDM
performed worse than φA calculation see Fig. 2.8. For

some low level signals SNR was 5–8 dB (1, 2 and 3 marked areas), and these
results are similar to φA. Yet for 6 case SNR is achieved by 10 dB lower. In 3
area signal SNR was 10.6 dB and it was by 1.4 dB lower than in φA case.

In order to implement standard deviation extractor – φσ, Cordic square
root component must be added into φD chain (Fig. 2.9). Cordic is coordinate
rotation digital computer. This component is based on addition, subtraction
and bit shift operations. Therefore, it has long latency, it needs 26 clock cy-
cles to calculate square root. Then φσ system will use 47 cycles to calculate
parameter for 8 samples.
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Fig. 2.9. Chanel power std. deviation – φσ implementation in FPGA

Worst results from all extractors, tested in this section, were achieved with
φσ implementation (Fig. 2.10). In 1 and 2 areas signals SNR vary from 3.2 dB
to 6 dB. In 6 case SNR is lower by 9 dB, than result achieved with φA. With
others signals (3, 4, and marked areas) extraction is by ∼ 2 dB lower too, in
comparing with φA.
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Fig. 2.10. 25 MHz bandwidth radio spectrum record after φσ extraction

In Table 2.2 is shown how much FPGA resources utilize various feature
extractors, when channel consist of 16 spectrum samples. φA uses least FPGA
resources and it has lowest delay, just 20 clock cycles. φD uses 3 times more
resources and its latency is about 2 times longer than average. Latency was
lowered to 21 clock cycle with φDN

, which used neighboring channel average
value. It uses slightly less FPGA resources than φD, because FIFO buffer was
removed from structure. Another variance optimization φDM was made by
removing second multiplication component. This modification helped to save
4 DSP slices. Most FPGA resources were used by φσ implementation. This
significant increase was caused by Cordic square root component. And this
component caused additional 26 clock cycles latency. φσ estimation can be
modified as well as variance. It can use neighboring channel average value.
Then latency of φσ can be reduced to 47 clock cycles.

Table 2.2. FPGA resource utilization for 16 samples channel features
calculation

Extractor Slice registers LUTs DSP slice Block RAM
Latency
cycles

φA 99 78 1 0 20
φD 261 293 5 1 37
φDN

227 240 5 0 21
φDM

256 290 1 1 36
φσ 504 553 5 1 63
φσN

470 500 5 0 47

From these implementation researches it is clear that φσ is least efficient
and it uses most FPGA resources. Best results was achieved with φD, how-
ever it has longer delay than φA. Therefore, for latency reduction can be used
φDN

, which is slightly less efficient than original. In both variance cases aver-
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age value is accessible too. In conclusion φD is most cost efficient extractor,
because it has best performance and an additional parameter (average) is cal-
culated as a side product.

2.2.3. Wavelet Transform Implementation in Field
Programmable Gate Array

Wavelet transforms can be used to filter spectrum components in time. By
these transforms can be highlighted spectrum energy and significant changes
in FFT coefficients. 3 transforms Haar φHaar, Daubechies φDeb and Symlet
φSym are implemented (equations (1.10), (1.11), (1.14) and (1.15)). Daubechies
and Symlet wavelet transforms are implemented as filter banks (Fig. 1.8). Haar
transform have different implementation approach, because it consist just from
summation and differentiation.
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Fig. 2.11. One stage Haar transform imlementation in FPGA

Haar mother and scale wavelets sum and subtract two neighboring sam-
ples (Fig. 2.11). To implement these two operations delay must be added in to
design, because actions are made between input and its older value. For this
case FIFO buffer isn’t appropriate. It’s too big for one sample delay. Therefore,
this operation is implemented by second state register. It delays input sample
by one clock cycle. After summation and differentiation bit shift by one bit is
made in order to implement division by 2. Decimation is made by synchro-
nizing design output with clock, which period is 2 times longer than used for
hole system. In Fig. 2.11 upper part are shown mother wavelet and lower part
scale wavelet implementations. By this design 1 level wavelet transform is
implemented . To calculate transform output are used 4 clock cycles.

Other transforms are implemented as filter banks. In their designs differ
just filter coefficients, however structures are similar. Therefore, Daubechies
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Table 2.3. FPGA resource utilization by wavelet transforms

Transform Slice registers LUTs DSP slice
Latency
cycles

Haar 2lvl. 291 554 0 8
2lvl wav. 6-4 1417 871 16 33
2lvl wav. 4-6 1423 876 16 33
2lvl wav. 8-4 1424 888 18 40
2lvl wav. 4-8 1428 891 18 40
2lvl wav. 8-6 1468 943 20 48
2lvl wav. 6-8 1469 946 20 48

– φDeb and Symlet – φSym similar structures will use same FPGA resources.
2 level wavelet transforms are implemented with filter lengths 6–4, 4–6, 8–
4, 4–8, 8–6 and 6–8. First digit marks how much coefficients are used in
structure 1 level, second - in 2 level. In comparing with φHaar all structures
use DSP slices and they latency is about ∼ 5 times longer. Depending from
filters lengths structures use from 16 to 20 DSP slices. And delay vary from 33
to 48 clock cycles. Logic units doesn’t vary much from filters length. Yet they
are utilized by 2–3 times more than in φHaar case. Chose of transform filter
lengths must be done according to DSP slice and latency budgets.
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Fig. 2.12. FFT coefficients of radio record in time

Wavelet transforms test signal is taken from previous section RF record.
It shows how spectrum components vary during two seconds interval. From
this signal by wavelet transforms must be extracted signals spikes energy, high-
lighted spectrum changes and lowered noise.

After 2 level φHaar transform extracted 4 signals, they are shown in Fig. 2.13:
• hHaar

LL . In test signal until 0.2 s was mostly noise, therefore, it was low-
ered by 2 stages of low-pass filters. After this interval φHaar summa-
tions summed neighboring samples in one spike, which shows energy
of short period. Average value of spikes in period 0.2–0.75 s is 0.25.
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Fig. 2.13. FFT coefficients in time after 2 stage Haar transform

In 0.84 s spike, which has biggest amplitude, is highlighted. In interval
0.9–2 s lower power pulses are combined, where average value is 0.15.

• hHaar
LH . In signal beginning noise level was efficiently lowered. In an-

other 0.2–0.34 s interval it marked more frequent burst. However if
intensity of burst drops, so drops hHaar

LH signal amplitude. It’s obvious
by comparing hHaar

LL and hHaar
LH signals 0.34–0.6 s time intervals. In

0.84 s it marked same signal as highlighted in hHaar
LL .

• hHaar
HL . In this signal changes of spectrum components is more high-

lighted than in hHaar
LL and hHaar

LH cases. Therefore, in intervals 0.2–0.75
s, 0.9–1.05 s and 1.1–2 s spectrum bursts are clearly shown. Bursts are
sharpen by intensity of signal change from positive to negative part. In
hHaar
HL high amplitude burst isn’t marked, which was clear in hHaar

LL in
hHaar
LH cases.

• hHaar
HH . This signal is similar to hHaar

HL , yet changes in spectrum are
more clear. Amplitudes of spikes are on average by 0.1 greater than in
hHaar
HL case. It has the same problem to highlight high amplitude signal

in 0.84 s moment.

Haar transform hHaar
LL signal combines energy from neighboring spectrum

components. It can efficiently mark short period power. hHaar
LH signal can be

used to mark noise periods. hHaar
HL and hHaar

HH signals can be used to highlight
changes in radio spectrum.
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After 2 level 6-8 φDeb 4 signals are shown in Fig. 2.14:
• hDeb

LL . φDeb transform hDeb
LL signal quite similar to φHaar. Just in φDeb

case most spikes amplitude is lower by 8–10% .
• hDeb

LH . In this case changes in radio spectrum is better highlighted than
in φHaar. Specially it is clear in 0.2–0.75 s and 0.91–2 s intervals. Yet
in this case hDeb

LH signal isn’t useful for noise extraction.
• hDeb

HL . Otherwise than in φHaar h
Deb
HL signal is quite similar to hDeb

LH ,
however not to hDeb

HH . They both marks changes in spectrum. In this
signal is highlighted high amplitude signal, which was not marked in
φHaar.

• hDeb
HH . In this signal noise is more suppressed than hDeb

LL , hDeb
LH and

hDeb
HH . It’s clear from intervals 0–0.2 s, 0.35–0.6 s and 0.9–2 s. In hDeb

HH
high amplitude signal, which is in 0.84 s, is marked too.
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Fig. 2.14. FFT coefficients in time after 2 stage Daubechies transform

As in φHaar case to mark short period power hDeb
LL signal is suitable. In

φDeb to track spectrum changes better to use hDeb
LH and hDeb

HL signals. And for
noise extraction is better hDeb

HH .
φSym 2 level 6–8 transform 4 signals are shown in Fig. 2.15:

• hSymLL . As in previous transforms (φHaar and φDeb) Low-pass filters
chain extracts spectrum energy. Amplitudes of spikes is quite similar
to φDeb h

Sym
LL signal.
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• hSymLH . In φSym transform as in φDeb h
Sym
LH signal is suitable to track

spectrum changes.
• hSymHL . In this case all components is heavily suppressed, except com-

ponent in 0.84 s. Therefore, it’s more suited for noise marking.
• hSymHH . Same as hSymLL and hSymLH signals hSymHH is very similar to φDeb,

therefore, it saves the same purpose as in previous transformation.
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Fig. 2.15. FFT coefficients in time after 2 stage Symlet transform

With φSym transformation hSymLL , hSymLH and hSymHH signals were similar to

φDeb. Just hSymHL signal was significantly different. Therefore, in transform all

signals saved they purposes as was in φDeb except hSymHL , which is more suited
for noise determination.

From wavelet transform research it is clear that in all transformations hHL

signal can be removed from designs, because it always doubles some feature
extraction. With this removal about 15% FPGA resources can be saved, just
latency would be the same. By using φHaar transform DSP slices and up to 3
times logic cells can be saved. Though with φHaar some emissions can be lost,
as it was in hHaar

HH case with high amplitude signal. With φDeb and φSym trans-
forms similar results can be achieved. Especially when hHL signal is removed.
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2.3. Self Organizing Maps Self-training and
Structure Optimization

2.3.1. Self-training Process Endpoint Detection

The convergence of SOM depends on three main aspects: selection of ini-
tial weights, self-training rate and neighborhood size. Therefore, limiting the
SOM self-training process by maximum number of iterations is not reason-
able, because the SOM self-training performance may be not very sensitive to
the number of self-training steps (Brugger et al. 2008). The selection of the
SOM self-training endpoint can be made by monitoring the estimated mean
value of the cost function (Kohonen 1991; Lampinen, Oja 1992). As an al-
ternative, the tracking of the η(n) ≃ η(n − 1) can be used as indication to
stop the self-training, if the changes of the self-training rate becomes insignif-
icant (Vegas-Azcarate et al. 2005). The third alternative method for endpoint
selection is based on the SOM cluster quality measure (Herbert, Yao 2007).

The preliminary experimental tests of the currently available SOM self-
training endpoint selection methods showed that the automatic selection of the
endpoint was made too early (the sensitivity of the SOM based spectrum sensor
could ne improved by adding additional self-training iterations) or too late (the
sensitivity of the SOM based spectrum sensor did not change).

The self-training performance of the SOM depends on many factors, in-
cluding the size of the lattice. SOM with three different lattice size were tested:

• 2×2 size lattice (see Fig. 2.16);
• 5×5 size lattice (see Fig. 2.17);
• 8×8 size lattice (see Fig. 2.19).

Two SOMs with higher number of neurons in the lattice were organized
in square topology. The smallest SOM had only four neurons, therefore, it
was too small to apply various self-training strategies. A signal with uniformly
distributed random values was used as an input to all tested SOMs. The initial
weights for each SOM were also selected randomly, ensuring there are no equal
weights.

The initial self-training rate η0 = 1 was assigned for 2×2 size SOM (see
(2.5) equation). In addition, the time constant τ = 2500 was assigned in (2.5)
equation. Because of the small SOM lattice, there were no neighbors used
during SOM self-training.

In Fig. 2.16a, the position of SOM weights is shown right after the first
self-training cycle. Therefore only the winner neuron weights were updated.
Other neurons were at the same positions as in the initial state. The SOM
weight positions after 1000, 2500 and 5000 self-training iterations are shown in
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Fig. 2.16. 2×2 size SOM after different number of self-training iterations:
a) 1; b) 1000; c) 2500; d) 5000

Figs. 2.16b–d. However, the result in Fig. 2.16c shows, that there were enough
2500 iterations to reach the convergence of the SOM. In addition, 2500 itera-
tions were selected manually, yet the number of self-training iterations could
be selected between 2500 and 5000 in order to ensure the stable convergence
for different initial weights.

The intermediate self-training results for 5×5 size SOM are shown in
Fig. 2.17. The square topology was used for this map. Only one set of neigh-
bors was selected during self-training. The self-training ratio was changed
according to (2.5) equation by setting different initial self-training ratio for the
winner neuron (η0 = 1) and for the neighboring neurons (η1 = 0.3).

Nine neurons in total were updated after the first iteration of the SOM self-
training process. As it is seen in Fig. 2.17a, the SOM weights were distributed
randomly. The more regular distribution of the SOM weights was noticed only
after 1000–2500 self-training iterations (see Fig. 2.17b and Fig. 2.17c). How-
ever, the number of iterations was not sufficient for the convergence of the
SOM. The alignment of SOM weights have not been fully completed even af-
ter 5000 self-training iterations (see Fig. 2.17d). The additional tests showed,
that additional 500 iterations were needed for complete SOM convergence (see
Fig. 2.18). The alignment of SOM weights, shown in Fig. 2.17d and in Fig. 2.18
is similar. However, in order to ensure the stable convergence of SOM, the
higher number of iterations should be used.
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Fig. 2.17. 5×5 size SOM after different number of self-training iterations:
a) 1; b) 1000; c) 2500; d) 5000
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Fig. 2.18. 5×5 SOM after 5500 self-training iterations

The intermediate self-training results for 5×5 size SOM are shown in
Fig. 2.17. The square topology was used for this map. Two sets of neigh-
boring neurons were selected during self-training. The self-training ratio was
changed according to (2.5) equation by setting different initial self-training ra-
tio for the winner neuron (η0 = 1), for the nearest neighboring neurons (η1 =
0.5) and for the rest of the neighboring neurons (η2 = 0.2).

For the 8×8 size SOM, 25 neurons were updated in each self-training
cycle. After first iteration, despite some neurons have been updated, weights
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Fig. 2.19. 8×8 size SOM after different number of self-training iterations:
a) 1; b) 1000; c) 2500; d) 5000

were still distributed randomly (see Fig. 2.19a. Even after 1000 iterations, the
structure of SOM weights was mostly irregular (see Fig. 2.19b. After 2500–
5000 iterations SOM weights did not have regular structure (see Figs. 2.19c,
2.19d). Therefore, the self-training of SOM had to be continued. The complete
convergence of the SOM was reached after 8000 iterations (Fig. 2.20a). As a
result, all SOM weights were distributed among input plane in four groups.

Looking at the self-training results of the tested SOM with different num-
ber of neurons it was clear, that the bigger SOM needs more self-training it-
erations. In addition, the quality of self-training highly depended on the dis-
tribution of the SOM inputs, that were used for each self-training iteration.
Therefore, the order of the inputs may increase or decrease the minimum num-
ber of iterations, that are needed to reach the self-training convergence of the
SOM. In order to minimize the number of SOM self-training iterations, an
algorithm for endpoint selection is needed.

There are two approaches available for SOM self-training: supervised
SOM (Pateritsas et al. 2004) and un-supervised SOM (Fritzke 1994). The su-
pervised SOM self-training requires additional external data during SOM self-
training procedure. There are various algorithms available for supervised self-
training: methods based on measurement of generalization (Koikkalainen, Oja
1990; Lampinen, Kostiainen 1999), self-training associations by self
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organization (Carpenter, Grossberg 1992; Fessant et al. 2001), label propa-
gation and others (Herrmann, Ultsch 2007).

During unsupervised SOM self-training, the network status or the changes
of node weights are monitored. In addition, the representation of input data by
SOM can be analyzed. The changes of SOM node weights reflects the changes
in map structure. If the weights changes are negligible during self-training, the
SOM self-training process is terminated. However, negligible changes of the
SOM node weighs during self-training does not guarantee that the obtained
topology properly represents input data.
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Fig. 2.20. Illustration of SOM self-training results: a) 8×8 SOM after 8000
self-training iterations; b) winner neuron distance from input

The endpoint selection during self-training of SOM requires continuous
monitoring of the self-training process. It is possible to classify currently pro-
posed approaches into two types: continuous monitoring of the current SOM
during self-training process or analysis of the input data representation by the
SOM.

Using the SOM monitoring approach (results of this approach application
are shown in Figs. 2.16–2.20), the SOM self-training process is suspended,
when the changes of neuron weights become insignificant (Vegas-Azcarate et

al. 2005). The weight update of the winner neuron ∆w highly depends on the
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selected adaptive self-training rate η according to the following expression:

ωωωij (n+ 1) = ωωωij (n) + η (n) (xxx (n)−ωωωij (n)). (2.4)

The self-training rate η changes adaptively and is being estimated accord-
ingly to the following expression:

η (n) = η0e
−

n
τ , (2.5)

here η0 is the initial value of the self-training rate.
During SOM self-training process, the η decreases exponentially. If the

self-training rate changes are insignificant and η(n) ≃ η(n − 1), the further
update of the neuron weights is not reasonable. However, low value of the
self-training rate η does not mean that the SOM represents input data well.

In order to monitor the input data representation by the SOM, distance
changes between the inputxxx and the winner neuron weight vectorωωωij should be
estimated (Hulle 2000; Moreira, Fiesler 1995; Solodov, Svaiter 2000). During
such approach, the endpoint is initiated when the distance between inputs and
winner neuron weights reach their minimum d⊥(xxx) (Fig. 2.20):

d⊥(xxx) = min
ij
‖xxx−ωωωij‖. (2.6)

As an alternative to the estimation of the distance between input and neu-
ron weights, the quality of the input data clustering by a set of neurons may
be used. However, these alternative approaches require performing additional
analysis using the higher order statistical data (Gunes Kayacik et al. 2007; Her-
bert, Yao 2007).

The SOM self-training endpoint selection method, proposed in this dis-
sertation is based on the idea of monitoring the input data representation by
the SOM. During self-training the estimated value of d⊥(xxx) is compared to the
threshold θend and used to initiate the endpoint.

Fig. 2.20b represents the momentary and averaged distances between SOM
inputs and weights. It is possible to notice in Fig. 2.20b, that the θend has
a tendency to decrease. Taking into account, that d⊥(xxx) = 0.0065 was re-
ceived after 6200 iterations (Fig. 2.21) and the final value d⊥(xxx) = 0.00955
was received after 8000 iterations was higher, the self-training endpoint should
be somehow selected earlier. Therefore, there is a demand for an additional
parameter θend for threshold selection at the point, when the value of d⊥(xxx)
becomes acceptable.

In order to select an appropriate threshold θend for the endpoint, the atten-
tion must be drawn to the first cycles of the SOM self-training (see Fig. 2.22a).
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Fig. 2.21. 8×8 SOM after 6200 self-training iterations

From the Fig. 2.22 it is clear that the signal, obtained by continuously esti-
mating d⊥(xxx), has a spiking nature. However, during SOM self-training the
magnitude of the spikes decreased. The monotonic decrease of the distance
between input and SOM neuron weights can be seen also in the characteris-
tics of the averaged d⊥(xxx). In the given example, the maximum of d⊥(xxx)
was achieved at the 16th self-training iteration. The current input-to-weights
distance comparison with the maximum, achieved in the first cycles of SOM
self-training, was used to make the final decision in the threshold θend selection
phase.

To better understand tendencies of d⊥(xxx) changes, spikes of signal must
be filtered with high pass filter. For this effect can be used differentiator
Fig. 2.22b, like it has been used in Haar transform. Dynamics of d⊥(xxx) signal
change, which represent changes in SOM weights, are more clear after fil-
tration. From equations (2.6) and (2.4) it’s clear that greater distance between
neuron and input provokes significant changes in its weights. To highlight more
significant changes of d⊥(xxx) and move negative signal part to positive, it must
be raised squares Fig. 2.22c. Now in this signal it is clear, that SOM coarse
changes have been made in first 80 self-training cycles. From 100 iteration it
has started adjustments. Coarse alteration phase must be assessed by calcu-
lating its mean square root value. Square root operation is needed, because
new parameter must be the same dimension like d⊥(xxx) (to undone square op-
eration). Now SOM has new parameter – initial change ∆init equation (2.7),
where Nwind is number of samples, how much would be taken from the start
of self-training:

∆init =

√

√

√

√

1

Nwind

Nwind−1
∑

n=0

(

d⊥

n+1(xxx)− d
⊥

n(xxx)
)2
. (2.7)
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Fig. 2.22. Illustration of input-to-weights distance estimate d⊥(xxx) changes
during SOM self-training: a) d⊥(xxx) continuous estimate and it’s average

d⊥(xxx) over 200 iterations; b) d⊥(xxx) continuous estimate after
differentiation; c) squared differential signal; d) d⊥(xxx) continuous estimate

and it’s average d⊥(xxx) over 6200 iterations

To estimate θend value, in ∆init expression must be embedded coefficient
κ equation (2.8). Because if θend is assigned directly to ∆init, self-training
cycle will be stopped just after coarse weight alignment. κ marks depth of
self-training and it can vary from 1 to 0. It depends on how well SOM must
progress from initial self-training moment:

θend = κ∆init = κ

√

√

√

√

1

Nwind

Nwind−1
∑

n=0

(

d⊥

n+1(xxx)− d
⊥

n(xxx)
)2
. (2.8)

Because d⊥(xxx) signal is not stable, θend must be compared not directly
with signal although with its averaged form. Averaged signal is shown in
Fig. 2.22a and 2.22b. Then if θend < d⊥(xxx) – self-training process contin-
ues, otherwise it’s suspended.

In θend expression are two components Nwind and κ, which can be chosen
by SOM builder. Therefore, it must be tested how these parameters influence
the self-training process.

To investigate ∆init dependency on various Nwind, 4 nets 2×2, 4×4, 6×6
and 8×8 were self-trained Fig. 2.23. In Figure are shown first 500 iterations
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of d⊥(xxx) signal after differentiation and square operations. These 2 operations
were done, because, as mentioned before, there is the need to extract coarse
changes in the SOM. For each network the ∆init value was calculated with
different Nwind Table 2.4.
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Fig. 2.23. Squared d⊥(xxx) signal after differentiation for different SOM
size: a) 2× 2; b) 4× 4; c) 6× 6; d) 8× 8

Table 2.4.∆init value for various windows

size 25 50 75 100 150 200 250 300
2×2 0.4690.4690.469 0.359 0.324 0.296 0.297 0.277 0.263 0.258
4×4 0.040 0.039 0.042 0.054 0.06 0.0690.0690.069 0.067 0.064
6×6 0.0570.0570.057 0.048 0.043 0.04 0.036 0.038 0.036 0.036
8×8 0.0540.0540.054 0.045 0.04 0.036 0.032 0.035 0.033 0.032

• 2×2 structure. With Nwind = 25 ∆init has reached maximum. Be-
tween 100–200 iterations are group of spikes, which must be included
into the ∆init estimate, because they show significant changes in the
SOM Fig. 2.23a. Therefore, for Nwind = 200 ∆init = 0.297 and it is
36% less than in Nwind = 25.

• 4×4 structure. Main 2 spikes are at 99 and 178 self-training cycles
Fig. 2.23b, therefore, to assess them must be used Nwind = 200. With
this window ∆init has reached its maximum value.
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• 6×6 structure. In this case significant changes of SOM occurred in
the 15, 350 and 435 iterations Fig. 2.23c, however to evaluate them all
must be used Nwind = 450. ∆init for this window is 0.038. To use this
long window is insignificant, specially when the same value estimated
with Nwind = 200. ∆init maximum was reached with Nwind = 25.

• 8×8 structure. Despite that maximum ∆init is achieved with
Nwind = 25, near 200 iteration are 4 significant spikes, which must
be assessed Fig. 2.23d. With window Nwind = 200 ∆init is 0.035.

In 3 cases 2×2, 4×4 and 8×8 maximum value of ∆init was achieved with
Nwind = 25, yet in all structures were more SOM significant changes up to
200 self-training cycle Fig. 2.23. Therefore, by choosing to narrow Nwind,
important moments of SOM self-training can be not evaluated. To correctly
assess initial change Nwind must be used from 100 to 200 Table 2.4.
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Fig. 2.24. SOM after self-training: a) 8× 8 SOM after 811 iterations with
κ = 0.3; b) 8× 8 SOM after 3120 iterations with κ = 0.25; c) 8× 8 SOM
after 6146 iterations with κ = 0.2; d) 8× 8 SOM after 10 000 iterations

with κ = 0.15

SOM self-training process suspension of 8×8 net was tested with 4 various
κ, and self-training had stopped in 4 different development episodes:

• κ = 0.3. With this parameter θend = 0.01065 was estimated. It was
reached in 811 self-training cycle. It is clear, that SOM hasn’t reached
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regular structure, however in upper and lower right quarters weights
has started to adjust in right order.

• κ = 0.25. θend was reached in 3120 iteration and it was 0.008875.
Network is more regular, than in κ = 0.3 case, yet all SOM weights
needs more adjustment.

• κ = 0.2. Self-training process has stopped at 6146 self-training cy-
cle. Suspension parameter estimated θend = 0.0071. In this case
SOM is regular, and neurons weights are distributed in 4 groups, like
in Fig. 2.21.

• κ = 0.15. With this parameter θend has been never reached. Self-
training process was suspended, because max quantity of self-training
cycles was exceeded. Network hasn’t changed significantly in compar-
ing with 6146 self-training moment.

SOM regular was achieved with κ = 0.20, however with different input
signal (not random) higher value can be chosen. Therefore, this parameter can
be chosen from interval 0.2 ≤ κ ≤ 0.25.

This SOM self-training suspension approach is unsupervised manner, there-
fore, it must be compared with similar algorithms Fig. 2.25 (comparison was
done with 8×8 SOM). For this purpose 3 additional methods were chosen:

• Mean value of cost function (Kiang 2002) Fig. 2.25 mark 2mark 2mark 2. Suspen-
sion point is determined in beginning of Self-training by mean value of
cost function. This algorithm complexity is similar like ∆init, because
additional estimations are done in the same moment.

• η(n) ≃ η(n − 1) insignificant change of self-training ratio (Vegas-
Azcarate et al. 2005) Fig. 2.25 mark 3mark 3mark 3. SOM weights dynamic is mon-
itored in this case. If SOM weights practically doesn’t change, then
SOM self-training is suspended. This method is least complex, be-
cause no additional calculation is needed.

• Measuring SOM quality (Herbert, Yao 2007) Fig. 2.25 mark 4mark 4mark 4. This
method is based on measurement how well SOM classify input and
how each neuron represents its data like cluster. This rating is done in
each self-training cycle, therefore, it’s most calculation intense method
from this test. The suspension decision is made with some delay, be-
cause quality of SOM must be verified for various neurons with various
input vectors.

8×8 SOM self-training suspension was done by ∆init estimate in iteration
6265 Fig. 2.25 mark 1mark 1mark 1. From Fig. 2.21 it’s clear, that SOM in this point is
well self-trained. By SOM quality measurement suspension was done in 6527
iteration mark 4mark 4mark 4. It took 262 self-training cycles more than ∆init case. As
mentioned before this delay is caused by SOM quality verification. Net weights
change was insignificant in 7151 iteration mark 3mark 3mark 3, and this decision, based on
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low ∆η was made at latest in this test. Suspension point established by mean
value of cost function was on 4606 self-training moment mark 2mark 2mark 2. At this point
in SOM are some irregularities Fig. 2.19, therefore, self-training process by
this method was stopped too early.
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Fig. 2.25. Illustration of d⊥(xxx) changes at every self-training iteration with
marked self-training endpoints, obtained during experimental investigation

Like shown in Fig. 2.25, 6 smaller than 8×8 SOM structures were self-
trained Table 2.5. Form these results it’s clear that all self-training suspension
methods save some self-training iterations. Method based on SOM cluster
quality has ∽ 250 self-training cycles delay in comparing with ∆init. Suspen-
sion made by mean value of cost function was always earliest, yet from SOM
cluster quality, ∆init results and Fig. 2.16, 2.17, 2.19 is clear, that SOM in these
moments hasn’t been fully adjusted.

Table 2.5. Self-training duration for various SOM sizes

Self-training 2×2 3×3 4×4 5×5 6×6 7×7
Mean value 1301 2646 3271 4237 4475 4701

Cluster quality 1921 3119 3663 4871 5517 6415
∆init 1627 2868 3405 4622 4276 6194

∆init based self-training suspension method has shown similar results like
SOM quality measurements, even so its complexity is considerably lower. There-
fore, this estimate can be effectively used for determination of SOM conver-
gence. This method is unsupervised, therefore, it fits for applications like un-
known RF environments spectrum sensing. However some consideration of
using this method must be made. In SOM design beginning must be chosen 2
parameters equation (2.8):

• Nwind, which must be from 100 to 200;
• κ, which must be from 0.2 to 0.25.
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2.3.2. Self-training Assistant

Convergence speed and quality of SOM depends on initial conditions and self-
training samples (Kiang 2002). It is hard to change inputs samples, because
SOM must be adjusted to it. Therefore, input can be just rearranged (Kohonen
1990). More optimization options in self-training process beginning can be
achieved with self-training ratio η, because self-training speed depends on it
(2.5). η(n) depends on initial parameters η0, τ and self-training iteration there
SOM is. η(n) decreases exponentially, for slope is responsible τ and for start
point η0. To show how η(n) changes during self-training process in Fig. 2.26 it
was compared with d⊥(xxx). For this case τ = 3500 and initial η0 = 1 was cho-
sen. Up to 6000 iteration η(n) induced significant changes in the SOM. d⊥(xxx))
value also significantly dropped from initial cycles. After 6000 to 104 self-
training iteration ∆d⊥(xxx) was only 0.03 and further self-training was pointless
as it was explained in Section 2.3.1. From Fig. 2.26 it is clear that η(n) during
half self-training process doesn’t have influence to SOM adjustment. There-
fore, η(n) value must not only be adjusted before self-training beginning, yet
it must be more bonded with self-training result.
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Fig. 2.26. η slope comparison with d⊥(xxx) and d⊥(xxx)

Numerous self-training ratio adjustment algorithms like adaptation based
on the angle between gradient directions in consecutive iterations (Nawi et al.

2008), prediction of new values of η (Hwang, Li 2009), calculation of optimal
fixed value (Atanassov et al. 2008) and etc. are used in neural networks. All of
them increase computational load for self-training algorithm and in some cases
their performance can be poorer than is shown in Fig. 2.26. Therefore, there
is the need of algorithm which increases speed of SOM convergence, although
doesn’t increases complexity of algorithm.
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From Section 2.3.1 it’s clear that η(n) equation (2.5) leads SOM to con-
vergence. However in some cases, which were mentioned in this section, SOM
self-training process can be accelerated or on the contrary slowed down. De-
cision how to change self-training course must depend on self-training process
success ratio. As success ratio parameter can be chosen d⊥(xxx) or its averaged
value, as it was done in Section 2.3.1. From these assumptions can be made
coarse Algorithm 1., which assists SOM in self-training process.

Algorithm 1. Coarse SOM self-training assistant algorithm

1 Procedure: Self-training assistant

2 d⊥(xxx)← d⊥(xxx)

3 if ψ0 < d⊥(xxx)

4 train. par.← set/reset

5 …

6 train. par.← set/reset

7 else if ψ1 < d⊥(xxx) < ψ2

8 train. par.← set/reset

9 …

10 train. par.← set/reset

11 else if …

12 …

13 else

14 train. par.← train. par.

15 …

16 train. par.← train. par.

This skeleton of Algorithm 1. consists of rules, which make changes for
some self-training parameters. Decision depends on d⊥(xxx) value. If this value
satisfies one of conditions, then changes will be made, otherwise parameters
will be unchanged. For this algorithm ψ values and parameters are missing.
Parameters will be changing in various cases. ψ must serve like threshold for
algorithm to decide how well self-training process is proceeding. As base of
ψ value can be used ∆init equation (2.7), because decision about SOM self-
training progress can be made from it. For different situations ψ values can be:

• ψ0 = ∆init, SOM is far from global minimum, therefore, it need very

hard reset;
• ψ1 = 0.99∆initandψ2 = 0.75∆init, SOM made some progress, how-

ever results are unsuitable, it need hard reset;
• ψ3 = 0.749∆initandψ4 = 0.5∆init, SOM is in the middle of self-

training, therefore, it need soft changes to accelerate self-training;
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• ψ5 = 0.49∆initandψ6 = 0.3∆init, SOM is near final convergence,
network need just light corrections.

Now SOM possible self-training process situations are defined, therefore,
there is need for parameters, which would be changed. Efficient way to con-
trol self-training process is to control η(n). As was mentioned in this section
to influence η(n) must be changed η0, τ or self-training iteration number n.
Therefore, all these parameters must be controlled by assisting algorithm. Al-
though if after few thousand self-training cycles SOM signal d⊥(xxx) rates just
ψ0 and ψ1–ψ2 zones, change of η(n) will not be enough. Because it’s possible,
that network weights were tuned in wrong direction and only with η(n) they
wouldn’t be rearranged. Therefore, SOM weights resets in assistant algorithm
for these 2 self-training process situations must be provided.

Table 2.6. Self-training ratio slope dependency on τ

τ 1000 1500 2000 2500 3000 3500 4000 4500
iterations 3546 5185 6913 8642 10371 12100 13828 15557

To correctly choose values of η0 and τ , which are regulated in assistant
algorithm, first must be defined how η(n) changes when parameters values
varies. In Tables 2.6 and 2.7 is shown how much η(l) self-training iterations
network needs to reach 0.001 mark, with various η0 and τ values. This point
of η(n) is chosen, because after this mark SOM weights will not change con-
siderably. And further self-training would be not purposeful.

In Table 2.6 are shown results of slope dependency from τ . In this case
η0 = 1. From it is clear that higher τ value provokes longer η(n) slope. Yet
too high and so too low τ values can cause overfitting or SOM will suffer
from lack of effective self-training iterations. How is shown in Fig. 2.20 even
8×8 network for convergence take less than 104 self-training cycles. There-
fore, using higher τ values than 3000 can cause unwanted oscillations. Low
value of τ as 1000 can be used only for small network structures like 2×2, be-
cause for larger SOM 3546 effective self-training cycles is not enough. From
these assumptions for assistant algorithm situations control τ must be chosen
in interval from 1000 to 3000.

Table 2.7. η slope dependency on η0

η0 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
iterations 10036 9835 9604 9330 8995 8563 7954 6912

To calculate these Table 2.7 results, τ was chosen 3000. In table isn’t
shown self-training iteration quantity, which was needed to achieve 0.001 with
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η0 = 1, because it was shown in Table 2.6 and it was 10371. η(n) endpoint
is proportional to η0, therefore, these initial ratios can be arranged in 4 equal
groups. From these groups η0 will be chosen for assistant algorithms situa-
tions.

As mentioned in this section, in situations there are a need of hard and
very hard resets, only manipulation of η(n) is not enough. Therefore, for as-
sistant algorithm must be provided weight full re-initiation in very hard and
partial in hard cases.

Algorithm 2. SOM self-training assistant algorithm

1 Procedure:Self-training assistant

2 d⊥(xxx))← d⊥(xxx))

3 if ∆init < d⊥(xxx))

4 τ ← 3000

5 η0 ← 1

6 n← 1

7 ωωω ← reset

8 else if 0.99∆init < d⊥(xxx)) < 0.75∆init

9 τ ← 2500

10 η0 ← 0.7

11 n← 1

12 ωωω ← ωωω +ωωω ∗ 0.5rand

13 else if 0.749∆init < d⊥(xxx)) < 0.5∆init

14 τ ← 2000

15 η0 ← 0.3

16 n← 1

17 else if 0.49∆init < d⊥(xxx)) < 0.3∆init

18 τ ← 1500

19 η0 ← 0.1

20 n← 1

21 else

22 τ ← τ

23 η0 ← η0

Assistant Algorithm 2. consist of 5 situations:
• Unsatisfactory SOM. In this situation network is dangerously far from

representing given input vectors sets, therefore, it must be fully re-
initiated. τ and η0 are fixed in to values, which ensure more than 104

cycles of SOM evolution. Network weights reassigned in to new initial
values, because older weights don’t represent input entirely.
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• Regressive SOM. Network improvement is insignificant, therefore, it
must be pushed out of this situation. For this purpose SOM weights
will be not re-initiated like in previous state, although each neuron
weight gets some random value. This operation is done by multiplying
half weight value of random number, which vary from 0 to 1 and has
uniform distribution. τ and η0 combination helps SOM to self-train up
to 8000 iterations.

• Progressive SOM. Neurons weights started arranging in to right direc-
tion and they don’t need any readjustment. For this situation stable
weight change must be ensured, therefore, these τ and η0 values are
chosen. This set of parameters lets SOM to self-train 5700 iterations.
Higher self-training cycle can cause unnecessary weight oscillations.

• Satisfying performance of SOM. Network is going to final self-training
stage. For this moment big changes in SOM are not necessary. Net-
work needs max. few thousand self-training cycles for convergence,
therefore, τ and η0 is fixed to these low values.

• Stable SOM. In this state network is near final convergence, therefore,
any changes would be more noxious than positive.

In all assistant situations, except the last one, point of η(n) was reset
n ← 1. This readjustment was done for that self-training ratio would have
predictable slope. Otherwise after more than 2000 iterations τ and η0 change
would not have significant influence to self-training process.

To run this assistant self-training algorithm in each iteration will be inap-
propriate. Because, just after initiation stage, algorithm would change param-
eters of SOM and network would not have chance to adapt. Therefore, this
revision of network self-training quality must be made each few hundred or
even each thousand iteration. Then SOM will have enough iterations to adjust
its weights in new conditions, and decision about its progress will be more
accurate.

To investigate SOM self-training ratio dependency on frequency of algo-
rithm interventions, 8×8 network was self-trained with various periods of as-
sistant checks Fig. 2.27. Interventions period was changed from 200 to 1000.
When assistant was used in each 200 self-training iteration, two adjustments
were done. First adjustment was done in the first iteration of algorithm, and η0
with τ was fixed to 0.3 and 2000 accordingly. By d⊥(xxx)) algorithm decided,
that SOM is in progressive state. Second adjustment was done in 1800 iter-
ation and in this case network self-training reached satisfying results. After
3751 iteration from self-training beginning d⊥(xxx)) reached 0.2∆init mark, and
self-training process was suspended. At 300 check periodicity, self-training
parameters were adjusted 18 times. At each adjustment assistant decided from
d⊥(xxx)) that SOM has satisfying self-training performance and parameters were
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Fig. 2.27. Self-training ratio dependency from assistant interventions

set η0 = 0.1, τ = 1500. Yet with these all alterations SOM hasn’t reached
endpoint even after 104 iterations. Network convergence has failed, because
η(n) readjustment was to frequent. In 400, 500 and 600 cases self-training pa-
rameters adjusted just one time. Assisting algorithm in all situations decided
that self-training process is satisfying, therefore, parameters were adjusted ac-
cordingly. Self-training process for these 3 cases was suspended around 3780
iteration. When assistant checks periodicity were 700 and 900, adjustments
were similar like in previous 3 situations, however self-training took 2540 it-
erations more. In 800 periodicity checks case no adjustments for self-training
process were done. Assistant algorithm decided, that SOM self-training is
in stable condition, therefore, no corrections were required. Self-raining pro-
cess was suspended in 6320 iteration. With rarest checks algorithm changed
self-training process two times. One was after first revision (1000 iteration),
another after 5000 self-training iteration. In both adjustments were decided,
that SOM self-training process performance is satisfying and parameters were
set η0 = 0.1, τ = 1500. In this case self-training suspended in 6320 iteration.

From all results of assistant periodicity checks can be made decision, that
too frequent revisions like 200 and 300 can make SOM self-training process
unstable. Especially it was clear in 300 period case. Longer periods between
revisions than 700 were ineffective, because self-training process was 2540
iterations longer than in 400, 500 and 600 cases. Therefore, assistant algorithm
must be used for each 400–600 self-training iteration.

Assistant was tested with 4 SOM structures, to investigate how well algo-
rithm helps self-train network (Fig. 2.28). In Table 2.8 is shown how much
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Fig. 2.28. SOM structures self-trained with assistant a) 2×2; b) 4×4;
c) 6×6; d) 8×8

iterations were used to self-train SOM with assistant and without it. Periodic-
ity of algorithm checks was set to 500. Self-training process was suspended,
when d⊥(xxx)) reached 0.2∆init value. Revisions of self-training process for
small structure 2×2 increased self-training process iteration quantity by 134,
however SOM has fully adjusted its weights Fig. 2.28a. Assistant algorithm
showed better results with larger structures 4×4, 6×6, 8×8. Self-training of
4×4 SOM was faster by 16 iterations than it was for 2×2 network with as-
sistant. Self-training process with revisions for 4×4, 6×6 and 8×8 structures
was shorter by ≃ 1500–2000 iterations. From Fig. 2.28bcd it’s clear, that with
assistant these quantities are enough for SOMs convergence.

Table 2.8. Self-training duration for various SOM sizes

Self-training 2×2 4×4 6×6 8×8
∆init 1627 3405 4267 6194

With assistant 1761 1745 3282 3783

From all results it is clear that assistant algorithm helps to speed up self-
training process. Stable adjustments of SOM self-training can be achieved,
when revisions periodicity is from 400 to 600 iterations. As optimization pa-
rameter assistant algorithm can use d⊥(xxx)). In algorithm ranges for this value
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can be determinate by ∆init. Assistant is ineffective with small networks like
2×2, therefore, it must be used with larger SOMs.

2.3.3. Self Organizing Map with Inner Weights

SOM can be used efficiently for decision making in unknown radio environ-
ments. Yet main disadvantage of these networks is self-training process, spe-
cially for larger structures. Because by general rule self-training iteration quan-
tity must be at least 500 times number of neurons in network. For example 6×6
SOM must be self-trained for 1.8 · 104 iterations.

In Sections 2.3.1 and 2.3.2 were researched opportunities to optimize and
accelerate self-training process. With endpoint detection self-training phase
took 4276 cycles for 6×6 network structure, and it were 119 iterations for one
neuron. With assistant self-training process for one neuron took 92 cycles for
similar structure (Table 2.8). Even with these improvements for larger struc-
tures of SOM, weight adjustment can take too much computational cycles.

Another limiting factors of SOM are η(n) and neighborhood functions.
These functions decrease exponentially. And to efficiently implement them
many multiplication operations or large quantity of memory must be used.
Both implementations require more additional resources from hardware. There-
fore, in realization of SOM for real-time applications, like radio spectrum sens-
ing, there are problems of latency and implementation complexity.

N1

N2 N3

N4

Nc

d1(xxx)

d2(xxx) d3(xxx)

d4(xxx)
dc(xxx)

x1(n)xl(n)

Fig. 2.29. SOM inner weights direction determination

These problems challenge to search and develop different network struc-
ture than was mentioned in Sections 1.5.4, 1.5.5. Key task of this research is
to find different neurons interactions than neighborhood functions. Instead of
this function can be used weights between neurons Fig. 2.29. These weights
can serve as link between closest neurons of network. By this connection one
neuron output Y has influence to another. If one neuron has many relationships
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with other neurons it can be overwhelmed. Therefore, with large quantity of
connections is a great risk. In consideration of this danger, in beginning will
be used just few inner weights ωinn.

In Fig. 2.30 network with four inner weights is shown. By these connec-
tions center neuron is connected with four neighbors, which are in the outer
ring. In this network must be determined influence direction. Inner weights
there are pointed to the center or from the center. In the first case four weighted
neurons outputs would be used in center neuron output calculation. Otherwise
center neuron output can be used in outer ring neurons calculations. In the case
when weights are pointed from center, one neuron can have too great influence
to other. Therefore, both influence directions must be tested.

Table 2.9. Neurons shots dependency on weights direction

Weight direction Center 1 2 3 4
To the center 89 218 227 230 236

From the center 393 3 21 570 13
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Fig. 2.30. SOM with inner weights pointed a) to center; b) from center

Tests of both structures are done as in Sections 2.3.1 and 2.3.2. During
tests was looked how networks can preserve regular structure, when inputs are
random sequences. In Fig. 2.30 are shown SOM structures after 1000 self-
training iterations and in Table 2.9 is represented quantity of neuron wins.
From results it’s clear that better performance was achieved with structure,
when weights were pointed to center. In this case SOM weights are distributed
correctly. Center neuron is in the center and others are in four angles. In com-
petition process more wins have outer ring neurons. They had more than 2
times higher success ratio than center. When weights were pointed to outer
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ring, mostly 2 neurons were updated. For another 3 neurons change was in-
significant. This situation emerged because for these neurons quantity of com-
petition wins was just 3, 21 and 13. From Table 2.9 and Fig. 2.30 it is obvious,
that topology when relations are forced from center is unstable.

From test it is found that SOM inner weights direction must be pointed in
to the center. Now more neurons can be added into this structure. Lets take into
network 4 more neurons. They marked in Fig. 2.31 by indexes: N11, N12, N13,
N14. These neurons must be connected with others components of network.
Center neuron can’t have more connections, because it would have too signifi-
cant influence from neighbors. And it can become inactive. Therefore, these 4
additional neurons have relations not with center neuron, although with outer
ring neurons. New components of network are positioned between outer neu-
rons (Fig. 2.31). This spacing of nodes in structure dictates, that each neuron
must have connections with its 2 neighbors. Therefore, relations will be:

• N11 with N1 and N2;
• N12 with N2 and N3;
• N13 with N3 and N4;
• N14 with N4 and N1.

Direction of these connections will be as same as was found in previous
research. Weights will be pointed to inward of network. Each additional set
of 4 neurons Nx1, Nx2, Nx3, Nx4 will be positioned and connected to network
likewise.

N1

N2 N3

N4

NcN11

N12

N13

N14N21

N22 N23

N24

x1(n)xl(n)

Fig. 2.31. SOM with inner weights structure
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Network will consist of these layers:
• center neuron;
• closest to center neurons – they will have strong connection to center

node;
• external neurons – each new layer will have relations with previous

layer.

Algorithm 3. SOMwith inner weights output calculation

1 Procedure: SOM output calculation and winner determination

2 while external layers >0

3 for each neuron in layer

4 Calculate YYY

5 if this distance is lower than previous winner

6 declare temporary Winner

7 for each closest to center neuron

8 Calculate YYY

9 if this distance is lower than previous winner

10 declare temporary Winner

11 Calculate center neuron Y

12 if this distance is lowest

13 declare Winner N⊥

14 else

15 Winner N⊥ temporary Winner

In Fig. 2.31 is shown final SOM with inner weights structure. From it
can be described network output estimation Algorithm 3.. All neurons inner
weights are directed to inward of network. Therefore, outputs of neurons must
be calculated from last external layer Algorithm 3.. Because in neuron output
calculation ere included neighboring neurons outputs:

||xxx−ωωωij ||, (2.9)

||xxx−ωωωij ||+ ||YYY−ωωωinn||. (2.10)

And estimation of these outputs must be started from neurons which don’t
have pointed connections to them equation (2.9). After each output estimation,
this value is compared with temporary winner distance. If it’s lower, then new
temporary winner is declared. After external layers outputs are calculated,
closest to center layer can be calculated. In this stage output is calculated just
for 4 neurons. Nearest external layer outputs are used in estimation. Center
neuron will be calculated last, because closest to center layer outputs are used
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for its estimation. In this last stage can be identified final winner neuron. If
Center neuron output is lower than temporary winner, then center neuron is
declared as final winner. Else temporary winner gets this title.

Self-training process of this structure is different than original SOM struc-
tures. In self-training process must be adopted not only input weights, although
inner relations. During this SOM structure self-training is used main princi-
pal, that winner input weights are updated. Inner relations from winner node
perspective are considered as input weights. Therefore, how is shown in Al-
gorithm 4., depending on which neuron wins, quantity of updated weights can
vary. When center neuron is the winner, 4 inner and input weights are updated.
If winner is in the last external layer only input weights are changed. In other
cases 2 inner and input weights are updated. Inner weights change is slightly
different than input weights:

ωωωinn(n+ 1) = ωωωinn(n) + η(n)(YYY(n)−ωωωinn(n)). (2.11)

These weights adopted not to SOM input, although to neighboring neuron
output. Other self-training parameters like self-training ratio can be used as
same as in simple SOM structure.

Algorithm 4. SOM with inner weights winner takes all self-training

1 Procedure: Self-training

2 if Winner is center neuron

3 Center neuron input weights← update

4 Inner weights form N1, N2, N3, N4← update

5 else if Winner is in first layer from center

6 Winner neuron input weights← update

7 Inner weights form neighbors← update

8 else if Winner is in external layer

9 Winner neuron input weights← update

10 Inner weights form neighbors← update

11 else Winner is in external last layer

12 Winner neuron input weights← update

Four SOM structures with inner weights were tested Fig. 2.32. Test was
used same as in this section beginning and Sections 2.3.1, 2.3.2. Quantity of
external layers was different between these structure. It was changed from 1 to
4. In Table 2.10 is shown quantity of self-training cycles, which were used to
self-train network. From table it is obvious, that to self-train network were used
significantly less self-training iterations than marks general rule. In structure
with 1 and 2 external layers were used just 21 and 23 self-training iterations
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for 1 neuron. In larger network with 3 external layers were used 60 cycles for
1 neuron. In the last structure for 1 node were used 476 self-training cycles,
however it hasn’t achieved satisfactory result.
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Fig. 2.32. SOM structure after self-training, when used: a) 1 external layer;
b) 2 external layers; 3) 3 external layers; d) 4 external layers

Table 2.10. Self-training duration for various SOM structures

SOM structure 1 ex. layer 2 ex. layers 3 ex. layers 4 ex. layers
Self-training cycles 196 304 1026 10000

This network has a high self-training speed, specially in first 2 cases. How-
ever quality of self-training results must be determined before making final
conclusions about this structure:

• SOM with 1 external layer Fig. 2.32a. In this case all neurons take
their provided positions, therefore, can be concluded that this network
is self-trained well.

• SOM with 2 external layers Fig. 2.32b. With additional external layer
network keeps its structure. Just closest to center layer is pushed more
to center.

• SOM with 3 external layers Fig. 2.32c. In this case network doesn’t
achieved full structural integrity. Few neurons in last external layer are
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slightly shifted form provided positions. Yet other neurons took their
places.

• SOM with 4 external layers Fig. 2.32d. This network even after 104

self-training cycles doesn’t have regular structure. Just center and
neighboring neurons took close positions to appointed spaces.

SOM structure with inner relations can significantly increase speed of self-
training process. This achievement can reduce latency and complexity of net-
work self-training. With this structure self-training ratio η(n) can be imple-
mented with lookup table, because in memory can be stored just few hundreds,
although not thousands, values of exponent function. This structure has main
disadvantage – with larger structures it’s unstable. Therefore, it can’t be used
for task where high dimensionality is needed.

2.4. Self-training Implementation in Field
Programmable Gate Array

SOM network in spectrum sensing system (Fig. 2.1) is marked as a decision
maker. Its inputs are quadrature features or wavelets transform outputs. From
these spectrum features SOM makes decision about spectrum occupancy.

CLK

DataIN

Dataaddr
DataLoad

SomEN

TrainEN

RESET

NEIGHBORHOOD

SOM
BLOCK

BLOCK

BLOCK

FSM

SELF-TRAIN

OUTPUT
ESTIMATION

WINNER
DETERMINATION

OUTr

WinOUT

Winaddr

Fig. 2.33. SOM implementation based on FSM structure

This implementation has 7 inputs and 3 outputs. Inputs can be divided in
3 main groups. One input is responsible for block synchronization CLK. Sec-
ond group consist of binary signals SomEN , TrainEN and RESET . These
signals are used for SOM block mode setting:

• SomEN – this signal enables SOM. If it is logical 0, network is inac-
tive;
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• TrainEN – it enables self-training mode in network;
• RESET – global block reset. All components will be set to initial

state after it.
Third group consist of DataIN , Dataaddr and DataLoad signals. This

group is used to load input vector:
• DataIN – input vector;
• Dataaddr – input RAM address signal;
• DataLoad – data load bit signal. If this signal is set to logical 1, then

input vector can be loaded to RAM.
SOM block has 3 outputs:
• OUTr – if this bit signal is logical 1, then SOM output is ready for

reading;
• WinOUT – winner distance from input;
• Winaddr – this signal shows position of winner neuron.

This network structure consist of SOM block finite-state machine (FSM)
and 4 main blocks:

• output estimation block Fig. 2.34, it makes comparison between input
and weights vectors;

• self-train block is responsible for weights update, which is made to
winner neuron and its neighbors Fig. 2.38;

• winner determination Fig. 2.35, this block finds winner neuron from
estimated distance vector;

• neighborhood Fig. 2.36, this block sets neighborhood bit signal ac-
cording to winner position in network.

SOM block FSM is responsible for data exchange between blocks media-
tion and SOM modes setting. Main inputs of this block are SomEN , TrainEN ,
RESET and DataLoad. According to these signals FSM sets SOM modes:

• Global RESET. It’s active, when RESET signal is set to 1. In this
mode reset is passed to all RAM blocks and state registers.

• Initialization. This condition is activated afterRESET signal
level changes form 1 to 0. In this mode initial weights are set, by filing
weight RAM with random numbers (Fig. 2.38).

• Output calculation. This mode is activated, when TrainEN

signal is logical 1 and others is 0. In this condition just output estima-
tion and winner determination blocks are active.

• Self-train. To this condition SOM is set by FSM, when TrainEN

is logical 1. In this mode all SOM blocks are active, because all parts
are needed in self-training process.

• Inactive. When TrainEN is logical 0, all other SOM conditions
except global RESET are unavailable.
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Output estimation block, as mentioned in this section, compares input and
weight vectors (Fig. 2.34). This block is controlled by FSM too. First mode is
idle. This mode is active, when SomEN is logical 0, after RESET and be-
fore data is loaded to SOM. idle is initial condition of FSM. Another mode
is Data_Load. In this case from outside this block is enabled Input and or
Weight RAMs. All operations in block are halted, until new vectors is loaded to
memory. During Data_Load mode all internal address generators are reini-
tialized. When RAMs are released FSM starts third output calculation mode.

��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������

��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������

�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������

�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������

�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������

�����������������������������������������������������
�����������������������������������������������������
�����������������������������������������������������
�����������������������������������������������������
�����������������������������������������������������
�����������������������������������������������������
�����������������������������������������������������
�����������������������������������������������������
�����������������������������������������������������
�����������������������������������������������������
�����������������������������������������������������

�������������������������������������������
�������������������������������������������
�������������������������������������������
�������������������������������������������
�������������������������������������������
�������������������������������������������
�������������������������������������������
�������������������������������������������
�������������������������������������������
�������������������������������������������
�������������������������������������������

�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������
�����������������������������������������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

ωdata

ωwEN

ωaddr

ωEN

idata
iwEN

iaddr
iEN

ωadEN
ωadr

iadEN

iadr

oadEN

oadr

oEN

oaddr

FSMr

FSMt

ctrl

odata
owEN

oaddr
oEN

OUT

rdy

Weight

data

data

data

RAM

RAM

RAM

Input

weight

addr. gen.

addr. gen.

addr. gen.
input

output

C

ACC

FSM

FSM
Control

Output

Output
Calculation

OUTPUT ESTIMATION
BLOCK

10

Fig. 2.34. SOM output estimation block implementation in FPGA

Third mode is called Manhattan. This stage is used for Manhattan dis-
tance calculation. This distance is more cost efficient than Euclidean, because
Manhattan doesn’t uses square and square root operations, which use important
resources and have long latency. To implement Manhattan estimation, compar-
ison between operands must be made before each subtraction. In order to get
positive distance lower value must be subtracted from greater. This difference
is accumulated and divided in to ACC accumulator. To calculate distance for
neuron, weight waddr and input iaddr addresses are incremented, until input
vector boundary is reached. Then output_save FSM mode is initialized, in
which accumulated distance is passed to output RAM. After output_save
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begins Next_output mode, in which Input addr. gen. is reseted and oaddr
is incremented for next neuron output calculation. And this Manhattan dis-
tance calculation is cycled, until weight address boundary is reached. When
all outputs are calculated FSM goes to idle mode, in which rdy output signal
is set to logical 1. This change can be detected by outer logic. SOM output
can be read from RAM by using oEN , oaddr and OUT signals. To calculate
9 neurons outputs by using this implementation were used 189 clock cycles,
62 slice registers, 153 logical units and 3×18 kb block RAMs.

To implement SOM output calculation with inner weights (Fig. 2.31) into
the structure (Fig. 2.34) must be added 2 RAMs and 2 address generators,
which will be used for inner weights and temporary output storage. In FSM
must be added one mode, which will be started after Manhattan. In new state
additional distances to neuron output sum will be added. This modification
for 9 neurons structure will use additional 42 clock cycles, 14 slice registers,
21 logical unit and 2×18 kb block RAMs.

�
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winaddr

C C

C
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D

Dold winner

New data rotate
101
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101

Fig. 2.35. SOM winner neuron determination block implemetatin in FPGA

Winner determination block is activated by main FSM after SOM output
estimation Fig. 2.35. Winner is found from output vector. When EN is logical
1, New_data is presented for block. This output vector sample is compered
to Old_winner value. If new value is lower than older, New_data is declared
as winner. And then value is passed to state register. Winner neuron address is
marked in winaddr signal by bit rotation. If Old_winner is 2 neuron and new
winner is 5, rotation is made by 3 bits. Bit length of winaddr signal is equal
to neuron quantity. Therefore, if in network are 9 neurons, then winaddr signal
can be 000010000. Winner determination is small block and for 9 neuron
comparison it would use 22 clock cycle, 31 slice registers and 46 logical units.
When all samples of output vector ae compared main FSM enables neighbor-
hood block.

In neighborhood block winaddr signal is converted to neig (Fig. 2.36).
neig signal is used in self-training process. By it winner neuron neighbors are
set. Block output signal bit length is 2 times longer than input, because for
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Fig. 2.36. SOM neighborhood block implementation in FPGA

each neuron are used 2 bits. These bits mark neuron neighborhood to winner
neuron:

• 00 – not related with winner neuron;
• 01 – distant winner neighbor;
• 10 – close winner neighbor;
• 11 – winner neuron.

In Figure is shown neighborhood example, in which just closest neighbors
are used. Then 32 bit neig signal for this situation will be:

00’00’00’00 | 10’10’10’00 | 10’11’10’00 | 10’10’10’00.

00

00

00

00000000

1010

10

10

10

10

10 10

11

Fig. 2.37. SOM neurons neighborhood example

To prepare this (Fig. 2.37) neig signal were used 6 clock cycles, 171 slice
registers and 228 logical units. For winner takes all self-training strategy just
wining neuron is marked in neig bit signal. Therefore, for SOMs, which update
just one winner neuron, neighborhood block is unnecessary.

Generated neig signal is passed to self-train block. Self-train block is sim-
ilar by structure and FSM modes to output calculation block. Main differences
in structure are:

• less memory blocks;
• additional self-training ratio lookup table and random generator;
• different calculation engine.

To update SOM weights just input and old weight vectors are needed.
Therefore, self-train block uses one RAM less, than output estimation. Old
and new weights use same RAM, because weight calculation makes adequate
delay for reading old and writing new values.



78 2. SPECTRUM SENSING METHODS THEORETICAL RESEARCHES

��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������

��������������������������������������������������������������
��������������������������������������������������������������
��������������������������������������������������������������
��������������������������������������������������������������
��������������������������������������������������������������
��������������������������������������������������������������

��������������������������������������������������������������
��������������������������������������������������������������
��������������������������������������������������������������
��������������������������������������������������������������
��������������������������������������������������������������
��������������������������������������������������������������

�������������������������������������������������������
�������������������������������������������������������
�������������������������������������������������������
�������������������������������������������������������
�������������������������������������������������������
�������������������������������������������������������
�������������������������������������������������������
�������������������������������������������������������
�������������������������������������������������������
�������������������������������������������������������
�������������������������������������������������������
�������������������������������������������������������
�������������������������������������������������������
�������������������������������������������������������
�������������������������������������������������������

����������������������������������������������������
����������������������������������������������������
����������������������������������������������������
����������������������������������������������������
����������������������������������������������������
����������������������������������������������������
����������������������������������������������������
����������������������������������������������������
����������������������������������������������������
����������������������������������������������������
����������������������������������������������������
����������������������������������������������������
����������������������������������������������������
����������������������������������������������������

 

���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������

��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������

���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������
���������������������������������������������

rdata

idata
iEN

iw
iaddr

neig

ωade
ωadr

iadEN

iadr

ωEN

ωaddr

FSMr

FSMt

newω

ωadd

ωw

ωEN

ω

rdy

Rand
gen.

Input

data

data

RAM

input addr.

gen.

gen.

weight addr.

C

Lookuptable
table

FSM
FSMControl

Weight

Weight

SELF-TRAIN BLOCK

Fig. 2.38. SOM self-training block implementation in FPGA

Random generator is enabled once for initial weight load in to weight
RAM. Generator is activated, when Global RESET mode is active in SOM.
During this mode wadEN and rEN is set to logical 1, until weight RAM is
filed with initial random weights.

Another important component is self-training ratio η(n) lookup table. Self-
training ration is exponentially decreasing function equation (2.5), therefore,
for implementation of this function are used many FPGA resources. If imple-
mentation is made by multiplication operations 28 DSP slices are needed. If
it is implemented by Lookup table RAM is needed to store η(n) values. To
store 104 η(n) values with 16 bits resolution 10×18 kb bock RAMs will be
used. With greater accuracy or greater η(n) quantity proportionally increases
demand of block RAM. Lookup table is less resources demanding than mul-
tiplication operations, therefore, table approach is chosen for η(n) function
implementation.

For weight update must be used one multiplication operation. This oper-
ation is used to multiply self-training ratio with difference between input and
weight. Then with this multiplication result old weight value is updated and
passed to RAM for storing.

Self-train block FSM has some differences in comparing with output esti-
mation too:

• idle – in this mode self-train block stays until TrainEN is logical 0;
• data_Load – just input vector can be loaded in to block;
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• Manhattan mode is changed by weight_update, this mode la-
tency is lower, because operation is done just with winner weights and
its neighbors;

• weight_save – Ww is set to logical 1 for weight record;
• Next_weight – this weight update is cycled until weight vector

boundary is reached.
To update 9 weights with this structure are used 201 clock cycles, 59 slice

registers, 174 logical units, 2 DSP slice and 2×18 kb block RAMs.
As in output estimation block to implement inner weight update must be

added 2 RAMs and 2 address generators for additional weights and outputs.
Additional FSM mode for inner weights update must be added too. This mode
will be started after input weight vector boundary is reached. This modifica-
tion for 9 neurons weights update uses additional 247 clock cycles, 19 slice
registers, 24 logical unit and 2×18 kb block RAMs.

In Sections 2.3.1 and 2.3.2 additional improvements to SOM, which shorten
self-training period, were researched. First improvement was self-training pro-
cess endtpoint tracking. This tracker implementation is shown in Fig. 2.39.
It is used externally from SOM main structure Fig. 2.33. Tracker controls
TrainEN signal. By default this signal is set to logical 1, until self-training
process endpoint is reached. Tracker input is SOM winner neuron distance
from output WinOUT . To save FPGA resources input signal processing chain
is optimized as in Manhattan distance calculation. Then multiplication and
square root operations are saved (equation (2.7)). Processed signal is accu-
mulated in ACC. Accumulator output is bitwise shifted to implement division.
Counter sets set register output, whenNwind is reached. Then in register output
is set self-training stop criteria. Stop criteria is compared with input average
value, which is calculated in lower part of structure. If AV GIN value be-
comes lower than stop, than EN signal will be set to logical 0. This tracker
uses 113 slice registers, 217 logical units and 1×18 kb block RAM. Latency of
this block mostly depends on Nwind.

Another self-training process improvement must be embedded in to self-
training block FSM Fig. 2.38. Assistant must be in block control chain, be-
cause it adjusts self-training process. For decision making assistant must have
information about self-training process progress. Therefore, outputs AvgIN
and stop from tracker must be added in to self-train block inputs. These 2 in-
puts in FSM Assistant mode will periodically control multiplexer. This
multiplexer will be switched in to conditions, which are same as in Algo-
rithm 2.. During these 5 conditions in most cases lookup table address will
be changed. If self-training process is unsuccessful, some random value for
SOM weights will be added. This SOM self-train block change will use addi-
tional 25 slice registers and 37 logical units.
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Fig. 2.39. SOM self-training process endpoint tracker implementation in
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Table 2.11. FPGA resource utilization by SOM modifications

SOM modification
Slice

registers
LUTs

DSP
slice

Block
RAM

Latency
cycles

8000 self-train iterations 344 624 2 14 5704000
With endpoint detection 405 654 2 9 2523105

With assistant 431 693 2 7 1298280
With inner weights 383 675 2 6 175951

In Table 2.11 are four SOMs modifications, which are rated by self-training
latency. Most delay have regular 16 neuron structure with rectangular neigh-
borhood function. It used 5704000 clock cycles for 8000 self-training iter-
ations. If this SOM structure is synchronized with 50 MHz clock, for self-
training it will use 114.08 ms. 18 kb block RAMs mostly are used by regular
structure too, because more self-train ratio values must be stored in lookup ta-
ble then in others SOMs. When endpoint detector was added to SOM structure,
self-training delay was shorten more than 2 times and self-training process took
50,46 ms. Self-training endpoint detection used more slice registers and log-
ical units, however it helped to save 5×18 kb block RAMs. With assistant to
self-train 16 neuron SOM network used 25,97 ms,. And assistant used just 7
block RAMs, because it needed even less self-training ratio values in lookup
table than previous modification. Yet this improvement used 87 slice regis-
ters and 69 logical units more than regular SOM. SOM with inner weights has
lowest self-training delay. To self-train SOM with 1 external layer were used
3.5 ms. Block RAM utilization by this structure was lowest too. With inner
weights structure used 39 slice registers and 51 logic unit more than regular
SOM network.
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All SOM improvements helped to significantly shorten network self-training
delay. With inner weights self-training latency was 32 times shorter than in
regular SOM structure. In last modification block RAM was utilized more
efficiently too. In Zynq 7020 SoC can be implemented more than 40 par-
allel SOMs with inner weights, when in regular network case can be imple-
mented 2 times less. Other two SOM modifications save self-training time and
block RAM too, however they are not such cost efficient as network with inner
weights.

2.5. Conclusions of Chapter 2

1. The modification of the signal spectrum variance estimation formula
decreases the total latency, received in the feature extraction phase and
can be successfully used as a feature vector for the spectrum sensor.

2. The implementation of Haar wavelet transform, which can be used as
a feature vector for the spectrum sensor, is three times more efficient
comparing to Daubechies and Simlet wavelet transforms. In addition,
near 15% FPGA resources can be save by removing the hHL signal
from feature extraction algorithm, keeping the same primary user sig-
nal detection rate.

3. An algorithm for SOM self-training endpoint selection, proposed in
this dissertation, may efficiently stop the self-training process adap-
tively, ensuring the required SOM lattice structure organization and
less number of required iterations, comparing to the methods, pro-
posed in literature.

4. The SOM training assistant, proposed in this dissertation, helps to
shorten self-training duration up to∼ 50% in comparing with endpoint
selection algorithm. However assistant algorithm is less efficient with
small SOM structures like 2×2 than endpoint detection algorithm.

5. The implementation efficiency of the SOM self-training algorithm can
be increased by adding additional inner weights for the neurons in the
lattice during SOM self-training process. This modification decreases
up to 2.3 times memory cells used by network in FPGA based embed-
ded systems, in comparing to memory required for methods, proposed
in literature.





3
Spectrum Sensing Methods

Experimental Research

In this chapter the experimental setup and results of experimental investiga-
tion are presented. The Experimental tests were performed in order to test the
performance of the spectrum sensors when various alternative signal spectrum
energy based feature vectors are used as an input to the detection system. In
addition, a spectrum sensors based on the self-organizing map with different
topology, lattice size and self-training algorithm modifications are tested ex-
perimentally. The experimental tests were performed in order to propose the
most reliable features for spectrum sensor and to propose the most efficient
structure and self-training algorithm for the implementation of the SOM based
spectrum sensor in FPGA based embedded system.

The results of experiments, presented in this chapter are published in five
papers (Stašionis, Serackis 2013; Stašionis, Serackis 2014; Serackis, Stašio-
nis 2014; Stašionis, Serackis 2015a; Stašionis, Serackis 2015b) and presented
at four international conferences (ELECTRONICS’2013; EUROCON’2013;
NDES’2014 and EUROCON’2015).

3.1. Experimental Setup

The experimental tests were performed using the real radio signal recordings.
The most of the tests were performed in offline mode, when the same previ-
ously recorded data was sent to embedded system with various configurations,

83
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Fig. 3.1. RF spectrum record with center frequency FC = 778MHz,
bandwith BW= 16MHz

with different feature extraction methods, different decision threshold selection
techniques and their modifications. In addition, the spectrum sensor prototype
was tested in online mode, when the radio spectrum was analyzed during con-
tinuous real-time sensing experiments in three different public areas.

3.1.1. Preparation of Experimental Data Records

To objectively test spectrum detection capabilities of various methods, these
methods must be tested with four most common signal types in radio environ-
ment:

• wide-band (Fig. 3.1);
• narrow-band (Fig. 3.2);
• frequency hoping (Fig. 3.2);
• burst (Fig. 3.2).

In first example is shown record Fig. 3.1, which is taken with center fre-
quency FC = 778MHz. In this record is 8 MHz bandwidth DTV signal.
DTV signals can be detected in wide range of RF spectrum from 470 MHz
to 790 MHz. Therefore Radio spectrum detector must have capability to detect
DTV signals presence.

In second record FC = 391MHz are few narrow-band signals BW =
30 kHz Fig. 3.2. This bandwidth or narrower signals can be emitted in var-
ious bands of RF spectrum. Spectrum detectors must detect not just wide-band
yet narrow-band emissions too.
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Fig. 3.2. Three RF spectrum records with: a) FC = 391MHz,
BW= 1MHz; b) FC = 928MHz, BW= 8MHz; c) FC = 433MHz,

BW= 1MHz

Another case of radio spectrum is shown in record FC = 928MHz. In
this record are signals with changing carrier frequency (frequency hopping,
burst time few milliseconds). Bandwidth of these signals are few hundred kHz.
More and more customer device can emit various modes of these type signals.
Therefore algorithms must be capable to interact with frequency hopping sig-
nals.

In the last record is one-shot narrow-band burst signal with BW= 20 kHz.
It can be caused by various devices like house and car alarm systems, portable
radios, modems and etc. Because in RF environment, as mentioned, are variety
of short active devices, spectrum detector must locate this type emissions too.

RF spectrum detector efficiency will be determined by how well it can
detect various types signals. Therefore detector must be evenly performant
with wide-band, narrow-band, frequency hoping and burst signals.

3.1.2. Selection and Configuration of the Hardware Tools

Requirements for RF spectrum detectors algorithms are also mandatory for
equipment, which is used with these methods. Therefore RF hardware must
operate in wide spectrum range, to be capable to detect vacant spectrum parts
in various RF bands. To identify wide-band primary user signals equipment
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must have wide real time bandwidth. Hardware RF part must have good sen-
sitivity, because it must detect even distant emissions. ADC must be chosen
with high sampling rate, that it would be capable to sample short pulses. All
these requirements were taken into account when equipment for experiments
was selected.

Wide-band omnidirectional antenna (Fig. 3.3) was chosen for investigation
of RF spectrum detection algorithms. It works from 0.4–2.6 GHz with nominal
5 dBi gain. Therefore this antenna is right to use for wide range RF spectrum
surveys in open and closed environments.

3 hardware sets were made and used for experiments:
• low cost SDR (Fig. 3.4);
• SDR based on high performance receiver (Fig. 3.5);
• wide-band SDR (Fig. 3.6).

For the first experimental investigations a modified low cost USB DVB-T
receiver was used. This USB dongle is based on two chips: RTL2832u demod-
ulator and Elonics E4000 receiver. The RF bandwidth up to 2.8 MHz can be
processed by using this receiver. Together with DVB-T USB dongle, freeware
HDSDR (High Definition Software Defined Radio) and GNU-Radio software
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were used to record and process I/Q samples of RF spectrum. Elonics E4000
is a wide-band receiver, with input frequency range from 64 to 1700 MHz.
Declared by documentation sensitivity is up to−105 dBm, however after mea-
surement established sensitivity was −97.7 dBm. Receivers Input referenced
third interception point – IIP3 is 5 dBm. The simplified structure of the E4000
is shown in Fig. 3.4. The receiver has two analog outputs in-phase “I” and
quadrature “Q”, which are sampled and streamed through USB by the use
of RTL2832u demodulator. In order to keep I/Q data not demodulated the
dynamic-link library of demodulator was changed. Main disadvantages of this
hardware solution were low bandwidth (less than 8 MHz) and low measured
sensitivity.

Therefore to overcome these limitations SDR, which is based on high per-
formance receiver (Fig. 3.5), was developed. Receiver intermediate frequency
– IF is sampled with external ADC. These samples are passed to SOIC –
Zynq7020 FPGA part. By FPGA processed data is transferred to ARM, which
is responsible for receiver control and data streaming.

With this high performance receiver measured sensitivity of experimen-
tal hardware was increased to −113.4 dBm, bandwidth to 8 MHz and IIP3
9.8 dBm. Input frequency range is from 25 to 2000 MHz. To sample receiver
IF was chosen ads5433 ADC, which has 14 bit resolution and up to 80 MSPS
sampling rate. ADC is synced by low jitter clock 8 ppm. Quality of conversion
was ensured by this clock. Differently than in low cost SDR hardware imple-
mentation some or all RF signal processing can be done in internal Zynq7020
FPGA (Section 2.2). All implementations of thesis were tested in this hardware
platform.

Main disadvantage of this SDR implementation (Fig. 3.5) is limited band-
width by 8 MHz. Therefore detection of wider communications is complicated.
This limitation emerges from used high performance receiver. It’s IF output
is just 8 MHz width, when ADC can sample 40 MHz. An expensive update
must be done to improve this platform. High performance receiver must be
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changed in to wider version. Therefore further development of this platform
was stopped.

New SDR development possibilities emerge with new Analog devices RF
transceiver AD9361 chip. This single chip has 2 transceivers, which can work
from 70 to 6000 MHz with bandwidth up to 56 MHz. It can work in 3 times
longer frequency range with 7 times wider bandwidth than high performance
receiver. Even so AD9361 has lower measured sensitivity −106.1 dBm, IIP3
8.2 dBm and internal converters resolution is 12 bit, it is a good choice for
experimental hardware development.

USRP B200 SDR development kit (Fig. 3.6) was used for wide-band ex-
periments. In this SDR is embedded AD9361 transceiver. As in previous hard-
ware platform in B200 RX samples are passed to Spartan6 FPGA where it can
be processed. Data from SDR is streamed trough USB3.1. Therefore to achieve
maximum throughput to SDR, it must be used with USB3.0 or better interface.

Low cost SDR was efficient in the beginning of experimental researches,
although for further development its parameters were too poor. With sec-
ond SDR were implemented all spectrum extraction and detection algorithms,
which were mentioned in this thesis. Unfortunately new receiver for it was
too expensive. For further wide-band algorithm development and research
was used USRP B200 SDR kit, which have superior real time bandwidth and
frequency range. All experiments were made with same wide-band antenna
(Fig. 3.3).

3.2. Experiments of the Sensors Using Different
Features Extraction Methods

In this section all RF spectrum features extractors and decision makers will be
tested with USRP B200 SDR development kit and wide-band antenna. Experi-
ments will be made in real-time and with RF records (as is in Fig. 3.1 and 3.2).
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At first all methods will be tested in non real-time meaner, because to test all
feature extractors and decision makers combinations in same RF environment
there is not enough equipment resources. Combinations, which will be tested
in real-time for several days in different locations and bands, will be selected
after non real-time experiments.

In experiments will be tested features extractors, which were discussed
in Sections 2.2.2 and 2.2.3. Receiver operating characteristic (ROC) will be
measured for these extractors. For each extractor in ROC will be marked how
emission detection probability depends on false alarm probability. In each case
4 ROC will be measured. These curves will represent extractor capabilities to
highlight in RF spectrum narrow-band, burst, frequency hoping and wide-band
signals. ROC points will be measured by applying various thresholds, which
will mark decision about RF spectrum occupancy boundary. Verification of
features extraction methods results will be made by more accurate cyclosta-
tionary features extractor. By cyclostationary method will be determined po-
sitions in frequency, moments and quantity of emissions in RF records. These
reference results will be compared with results, which will be achieved with
researched extractors.

In second experiments stage from extractors will be selected most perfor-
mant RF spectrum highlight methods, which will be used in networks tests.
Test will be made with the same signals (burst, wide-band, narrow-band and
freq. hopping), as it were made in extractors case. In networks experiments
will be tested 10 unsupervised (SOM) and 1 supervised algorithms. Perfor-
mances of SOM networks will be compared with supervised method and ROC
experiments results. These 10 SOMs can be divided into 4 groups by training
algorithms:

• general rule based self-training (neighborhood square, rhombus, hexag-
onal) Section 1.5.4;

• endpoint detection based self-training (neighborhood square, rhombus,
hexagonal) Section 2.3.1;

• assistant based self-training (neighborhood square, rhombus, hexago-
nal) Section 2.3.2;

• SOM with inner weights Section 2.3.3.
Endpoint detection, assistant and SOM with inner weights are SOM mod-

ifications which help to save quantity of self-training iterations in comparing
with general rule based self-training. Therefore the focus will be drawn to
comparison of modified SOMs experiments results with general SOMs too.
To find quantity of neurons needed for optimal detection performance for each
network in experiments will be tested 8 different structure sizes. For all net-
works except SOM with inner weights will be tested same structure sizes 9, 16,
20, 25, 30, 36, 40, 45 N (SOM with inner weights 9, 17, 21, 25, 29, 37, 41, 45).
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Fig. 3.7. ROC of: a) average – φA; b) variance φD extractors

In the third stage from previous two experiments will be selected most per-
formant networks and extractors combinations, which will be tested in online
experiments. Main aims of these test are to show networks performance in
real time and RF spectrum occupancy of various bands. Two RF bands will be
selected for experiments. One RF band will be in unlicensed range, other – in
densely occupied RF band. Results from these bands will show how networks
works in differently occupied ranges and will serve as RF spectrum resource
exploitation example. These experiments will be made in 3 different locations:

• city – densely populated area;
• countryside – intermediate populated area;
• village – rarely populated area.

These locations will show how RF spectrum resources can be optimized
by SOM based spectrum sensors in differently populated areas.

Results of average and variance implementations are shown in (Fig. 3.7).
Feature extractors are tested with 4 signal types. Extractors performance for
various signal types is different.

Average extraction – φA (Fig. 3.7):

• Wide-band signal detection probability PD = 0.96 is achieved with low
false alarm ratioPFa = 0.0032. Higher detection rates PD = 0.98 and 1
are achieved with PFa = 0.0306 and 0.12 accordingly.

• Narrow-band signals detected PD = 0.9885, when false alarm ratio was
0. With small increase of PFa = 0.0126, detection probability increases
to PD = 1.

• Frequency hoping signals detected PD = 0.98 with PFa = 0 . Higher de-
tection rates 0.99 and 1 are achieved with more significant
PFa = 0.039 and 0.127 accordingly.
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Fig. 3.8. ROC of variance without: a) FIFO – φDN
; b) multiplication – φDM

extractions

• Burst signals detection probability was PD = 0.97 with PFa = 0.0029.
And PD = 1 was achieved, when false alarm ratio increased to 0.078.

φA is most effective with narrow-band signals. Worst results were achieved
with wide-band signal extraction. Higher PD for burst signals was achieved
with significant PFa increase.

Variance extraction – φD (Fig. 3.7):

• Wide-band signal detection probability increased to PD = 1, when false
alarm ratio was just PFa = 0.00017.

• Narrow-band signals PD was 0.9767 with false alarm ratio 0.0018. Full
detection probability was achieved, when PFa reached 0.0056.

• Frequency hoping signals detection probability increased to 0.99 with
PFa = 0.0124. PD was 1, when false alarm ratio was PFa = 0.084.

• Burst signals detected with PD = 0.9925 when PFa = 0.0161. All emis-
sions were detected when PFa was 0.0473.

In comparing with φA, φD was more performant in all signals types ex-
tractions. φD achieved higher PD rates with lower PFa.

In Section 2.2.2 two variance implementation modifications were discussed
(Fig. 2.5). ROC performance of variance implementations without FIFO and
multiplication was also different for various signals types.

Variance without FIFO – φDN
(Fig. 3.8):

• Wide-band signal detection probability reached PD = 0.9614 with PFa

= 0.00465. Full detection was achieved when PFa was 0.0073.
• Narrow-band signals detected with PD = 0.9631 when PFa = 0.0143.

Detection probability achieved PD = 1 with higher PFa = 0.02 rate than
false alarm probability was with φA and φD extractors.
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Fig. 3.9. ROC of Std. deviation: a) with FIFO – φσ; b) without FIFO – φσN

extractions

• Frequency hoping signals detected more accurate (than with φA and
φD), because PD = 1 achieved with significantly lower PFa = 0.03944.

• Burst signals detection ROC was more performant too. PD reached 1
with low PFa = 0.011.

φDN
implementation showed better extraction performance than φA and

φD in frequency hoping and burst signal cases. In wide-band signal extraction
this modification was less performant than φD, however it was better than φA.

Variance without multiplication – φDM
(Fig. 3.8):

• Wide-band signal detection probability in comparing with previous φD
and φDN

extractors dropped. PD reached 1 with PFa = 0.036.
• Narrow-band signals fully detected with significantly higher false alarm

probability PFa = 0.059.
• Frequency hoping signals extraction ROC is worse than in φDN

.
PD = 1 was reached when PFa = 0.05227.

• In burst signals case this φDM
has less accuracy than φDN

. Detection
probability reached 0.97 and 1 with PFa = 0.0314 and 0.05227 accord-
ingly.

φDM
ROC in all signal type cases was worse than φDN

.
Two more quadrature extractors implementations were discussed in Sec-

tion 2.2.2 std. deviation – φσ and std. deviation without FIFO – φσN . Overall
these two extractors ROC are significantly worse then it were in φA, φD, φDN

and φDM
cases. Therefore ROC of these two implementations will be dis-

cussed jointly:
• Wide-band signal ROC with both φσ, φσN are worse than curves was

in φD and its modification cases. By φσ PD = 1 was reached with PFa

= 0.2. φσN full emission interception was achieved with PFa = 0.064.
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• Narrow-band signals full detection was achieved by φσ with high false
alarm ratio 0.167. Better results were reached with modification
PD = 1 when PFa = 0.0574.

• Frequency hoping signals were detected by φσN more precise than with
unmodified implementation too. φσN full interception reached with
PFa = 0.05526, when this result achieved φσ with PFa = 0.1495.

• With burst signals better performance was achieved by φσ PD = 1 was
reached with significantly low false alarm ratio 0.0344. In φσN case
this boundary was achieved with PFa = 0.1467.

From ROC results it’s clear that these two RF spectrum extractions imple-
mentations in all signal types are outperformed by less complex solutions.

In Section 2.2.3 were introduced three wavelet transforms implementa-
tions, which were used as RF spectrum features extractors. Therefore for these
transforms Haar – φHaar, Daubechies – φDeb and Symlet – φSym ROC is mea-
sured too. Two stage transforms were used for experiments. In φDeb and φSym
cases for tests 6–8 filter bank structures were implemented. For each transform
output (hHH, hHL, hLH and hLL) ROC is measured with the same signals as it
was measured with the quadrature extractors.

ROC measured for each output signal of φHaar:
• hHaar

HH output. In this output worse results were achieved for burst and
narrow-band signals. Yet in these signal cases PD = 1 achieved with
PFa = 0.03112 and 0.03267 accordingly. Frequency hoping and wide-
band signals extracted with significantly high accuracy. Full emission
detection reached with 0.01 false alarm ratio in frequency hoping case
and 0.017 in wide-band signal case.

• hHaar
HL output. This output performance is slightly worse in narrow-

band and burst signal cases than results achived in hHaar
HH output, how-

ever ROC is slightly better for other two signals. Burst and narrow-
band signals detection probability PD = 1 in both cases reached with
PFa = 0.033. Frequency hoping PD = 1 achieved, when PFa was just
0.006.

• hHaar
LH output. In all signal cases except narrow-band ROC is worse

than in previous outputs (hHaar
HH and hHaar

HL ). Full narrow-band signal
emission detection was achieved with 0.027 false alarm ratio. Burst
signal PD = 1 reached with PFa = 0.05. Same detection ratio achieved
in frequency hoping case with PFa = 0.017.

• hHaar
LL output. In this output best results were achieved for burst signal.

All emissions of burst signal were detected with 0.029 false alarm ra-
tio. All other signals PD = 1 achieved with significantly higher PFa.
False alarm ratio for wide-band signal was 0.05 and 0.02 for frequency
hoping.
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Fig. 3.10. ROC of Haar transform – φHaar outputs: a) hHaar
HH ; b) hHaar

HL ;
c) hHaar

LH ; d) hHaar
LL

φHaar each output is more accurate for some signal type: hHaar
HH – wide-

band, hHaar
HL – frequency hoping, hHaar

LH – narrow-band, hHaar
LL – burst. There-

fore by using all transform outputs, better extraction quality for various signals
can be achieved.

ROC of φDeb transform:
• hDeb

HH output. In this Daubechies transform branch excellent results
were achieved for wide-band signal. Full emission interception for this
signal reached with PFa = 0.0044. Frequency hoping signals were
extracted with higher false alarm ratio PFa = 0.012. Worse ROC is for
burst signal, PD = 1 reached with PFa = 0.06.

• hDeb
HL output. In this output best results were achieved for wide-band

signal too. PD = 1 for this signal was reached with even lower PFa =
0.002, than it was in hDeb

HH output. However burst signal full detection
achieved with high false alarm ratio PFa = 0.1. Narrow-band signal 1
detection probability reached with 0.024 false alarm ratio.

• hDeb
LH output. Burst signal 1 detection ratio achieved with quite low

false alarm probability PFa = 0.014. In this output better results than in
others for narrow-band signal were attained. Narrow-band signal fully
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Fig. 3.11. ROC of Daubechies transform – φDeb outputs: a) hDeb
HH ; b) hDeb

HL ;
c) hDeb

LH ; d) hDeb
LL

detected with PFa = 0.0065. Frequency hoping signals extracted with
high 0.034 false alarm ratio.

• hDeb
LL output. Burst and frequency hoping signals were detected with

high false alarm probabilities. For frequency hoping case PD = 1
reached with PFa = 0.1169 and for burst signal same accuracy attained
with even greater PFa = 0.1369.

Differently than in φHaar in φDeb not all outputs are necessary. hDeb
LL out-

put ROC of frequency hoping and burst signals are significantly worse than in
others transform branches. And accuracy for other signal types isn’t outstand-
ing. Therefore in φDeb case better to use hDeb

HH , hDeb
HL and hDeb

LH branches.
In all φSym branches ROC was significantly worse than in φHaar andφDeb:

• In hSymHH output PD = 1 for frequency hoping and narrow-band signal
attained with ≃ 0.065 false alarm probability. PFa for same detection
accuracy was even higher in wide-band and burst signals cases and it
was ≃ 0.11.

• hSymHL output. In this branch for wide and narrow-band signals were
achieved acceptable results. For full emission detection PFa was 0.003
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Fig. 3.12. ROC of Symlet transform – φSym outputs: a) hSymHH ; b) hSymHL ;
c) hSymLH ; d) hSymLL

in wide-band case and 0.016 in narrow-band case. Frequency hoping
signal PD = 1 attained with PFa = 0.05.

• hSymLH output. Best ROC achieved for frequency hooping signals PD =
1 with PFa = 0.043 and for narrow-band signals PD = 0.996 with PFa

= 0.03. Burst and wide-band signals extracted with high PFa as it was
in previous branches.

• hSymLL output. Results for all types except narrow-band signal case were
similar as in previous outputs. PD = 1 for narrow-band signal attained
with significantly low 0.008 false alarm probability.

As was mentioned in this section ROC analysis of φSym performed poorly
in comparing with φHaar and φDeb. ROC of φSym all signal types in all outputs
except few cases is significantly worse. Therefore this transform is less fit for
RF spectrum feature extraction than previous two.

In this section ROC of 6 quadrature extractors and 3 wavelet transforms
were measured. From these measurements it’s clear that 3 quadrature extrac-
tors φDM

, φσ and φσN have significantly poorer ROC characteristics than oth-
ers extractors. Therefore these 3 extractors will not be used in further experi-
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ments. With φD and φDN
better results were achieved than it was attained with

φA. However average value is necessary for variance calculations, therefore
this extractor will be used in following experiments. From wavelet transforms
worse ROC obtained with φSym. It was less accurate for all signal types. So
φSym is excluded from further tests. φDeb transform hDeb

LL branch was less
performant than others outputs specially in burst and frequency hoping signal
cases, therefore this branch can not be used in further tests. So in next section
experiments will be used φA, φD, φDN

, φHaar and φDeb transforms.

3.3. Experiments of the Spectrum Sensors based
on Different Self Organizing Map Structures

In Section 3.2 most performant 5 features extractors sets were selected:
• φAD – Average and variance extraction. Variance showed better per-

formance in ROC, yet for it calculation average estimate is needed.
Therefore set of these estimates will be used.

• φADN
– Average and variance without FIFO. This variance modifi-

cation helps save memory and shortens calculation delay. Therefore
networks must be tested with this extractor set too.

• φHaar – Haar transform hHaar
HH , hHaar

HL , hHaar
LH and hHaar

LL extraction. This
transform all branches showed good ROC performance.

• φDeb – Daubechies transform hDeb
HH , hDeb

HL , hDeb
LH and hDeb

LH extraction.
In ROC LL branch showed less performance than others, however for
better comparison networks experiments must be made with full trans-
form too.

• φDeb3 – Daubechies transform without hDeb
LL branch. Networks must

be tested with transform which doesn’t have less performant branch.
8 different network sizes were tested with every extractor in different RF

bands. In all networks results tables and graphs are represented min, max and
mean values of detection results. These values are calculated for each extractor.

Neural network. In narrow-band signals case neural network used least it-
erations with φADN

set 1.25 ·104. This result was achieved with smallest struc-
ture – 9 neurons. Longest training cycle 1.2475 · 105 iterations was achieved
with φDeb3 25 neurons set. On average least training iterations were used with
φAD 3.0813 · 104.

Best narrow-band signals emission detection performance was achieved
with φAD (Fig. 3.13). However PFa ratio for this case was moderate in com-
paring with others extractors. Lowest false alarm ratio achieved with φDeb and
network combination. Yet for φDeb case mean average PD ratio was just 0.956.
Therefore best results were achieved with φAD and network combination.
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Fig. 3.13. Neural network: a) PD; b) PFa ratios for narrow-band signals
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Fig. 3.14. Neural network: a) PD; d) PFa ratios for burst signals

Least training iterations for burst signals were used in φADN
case 9.5 ·

103. This result was reached with smallest network structure. Mean training
duration was lowest in φADN

case 1.4351 · 104, too. Longest training period
was with φHaar and 45 network structure combination 6.575 · 104.

In burst signal detection φDeb combination showed best results (Fig. 3.14).
Mean PD is greatest and PFa is lowest from all extractors and they are 0.997,
0.027 accordingly. However this combination averagely took 2 times more
training iterations than φADN

. In experiments least performant was φDeb3.
In wide-band signal case least training iterations were needed for φDeb3

combination 9.86 · 104. This result achieved with smallest 9 neuron structure.
However average training duration was lower in φDeb case 2.117 ·105. Longest
average training period was in φAD case 2.876 · 105.
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Fig. 3.15. Neural network: a) PD; b) PFa ratios for wide-band signal
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Fig. 3.16. Neural network: a) PD; b) PFa ratios for frequency hopping
signals

Best detection performance (Fig. 3.15) was achieved with φHaar. Mean
PD for φHaarwas even 1. Yet lowest PFa was achieved with φAD. Averagely
false alarm ratio for φAD was just 0.008, when PD reached 0.999. Therefore
best common (PD and PFa) detection performance was achieved with φAD.
However φAD and network combination training duration was longest.

In frequency hopping signal case Least training iterations were needed
for φAD and φADN

cases 32300 3.23 · 104, when network structure had least
neurons. Yet lowest mean duration was achieved with φADN

1.098 · 105.
Longest training periods was in φHaarcombination. Average training duration
for φHaarwas 2 times longer than in φADN

case.
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Table 3.1. Mean PD and PFa for different neural network sizes

Network size 9 16 20 25
PD 0.9843 0.9844 0.9853 0.9842
PFa 0.0307 0.026 0.0289 0.0302

Network size 30 36 40 45
PD 0.9863 0.9795 0.9759 0.9865
PFa 0.0247 0.0273 0.0239 0.026

φDeb and network combination performed best at frequency hopping sig-
nal detection (Fig. 3.16). Mean PD ratio for φDeb case 0.986. However for
φDeb average PFa was one of largest. Worse detection ratio achieved with
φDeb3, though mean PFa for this case was just 0.01. In frequency hopping
detection best performance showed φAD set. Even so φAD wasn’t most perfor-
mant in duration, PD, PFa, overall it had good results: mean training duration
1.253 · 105, PD 0.98 and PFa 0.021.

In Table 3.1 are shown mean results of combined PD and PFa values for
network sizes, which were used in experiments. Highest PD was achieved
with 45 neurons 0.9865, and lowest PFa was in 30 neurons case 0.0247. Most
performant size was 30 neurons because detection ratio is almost the same as
with 45 neurons, and false alarm ration is significantly lower.

Overall (for all signals types) best results were shown by network with
φAD. This combination in most cases has short training period, high mean
PD and low mean PFa. From all signal types network took significantly more
training iterations to detect wide-band signal. For wide-band signal training
period was 3–10 longer than for other signal types. Yet detection performance
for wide-band signal type was the best.

General rule based self-training. This group of SOM is self-trained in
accordance with the general rule, which defines quantity of self-training itera-
tions for each neuron. It says that for full SOM adjustment must be used 500
self-training iterations for each neuron. Therefore for all networks (hquare,
rhombus, hexagonal) will be used same amount of self-training iterations: 9–
4500, 16–8000, 20–10000, 25–12500, 30–15000, 36–18000, 40–20000, 45–
22500.

Square neighborhood function. Greatest narrow-band signal detection
ratio (Fig. 3.17) was achieved with φADN

and square SOM combination. Mean
PD with φADN

set was 1. This result was reached with highest PFa too. Aver-
agely false alarm ratio was 0.025. Lowest mean PFa was in φHaar case 0.007,
with lower PD 0.993. Therefore φHaar and square SOM had best performance
(PD and PFa combination). This combination result mean PFa is by 0.03418
lower than it was achieved with most performant neural combination.
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Fig. 3.17. Square SOM: a) PD; b) PFa ratios for narrow-band signals
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Fig. 3.18. Square SOM: a) PD; b) PFa ratios for burst signals

All burst signal emissions were detected by all combinations except φDeb

(Fig. 3.18). In φDeb case mean PD was 0.98, in other sets 1. Lowest min, max
and mean PFa was in φDeb3 and SOM combination, therefore this set is most
performant. φDeb3 and square SOM combination PD and PFa was slightly
better (by ∼ 0.003) than best result achieved with neural network. However
ROC of φDeb3 was not outperformed by this SOM.

Highest detection ratio of wide-band signal was achieved by φAD set
(Fig. 3.19), though PFa in this case was highest too. φHaar and SOM combina-
tion mean PD was slightly lower (by 0.004), however it achieved significantly
lower PFa. Therefore φHaar set had best performance for wide-band signal
detection. In this signal type better PD was achieved by neural network (by



102 3. SPECTRUM SENSING METHODS EXPERIMENTAL RESEARCH

0

0.5

1

1.5

2

2.5

3

φAD φADN
φHaar φDebφDeb3

Extractor

P
D

a)

min
max
mean

φAD φADN
φHaar φDebφDeb3

Extractor

P
F
a

0

0.01

0.02

0.03

0.04

b)

Fig. 3.19. Square SOM: a) PD; b) PFa ratios for wide-band signal
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Fig. 3.20. Square SOM: a) PD; b) PFa ratios for frequency hopping signals

0.005). With this SOM mean PFa was lower by 0.003 than it was in supervised
network.

Best performance in frequency hopping signal detection had φADN
com-

bination (Fig. 3.20). Its mean PD outperformed other SOM sets. This combi-
nation PFa was one of lowest too. This φADN

and square SOM combination
false alarm ratio was by 0.01 lower than it was achieved with neural network
best case. Square SOM outperformed ROC characteristic of φADN

too.
Best average detection ratio was achieved with 30 neurons SOMs 0.9949

(Table 3.2). For this size false alarm ratio is slightly higher (by 0.0001) than
it was in 16 neurons size. Yet overall 30 neurons SOMs outperformed other
network sizes. To self-train these networks took 15000 iterations.
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Table 3.2. Mean PD and PFa for different square SOM sizes

Network size 9 16 20 25
PD 0.9553 0.9708 0.9863 0.9864
PFa 0.0171 0.0134 0.0173 0.0152

Network size 30 36 40 45
PD 0.9949 0.9945 0.9933 0.9857
PFa 0.0135 0.0176 0.0144 0.0136
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Fig. 3.21. Rhombus SOM: a) PD; b) PFa ratios for narrow-band signals

In summary of this square SOM best results were shown by φHaar com-
bination. In all signal types this set was most performant or was near the best
results. Except wide-band signal this SOM type outperformed neural network
results.

Rhombus neighborhood function. For narrow-band signals by all com-
binations except φHaar maximum detection (PD = 1) ratio was achieved
(Fig. 3.21). Though in φHaar case PFa was lowest 0.009. In φAD set false alarm
ratio was slightly higher (by 0.003), therefore this combination performance in
this case was the best. This φAD and rhombus combination showed better
performance in narrow-band signal detection than neural network. Rhombus
SOM outperformed ROC characteristic too.

All burst signal emissions were detected by all combinations (Fig. 3.22).
Lowest mean PFa was achieved by φADN

0.021. Rhombus SOM and φADN
set

outperformed neural network best results too, yet ROC characteristic was not
exceeded.

For wide-band signal extremely low mean PFa was achieved with φDeb3

set, although detection ratio was poorest from all combinations (Fig. 3.23).
Highest detection ratio was achieved with φADN

set 0.998, with low mean PFa
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Fig. 3.22. Rhombus SOM: a) PD; b) PFa ratios for burst signals
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Fig. 3.23. Rhombus SOM: a) PD; b) PFa ratios for wide-band signal

0.01. φADN
and rhombus SOM combination was slightly less accurate than

neural network.
Worse detection performance of frequency hopping signals was with φAD

and φDeb3 sets (Fig. 3.24).φAD mean detection ratios was just – 0.915 and
φDeb3 – 0.937. Highest detection performance reached by φADN

and φDeb

combinations. Mean PD for best cases was 1. Lower mean PFa was in φADN

set than in φDeb, therefore for frequency hopping signal with this network best
results were shown by φADN

. Rhombus and φADN
combination outperformed

neural network results and ROC characteristic.
Best detection accuracy with one of lowest mean PFa was achieved by

SOMs, which size was 40 neurons (Table 3.3). Achieved detection ratio by



3. SPECTRUM SENSING METHODS EXPERIMENTAL RESEARCH 105

0

0.5

1

1.5

2

2.5

3

φAD φADN
φHaar φDebφDeb3

Extractor

P
D

a)

min
max
mean

φAD φADN
φHaar φDebφDeb3

Extractor
P
F
a

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

b)

Fig. 3.24. Rhombus SOM: a) PD; b) PFa ratios for frequency hopping
signals

Table 3.3. Mean PD and PFa for different rhombus SOM sizes

Network size 9 16 20 25
PD 0.962 0.9888 0.9873 0.9946
PFa 0.0163 0.0165 0.0166 0.018

Network size 30 36 40 45
PD 0.9943 0.9846 0.9967 0.9874
PFa 0.0154 0.0126 0.0135 0.0157

rhombus was higher than in neural network and square SOM cases. However in
rhombus case this result was reached by larger structures, and for self-training
this SOM took 2 · 104 iterations.

For all signal types best performance was shown by φADN
set. This com-

bination just in narrow-band signal type was outperformed by φAD set. For
wide-band signal better performance had neural network, although in other
signal types rhombus SOM was more performant.

Hexagonal neighborhood function. From narrow-band signal detection
(see Fig. 3.25) stood out φHaarset with very low detection ratio. Specially,
when with other combinations PD = 1. From successful combinations lowest
PFa was in φDeb set 0.013. This combination outperformed neural network
results.

With burst signals φHaar combination showed even worse results than it
were with narrow-band signals (Fig. 3.26). For other combinations detection
ratio was 1. Lowest mean PFa (except H) was in φADN

set 0.019. In burst signal
case this hexagonal network outperformed neural network results.
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Fig. 3.25. Hexagonal SOM: a) PD; b) PFa ratios for narrow-band signals
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Fig. 3.26. Hexagonal SOM: a) PD; b) PFa ratios for burst signals

In wide-band signal case φHaar set corrected its detection performance
(Fig. 3.27). Although overall (mean PD and PFa) performance was best in
φADN

combination. Achieved detection ratio 0.998 with 0.009 false alarm
ratio. Hexagonal SOM outperformed neural network and ROC results.

In frequency hopping signal case situation was opposite than in narrow-
band and burst signal cases (Fig. 3.28). φHaar set stood out with best detection
ratio 0.999, and in other combinations results were insufficient. Mean PD in
φHaar and hexagonal SOM combination was the same as it was in best neural
case, yet PFa was by 0.004 lower with SOM.

As it was in neural and square networks, in hexagonal structure most ef-
ficient SOMs size was 30 neurons (Table 3.4). Yet with hexagonal network
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Fig. 3.27. Hexagonal SOM: a) PD; b) PFa ratios for wide-band signal
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Fig. 3.28. Hexagonal SOM: a) PD; b) PFa ratios for frequency hopping
signals

achieved average PD was lower than it was in square and rhombus SOMs.
Hexagonal SOM PFa was similar to other 2 networks structures.

From these hexagonal SOM combinations most performant set can’t be
selected, because results were too various. In narrow-band and burst signal
cases φHaar set was inefficient, however detection performance in frequency
hopping signal record was good. Other extractors combinations were very
inefficient in frequency hopping case, therefore these sets can’t be selected
also.

Self-training with endpoint detection. In this stage 3 SOMs (square,
rhombus and hexagonal) will be tested with different than general rule
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Table 3.4. Mean PD and PFa for different hexagonal SOM sizes

Network size 9 16 20 25
PD 0.9176 0.9686 0.9525 0.9777
PFa 0.0239 0.0151 0.0135 0.012

Network size 30 36 40 45
PD 0.9937 0.9672 0.993 0.9859
PFa 0.0158 0.0132 0.0151 0.0144
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Fig. 3.29. Square SOM: a) PD; b) PFa ratios for narrow-band signals

self-training iteration limiting procedure. Self-training process will be sus-
pended when endpoint is reached. This endpoint detection was discussed in
Section 2.3.1. Maximum quantity of possible self-training iterations in fallow-
ing experiments will be limited by general rule. Therefore if self-training is not
detected until max. iterations, which are defined by general rule, are reached,
self-training will be suspended.

Square neighborhood function. For narrow-band signal least self-training
iterations 512 were used by φDeb combination. Size of used SOM was 16 neu-
rons. In comparison with general rule this self-training duration was ∼ 16
times shorter in endpoint detection case. Averagely least iterations were used
by φDeb3 sets – 2293.

Most accurate detection results were achieved by φADN
set. For this com-

bination mean PD was equal to 1 with 0.014 false alarm ratio. This result
was better than in neural network or in general rule based self-training cases.
To self-train φADN

combination averagely were used most iterations, although
duration was more than 3 times lower than in general rule based self-training.

All combinations to self-train for burst signal detection averagely used
2000–2600 iterations. And these duration’s are 6.5–5.5 shorter than in gen-
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Fig. 3.30. Square SOM: a) PD; b) PFa ratios for burst signals
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Fig. 3.31. Square SOM: a) PD; b) PFa ratios for wide-band signal

eral rule based self-training. Averagely least iterations – 2049 were used by
φHaar set.

Full detection of burst signal was achieved by φADN
and φDeb3 combi-

nations (Fig. 3.30). Lowest PFa was in φAD set, although PD was signifi-
cantly lower than in the best results. Second lowest false alarm ratio 0.02 was
in φADN

. Therefore φADN
set outperformed φDeb3 combination. This self-

training approach in burst signal detection outperformed neural network and
general rule based self-training.

To self-train square SOM with endpoint detection were used significantly
more iterations than in burst or narrow-band signal cases. In some cases SOM
reached maximum self-training iterations quantity and self-training process
was suspended by general rule criteria. Averagely least iterations – 3918 were
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Fig. 3.32. Square SOM: a) PD; b) PFa ratios for frequency hopping signals

Table 3.5. Mean PD and PFa for different square SOM sizes

Network size 9 16 20 25
PD 0.9581 0.9856 0.9888 0.993
PFa 0.0102 0.0138 0.0167 0.0239

Network size 30 36 40 45
PD 0.9942 0.9955 0.9941 0.9931
PFa 0.0185 0.0156 0.014 0.0171

used by φAD set. Overall for this signal type SOM self-training duration was
from 1.5 to 3 shorter than in general rule case.

Lowest mean PFa was in φDeb3 combination. Practically it was 0
(Fig. 3.31), although mean PD was lowest too. Best detection ratio with low
PFa 0.006 was reached by φHaar and SOM set. φHaar and this SOM combina-
tion outperformed both neural and general rule based networks.

Self-training process duration for frequency hopping signals was signifi-
cantly shorter in φAD, φADN

and φHaar combinations than in φDeb based sets.
Averagely first three combinations used ≃ 1800 iterations and it is ∼ 6.5 times
less than general rule based self-training. φDeb based combinations were just
1.5–2.5 times faster.

Most detected emissions of frequency hopping signal 0.999, with respec-
tably low PFa 0.019 were achieved with φHaar (Fig. 3.32). In this signal type
neural and general rule based networks were outperformed by endpoint detec-
tion self-training algorithm too.

Lowest PFa 0.0102 was reached with 9 neurons SOM size (Table 3.5), yet
average PD with this size was just 0.9581. Highest detection ratio 0.9955 with
low PFa 0.0156 reached with 36 neurons size.
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Fig. 3.33. Rhombus SOM: a) PD; b) PFa ratios for narrow-band signals

For all signal types neural and general rule based networks were outper-
formed by this square SOM. Self-training algorithm based on endpoint detec-
tion helped to save up to 6.5 times self-train duration in comparing with general
rule based self-training. All extractors and SOM combinations used more it-
erations to self-train for wide-band signal detection. Overall with this square
SOM best performance was achieved with φADN

combination.

Rhombus neighborhood function. Least iterations – 1611 were used to
self-train rhombus and φDeb RF emissions extraction and detection combina-
tion. This set self-training process duration was ∼ 9 times lower than general
rule based algorithm. Most iterations – 1.8 · 104 were used to self-train φADN

and 36 neurons SOM combination. In this case self-training was suspended
not by endpoint detection, however self-training process reached self-training
iteration boundary. Averagely least iterations – 1611 were used by φDeb set.

Best detection PD 1 and lowest false alarm PFa 0.01 ratios was reached by
φADN

set (Fig. 3.33). This SOM and extractor combination outperformed all
previous detectors results, which were achieved for narrow-band signals. Yet
for φADN

sets were used 3 times more self-training iterations than in φDeb case.

In burst signal case for self-training process overall were used just 1641
iterations, and it’s 8.4 times less than in general rule based self-training. Ab-
solute max. iterations 4556 for this signal were used in 45 rhombus SOM
self-training.

Best accuracy in burst signal case was achieved with φDeb set (Fig. 3.34).
In this case mean PD was 1 and PFa 0.031. These results outperformed results,
which was achieved with neural network, however in square SOM (endpoint
case) performance was better.
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Fig. 3.34. Rhombus SOM: a) PD; b) PFa ratios for burst signals
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Fig. 3.35. Rhombus SOM: a) PD; b) PFa ratios for wide-band signal

As in square SOM (same self-training method), in rhombus network self-
training process was longer in wide-band signal than in other signal types.
Averagely least self-training iterations – 4956 were used in φDeb and SOM.

Lowest mean PFa for wide-band signal was achieved with φDeb set
(Fig. 3.35). However higher detection ratio 1 with slightly higher PFa 0.09 was
reached by φHaar combination. φHaar and rhombus combination performance
in wide-band signal detection was better than in neural and square networks
cases.

φAD and φADN
combinations used significantly less self-training iterations

than others H, φDeb and φDeb3 sets. Averagely best self-training performance
1428 (iteration economy) showed φAD and SOM combination.



3. SPECTRUM SENSING METHODS EXPERIMENTAL RESEARCH 113

0

0.5

1

1.5

2

2.5

3

φAD φADN
φHaar φDeb φDeb3

Extractor

P
D

a)

min
max
mean

φAD φADN
φHaar φDeb φDeb3

Extractor
P
F
a

0

0.02

0.04

0.06

0.08

b)

Fig. 3.36. Rhombus SOM: a) PD; b) PFa ratios for frequency hopping
signals

Table 3.6. Mean PD and PFa for different rhombus SOM sizes

Network size 9 16 20 25
PD 0.9701 0.9931 0.9933 0.9905
PFa 0.0159 0.0193 0.0177 0.0204

Network size 30 36 40 45
PD 0.9983 0.998 0.9981 0.9938
PFa 0.0248 0.024 0.0199 0.0197

Highest detection performance was achieved by φADN
and SOM combi-

nation (Fig. 3.36). Mean PD for this set was 1. False alarm ratio for φADN

combination was not lowest, though it was slightly higher than in φHaar case
(by 0.003). φADN

and rhombus SOM combination outperformed not just neu-
ral network and previous SOMs results. It exceeded even ROC characteristic.

In rhombus SOM based on endpoint detection best accuracy was achieved
by 30 neurons size network (Table 3.6). Performance of 30 rhombus SOMs
was better than results achieved by previous neural and SOM networks.

In summary, best results for all signal types were reached with rhombus
and φADN

combination. In most cases this combination outperformed results,
which were achieved by previous networks (neural, SOM based on general rule
self-training). Rhombus network, as square, network used more self-training
iterations for wide-band signal self-training, however overall self-training du-
ration was shorter than it was in general rule based networks.

Hexagonal neighborhood function. Shortest average self-training dura-
tion – 1341 were used by φHaar and SOM combination. This duration was 10
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Fig. 3.37. Hexagonal SOM: a) PD; b) PFa ratios for narrow-band signals
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Fig. 3.38. Hexagonal SOM: a) PD; b) PFa ratios for burst signals

times shorter than in general rule based self-training algorithms. Averagely
longest self-training duration was used by φADN

and SOM set.

Better detection performance for narrow-band signals was achieved with
φADN

set (Fig. 3.33). In φHaar average PD was just 0.972, when in φADN
case

detection ratio was 1. For φADN
average false alarm ratio was 0.013. PD and

PFa of φADN
combination was significantly better than neural network.

In burst signals detection with φDeb transform based extractor and SOM
combinations were used significantly less self-training iterations – 1527 than
in other 3 sets. In self-training process φDeb set averagely used 9 times less
self-training iterations than general rule based based algorithm.
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Fig. 3.39. Hexagonal SOM: a) PD; b) PFa ratios for wide-band signal

Best detection performance for burst signals was achieved by φDeb and
SOM set too (Fig. 3.34). Mean PD and PFa was 1 and 0.029 accordantly.
This result outperformed neural network, however results in general rule based
SOMs self-training algorithms were better.

As in square and rhombus SOMs, in hexagonal network were used more
self-training iterations for wide-band signals than for others signal types. Short-
est average self-training process duration was in φDeb combination – 6360 it-
erations. Longest φDeb3 combination – 9577 iterations.

For wide-band signal type best detection performance was in φAD and
SOM set (Fig. 3.35). Mean PD was 0.999 with 0.008 false alarm ratio. This
φAD and hexagonal SOM combination outperformed neural and general rule
based networks.

For frequency hopping signals least average self-training iterations – 1353
were used by φHaar set. This duration is 10 times shorter than in analogical
SOM, which self-training was based on general rule. Longest average self-
training duration – 4191 was with φDeb set.

Best detection performance for frequency hopping signal was reached by
φADN

set (Fig. 3.36). With this combination full emission detection was
achieved, when mean PFa was 0.019. Lowest mean PFa 0.013 was in φDeb

set. However for φDeb case detection ratio was by 0.017 lower than it was in
φADN

set. φADN
and hexagonal SOM performance was better than neural,

general rule based networks and ROC characteristic.

Best network size for this hexagonal network , as in most SOMs types, was
30 neurons. For this SOM size average PD and PFa was 0.9981 and 0.0198
accordingly.
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Fig. 3.40. Hexagonal SOM: a) PD; b) PFa ratios for frequency hopping
signals

Table 3.7. Mean PD and PFa for different hexagonal SOM sizes

Network size 9 16 20 25
PD 0.9892 0.9867 0.9944 0.995
PFa 0.0181 0.0146 0.0185 0.0205

Network size 30 36 40 45
PD 0.9981 0.9968 0.9972 0.99
PFa 0.0198 0.0202 0.0191 0.0217

Overall best performance was shown by φADN
and SOM combination. In

most cases this hexagonal SOM outperformed neural and on general rule based
networks. In burst signal case this network performance was slightly worse
than in best case of general rule based self-training. Self-training duration of
these networks group (hexagonal based on endpoint detection) was up to 10
times lower than general self-training.

Self-training with assistant. In this stage square, rhombus, and hexago-
nal SOMs will be tested with different self-training processes. Assistant, which
was introduced in Section 2.3.2, will be involved in SOM self-training. Assis-
tant is responsible for self-training process control. As in endpoint detection,
in assistant case quantity of maximum self-training iterations is defined by
general rule.

Square neighborhood function. With assistant least averagely self-training
iterations – 1166 for narrow-band signal used by φHaar and square SOM set.
Longest self-training duration – 2834 was with φDeb. This result is ∼ 12 times
shorter than in general rule based self-training.
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Fig. 3.41. Square SOM: a) PD; b) PFa ratios for narrow-band signals
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Fig. 3.42. Square SOM: a) PD; b) PFa ratios for burst signals

Best detection accuracy 1 with low mean PFa 0.011 for narrow-band sig-
nals was achieved by φAD and square SOM combination (Fig. 3.41). This re-
sult outperformed best results for this signal type of neural and previous SOMs
(based on general rule or endpoint det.).

Significantly shorter self-training duration was in burst signal type case.
Least self-training iterations – 697 were used by φDeb case. Averagely for all
sets (φAD, φADN

, φHaar, φDeb and φDeb3) self-training duration was just –
1010 iterations. This average duration was 13 times shorter than in general rule
based self-training.

In burst signal type all extractor combinations except φHaar mean PD

reached 1 (Fig. 3.42). However lowest false alarm ratio was in φADN
case 0.02.

φADN
performance was better than neural and general rule based networks.



118 3. SPECTRUM SENSING METHODS EXPERIMENTAL RESEARCH

0

0.5

1

1.5

2

2.5

3

φAD φADN
φHaar φDebφDeb3

Extractor

P
D

a)

min
max
mean

φAD φADN
φHaar φDebφDeb3

Extractor

P
F
a

0

0.01

0.02

0.03

b)

Fig. 3.43. Square SOM: a) PD; b) PFa ratios for wide-band signal
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Fig. 3.44. Square SOM: a) PD; b) PFa ratios for frequency hopping signals

As in endpoint detection, in assisted square SOM case self-training pro-
cess duration for wide-band signal was significantly higher than in other signal
types. Least self-training iterations – 5534 were used by φADN

set. And this
duration was ∼ 2.5 times shorter than in general rule based self-training.

Best detection ratio with low PFa was achieved by φHaar and SOM com-
bination (Fig. 3.43). For this case mean PD was 0.996 and mean PFa 0.006.
φHaar and assisted square SOM outperformed neural network and SOMs based
on general rule results.

In frequency hopping assisted square SOM averagely for all extractors
used – 1537 iterations. And this average duration is 9 times shorter than in
general rule based SOMs.
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Table 3.8. Mean PD and PFa for different square SOM sizes

Network size 9 16 20 25
PD 0.9855 0.984 0.9794 0.9955
PFa 0.0117 0.0124 0.0131 0.0146

Network size 30 36 40 45
PD 0.9945 0.9955 0.9872 0.9879
PFa 0.0144 0.0139 0.0141 0.0152
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Fig. 3.45. Rhombus SOM: a) PD; b) PFa ratios for narrow-band signals

Best detection ratio for frequency hoping was achieved by φHaar and SOM
set (Fig. 3.44). By φHaar reached mean PD was 0.995 with mean PFa 0.019.
This set performance is better than neural network, however detection ratio is
slightly lower than SOMs based on general rule self-training.

Overall (for all signal types) best results were achieved with 36 SOM size
(Table 3.8). For these assisted square SOM size average PD was 0.9955 and
average PFa 0.0139.

In summary, best detection accuracy was in φADN
SOM case. Although

its results wasn’t the best in all signal types, however in most cases it per-
formed well. Assisted SOM in all signal types outperformed neural network
and in most types general rule based SOMs. Self-training duration of assisted
algorithm was up to 13 times shorter than general rule based SOMs.

Rhombus neighborhood function. Assisted rhombus SOM with φHaar

used least iterations – 844 for narrow-band signals. This self-training duration
was even 16 times shorter than in general rule case based self-training. Longest
average self-training duration was with φADN

extractor.
Best accuracy for narrow-band signal type was achieved by φADN

com-
bination (Fig. 3.45). In φADN

case achieved mean PD 1 with significantly
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Fig. 3.46. Rhombus SOM: a) PD; b) PFa ratios for burst signals

0

0.5

1

1.5

2

2.5

3

φAD φADN
φHaar φDebφDeb3

Extractor

P
D

a)

min
max
mean

φAD φADN
φHaar φDebφDeb3

Extractor

P
F
a

0

0.01

0.02

0.03

b)

Fig. 3.47. Rhombus SOM: a) PD; b) PFa ratios for wide-band signal

low PFa 0.011. φADN
assisted rhombus SOM result repeated performance for

narrow-band signal, which was achieved by assisted square SOM.
Overall (including all extractors) in burst signal case average self-training

duration was 767 iterations. This average duration is even 18 times shorter than
in general rule based self-training.

All emissions of burst signal were detected with all extractors (Fig. 3.46).
Lowest PFa 0.024 was in φDeb case. φDeb result outperforms neural network,
yet PFa was slightly higher than in general rule based SOMs.

Self-training duration for wide-band signals was significantly higher than
it was in other signal types. However with assisted rhombus average duration
was by ∼ 2000 iterations lower than in SOMs based on endpoint detection.
Shortest self-training duration –3381 iterations was with φADN

.
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Fig. 3.48. Rhombus SOM: a) PD; b) PFa ratios for frequency hopping
signals

Table 3.9. Mean PD and PFa for different rhombus SOM sizes

Network size 9 16 20 25
PD 0.9888 0.9904 0.9913 0.9959
PFa 0.0139 0.0134 0.0147 0.0152

Network size 30 36 40 45
PD 0.9974 0.9971 0.9992 0.9938
PFa 0.0156 0.0178 0.0182 0.0173

φAD and SOM set showed the best performance in wide-band signal type
(Fig. 3.47). For φAD mean PD was 0.999 and PFa 0.0009. This result was
similar to neural network achieved results.

φAD and assisted rhombus SOM combination used least self-training it-
erations 586 for frequency hoping signal. This duration was significantly 23
times shorter than general rule based self-training. Overall for all extractors
average self-training duration was just 1516 iterations.

For frequency hopping signals φHaar, φAD and φADN
sets was achieved

same detection ratio 1 (Fig. 3.48). However false alarm ratio 0.016 was lower
in φAD combination. Overall this φAD and assisted rhombus SOM combi-
nation reached best detection performance for frequency hopping signals. It
outperforms neural network, SOMs based on general rule and assisted square
SOM results.

Best detection performance from assisted rhombus SOMs was achieved
by 40 neurons size (Table 3.9). Average PD was 0.9992 and PFa 0.0182. This
performance was one of the best achieved by SOMs.
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Fig. 3.49. Hexagonal SOM: a) PD; b) PFa ratios for narrow-band signals

Overall, for all signal types combination with φAD showed best perfor-
mance. This combination outperformed all previous networks in frequency
hopping signal detection. Assisted rhombus SOM self-training process dura-
tion was up to 23 times shorter than SOMs based on general rule.

Hexagonal neighborhood function. Least self-training iterations – 672
for narrow-band signal were used to self-train φDeb3 and SOM set. Overall
(for all extractors) average self-training process duration was – 1453.

Best accuracy for narrow-band signal was achieved with φADN
and SOM

set (Fig. 3.49). φADN
achieved detection ratio was 1 and PFa 0.012. False

alarm ratio achieved by this assisted hexagonal SOM was slightly higher (by
0.001) than it was with assisted rhombus.

As it was with previous two assisted SOMs (square, rhombus), self-training
duration for burst signal was significantly shorter than for other signal types.
Overall average self-training duration was just – 954 iterations. Most self-
training iterations – 1053 were used for φDeb and SOM combination.

Best performance for burst signals was achieved by φADN
and SOM set

(Fig. 3.50). Full interception was achieved with 0.033 average false alarm
ratio. This result outperformed neural network achieved performance, however
in general rule based self-training PFa was slightly lower.

With assisted hexagonal SOM self-training process duration for wide-band
signal was by ∼ 2500 iterations shorter than in endpoint detection SOMs. For
all extractors average self-training duration was 4538 iterations.

Best performance for wide-band signal detection was achieved by φADN

an SOM set (Fig. 3.51). φADN
mean detection ratio was 0.995 with 0.009 PFa.

This φADN
performance was not enough to outperform neural network results.
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Fig. 3.50. Hexagonal SOM: a) PD; b) PFa ratios for burst signals
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Fig. 3.51. Hexagonal SOM: a) PD; b) PFa ratios for wide-band signal

In frequency hopping signal type significantly lower self-training duration
– 711 was in φAD, φADN

and φHaar cases. Self-training duration of these three
sets was 16–22 times shorter than in general rule based self-training.

All frequency hopping signals emissions were detected by φADN
combina-

tion with 0.017 false alarm ratio (Fig. 3.52). Average PFa of φADN
and assisted

hexagonal SOM was by 0.001 higher than it was in assisted rhombus network.
Best detection performance in assisted hexagonal SOM was achieved with

45 network sizes (Table 3.10). Detection ratio for this size was 0.9975 and PFa

0.0174.
In summary, best detection performance for all signal types was achieved

by φADN
and assisted hexagonal SOM combination. In all cases, except
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Fig. 3.52. Hexagonal SOM: a) PD; b) PFa ratios for frequency hopping
signals

Table 3.10. Mean PD and PFa for different hexagonal SOM sizes

Network size 9 16 20 25
PD 0.9851 0.9858 0.9884 0.9854
PFa 0.0129 0.0128 0.0158 0.0144

Network size 30 36 40 45
PD 0.9955 0.9933 0.9918 0.9975
PFa 0.0152 0.0135 0.0142 0.0174

wide-band signal type, this SOM outperformed neural network results. Self-
training duration of assisted SOM was up to 22 times shorter than it was gen-
eral rule based self-training.

SOM with inner weights. About this SOM with inner weights was dis-
cussed in Sections 2.3.3. This SOM self-training process suspension was made
by endpoint detection procedure, with which SOM preparedness level was de-
termined.

SOM with inner weights for narrow-band signal averagely used just 62 iter-
ations. This network self-training duration was significantly lower than neural
networks and all previous SOMs. In comparison, to self-train this SOM was
used 222 times less iterations than general rule based self-training and ∼ 24
times less than assisted SOMs.

Most emissions of narrow-band signal were detected by SOM and φDeb

combination (Fig. 3.53). For this set mean PD was 0.983 and PFa just 0.004.
This detection ratio was not enough to outperform neural network achieved PD,
however SOM with inner weights achieved false alarm ratio was significantly
lower.
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Fig. 3.53. SOM with inner weights: a) PD; b) PFa ratios for narrow-band
signals

0

0.5

1

1.5

2

2.5

3

φAD φADN
φHaar φDebφDeb3

Extractor

P
D

a)

min
max
mean

φAD φADN
φHaar φDebφDeb3

Extractor

P
F
a

0

0.01

0.02

0.03

0.04

0.05

0.06

b)

Fig. 3.54. SOM with inner weights: a) PD; b) PFa ratios for burst signals

For burst signal SOM with inner weights self-training duration was signif-
icantly lower than previous SOMs too. Overall average self-training process
duration was 56 iterations and it was 246 times shorter than general rule based
self-training.

φDeb and SOM combination achieved best detection performance for burst
signals (Fig. 3.54). All emissions were detected by φDeb set with low PFa

0.009. This φDeb and SOM with inner weights combination for burst signals
outperformed all previous best networks results.

Self-training duration hasn’t significantly increased for wide-band signal,
as it was in endpoint detection and assisted SOMs. Overall average
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Fig. 3.55. SOM with inner weights: a) PD; b) PFa ratios for wide-band
signal
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Fig. 3.56. SOM with inner weights: a) PD; b) PFa ratios for frequency
hopping signal

self-training duration (53 iterations) was even lower than it was in narrow-
band and burst signals. SOM with inner weights self-training process was 260
times shorter than in general rule based self-training.

Best detection performance for wide-band signal was reached by φHaar

and SOM combination (Fig. 3.55). Detection ratio for φHaar set was 0.993 and
mean PFa 0.007. This result was slightly less performant than result achieved
with neural network.

As in previous signal types, in frequency hopping SOM with inner weights
used small quantity of self-training iterations. Averagely self-training duration
was 246 times shorter than in general rule based SOM self-training.
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Table 3.11. Mean PD and PFa for different SOM with inner weights sizes

Network size 9 17 21 25
PD 0.9739 0.9802 0.9883 0.9792
PFa 0.009 0.0092 0.009 0.0087

Network size 29 37 41 45
PD 0.9844 0.9948 0.9823 0.9912
PFa 0.0078 0.0125 0.0081 0.0106

In frequency hopping signal best performance was shown by φHaar trans-
form combination (Fig. 3.56). φHaarset achieved full emission interception
with low 0.015PFa This result slightly outperformed result, which was achieved
by assisted rhombus. Therefore overall from all networks best result for fre-
quency hopping signal was achieved by φHaar and SOM with inner weights
combination.

Best performance from SOM with inner weights was reached by 36 net-
work size (Table 3.11). Detection ratio for this size was 0.9948 and false alarm
ratio 0.0125.

Overall for all signal types best performance was reached by φDeb combi-
nation. SOM with inner weights performance in burst and frequency hopping
signal types was best from all networks, which were tested in these experi-
ments. This SOM type self-training duration was remarkably shorter than in
based on general rule, endpoint detection or assisted self-training algorithms.

Summarized results of offline experiments
Neural network:
• average training duration – 122835 iterations;
• most effective network size – 30 neurons;
• average PD – 0.9863 and PFa – 0.0272;
• best accuracy was achieved by φAD set.

SOMs based on general rule self-training:
• average self-training duration – 13812 iterations;
• most effective network size – 30 neurons;
• average PD – 0.9799 and PFa – 0.0154;
• best accuracy was achieved by φADN

and rhombus SOM combination.
SOMs based on break point detection:
• average self-training duration – 3787 iterations;
• most effective network size – 30 neurons;
• average PD – 0.991 and PFa – 0.0185;
• best accuracy was achieved by φADN

and hexagonal SOM combina-
tion.
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Fig. 3.57. RF spectrum environments examples: a) FC = 433.5MHz,
BW= 1MHz; b) FC = 954MHz, BW= 4MHz

Assisted SOMs:
• average self-training duration – 2467 iterations;
• most effective network size – 36 neurons;
• average PD – 0.9911 and PFa – 0.0146;
• best accuracy was achieved by φADN

and rhombus SOM combination.
SOMs with inner weights:
• average self-training duration – 57 iterations;
• most effective network size – 37 neurons;
• average PD – 0.9843 and PFa – 0.0094;
• best accuracy was achieved by φDeb set.

For online experiments will be used these SOMs and extractors combi-
nations: general rule based 30 rhombus SOM and φADN

, 30 hexagonal SOM
based on endpoint detection and φADN

, assisted 36 rhombus SOM and φADN
,

37 SOM with inner weights and φDeb.

3.4. Experiments of the Spectrum Sensors on a
Real-time Data

Online experiments were made in two RF bands. First band is in the unlicensed
range 433 MHz, another is in the licensed range 954 MHz. In unlicensed band
most dominant signal type are burst signals (Fig. 3.57). In 953 MHz range
mostly are signals with changing carrier frequency – frequency hopping. Both
signal types are described more detailed in Section 3.1.
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Experiments were made in 3 locations in order to check RF spectrum oc-
cupancy dependency on population density:

• city – Kaunas, Pasiles 52. Population density is high;
• countryside – Kaunas, Rugstyniu 26. Population density is average;
• village – Zeimiai, Blauzdziu 22. Population density is low.

Duration of each RF band experiments was 24 hours. Therefore overall
experiments in 3 locations took 144 hours.

For experiments was used wide-band SDR platform see Fig. 3.6. Core of
this platform are Spartan6 LX75 FPGA and AD9361 single chip receiver. RF
samples digitized by receiver were passed to FPGA, where further processing
was made. In FPGA RF IQ data was processed by FFT block (Fig. 3.58). 2
FFT sizes were used in these experiments:

• 4096 – for 433 MHz BW = 1 MHz;
• 16384 – for 954 MHz BW = 4 MHz.
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Fig. 3.58. Experimental radio signal processing flow graph

After transform RF spectrum samples were buffered into FIFO buffers.
Buffers are needed for φADN

and φDeb. Processing latency of extractors is
different than FFT, therefore FIFO is used for synchronization of different data
rates. Buffers sizes are same as FFT transform length.

Calculated spectrum features are processed by SOMs:
• GNR Rhmb30 – On general rule based rhombus SOM, network size

30;
• BRK Hex30 – On endpoint detection based hexagonal SOM, network

size 30;
• ASSIS Rhmb36 – On general rule based rhombus SOM, network size

36;
• Inner37 – SOM with inner weights, network size 37.
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Table 3.12. FPGA resource utilization by different experimental structure
implementation

Frequency band Slc. reg. LUTs DSP slc. B. RAM
433 MHz BW 1 MHz 8009 32893 115 83
954 MHz BW 4 MHz 9135 41713 124 112

Table 3.13. SOMs self-training durations in different experiments location

Intelligent detector City Countryside Village
GNR Rhmb 30 φADN

24069305 24063450 24072006
BRK Hex 30 φADN

3045105 3560670 2127950
ASSIS Rhmb 36 φADN

861073 2682517 1903583
Inner 37 φDeb 351735 434496 392945

Several same SOMs type are dedicated for extractors. More networks were
needed because latency of first two SOMs are∼ 5 times longer and of third and
fourth SOMs ∼ 6 times longer than extractors delay. SOMs self-training was
made each hour in order to adapt networks in potentially changing environ-
ment. During self-training process networks don’t produce detection output,
therefore for this moment information about RF spectrum occupancy will be
lost. Self-training duration as detection results are registered by result counter.

Result counter purpose is to combine detection results and pass them to
Chip scope ip core. Counter counts detected emissions, free spaces and average
self-training duration for each SOM group. These results are passed to PC for
monitoring by chip scope through JTAG.

For signal which BW = 1 MHz was used 4096 points FFT, and for 4 MHz
BW signal was used 16384 point transform. To implement experimental struc-
ture (Fig. 3.58) in Spartan6 LX75 FPGA for 433 MHz range were used 87%
DSP slices, 48% 18 kb Block RAM and∼ 50% of logic (Table 3.12). For larger
BW more resources were used: 94% DSP slices, 65% 18 kb Block RAM and
∼ 60% of logic components. This resource utilization difference is influenced
by FFT size. More multiplication elements, larger buffers and bigger quantity
of logic are required for larger transform.

Average self-training duration’s, which were measured by synchronization
clock cycles, were measured for SOMs in all locations (Table 3.13). Most clock
cycles for self-training were used by general rule based SOM. However in all
locations for first network self-training duration it was most stable. This sta-
bility was achieved, because in all cases SOM was self-trained 1.8 · 104 self-
training iterations. On endpoint detection based SOM self-training latency
was ∼ 8 times lower than in general rule based network. Longest average
self-training duration was in countryside location. Assisted SOM self-training
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Table 3.14. RF spectrum occupancy in 433 MHz range for 24 hours

Intelligent detector City Countryside Village
GNR Rhmb 30 φADN

0.0957% 0.0062% 0.0863%
BRK Hex 30 φADN

0.0961% 0.0063% 0.0869%
ASSIS Rhmb 36 φADN

0.0962% 0.0063% 0.0870%
Inner 37 φDeb 0.0962% 0.0063% 0.0870%

Table 3.15. RF spectrum occupancy in 954 MHz range for 24 hours

Intelligent detector City Countryside Village
GNR Rhmb 30 φADN

52.1001% 74.3509% 38.4697%
BRK Hex 30 φADN

52.1897% 74.4748% 38.4759%
ASSIS Rhmb 36 φADN

52.2001% 74.4798% 38.4801%
Inner 37 φDeb 52.2308% 74.5108% 38.4824%

process took 13 times less clock cycles than general rule based self-training.
In this assisted SOM case longest duration was in countryside too. Lowest
self-training duration was achieved by SOM with inner weights. This network
self-training process was even 61 time faster than general rule based network
self-training. As in endpoint detection and assisted SOM, network with in-
ner weights used more self-training iteration in countryside than in other two
locations.

In all locations 433 MHz range occupancy hasn’t exceeded 0.1%
(Table 3.14). For this band all networks detection ratio was similar. Difference
between detection ratios was about 0.9%. Least occupied spectrum was in
countryside and most emissions were detected in city. Least emissions were
detected by SOM based on general rule.

In city and countryside 954 MHz range was exploited by primary users
more than 50% (Table 3.14). Least primary user emissions were detected in
township location. Difference between SOMs detection results are about 0.9%.
As in 433 MHz range, in 954 MHz least primary user emissions were detected
by general rule based SOM.

These generalizations can be made from experiments:

• Experimental structure implementation used up to 94% of Spartan6
LX75 FPGA resources.

• In all locations 433 MHz range was poorly exploited, therefore this
range even in densely populated areas can be used freely.

• 954 MHz range in countryside was mostly exploited from all loca-
tions. RF spectrum occupancy by primary user was up to 74.5%.
Average self-training process duration’s for all SOMs in this location
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were longest too. Therefore can be made assumption that longer self-
training duration was influenced by densely occupied spectrum.

• All networks detection ratio was similar, although self-training dura-
tion was lowest in SOM with inner weights case. Therefore this SOM
in online experiments can be selected as most performant.

3.5. Conclusions of Chapter 3

1. The elimination of the multiplication from the variance estimation al-
gorithm decreases the sensitivity of the spectrum sensor and should
not be used for practical applications. In addition, the implementa-
tion of the variance estimation without FIFO decreases average (for all
signal types) false alarm rate from 5.63% to 1.94%.

2. The standard deviation, used as a feature vector instead signal spec-
trum average estimate, does not increase the sensitivity of the spectrum
sensor.

3. The feature vector based on the Daubechies wavelet transform increases
the sensitivity of the spectrum sensor and decreases average false alarm
ratio more than 2 times in comparing with signal energy based feature
extractors.

4. On an artificial neural network with binary step function based spec-
trum sensor has the best detection performance for wide-band signal
type, however for other signal types better performance has on SOM
based spectrum sensors.

5. All primary user emissions are detected with 1.4% false alarm rate,
when self-training process modifications in spectrum sensors based on
SOM are used.

6. The modification of the self-organizing map structure during self-trai-
ning by adding inner neuron connections may decrease the number
of self-training iterations from 2.6% to 44.6% before the endpoint is
reached, keeping the same spectrum sensor sensitivity level.



General Conclusions

Two hypothesis were confirmed by investigation results presented in this disser-
tation. In addition, the modifications of the self-organizing map self-training
phase, proposed in this dissertation, increased the efficiency of spectrum sen-
sor implementation in FPGA based systems and reduced the total signal pro-
cessing latency.

1. The application of the wavelet transform for the analysis of the sig-
nal spectrogram, in comparing with signal energy based features, may
increase signal detection accuracy of the primary user transmission
without any prior knowledge about the signal.

1.1. The feature vector based on the Daubechies wavelet transform in-
creases spectrum sensor sensitivity and decreases the average false
alarm ratio from 1.94% to 1% for all signal types.

1.2. The implementation of Haar wavelet transform, which can be used
as a feature vector for the spectrum sensor is three times more ef-
ficient in comparing to Daubechies and Simlet wavelet transforms.
However average false alarm rate reached with Haar wavelet trans-
form is 1.8%.

2. Self-adaptation of the spectrum sensor to continuously changing radio
environment can be achieved by the application of intelligent methods:

2.1. A spectrum sensor based on an artificial neural network with bi-
nary step function and proposed network training activation
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technique is able to detect 98.63% of primary user emissions with
false alarm ratio below 2.73%.

2.2. A spectrum sensor based on a self-organizing map and classical
self-training algorithm is able to detect all primary user emissions
with false alarm ratio as low as 1% without the need of manual
self-training data selection.

3. The modification of the self-organizing map topology during self-trai-
ning phase increases the efficiency of the sensor implementation in
FPGA based embedded systems.

3.1. The modification of the signal spectrum energy variance estima-
tion formula reduces the feature extraction step delay from 37 to
21 cycles preserving the full primary user emission detection rate
with average false alarm rate 1.94%.

3.2. An endpoint detection algorithm proposed for self-organizing map
reduces the number of self-training iterations by 19–80% and pre-
serves the SOM based spectrum sensor primary user detection and
false alarm rate.

3.3. A training assistant proposed in this dissertation reduces the num-
ber of iterations required for self-training of the self-organizing
map by 90%, comparing to the number of iterations, estimated ac-
cordingly to the number of neurons in the lattice multiplied by 500
as is recommended in the literature.

3.4. A modification of the self-organizing map structure during network
training stage requires only 3–15% of recommended number itera-
tions to reach the desired network weighs, uses 2.3 times less mem-
ory cells of the FPGA based embedded system and increases the
self-training speed by 32.4 times.

3.5. The modification of the self-organizing map structure during self-
training by adding inner neuron connections may decrease the num-
ber of self-training iterations from 2.6% to 44.6% before the end-
point is reached, keeping the same spectrum sensor sensitivity level.
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Santrauka lietuvių kalba

Įvadas

Problemos formulavimas

Šioje disertacijoje yra sprendžiama žemo signalas triukšmas santykio ∼ 0 dB signalo
aptikimo plačioje dažnių juostoje problema, kai naudojamos tik kelios imtys požy-
miams apskaičiuoti. (Penna et al. 2009; Rasheed et al. 2010; Srinu et al. 2011; Zhuan
et al. 2008).

Pagrindinis dėmesys yra skiriamas automatiniam signalo aptikimui, kai nėra jo-
kios pradinės informacijos nei apie signalo turinį, nei apie signalo moduliacijos tipą
ar signalo nešlio dažnį (Joshi et al. 2011a; Nair et al. 2010). Tokia problema dažnai
sprendžiama kognityvinio radijo sistemose. Tam, kad būtų galima išsiųsti antrinio var-
totojo signalą radijo kanalu, kuris jau užimtas pirminio vartotojo, spektro jutiklis tu-
rėtų aptikti pirminio vartotojo signalą (Stankevičius et al. 2015). Todėl spektro jutimo
sistema turi užtikrinti visišką ar artimą visiškam pirminio vartotojo aptikimą(Nastase
et al. 2014). Šiuo metu yra nagrinėjami skirtingi spektro analizės metodai, kuriais
siekiama padidinti pirminio vartotojo signalų (emisijų) aptikimo realiame laike efek-
tyvumą (Chantaraskul, Moessner 2010; Kyungtae et al. 2010; Young, Bostian 2013).
Ypač problematiška aptikti žemo energijos lygio, lyginant su kanalo triukšmo lygiu,
pirminio vartojo signalus, kai triukšmo skirstinys nėra visiškai Gauso (Bagchi 2014;
Wang, Salous 2011). Todėl jutiklis turi nuolat arba periodiškai prisitaikyti prie besi-
keičiančios radijo spektro aplinkos.
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Darbo aktualumas

Šiuo metu yra labai maža radijo spektro dalis (iki 3 GHz), kuri nepaskirta paslaugų
tiekėjams (Lietuvos Respublikos ryšių reguliavimo tarnyba 2015, Elektroninių ryšių
komitetas prie Europos pašto ir telekomunikacijų administracijų konferencijos 2015).
Tačiau net tankiai apgyvendintose teritorijose spektro užimtumas labai aukštuose ir
ultra aukštuose dažniuose yra tik 10–15%. Tai reiškia, kad daugiau kaip 85% spektro
yra nepanaudota (Taher et al. 2011). Tačiau kai kurie nelicencijuoti radijo dažnių
ruožai, pavyzdžiui 2,4 GHz, yra apkrauti vartotojų (Statkus, Paulikas 2012).

Šiuo laikotarpiu daug tyrimų orientuojasi į efektyvesnį nenaudojamo radijo spekt-
ro išnaudojimą, net jei jis jau yra priskirtas pirminiam vartotojui (De Vito 2012; Jay-
avalan et al. 2014; Mehdawi et al. 2013; Seshukumar et al. 2013; Sun et al. 2013; Sun-
day et al. 2015; Yucek, Arslan 2009). Spektro jutiklis yra kognityviniais radijais grįstų
komunikacijų sistemos fizinio lygmens dalis, kuri atsakinga už pirminio vartotojo ap-
tikimą triukšmingoje aplinkoje. Antrinio vartotojo signalo komunikacijos galimos tik
tada, kai nėra pirminio vartotojo signalo.

Spektro jutiklio, kuris aptinka radijo spektre skyles, jautrumas tiesiogiai priklau-
so nuo algoritmo, kuris naudojamas kognityviniame radijuje. Taipogi spektro jutiklis
turi vertinti nuolat besikeičiančią radijo spektro aplinką. Todėl spektro jutiklis turi pri-
siderinti prie pakitusios aplinkos.

Tyrimų objektas

Disertacijos tyrimų objektas yra saviorganizuojantis spektro jutiklis, kuris gali aptikti
visas pirminių vartotojų signalų emisijas 25 MHz juostoje, su kuo mažesniu klaidos
santykiu. Pirminių vartotojų signalų emisijos gali būti aptiktos bet kur iki 3 GHz radijo
dažnių ruože:

• analizuojamame signalo spektre triukšmo komponentės gali būti kartu su pir-
minių naudotojų signalais arba be jų;

• jeigu kartu su triukšmo komponentėmis yra pirminių naudotojų signalai, nėra
žinoma apie pirminių naudotojų signalų laikines ar dažnines savybes.

Darbo tikslas

Disertacijos tikslas – ištirti ir įgyvendinti saviorganizuojančius spektro analizės meto-
dus, tinkamus atpažinti pirminio naudotojo signalą, paveiktą triukšmu, kai nėra žino-
ma pirminė informacija apie šį signalą.

Darbo uždaviniai

Po atliktos dabar vykdomų tyrimų apžvalgos, iškeltos dvi hipotezės:

1. Taikant diskrečiąją vilnelių transformaciją signalo spektrogramai galima pa-
didinti signalo atpažinimo triukšme metodų tikslumą, lyginant su signalo
energija grįstų požymių išskyrimo metodais.
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2. Spektro jutiklio prisitaikymas prie nuolat besikeičiančios radijo aplinkos ga-
li būti pasiektas naudojant saviorganizuojančius intelektualiuosius metodus,
keičiant jų mokymosi algoritmus įgyvendinimui įterptinėse sistemose.

Disertacijos hipotezėms patikrinti suformuluoti trys uždaviniai:

1. Ištirti vilnelių transformacijos taikymo spektro jutikliams efektyvumą.

2. Ištirti dirbtinių daugiasluoksnių perceptroninių tinklų taikymo spektro jutik-
liams tinkamumą.

3. Sukurti spektro jutimo metodus, grįstus Kohonen tinklais, ir ištirti tinklų pa-
tobulinimus, siekiant sumažinti mokymosi trukmę, išsaugant priminio varto-
tojo signalo emisijų aptikimo tikslumą.

Tyrimų metodika

Disertacijoje yra išskirti du signalo analizės etapai: signalo požymių išskyrimas ir
sprendimo apie signalo buvimą priėmimas. Signalo požymių išskyrimas atliktas tai-
kant skaitmeninį signalų apdorojimą laiko ir dažnio srityse.

Sprendimui apie pirminio vartotojo buvimą priimti buvo tirti dirbtiniai neuronų
tinklai (mokymas su mokytoju) ir saviorganizuojantys tinklai (apsimokymas be mo-
kytojo).

Eksperimentiniai tyrimai atlikti panaudojant MATLAB™ ir Python programi-
nius įrankius. Atliekant eksperimentus realiuoju laiku algoritmai įgyvendinti lauku
programuojamoje loginėje matricoje – LPLM.

Darbo mokslinis naujumas

Rengiant disertaciją buvo gauti šie elektros ir elektronikos inžinerijos mokslui nauji
rezultatai:

1. Spektro požymių išskyrimo algoritmų patobulinimai, efektyviam įgyvendini-
mui LPLM, išlaikant pirminio vartotojo signalo emisijų aptikimo radijo ete-
ryje tikslumą.

2. Pasiūlytas spektro požymių iškyrimo būdas, grįstas vilnelių transformacija,
kuris sumažina klaidos santykį 2–9 kartus, lyginant su signalo energijos vi-
durkiu, kvadratiniu ir standartiniu nuokrypiais.

3. Pasiūlytas sprendimo priėmimo būdas, grįstas Kohonen tinklais, kuris gali
prisitaikyti prie skirtingų spektrinių savybių signalų, išsaugant 1% klaidos
santykį, kuris nustatytas analizuojant ROC kreives.

4. Originalus Kohonen tinklo patobulinimas, kuriems reikia 32 kartus mažiau
mokymosi iteracijų nei rekomenduojama literatūroje.

5. Pasiūlytas originalus Kohonen tinklo mokymosi galinio taško sekimo algorit-
mas, kuris sumažina mokymosi iteracijų kiekį 2,6–44,6%, lyginant su klaste-
rio kokybės nustatymo būdu.
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Darbo rezultatų praktinė reikšmė

Disertacijoje pasiūlyti nauji metodai pritaikyti įgyvendinimui praktikoje naudojamo-
se įterptinėse sistemose. Metodai įgyvendinti MATLABTM aplinkoje, o taip pat dau-
guma jų įgyvendinti LPLM sistemoje. Atlikti praktiniai eksperimentai leido apskai-
čiuoti radijo spektro užimtumą (dviejuose ruožuose) skirtingose vietovėse: didmiesty-
je, priemiestyje ir mažame miestelyje. Eksperimentinio tyrimo rezultatai parodė, kad
954 MHz dažnių ruože išnaudojama 38–74% ryšio kanalo pajėgumų, o 433 MHz daž-
nių ruože išnaudojama vos 8, 6 · 10−5–6, 275 · 10−3% kanalo pajėgumų.

Ginamieji teiginiai

1. Spektro jutikliams taikant Daubechies vilnelių transformaciją, kai nėra pir-
minės informacijos, galima sumažinti aptikimo klaidos santykį iki mažiau
nei 1%, išsaugant pilną pirminio vartotojo aptikimą, kai signalas triukšmas
santykis didesnis nei 0,8 dB.

2. Spektro jutiklio prisitaikymas prie besikeičiančios radijo aplinkos gali būti
pasiektas naudojant Kohonen tinklus, užtikrinant aptikimo klaidos santykį
mažesnį nei 1% ir išsaugant pilną pirminio vartotojo aptikimą, kai signalas
triukšmas santykis didesnis nei 0,8 dB.

3. Kohonen tinklų topologijos patobulinimai mokymosi fazėje padidina įgyven-
dinimo efektyvumą LPLM grįstose įterptinėse sistemose, ir sumažina moky-
mosi trukmę iki 32 kartų, lyginant su literatūroje rekomenduojama trukme.

Disertacijos struktūra

Disertaciją sudaro: įvadas, trys skyriai, bendrosios išvados. Papildomai disertacijoje
yra pateikti naudotų žymėjimų ir santrumpų sąrašai bei dalykinė rodyklė. Darbo apim-
tis yra 165 puslapiai, kuriuose yra pateikta: 45 formulės, 123 paveikslai ir 30 lentelių.
Disertacijoje remtasi 157 kitų autorių literatūros šaltiniais.

1. Literatūros šaltinių apie spektro jutimo
metodus apžvalga

Siekiant padidinti belaidžių ryšių sistemų aprėpties atstumą ir perduodamų duomenų
spartą, įvairiuose tyrimuose ieškoma naujų radijo signalų perdavimo būdų. Viena iš
tyrimų krypčių yra radijo spektro optimizavimas, naudojant kognityvinį radiją. Ši tyri-
mų kryptis remiasi radijo spektro stebėjimų rezultatais tankiai apgyvendintose miestų
teritorijose, kuriose buvo nustatytas žemas radijo spektro užimtumas. Vidutinis radijo
spektro panaudojimas 0,05–3 GHz ruože nesiekia 15%. Kognityvinio radijo paskir-
tis yra ieškoti pirminio vartotojo neužimtų radijo dažnių ruožų ir juos panaudoti arba
paskirti antrinio vartotojo komunikacijoms.
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Kognityvinis radijas susideda iš dviejų dalių: imtuvo ir signalų apdorojimo gran-
dies. Nuo imtuvo parametrų priklauso kognityvinio radijo darbinis dažnių ruožas ir
darbinė juosta. Nuo signalų apdorojimo grandies priklauso darbinės juostos spektro
raiška, išskiriamų spektro požymių kokybė ir sprendimo apie spektro užimtumą tiks-
lumas. Spektro požymių išskyrimas ir sprendimo apie spektro užimtumą priėmimas
apibendrintai vadinimas spektro jutikliu.

Imtuvas GFT

Spektro požy
mių išskyrimas

Sprendimo
priėmimas

1
0

1S pav. Kognityvinio radijo struktūra

Spektro jutikliai yra skirstomi į dvi grupes: jutikliai be išankstinių žinių apie pir-
minį vartotoją ir jutikliai su išankstinėmis žiniomis apie pirminį vartotoją. Pagrindinis
skirtumas tarp šių jutiklių yra tas, kad antroji jutiklių grupė yra apmokyta/paruošta
aptikti tam tikro tipo pirminio vartotojo signalus. Todėl spektro jutikliai su išankstinė-
mis žiniomis turi: arba turėti dideles pirminio vartotojo signalų parametrų duomenų
bazes, arba dirbti siauruose dažnių ruožuose. Jutiklių be išankstinių žinių apie pirminį
vartotoją darbui plačiuose dažnių ruožuose signalų parametrų duomenų bazės nereika-
lingos. Šį žinių praradimą galima kompensuoti naudojant Neuroninius arba Kohonen
tinklus (angl. Self Organizing Maps – SOM). Siekiant sukurti spektro jutiklius, ku-
rie galėtų dirbti plačiame dažnių ruože, disertacijoje tirti jutikliai be išankstinių žinių
apie pirminį vartotoją, kuriuose sprendimo apie spektro užimtumą priėmimas grįstas
intelektualiaisiais metodais.

Jutikliuose be išankstinių žinių plačiai naudojami spektro energija ir vilnelių trans-
formacija grįsti spektro požymių išskyrimo algoritmai. Šie požymiai yra naudojami
sprendimui apie spektro užimtumą priimti. Kaip spektro energijos požymiai gali būti
naudojami: galios spektro vidurkis, kvadratinis nuokrypis arba standartinis nuokry-
pis. Galios spektro vidurkio skaičiavimas yra efektyvus, išskiriant signalus iš adityvi-
nio Gauso triukšmo, tačiau jei triukšmas yra impulsinės arba nepastovios prigimties,
geriau naudoti kvadratinio arba standartinio nuokrypio skaičiavimus. Literatūroje pla-
čiai tyrinėjamos dar 3 vilnelės: Haaro, Daubechies ir Symlet, kurios taikomos radijo
spektro požymiams išskirti. Naudojant šias vilneles galima ne tik efektyviai nuslopinti
minėtus triukšmo tipus, bet ir gauti pirminio vartotojo signalo parametrus.

Priimti sprendimą apie kanalo užimtumą iš apskaičiuotų spektro požymių galima
naudojantis intelektualiaisiais metodais, tokiais kaip neuroniniai ir Kohonen tinklai.
Šie tinklai gali būti apmokyti (neuroniniai) arba apsimokyti (Kohonen) įvairioms ra-
dijo spektro situacijoms, taip sumažindami arba išvis panaikindami išankstinės infor-
macijos apie radijo spektrą poreikį.

Literatūroje gausu įvairių teorinių tyrimų, kuriose vykdomi algoritmų ir metodų
verifikavimai, modeliuojant radijo eterio kanalą. Tačiau yra didelis kognityvinio radijo
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eksperimentinių tyrimų poreikis, kuriuose spektro jutikliai būtų išbandyti įvairiose
radijo spektro situacijose, ir kuriuose aptikimo tikslumas būtų matuojamas įvairaus
tipo signalams.

2. Spektro jutimo metodų teoriniai tyrimai

Svarbi kognityvinio radijo dalis yra radijo spektro jutiklis, kuris susideda iš požymių
išskyrimo ir sprendimo priėmimo modulių. Todėl yra poreikis sukurti efektyviai vei-
kiantį jutiklį, t.y. efektyvią spektro požymių išskyrimo ir sprendimų priėmimo porą.
Kadangi ši pora turi veikti realiu laiku esant dideliam apdorojamų duomenų kiekiui,
ji turi būti įgyvendinta lauku programuojamoje loginėje matricoje – LPLM. Jutiklio
komponentų įgyvendinimo procese, be tikslumo ir greitaveikos, didelį dėmesį reikia
skirti efektyviam LPLM resursų išnaudojimui.

1S lentelė. LPLM naudojami resursai įgyvendinant požymių išskyrimo modulius

Požymių
išskyrimas

Registrai
Paieškos
lentelės

Dauginimo
elementai

Operatyvioji
atmintis

Vėlinimas
ciklai

Galios vidurkis 99 78 1 0 20
Kvadratinis
nuokrypis

261 293 5 1 37

Kvadratinis
nuokrypis
be buferio

227 240 5 0 21

Standartinis
nuokrypis

504 553 5 1 63

2 lygių Haar 291 554 0 0 32
2 lygių 4-8

vilnelės
1428 891 18 0 162

2 lygių 8-6
vilnelės

1428 943 20 0 192

Požymiams išskirti naudojami spektro energija ir vilnelių transformacija grįsti
algoritmai. Šie požymių išskyrimo moduliai įgyvendinti LPLM. Jų naudojami LPLM
resursai ir apdorojimo vėlinimai palyginti lentelėje. Modulių vėlinimai fiksuoti, kai
kanalo plotį sudaro 16 spektro imčių.

Spektro energija grįstų požymių išskyrimo moduliams įgyvendinti naudotos pa-
prastos loginės ir matematinės operacijos, tokios kaip akumuliavimas, postūmis, vėli-
nimas, sudėtis, atimtis ir daugyba. Tik standartinio nuokrypio skaičiavimui reikia pa-
pildomos kvadratinės šaknies traukimo operacijos. Mažiausias vėlinimas ir mažiausiai
resursų naudota galios vidurkio skaičiavimo įgyvendinimui. Kvadratinio nuokrypio
vėlinimas beveik dvigubai didesnis nei vidurkio skaičiavimo. Šis vėlinimas atsiranda,
nes kvadratiniam nuokrypiui skaičiuoti reikalinga kanalo vidurkio vertė, todėl nuo-
krypis gali būti apskaičiuotas tik po kanalo vidurkio radimo. Vėlinimą galima suma-
žinti kvadratinio nuokrypio skaičiavimui naudojant kaimyninio kanalo vidurkio vertę
(Kvad. nuokr. be B.). Tokiu atveju sumažinamas ne tik vėlinimas, bet eliminuojama
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atmintis, naudota kanalo imčių saugojimui. Standartinio nuokrypio operacijai įgyven-
dinti naudota daugiausiai LPLM resursų iš visų spektro energija grįstų modulių. Tam
turėjo įtakos šaknies traukimo operacijos, nes šiai operacijai reikia tiek LPLM resursų
(loginių celių ir vėlinimo), kiek kvadratiniam nuokrypiui skaičiuoti.

Dviejų lygių Daubechies ir Symlet vilnelių transformacijos įgyvendintos kaip filt-
rų bankai, kai filtrų koeficientams naudojami vilnelių koeficientai. Šioms dviejų lygių
transformacijoms įgyvendinti reikia daugiau nei 10 kartų resursų, negu reikia spekt-
ro galios vidurkio skaičiavimui, o vėlinimas yra daugiau nei 8 kartus ilgesnis. Dviejų
lygių Haaro transformacijai įgyvendinti reikia ∼3 kartus mažiau LPLM resursų nei
Daubechies ir Symlet, o vėlinimas yra tik 1,6 karto ilgesnis nei vidurkio operacijos.
Pagrindinis Daubechies ir Symlet transformacijų trūkumas – didelis naudojamų DSP
celių kiekis. Šių DSP celių kiekis LPLM yra mažas. Tačiau naudojant dviejų lygių
vilneles gaunami net 4 radijo spektro požymiai.

Iš apskaičiuotų spektro požymių turi būti priimtas sprendimas apie kanale ar juos-
toje esantį-neesantį pirminio vartotojo signalą. Iš šių požymių, be išankstinių žinių,
sprendimą apie pirminio vartotojo signalą gali priimti intelektualieji metodai. Tačiau
tiek neuroninių, tiek Kohonen tinklų mokymo/apsimokymo procesai yra ilgi. Priklau-
somai nuo tinklo dydžio, šio proceso trukmė siekia 10–1000 tūkstančių mokymosi
iteracijų. Kohonen tinklų atveju, pagal pagrindinę mokymosi taisyklę, kiekvienas neu-
ronas turi sunaudoti mokymosi procese bent 500 iteracijų. Jei tinklo dydis yra 9×9, tai
tinklas turi būti mokomas 40500 iteracijų. Norint optimizuoti Kohonen tinklų moky-
mosi trukmę, šiame skyriuje pasiūlyti du mokymosi proceso optimizavimo algoritmai
ir tinklo struktūra su vidiniais svoriais.

Abu mokymosi optimizavimo algoritmai sutrumpina Kohonen tinklo mokymosi
procesą, tik pirmasis nutraukia šį procesą kai yra tenkinamos tam tikros sąlygos, o
antrasis atlieka pakeitimus šiame procese. Pirmo mokymosi algoritmo pavadinamas
– mokymosi galinio taško sekimas, o antrojo – mokymasis su asistentu. Abu algorit-
mai yra taisyklių sistemos, kurios įsiterpia į mokymosi procesą ir priklausomai nuo
rezultatų priima sprendimą.

Mokymosi galinio taško sekimo algoritmas, mokymosi proceso metu, seka lai-
mėjusio neurono Euklido vidutinį atstumą tarp neurono svorių ir įėjimo vektoriaus.
Ir jeigu tam tikrame slenkančio vidurkio lange Euklido atstumas yra mažesnis už pa-
svertą pradinį įvertį, mokymosi procesas yra stabdomas. Šis pradinis įvertis randamas
mokymosi pradžioje, kai apskaičiuojamas pradinis tinklo pokytis ∆init tam tikrame
Nwind lange:

θend = κ∆init = κ

√

√

√

√

1

Nwind

Nwind−1
∑

n=0

(

d⊥

n+1(xxx)− d
⊥

n
(xxx)

)2

. (1S)

Pokytis nustatomas tarp gretimų iteracijų laimėjusių neuronų Euklido atstumų
d⊥

n+1(xxx) ir d⊥

n
(xxx). Nwind lange yra surandamas šių pradinių pokyčių vidurkis. Šis

vidurkis pasveriamas per κ, norint nustatyti mokymosi proceso nutraukymo slenkstį
θend. κ parenkamas 0,2–0,25 rėžiuose t.y. jei vidutinis laimėjusio neurono Euklido
atstumas yra daugiau nei 75–80% mažesnis nei ∆init – mokymosi procesas sustabdo-
mas.
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Mokymosi su asistentu algoritmas šio proceso metu atlieka pakeitimus keisdamas
mokymosi intensyvumą η ir esant labai prastam mokymosi rezultatui perkrauna neu-
ronų svorius. Mokymosi intensyvumą η galima keisti keičiant tris parametrus: pradinį
intensyvumą η0, eksponentinės funkcijos nuolydžio koeficientą τ ir mokymosi inten-
syvumo funkcijos argumento reikšmę n:

η(n) = η0e
−

n

τ . (2S)

Asistentas mokymosi patikrinimą atlieka periodiškai kas 400–600 mokymosi ite-
racijų. Sprendimą apie mokymosi progresą asistentas gali priimti iš tų pačių parametrų
kaip ir galinio taško sekimo algoritmas: iš ∆init ir vidutinio Euklido atstumo. Pagal
šiuos parametrus Asistento algoritmas nustato 5 būsenas: Nepatenkinamas, Regresy-
vus, Progresyvus, Patenkinamas ir Stabilus mokymasis. Jei asistentas nustato, kad
tinklo mokymosi procesas atitinka pirmąsias dvejas būsenas, atliekamas pilnas arba
dalinis tinklo mokymosi proceso perkrovimas. Inicijuojami nauji svoriai, padidinama
mokymosi intensyvumo vertė. Jei nustatoma, kad tinklo mokymosi rezultatai yra pro-
gresyvūs arba patenkinami, tai atliekamas mokymosi intensyvumo mažinimas. Esant
stabiliai mokymosi būsenai, derinimas nėra atliekamas.

Abiejų pasiūlytų algoritmų apsimokymo trukmės palygintos su pagrindine moky-
mo taisykle ir klasterio kokybės nustatymu grįstų mokymo algoritmų trukmėmis, kai
į įvairaus dydžio Kohonen tinklų įėjimus pateikiamas atsitiktinio triukšmo vektorius.
Iš lentelės matyti, kad abu algoritmai, lyginant su pagrindine mokymo taisykle grįstu
algoritmu, sumažina mokymosi trukmę iki 5–8 kartų. Ypač šie algoritmai efektyvūs
su didesnėmis nei 2×2 tinklais.

2S lentelė. Mokymosi trukmės naudojant skirtingus mokymosi proceso nutraukimo

algoritmus

Mokymosi algoritmas 2×2 4×4 6×6 8×8
Pagrindinė

mokymosi taisyklė
2000 8000 16000 32000

Klasterio kokybės
nustatymas

1921 3663 5517 6415

∆init 1627 3405 4267 6194
Asistentas 1761 1745 3283 3783

Apmokytų Kohonen tinklų, panaudojant abu pasiūlytus apsimokymo trukmės op-
timizavimo algoritmus, pavyzdžiai pateikti paveiksle. Nors ir mokymuisi su asistentu
reikėjo beveik 2 kartus mažiau iteracijų nei mokymosi galinio taško sekimo algorit-
mui, tačiau tinklo struktūros kokybiškai panašios.

Kohonen tinklo struktūroje su vidiniais svoriais įvedami svoriai, kurie jungia
gretimus neuronus. Taip įvedamas kaimynystės sąryšis tarp neuronų. Papildomi tarp-
neuroniniai svoriai nukreipti į centrą. Su išoriniais sluoksniais centrinis neuronas su-
jungtas per 4 neuronus, kurie su centriniu neuronu turi po vieną sąryšį. Išorinių sluoks-
nių neuronai turi po du sąryšius su arčiau centro esančio sluoksnio kaimyniniais neuro-
nais. Todėl šios struktūros tinklo išėjimų skaičiavimas vykdomas iš kraštinių sluoksnių
į centrinį neuroną. Išskyrus galinio tinklo sluoksnio neuronus, į visų neuronų išėjimų
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2S pav. 8×8 Kohonen tinklai kai mokymosi procesas sustabdytas naudojant

a) ∆init; b) Asistentą

skaičiavimus įvedami kaimyninių neuronų pasverti išėjimai. Kadangi šioje struktūroje
jau įvesti ryšiai tarp kaimynų, mokymosi proceso metu kaimynystės funkcijos netai-
komos. Atnaujinami tik laimėjusio neurono įėjimo ir į jį nukreipti tarp-neuroniniai
svoriai.

N1

N2 N3

N4

NcN11

N12

N13

N14N21

N22 N23

N24

x1(n)xl(n)

3S pav. Kohonen tinklo su vidiniais svoriais struktūra

Kohonen tinklas su vidiniais ryšiais išbandytas taip pat kaip ir mokymosi op-
timizavimo algoritmai. Išbandytos 3 struktūros, kuriose naudotas skirtingas išorinių
sluoksnių skaičius. Nustatyta, kad vidutiniškai kiekvienam neuronui apmokyti sunau-
dota 39 mokymosi iteracijos ir tai yra apie 13 kartų mažiau nei taikant pagrindinę
mokymosį taisyklę. Kai tinklo dydis 9N mokymosi trukmė 196 iteracijos, 13N – 304
ir 17N – 1026.

Paveiksle 4S pavaizduoti apsimokiusių struktūrų pavyzdžiai, kai tinkle buvo 1 ir
2 išoriniai sluoksniai. Šiose struktūrose centre pažymėtas centrinis neuronas, ryškiai -
jungiamieji neuronai, kurie centrinį neuroną jungia su išoriniu sluoksniu.
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4S pav. Kohonen su vidiniais svoriais apmokyti tinklai kai tinkle yra: a) 1 išorinis

sluoksnis; b) 2 išoriniai sluoksniai

Atlikus Kohonen tinklų mokymosi ir struktūros optimizavimo tyrimus, įgyven-
dinta modulinė tinklo struktūra, kurią panaudojant įgyvendinami aptarti mokymosi
algoritmai ir tinko struktūros patobulinimai. Šios struktūros valdymas atliekamas nau-
dojantis baigtinių būvių mašina, kuri pagal įėjimo signalus nustato mokymosi ir išėji-
mo skaičiavimo procesų būsenas.

CLK

Įėjim. Įė.

Įėjim. adr.

Įėjim. už.

Som. EN.

Mok. EN.

Perkr.

Kaimynystė

Kohonen
blokas

blokas

blokas

BBM

Apsimokymas

Išėjimo
apskaičiavimo Nugalėtojo

Nustatymas

Iš. r.

Nug. adr.

Nug. iš.

5S pav. Kohonen tinklo struktūros įgyvendinimas panaudojant baigtinių buvių

mašiną

Panaudojus modulinę tinklo struktūrą įgyvendinti 16 neuronų Kohonen tinklai,
kurie buvo aptarti tyrimuose. Pagrindiniai skirtumai tarp šių įgyvendinimų yra nau-
dojamos atminties kiekis ir vėlinimas. Abu šie parametrai yra įtakojami naudojamų
iteracijų kiekio. Apsimokymo vėlinimas tiesiogiai priklauso nuo iteracijų kiekio, o di-
desnis kiekis atminties reikalingas mokymosi intensyvumo vertėms saugoti. Kadangi
mokymosi intensyvumas kinta eksponentiniu dėsniu, šio parametro alternatyvūs ap-
skaičiavimo būdai arba pareikalautų kitų svarbių LPLM resursų, arba padidintų skai-
čiavimo vėlinimą.

Įgyvendinant spektro jutiklį Kohonen tinklo modulis turi būti apjungtas su po-
žymių išskyrimo moduliu. Šiam apjungimui reikalinga papildoma atmintis, kuri būtų
naudojama skirtingų duomenų spartų sinchronizavimui. Nes spektro požymių išskyri-
mo modulio vėlinimas yra mažesnis už sprendimo priėmimo procesą.
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3S lentelė. LPLM naudojami resursai įgyvendinant Kohonen tinklų struktūras

SOM struktūros Registrai
Paieškos
lentelės

Dauginimo
elementai

Operatyvioji
atmintis

Vėlinimas
ciklai

8000 mokymo iteracijų 344 624 2 14 5704000
∆init 405 654 2 9 2523105

Su asistentu 431 693 2 7 1298280
Su vidiniais svoriais 383 674 2 6 175951

3. Spektro jutimo metodų eksperimentiniai tyrimai

Eksperimentiniai tyrimai atlikti trimis etapais. Pirmieji du etapai vykdyti nerealiu lai-
ku, kai buvo apdorojami radijo įrašai. Trečiajame etape atrinkti spektro jutikliai išban-
dyti realiame laike, kai matuotas radijo eterio aktyvumas įvairiose vietovėse ir dažnių
ruožuose. Pirmąjam ir antrąjam etapams įrašyti keturi įrašai, kuriose matuoti ketu-
rių tipų signalai: plačiajuostis, siaurajuostis, su besikeičiančiu nešlio dažniu ir trumpų
emisijų. Šie signalai pagal savo pobūdį yra charakteringi 0,050–3 GHz dažnių ruožui.
Pirmajame etape tikrinta, kaip spektro požymių išskyrimo algoritmai išskiria įvairaus
tipo signalus, o antrajame etape – kaip intelektualieji metodai tiksliai priima sprendi-
mus apie radijo eterio užimtumą.

Pirmajame etape visiems spektro požymių išskyrimo algoritmams išmatuotos ke-
turios darbinės imtuvų charakteristikos (kiekvienam signalo tipui). Šios charakteristi-
kos matuotos šešiems spektro energija ir trims vilnelių transformacija grįstiems spekt-
ro požymių išskyrimo algoritmams. Bendras geriausias požymių išskyrimo tikslumas
pasiektas naudojant Daubechies vilnelių transformaciją. Nes su šia transformacija iš-
skirtiems požymiams, taikant slenksčio funkciją, pilnas pirminio vartotojų signalo
emisijų išskirimas pasiektas, kai klaidos aptikimo santykis yra: 1,2% signalui su besi-
keičiančio nešlio dažniu, 1,4% trumpų emisijų, 0,2% plačiajuosčiam ir 0,65% siaura-
juosčiam signalams. Kai taikytas kvadratinio nuokrypio skaičiavimu grįstas požymių
išskirimas, mažesnis nei Daubechies klaidos aptikimo santykis nustatytas plačiajuos-
čiam 0,017% ir siaurajuosčiam 0,56% signalų tipams. O trumpų emisijų tipo signa-
lai geriausiai išskirti taikant kvadratinio nuokrypio be papildomos atminties modulį.
Su šiuo moduliu visos trumpų emisijų pirminio signalo emisijos išskirtos esant 1,1%
klaidos santykiui. Dėl prastų darbinių imtuvų charakteristikų iš tolimesnių tyrimų pa-
šalinti 3 spektro energija ir 1 vilnelių transformacija grįsti spektro požymių išskirimo
algoritmai. O tolimesniuose tyrimuose naudoti spektro energijos vidurkio, kvadratinių
nuokrypio, kvadratinio nuokrypio be atminties, Haaro ir Daubechies transformacijo-
mis grįsti požymių išskyrimo algoritmai.

Antrajame eksperimentų etape tirtas pirminio vartotojo nustatymo tikslumas, tai-
kant įvairius Kohonen ir neuroninius tinklus, kurių dydis keistas nuo 9 iki 45 neu-
ronų. Eksperimentuose taikytas neuroninis tinklas, kuris apmokytas taikant atgalinio
sklidimo algoritmą. O Kohonen tinklams taikyti trys apsimokymo algoritmai (pagrin-
dinė mokymosi taisyklė, galinio mokymosi taško sekimas ir mokymasis su asisten-
tu) su trejomis skirtingomis kaimynystės funkcijomis (kvadratas, rombas ir šešiakam-
pis). Kohonen tinklų su vidiniais svoriais struktūrai taikytas laimėtojas pasiima vis-
ką mokymosi algoritmas, kai mokymosi procesas stabdytas naudojant galinio taško
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sekimo algoritmą. Kiekvieno tinklo pirminio vartotojo nustatymo tikslumas matuotas
keturiems signalų tipams, kai spektro požymiams išskirti taikyti spektro energija ir
vilnelių transformacija grįsti algoritmai. Apibendrinus antrojo etapo eksperimentinius
tyrimus, išskiriami šie tinklų charakteringi rezultatai:

• Neuroninis tinklas. Šiam tinklui apmokyti vidutiniškai naudotos 1, 228 · 105

iteracijos. Pasiektas vidutinis pirminio vartotojo nustatymo tikslumas 98,63%
su 2,72% vidutiniu klaidos santykiu. Tiksliausiai nustatytas pirminis vartoto-
jas, kai neuroninis tinklas naudotas kartu su spektro galios vidurkio ir kvad-
ratinio nuokrypio požymių išskyrimo moduliu.

• Pagrindine mokymosi taisykle grįstas Kohonen tinklas. Vidutinė šio tinklui
apsimokymo proceso trukmė – 1, 381 · 104 iteracijų. Vidutiniškai pirminio
vartotojo emisijos nustatytos su 97,99% tikslumu, kai nustatyta 1,54% vidu-
tinis klaidos santykis. Tiksliausiai pirminis vartotojas nustatytas naudojant
Kohonen tinklą su rombo kaimynystės funkcija, kai spektro požymiai išskirti
naudojant spektro galios vidurkio ir kvadratinio nuokrypio be atminties mo-
dulius.

• Galinio mokymosi taško sekimu grįstas Kohonen tinklas. Vidutinė mokymo-
si proceso trukmė – 3787 iteracijos. Pirminio vartotojo emisijos nustatytos
su vidutiniu 99,1% tikslumu ir 1,85% vidutiniu klaidos santykiu. Geriausias
tikslumas pasiektas naudojant Kohonen tinklą apsimokiusį pagal šešiakampę
kaimynystės funkciją, kartu su vidurkio ir kvadratinio nuokrypio be atminties
moduliu.

• Kohonen tinklas su mokymosi asistentu. Vidutiniškai mokymosi procese su-
naudotos 2467 iteracijos. Pirminis vartotojas nustatytas vidutiniu 99,11% tiks-
lumu ir 1,46% klaidos santykiu. Tiksliausi emisijų nustatymo rezultatai pa-
siekti naudojant Kohonen tinklą su rombo kaimynystės funkciją ir požymius,
kurie išskirti naudojant spektro galio vidurkio bei kvadratinio nuokrypio be
atminties modulius.

• Kohonen tinklas su vidiniais svoriais. Vidutinė mokymosi trukmė tik – 57 ite-
racijos. Pasiektas vidutinis pirminio vartotojo nustatymo tikslumas 98,43%,
kai nustatytas 0,94% vidutinis klaidos santykis. Tiksliausiai pirminio vartoto-
jo emisijos nustatytos naudojant Daubechies transformacija išskirtus spektro
požymius.

Iš visų antrojo etapo tinklų rezultatų galima išskirti Kohonen tinklą su mokymosi
asistentu ir Kohonen tinklą su vidiniais svoriais. Nes su mokymosi asistentu pasiektas
didžiausias vidutinis pirminio vartotojo nustatymo tikslumas, o Kohonen tinklo su
vidiniais svoriais mokymosi proceso trukmė mažiausia.

Iš pirmųjų etapų realaus laiko eksperimentams atrinkti tokie tinklai: pagrindine
mokymosi taisykle grįstas Kohonen tinklas su rombo kaimynystės funkcija, galinio
mokymosi taško sekimu grįstas Kohonen tinklas su šešiakampio kaimynystės funkci-
ja, Kohonen tinklas su mokymosi asistentu - rombo kaimynystės funkcija ir Kohonen
tinklas su vidiniais svoriais. Minėtiems tinklams požymiai išskiriami naudojant: spekt-
ro galios vidurkio, kvadratinio nuokrypio be atminties modulius ir Daubechies trans-
formaciją. Realaus laiko eksperimentai atlikti trejose vietovėse, kuriuose stebėti du
radijo dažnių ruožai. Vietovės parinktos pagal skirtingą gyventojų tankumą: miestas,
priemiestis, miestelis. O radijo dažnių ruožai parinkti pagal galimą skirtingą pirminių
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vartotojų signalų aktyvumą: nelicencijuotas ruožas 433 MHz centrinis dažnis 1 MHz
juosta ir licencijuotas ruožas 954 MHz centrinis dažnis 4 MHz juosta. Kiekvienas ra-
dijo ruožas stebėtas po parą. Vienoje vietovėje eksperimentai vykdyti 2 paras, o bend-
ra trečiojo etapo eksperimentų trukmė – 144 valandos. Panaudojant spektro jutiklius,
sudarytus iš atrinktų Kohonen tinklų ir spektro požymių išskyrimo modulių, realaus
laiko eksperimentuose nustatyta:

• Visose vietovėse 433 MHz dažnių ruožo užimtumas yra žemas. Vartotojų ak-
tyvumas nesiekia 0,1%. Šis ruožas itin laisvas priemiestyje, kur vartotojų ak-
tyvumas – 6, 257 · 10−3%.

• 954 MHz dažnių ruožo užimtumas svyruoja nuo 38,47% (miestelyje) iki
74,45% (priemiestyje). Miesto teritorijoje šio ruožo užimtumas siekia 52,81%.
Šis dažnių ruožas, lyginant su nelicencijuotu ruožu, yra efektyviai išnaudoja-
mas, ypač priemiesčio teritorijoje.

Iš atliktų radijo eterio eksperimentinių stebėjimų pastebėta, kad visose tirtose vie-
tovėse nelicencijuoto ruožo vartotojų skaičius gali būti plečiamas, o 954 MHz ruože
vartotojų skaičius gali būti padidintas miestelyje ir mieste.

Bendrosios išvados

Disertacijoje patvirtintos abi iškeltos hipotezės. Taip pat disertacijoje pasiūlyti Koho-
nen tinklų mokymosi pakeitimai, kurie sumažina LPLM naudojamų resursų kiekį ir
signalo apdorojimo vėlinimą.

1. Spektro požymių išskyrimas naudojant Daubechies vilnelių transformaciją
padidina spektro jutiklio jautrumą ir sumažina vidutinį aptikimo klaidos san-
tykį visiems signalų tipams nuo 1,94% iki 1%.

2. Taikant daugisluoksniu percetroniniu tinklu grįstą spektro jutiklį, galima ap-
tikti iki 98,63% pirminio naudotojo signalų, kai klaidingai aptiktų signalų yra
ne daugiau 2,72%.

3. Taikant Kohonen neuronų tinklu grįstą spektro jutiklį galima aptikti visus
pirminio naudotojo signalus, kai klaidingai aptiktų signalų yra ne
daugiau 1%.

4. Taikant naujai pasiūlytą mokymo sustabdymo algoritmą, grįstą tinklo laimė-
jusio neurono vidutinio atstumo stebėjimu, galima 19–80% sumažinti moky-
mo iteracijų skaičių, o papildžius algoritmą pasiūlytu tinklo mokymosi asi-
stentu, tinklui apsimokyti pakanka 10% iteracijų, lyginant su rekomenduoja-
mu literatūroje iteracijų skaičiumi.

5. Taikant naujai pasiūlytą Kohonen neuronų tinklo struktūrą su vidiniais ry-
šiais, pakanka 3–15% tinklo mokymosi iteracijų, lyginant su rekomenduoja-
mu literatūroje iteracijų skaičiumi, o įgyvendinant LPLM sistemoje naudoja
2,3 karto mažiau atminties ir mokymosi greitis padidėja 32 kartus.
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