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Abstract: The main aim of this article is to propose an adaptive method to solve multidimensional
parabolic problems with fractional power elliptic operators. The adaptivity technique is based on a
very efficient method when the multidimensional problem is approximated by a partially dimension-
reduced mathematical model. Then in the greater part of the domain, only one-dimensional problems
are solved. For the first time such a technique is applied for problems with nonlocal diffusion
operators. It is well known that, even for classical local diffusion operators, the averaged flux
conjugation conditions become nonlocal. Efficient finite volume type discrete schemes are constructed
and analysed. The stability and accuracy of obtained local discrete schemes is investigated. The
results of computational experiments are presented and compared with theoretical results.
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1. Introduction

In this paper, we consider two important questions of applied mathematical modelling.
First, a lot of work is done to investigate nonlocal differential equations [1]. Here, we

mention an approach when various fractional derivatives are used to describe anomalous
transport processes (see, e.g., [2,3] and references given therein), porous media [4,5], and a
method for when nonlocal fractional powers of elliptic operators are defined to simulate
nonstandard physical processes (see [6–8] and references given therein).

As it is noted in [9], fractional models have attracted a lot of attention due to their
ability to simulate a nonlocal behaviour with a relatively small number of parameters. In
many cases, this technique is much more effective than the application of nonlinear PDE
models or models based on nonlocal discrete neural networks.

In this paper, we use the spectral definition of the fractional power of an elliptic
operator Aα

h (see the details in Section 2). Some well-known facts can be mentioned here.
It is important to note that the spectral algorithm in combination with FFT is used for
practical computations to solve parabolic-type problems with nonlocal diffusion operators.
If this approach is applicable, then the complexity of the constructed algorithms is the same
as we have in the case of classical diffusion operators. However, clearly, this strategy is
computationally efficient only if the FFT technique can be applied for the given discrete
problem. A more general approach is based on transformations of nonlocal problems to
the local classical differential problems. A very good review of these methods is given
in [10]. Second, we are interested in the application of a new technique which is proposed
to solve multidimensional applied problems more efficiently. Both 2D and 3D models are

Mathematics 2023, 11, 1984. https://doi.org/10.3390/math11091984 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11091984
https://doi.org/10.3390/math11091984
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3262-3048
https://doi.org/10.3390/math11091984
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11091984?type=check_update&version=3


Mathematics 2023, 11, 1984 2 of 18

reduced to hybrid dimension models, keeping the initial full dimension only small parts of
the domain and reducing it to a one-dimensional equation within the remaining parts of
the domain (see, [11,12]). The main driving idea of this method is based on the asymptotic
analysis of solutions of the given partial differential equation. Then, the regular and
singular behaviours of solutions are described by new mathematical models of different
complexities and dimensions. A very interesting application for solving the diffusion
equation in domains containing thin tubes is described in [13].

Many efficient algorithms are proposed to solve the obtained discrete problems, here
we mention our papers [14–16], where non-iterative ADI-type schemes are constructed to
solve hybrid dimension approximations of 3D parabolic problems. Some efficient parallel
algorithms are investigated in [16]. Still, no results are known about the application of reduced
dimension techniques for the parabolic problems with fractional power elliptic operators.

Our main aim is to generalize existing algorithms to this non-trivial nonlocal problem.
We describe all steps in the construction of these new algorithms and theoretically justify
the proposed discrete schemes. In all cases, we present the results of computational
experiments and compare them with theoretical predictions.

The rest of the paper is organized in the following way. In Section 2 the problem is formulated.
First, we define the classical 2D parabolic equation and give specific boundary conditions.

Next, the non-stationary parabolic equation with a fractional power elliptic operator
is formulated. As was mentioned above, the spectral definition is used to define fractional
power elliptic operators.

The boundary conditions for PDE with a classical diffusion operator are selected,
such that a solution satisfies the required asymptotic behaviour properties and, therefore,
a dimension reduction technique can be used to approximate the full multidimensional
problem with a hybrid dimension model. We define a differential equation in the partially
dimension-reduced domain and formulate special nonlocal conjugation conditions at the
boundary of 2D and 1D domains. This analysis follows techniques described in detail
in [12,14].

In Section 3 two classical finite difference schemes are constructed. Both schemes are
used as basic parts in the discretization of parabolic problems with fractional power elliptic
operators and problems describing partially dimension-reduced mathematical models. Our
aim is to test the accuracy of these schemes for specific boundary conditions. The first
scheme is based on the Crank–Nicolson method. The FFT algorithm is used to implement it.
The second ADI-type scheme is constructed in order to have the possibility of implementing
it without iterative solvers. Such a property is very useful in the construction of efficient
discrete schemes for partially dimension0reduced mathematical models.

The stability and convergence analysis is presented for both schemes. Then, a special
test problem is formulated. It is shown that experimental convergence order of discrete
solutions is equal to two in space and time.

In Section 4, discrete finite difference schemes are constructed for the parabolic problem
with a fractional power of elliptic operators. A short review on the stability and accuracy of
symmetrical difference schemes is presented. It is noted that the singularity of solutions can
reduce the convergence rate even in the L2 norm. Such theoretical estimates are illustrated
by the results of computational experiments.

In Section 5, we consider the BURA-BRASIL type approximation of the Crank–Nicolson
scheme for the parabolic problem with fractional power of elliptic operators. This scheme
defines an important part of the main algorithm to construct discrete models of partially
dimension-reduced models. The results of computational experiments illustrate the theo-
retical stability and accuracy results.

In Section 6, the ADI scheme is constructed for a partially dimension-reduced parabolic
problem with a classical discrete elliptic operator. It serves as a benchmark for this type
scheme and the results of computational experiments define a level of error expected
for approximations of nonlocal problems with fractional power elliptic operators. It is
shown that the constructed discrete operators are symmetric and positive definite operators.
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These properties enable us to prove the unconditional stability of the ADI scheme within a
particular energy norm.

In Section 7, we construct a partially dimension-reduced model for the parabolic
problem with a fractional power elliptic operator. The main idea is to start from the BURA-
BRASIL type scheme and to apply techniques from the previous section for the obtained
discrete classical elliptic operators. All of the details of the algorithm are presented and the
results of computations experiments are given.

Some final conclusions are discussed in Section 8.

2. Problem Formulation

Let D = (0, X)× (0, Y) be a two-dimensional rectangular bounded domain and ∂D is
a boundary of it. We define the diffusion operator

Au = −
(

∂2u
∂x2 +

∂2u
∂y2

)
, (x, y) ∈ D.

We start by formulating the following two-dimensional parabolic problem:

∂u
∂t

+ Au = 0, (x, y) ∈ D, 0 < t 6 T, (1)

u(0, y, t) = g1(y, t), u(X, y, t) = g2(y, t), y ∈ [0, Y], t ∈ [0, T], (2)
∂u
∂y

(x, 0, t) = 0,
∂u
∂y

(x, Y, t) = 0, x ∈ (0, X), t ∈ [0, T], (3)

u(x, y, 0) = 0, (x, y) ∈ D. (4)

Homogeneous initial conditions and source terms are selected in order to concentrate
on the main topic of this paper, i.e., the application of the dimension reduction method to
parabolic problems with fractional power elliptic operators. A generalization of all of the
obtained results for non-homogeneous conditions is quite straightforward.

Next, we give a spectral definition of the fractional power of elliptic operators. It will
be shown that operator A satisfies all assumptions on a class of operators considered in
this definition.

At the beginning, we assume that boundary conditions (2) are homogeneous. A
general case of non-homogeneous boundary conditions is considered later.

Let H be a Hilbert space with a scalar product (u, v) for u, v ∈ H. Then, the L2 norm is
defined as ‖u‖ = (u, u)1/2. Let A be a self-adjoint positive definite operator

A : H → H, A = A∗, A > cI, c > 0,

where I is the identity operator.
A definition of the fractional power of this operator Aα with a fractional parameter

0 < α < 1 can be done in a non-unique way, here we apply the spectral approach [17]. Let
us solve the standard eigen-problem

Aψj = λjψj, j = 1, 2, . . . .

All eigenvalues are positive

0 < λ1 6 λ2 6 · · · 6 λm 6 · · ·

and the set of eigenfunctions {ψj}make an orthonormal basis for H. Then, any function
u ∈ H can be expressed as

u =
∞

∑
j=1

(u, ψj)ψj.
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A nonlocal operator Aα with fractional parameter 0 < α < 1 is defined as

Aαu =
∞

∑
j=1

λα
j (u, ψj)ψj.

Similar to problem (1)–(4) we solve the Cauchy problem:

∂u
∂t

+ Aαu = 0, 0 < t 6 T, (5)

u(0) = u0, u0 ∈ H. (6)

By using the Fourier method it is possible to write the solution of this problem in
an explicit form. In practical applications, this technique is applicable only for simple
cases of operators A in standard domains. In this paper, we are interested in constructing
general discrete schemes, which can be used for problems with variable coefficients of
the elliptic operators and for non-uniform space grids. Still, we want to test the efficiency
of new algorithms when non-iterative linear algebra methods are used to solve partial
dimension-reduced problems with the fractional power of elliptic operators. Thus, the
analysis is restricted to rectangular domains.

For us, it is important that these schemes give us the possibility of reducing the com-
plexity of discrete algorithms by formulating a partially dimension-reduced approximations
of the given 2D space problem (5).

Next, we explain the main idea of partial dimension reduction technique by applying
it to a classical parabolic problem (1)–(4) (see also [12,14]). The model reduction is a
popular procedure which enables the users to construct a reduced-complexity model that
preserves some important properties of the full model. It is important to guarantee that
the approximate solution is close to the solution of the original full order model. In this
paper we apply the method, which is based on the partial dimension reduction method,
when the dimension of the full mathematical model is reduced in a big part of the initial
domain. Such a reduction is justified by the asymptotic analysis of solutions of the partial
differential equations and a projection of the solution can be done to a subspace of functions
having a form of the asymptotic expansion in the zones of regular behaviour of the solution.
Thus, we can reduce the dimension within the main part of the domain and keep the full
dimension description only in small zones of a singular behaviour of the solution. It is
clear that nonlocal junctions of one-dimensional and full-dimensional equations should be
formulated in the new model.

Now, we define a partially dimension-reduced approximation of the 2D mathematical
model (1)–(4). The problem is solved in the domain

Dδ =
(
(0, δ)× (0, Y)

)
∪ [δ, X− δ] ∪

(
(X− δ, X)× (0, Y)

)
, δ > 0.

Let

S(u) =
1
Y

∫ Y

0
u(x, y, t) dy

denote the averaging operator with respect to y dimension. Function U is called an
approximate solution to problem (1)–(4) if it satisfies the following differential problem [12]
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∂U
∂t

+ AU = 0, (x, y, t) ∈ (0, δ) ∪ (X− δ, X)× (0, Y)× (0, T], (7)

∂U
∂t

=
∂2U
∂x2 , (x, t) ∈ (δ, X− δ)× (0, T], (8)

U(0, y, t) = g1(y, t), U(X, y, t) = g2(y, t), (y, t) ∈ [0, Y]× (0, T], (9)
∂U
∂y

(x, 0, t) = 0,
∂U
∂y

(x, Y, t) = 0, (x, t) ∈ (0, δ) ∪ (X− δ, X)× (0, T], (10)

U(x, y, 0) = 0, (x, y) ∈ Dδ. (11)

The following two pairs of conjugation conditions are valid at the truncation lines:

U
∣∣
x=δ−0 = U

∣∣
x=δ+0, U

∣∣
x=X−δ−0 = U

∣∣
x=X−δ+0, (12)

∂S(U)

∂x

∣∣∣
x=δ−0

=
∂U
∂x

∣∣∣
x=δ+0

,
∂U
∂x

∣∣∣
x=X−δ−0

=
∂S(U)

∂x

∣∣∣
x=X−δ+0

. (13)

The first two conditions (12) are classical and state that U is continuous at the sep-
aration interface. The last two conditions (13) are nonlocal and they follow from the
conservation law of fluxes along the separation lines.

Our main aim is to also construct a similar partial dimension reduction for the
parabolic problem with the fractional power of elliptic operators (5) and (6).

3. Discrete Schemes

A discrete approximation of the 2D diffusion operator A is constructed by using the
finite volume method. First, a uniform space mesh is defined Ωh = ω̄x × ω̄y:

ω̄x =
{

xi : xi = ih, i = 0, . . . , Jx, hx = X/Jx},
ω̄y =

{
yj : yj = jh, j = 0, . . . , Jy, hy = Y/Jy}.

Next, for simplicity of notations we consider a uniform time mesh:

ω̄t = {tn : tn = nτ, n = 0, . . . , N}, tN = T.

The following operators are defined for discrete functions:

∂xUn
ij :=

Un
ij −Un

i−1,j

hx
, ∂yUn

ij :=
Un

ij −Un
i,j−1

hy
,

∂tUn
ij :=

Un+1
ij −Un

ij

τ
, Un+ 1

2
ij =

Un+1
ij + Un

ij

2
.

The discrete diffusion operators are constructed as:

AhxUn
ij := − 1

hx

(
∂xUn

i+1,j − ∂xUn
ij

)
, 0 < i < Jx, 0 6 j 6 Jy, (14)

AhyUn
ij :=


− 2

hy
∂yUn

i1, j = 0,

− 1
hy

(
∂yUn

i,j+1 − ∂yUn
ij

)
, 0 < j < Jy,

2
hy

∂yUn
i,Jy

, j = Jy,

0 < i < Jx. (15)

By applying the symmetrical approximation in time and the finite volume method for
approximation of space derivatives, we get the Crank–Nicolson discrete scheme
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∂tUn
ij + (Ahx + Ahy)U

n+ 1
2

ij =
1
h2

x

(
δi1gn+ 1

2
1 (yj) + δi,Jx−1gn+ 1

2
2 (yj)

)
, (xi, yj) ∈ ωx × ω̄y, (16)

where δik is the Kronecker delta function. Non-homogeneous boundary conditions are
included into the discrete equation as additional source terms.

We assume that vectors Un
ij satisfy homogeneous boundary conditions for i = 0 and

i = Jx. Thus, the exact solution of the Crank–Nicolson scheme Ũn is defined as

Ũn
ij = Un

ij, 0 < i < Jx, 0 6 j 6 Jy,

Ũn
0j = gn

1 (yj), Ũn
Jx ,j = gn

2 (yj), 0 6 j 6 Jy,

This assumption is always used in this paper when some spectral algorithms are
applied, including the FFT algorithm.

Lemma 1. The Crank–Nicolson discrete scheme (16) is unconditionally stable in the L2 norm. If a
solution of the problem (1)–(4) is sufficiently smooth, then the approximation error of this scheme is
of order O(h2

t + h2
x + h2

y).

The proof of the stability follows from the spectral Fourier analysis and the estimate
of the approximation accuracy is based on the Taylor expansion technique. Then, it follows
from the well known Lax theorem (see e.g., [18]) that the discrete solution converges with
the second-order in space and time.

The implementation of the Crank–Nicolson discrete scheme (16) is done efficiently
using the FFT algorithm. An explicit definition of eigenvectors and eigenvalues of the
operators Ahx and Ahy will be given in the section on numerical experiments.

In all numerical experiments, we use solutions of the symmetrical scheme (16), when
they are computed for sufficiently small time and space steps of discrete meshes, as virtual
benchmarks of exact solutions. Thus, it is important to test the convergence rates of solutions
of scheme (16) and to have a a posteriori error estimates of the selected “exact” solutions.

Example 1. We solve a linear two-dimensional parabolic problem (1)–(4) defined on the domain
D = [0, 2]× [0, 1]. The boundary conditions are selected as

g1(y, t) = t exp
(
−25(y− 0.5)2

)
, g2(y.t) = 2t exp

(
−36(y− 0.5)2

)
, y ∈ [0, 1], t ∈ [0, 1].

Let us solve the standard eigen-problem

AhΨlk = λlkΨlk, 0 < l < Jx, 0 6 k 6 Jy, (17)

where Ψlk = Φx
l Φy

k , λlk = µx
l + µ

y
k and Φx

l , Φy
k are solutions of eigen-problems

AhxΦx
l = µx

l Φx
l , 0 < l < Jx,

AhyΦy
k = µ

y
k Φy

k , 0 < k < Jy.

For the given test problem, the solutions of eigen-problems can be written explicitly

Φx
l (xi) =

√
2/X sin

(
πl

xi
X

)
, µx

l =
4
h2

x
sin2

( πl
2Jx

)
, 0 < l < Jx, xi ∈ ω̄x, (18)

Φy
k(yj) =

√
2/Y cos

(
πk

yj

Y

)
, µ

y
k =

4
h2

y
sin2

( πk
2Jy

)
, 0 6 k 6 Jy, yj ∈ ω̄y. (19)
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Table 1 provides a sequence of decreasing time step widths τ and space mesh steps hx,
hy, the errors E(τ), and the experimental convergence rates ρ(τ) of the discrete solution for
scheme (16) in the maximum norm:

E(τ, hx, hy) = max
(xi ,yj)∈Ωh

∣∣∣UN
ij − u(xi, yj, 1)

∣∣∣, ρ(τ, hx, hy) = log2

(
E(2τ, 2hx, 2hy)

E(τ, hx, hy)

)
.

Uniform space grids Ωh are used in numerical experiments. The “exact” solution
u(xi, yj, 1) is computed on a grid with Jx = 1024, Jy = 512, N = 500.

Table 1. Errors E(τ, h) and experimental convergence rates ρ(τ, h) for the discrete solution of
scheme (16) for a sequence of time steps τ and space steps hx = hy = h.

τ0 = 1
10 , h0 = 1

16 τ0, h0
τ0
2 , h0

2
τ0
4 , h0

4
τ0
8 , h0

8

E(τ, h) 1.557× 10−2 3.915× 10−3 9.558× 10−4 2.316× 10−4

ρ(τ, h) — 1.992 2.034 2.045

It follows from the presented results that the convergence order of the discrete solution
is close to the second, as it is predicted by the theoretical error estimates.

In the implementation of the partial dimension reduction method for the parabolic
problem (1)–(4), we will use an ADI-type scheme. Thus, here we test the accuracy of the
classical ADI scheme [16,18]. The differential problem is approximated by the discrete scheme:

Ûn
ij −Un

ij
1
2 τ

+ AhxUn
ij + AhyÛn

ij = 0, (xi, yj) ∈ ωx × ω̄y, (20)

Un+1
ij − Ûn

ij
1
2 τ

+ AhxUn+1
ij + AhyÛn

ij = 0, (xi, yj) ∈ ωx × ω̄y. (21)

As for most splitting type schemes, the implementation of the given algorithm is
reduced to a solution of one-dimensional systems of linear equations and the efficient
factorization algorithm can be used. As an additional bonus, we note that independent
subproblems can be solved in parallel (see [16]).

Lemma 2. The ADI discrete scheme (20) and (21) is unconditionally stable in the L2 norm. If a
solution of the problem (1)–(4) is sufficiently smooth, then the approximation error of this scheme is
of order O(h2

t + h2
x + h2

y).

Again, the proof of the stability follows from the spectral Fourier analysis. The estimate
of the approximation accuracy is obtained by transforming the ADI scheme to a perturbed
Crank–Nicolson discrete scheme (16). It follows from the well known Lax theorem (see
e.g., [18]) that the discrete solution of scheme (20) and (21) converge with the second-order
in space and time.

Table 2 provides a sequence of decreasing time step widths τ and space mesh steps hx,
hy, the errors E(τ), and the experimental convergence rates ρ(τ) of the discrete solution for
the ADI scheme (20) and (21) in the maximum norm.

Table 2. Errors E(τ, h) and experimental convergence rates ρ(τ, h) for the discrete solution of the
ADI scheme (20) and (21) for a sequence of time steps τ and space steps hx = hy = h.

τ0 = 1
10 , h0 = 1

16 τ0, h0
τ0
2 , h0

2
τ0
4 , h0

4
τ0
8 , h0

8

E(τ, h) 6.617× 10−2 1.837× 10−2 4.721× 10−3 1.176× 10−3

ρ(τ, h) — 1.849 1.960 2.005
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It follows from the presented results that the convergence order of the discrete solution
of the ADI scheme (20) and (21) is close to the second, as it is predicted by the theoretical
error estimates. Still, comparing these results with the results presented in Table 1, we
conclude that that the solutions of of the Crank–Nicolson scheme (16) are more accurate.

4. Discrete Schemes for the Parabolic Problem with a Fractional Power of Elliptic Operators

In this section, we approximate operator Aα by considering finite-dimensional Hilbert
space Hh. A scalar product of U, V ∈ Hh is denoted as (U, V) and defined by

(U, V) =
Jx−1

∑
i=1

Jy

∑
j=0

UijVijhxhycj, cj =

{
1, 0 < j < Jy,
0.5, j = 0, Jy.

.

Here, it is assumed that boundary conditions for U are homogeneous

U0j = 0, UJx , j = 0, 0 6 j 6 Jy.

It is easy to check that Ah = Ahx + Ahy, where Ahx, Ahy are defined by (14), (15), is a
self-adjoint positive definite operator

Ah : Hh → Hh, Ah = A∗h, Ah > cIh, c > 0,

where Ih is the discrete identity operator.
Let us solve the standard eigen-problem

AhΨlk = λlkΨlk, 0 < l < Jx, 0 6 k 6 Jy,

where Ψlk = Φx
l Φy

k , λlk = µx
l + µ

y
k and Φx

l , Φy
k are solutions of eigen-problems

AhxΦx
l = µx

l Φx
l , 0 < l < Jx,

AhyΦy
k = µ

y
k Φy

k , 0 < k < Jy.

All eigenvalues of Ah are positive

0 < λ10 6 · · · 6 λJx−1,Jy

and the set of eigenfunctions {Ψlk}make an orthonormal basis for Hh.
Then, any function U ∈ Hh can be written as

U =
Jx−1

∑
k=1

Jy

∑
l=0

(U, Ψkl)Ψkl .

The fractional operator Aα is replaced by its discrete approximation

Aα
hU =

Jx−1

∑
k=1

Jy

∑
l=0

λα
kl (U, Ψkl)Ψkl .

Next, we approximate the nonlocal differential problem (5) and (6) with the discrete
scheme which is obtained by applying a symmetrical approximation in time and the discrete
operator Aα

h :

∂tUn + Aα
hUn+ 1

2 = Aα−1
h Fn+ 1

2 , (22)
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where Fn+ 1
2 =

(
f n+ 1

2
ij , 0 < i < Jx, 0 6 j 6 Jy

)
and components of this vector f n+ 1

2
ij =

1
h2

x

[
δi1gn+ 1

2
1 (yj)+ δi,Jx−1gn+ 1

2
2 (yj)

]
take into account the non-homogeneous boundary conditions

u(0, y, t) = g1(y, t), u(X, y, t) = g2(y, t), y ∈ [0, Y], 0 < t 6 T

For more details on this technique see [8,19].
The solution of (22) can be computed directly by using the Fourier method. Still, this

technique is restricted to specific elliptic operators in rectangular domains and uniform
space meshes.

Next, we stop briefly on the stability and accuracy of the constructed discrete scheme (22).
A detailed analysis of such schemes is given in [20]. The stability of the scheme is proved
exactly as it was done in Lemma 1 for the Crank–Nicolson scheme (16).

The analysis of the approximation accuracy is more complicated. Following techniques
used in [20], it is possible to estimate the approximation error in the case of homogeneous
boundary conditions and an assumption that the solution of the differential problem (5)
and (6) is a sufficiently smooth function. First we write the approximation error in the
standard form [18]

Ψh(tn+ 1
2 ) := ∂tun

h + Aα
hun+ 1

2
h = Aα

huh
(
tn+ 1

2
)
−
(

Aαu
(
tn+ 1

2
))

h + O(τ2). (23)

It is clear that the classical technique of the Taylor expansion cannot be used for the
fractional power elliptic operators. Let us apply the spectral definition of nonlocal operators
Aα and Aα

h , then we obtain

Aα
huh
(
tn)− (Aαu

(
tn))

h =
J

∑
j=1

(
un

hjµ
α
j ψh

j − uj(tn)λα
j ψj
)
−

∞

∑
j=J+1

λα
j ujψj.

The second term can be bounded by O(hm) depending on the smoothness of the solu-
tion. Additionally, the estimates for the accuracy of discrete eigenvalues and eigenvectors
are well-known for many popular approximations of elliptic problems [18,21]:∥∥ψh

j − ψjh
∥∥ 6 Ch2,

∣∣µα
j − λα

j
∣∣ 6 Ch2, j = 1, . . . , J.

Still, due to inclusion of non-homogeneous boundary conditions, the smoothness of
the solution of differential problem (5) and (6) is reduced. In this case, the convergence rate
of the discrete solution depends on a balance of two properties, i.e., the smoothness of the
exact solution and on the fractional power parameter α. For standard second-order space
approximations it has been shown in [10,17] that the discretization error in the L2 -norm
for similar problems can behave like

Eh 6 Chmin(2, 2α+0.5) log(1/h). (24)

In order to illustrate such theoretical results we provide, in Table 3, experimental
convergence rates for the discrete solution of symmetrical scheme (22) in the maximum
norm E(τ, h). A sequence of time steps and space steps are used, and α = 1

4 , 1
2 , 3

4 .
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Table 3. Errors E(τ, h) and experimental convergence rates ρ(τ, h) for the discrete solution of the
discrete scheme (22) for a sequence of time steps τ and space steps hx = hy = h and two different
values of the fractional power parameter α.

τ0 = 1
10 , h0 = 1

16 τ0, h0
τ0
2 , h0

2
τ0
4 , h0

4
τ0
8 , h0

8

E(τ, h), α = 3
4 1.528× 10−2 3.919× 10−3 9.865× 10−4 2.365× 10−4

ρ(τ, h) — 1.963 1.990 2.060

E(τ, h), α = 1
2 1.696× 10−2 4.466× 10−3 1.194× 10−3 4.038× 10−4

ρ(τ, h) — 1.925 1.903 1.564

E(τ, h), α = 1
4 2.213× 10−2 1.028× 10−2 5.850× 10−3 3.682× 10−3

ρ(τ, h) — 1.106 0.8130 0.6680

The presented results show a degradation of the convergence rate predicted in (24).
Next, we solved the same test problem, but with homogeneous boundary conditions

g1(y, t) = 0, g2(y, t) = 0.

The initial condition is defined as

u0(x, y) = x(2− x) cos(πy), 0 6 x 6 2, 0 6 y 6 1. (25)

Our aim is to show that, in this case, the second-order convergence rate is expected for the
solution of the symmetrical scheme (22). A sequence of time steps and space steps are used, and
α = 1

2 , 3
4 . Errors E(τ, h) and experimental convergence rates are presented in Table 4.

Table 4. Errors E(τ, h) and experimental convergence rates ρ(τ, h) for the discrete solution of the
discrete scheme (22) for a sequence of time steps τ and space steps hx = hy = h and two different
values of the fractional power parameter α. The homogeneous boundary conditions and initial
condition (25) are used.

τ0 = 1
10 , h0 = 1

16 τ0, h0
τ0
2 , h0

2
τ0
4 , h0

4
τ0
8 , h0

8

E(τ, h), α = 3
4 6.657× 10−3 1.637× 10−3 4.074× 10−4 1.015× 10−4

ρ(τ, h) — 2.024 2.006 2.005

E(τ, h), α = 1
2 3.027× 10−3 7.512× 10−4 1.875× 10−4 4.694× 10−5

ρ(τ, h) — 2.011 2.002 1.998

The presented results confirm the second order rate of the convergence.

5. BURA-BRASIL Algorithm

In the previous section, the discrete scheme (22) was implemented by using the FFT
algorithm. This algorithm is efficient only for special classes of problems and uniform
discrete space meshes. In order to construct a universal discrete scheme, we write the
Crank–Nicolson scheme (22) in the factorized form

Un+ 1
2 = (Ih + 0.5τAα

h)
−1
(

Un + 0.5τAα−1
h Fn+ 1

2

)
, (26)

Un+1 = 2Un+ 1
2 −Un.

Then, applying a general technique described in [8,20] we approximate both nonlocal
operators (Ih + τAα

h)
−1 and Aα−1

h with two local rational operators

(Ih + 0.5τAα
h)
−1 ≈ rm(Ah), Aα−1

h ≈ r̃m(Ah).
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For example, a function rm(z) is defined as

rm(λ) =
pm(λ)

qm(λ)

with polynomials pm and qm of the same degree m. The constructed rational function rm
can be written in a partial fraction decomposition form [8]

rm(λ) = c0 +
m

∑
j=1

cj

λ− dj
(27)

which enables us to reduce the computation of images of nonlocal operators to a solution
of systems of linear equations. All m systems can be solved in parallel.

In this work, the required rational functions are computed by using the BURA-BRASIL
algorithm, which is based on the barycentric rational formula [22]. The main aim of this
algorithm is to construct BURA (best uniform rational approximation) type approxima-
tions [7]. A free and open-source Python implementation of the BRASIL algorithm is used
in computations [22].

Thus, the basic nonlocal discrete scheme (26) is approximated using the following
local discrete scheme

F̃n+ 1
2 = r̃m(Ah)Fn+ 1

2 ,

Vn+ 1
2 = rm(Ah)

(
Vn + 0.5τF̃n+ 1

2

)
, (28)

Vn+1 = 2Vn+ 1
2 −Vn.

Here, F̃n+ 1
2 is computed as

F̃n+ 1
2 = c̃0Fn+ 1

2 +
m

∑
k=1

c̃kGn+ 1
2

k , (29)

(Ah − d̃k Ih)G
n+ 1

2
k = Fn+ 1

2 , k = 1, . . . , m

and similarly Vn+ 1
2 is computed as

Vn+ 1
2 = c0

(
Vn + 0.5τF̃n+ 1

2

)
+

m

∑
k=1

ck Hn+ 1
2

k , (30)

(Ah − dk Ih)Hn+ 1
2

k =
(

Vn + 0.5τF̃n+ 1
2

)
, k = 1, . . . , m

The stability analysis of such discrete schemes is done in [20]. According to it, we
should estimate the norm ‖2rm(Ah)− Ih‖. We investigated the stability by computing the
stability factor R of the scheme (28) for a set of eigenvalues of the discrete operator Ah and
selected values of fractional power parameters α:

R = max
06j6K

|2rm(zj)− 1|, zj = µ1 +
j
K
(µJ − µ1).

In the case of the parameters of this paper, it was ensured that the stability requirement
R 6 1 was satisfied.

The accuracy of the discrete solution depends on the parameter m of the BURA-BRASIL
algorithm. In Table 5, we present the error in the maximum norm E(τ, h) with which the
solution of BURA-BRASIL scheme (28) approximates the solution of the Crank–Nicolson
scheme (22). Results are given for a sequence of time steps τ and space steps hx = hy = h
and two different values of the parameter m. The value of the fractional power parameter
is fixed to α = 3

4 .
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Table 5. Errors E(τ, h) for the discrete solution of the BURA-BRASIL scheme (28) for a sequence of
time steps τ and space steps hx = hy = h and two different values of m.

τ0 = 1
10 , h0 = 1

16 τ0, h0
τ0
2 , h0

2
τ0
4 , h0

4

E(τ, h), m = 5 1.044× 10−2 1.894× 10−2 2.997× 10−2

E(τ, h), m = 10 2.611× 10−4 8.230× 10−4 1.953× 10−3

6. ADI Scheme for Partially Dimension-Reduced Problem

As it was stated above, our main aim is to construct partially dimension-reduced
models for parabolic problems with the fraction power of elliptic operators.

First, we note that this possibility is based on the properties of solutions for both
types of parabolic problems, when classical diffusion operators and fractional powers of
such operators are used to define PDEs. For the selected test problem, we see a typical
asymptotical behaviour of the solution Un(xi, yj), when in a big part of the domain function
U is close to a constant with respect to one space direction y (a regular part of the solution).
The full two dimension model should be only be used in a small part of the domain
(a singular part of the solution). As an example, in Table 6 we present values of

δ̃(xi) = max
j∈ω̄y
|UN

ij −UN
i,Jy/2|

at t = 1, for mesh steps hx = hy = ht = 0.01 and two values of the fractional power
parameters: α = 1 (the classical diffusion operator) and α = 3

4 (a fractional power of the
elliptic operator).

Table 6. Values of the variance function δ̃(xi) for the discrete solutions of ADI scheme (16) and of
the BURA-BRASIL scheme (28) for a sequence of points xi and two different values of the fractional
poser parameter α = 1, 0.75.

xi = 0.7 xi = 0.9 xi = 1 xi = 1.1 xi = 1.3

δ̃(xi), α = 1 0.0118 0.00475 0.00474 0.00672 0.0211
δ̃(xi), α = 3

4 0.00906 0.00358 0.00356 0.00509 0.0166

Here, we note that adaptive meshes can be used as an alternative for the partial
dimension reducing technique. As an example, a two-scale solver can be constructed. The
implementation of the solver is done in two steps: first, the global approximation is done
by using classical bases functions uniformly distributed in the whole domain, and second,
enriched bases functions are used locally to represent a microstructure in singular zones
(see, e.g., [23]) A comparison of both approaches is planed for a future work.

First we define discrete meshes on the reduced dimension domain

ωx1 = {xi : 0 < i < Jx1}, ωx2 = {xi : Jx2 < i < Jx}, ωx3 = {xi : Jx1 < i < Jx2},
ω̄x1 = {xi : 0 6 i < Jx1}, ω̄x2 = {xi : Jx2 < i 6 Jx}, ω̄x3 = {xi : Jx1 6 i 6 Jx2},
xJx1 = δ, xJx2 = X− δ.

The discrete solution Uij is defined on the reduced dimension (RD) mesh:

ΩRD
h =

(
ω̄x1 × ω̄y

)
∪ ω̄x3 ∪

(
ω̄x2 × ω̄y

)
.

A set of such discrete functions U is denoted by Dh.
Let U, V ∈ Dh and assume that they satisfy the following boundary conditions

U0j = 0, UJx ,j = 0, V0j = 0, VJx ,j = 0, 0 6 j 6 Jy.
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Then the formulae

(U, V) =
Jy

∑
j=0

cj

( Jx1−1

∑
i=1

UijVijhx +
Jx−1

∑
i=Jx2+1

UijVijhx

)
hy + Y

K2

∑
k=K1

Ui0Vi0hx,

c0 =
1
2

, cJy =
1
2

, cj = 1, 0 < j < Jy,

‖U‖ = (U, U)1/2

define a scalar product and a norm in this vector space.
The discrete averaging operator Sh is defined as:

Sh(Un
i ) =

hy

Y

(
1
2

Un
i0 +

Jy−1

∑
j=1

Un
ij +

1
2

Un
i,Jy

)
.

In order to approximate problem (7)–(11) we construct a modified version of the ADI
scheme (see also [14]):

Ûn
ij −Un

ij
1
2 τ

+ AhxUn
ij + AhyÛn

ij = 0, (xi, yj) ∈ (ωx1 ∪ωx2)× ω̄y, (31)

Ûn
i0 −Un

i0
1
2 τ

+ AhxUn
i0 = 0, xi ∈ ωx3, (32)

Ûn
Jx1,0 −Un

Jx1,0
1
2 τ

+
1
h2

x

(
− Sh(Un

Jx1−1) + 2Un
Jx1,0 −Un

Jx1+1,0
)
= 0, (33)

Ûn
Jx2,0 −Un

Jx2,0
1
2 τ

+
1
h2

x

(
−Un

Jx2−1,0 + 2Un
Jx2,0 − Sh(Un

Jx2+1)
)
= 0, (34)

Un+1
ij − Ûn

ij
1
2 τ

+ AhxUn+1
ij + AhyÛn

ij = 0, (xi, yj) ∈ (ωx1 ∪ωx2)× ω̄y, (35)

Un+1
i0 − Ûn

i0
1
2 τ

+ AhxUn+1
i0 = 0, xi ∈ ωx3, (36)

Un+1
Jx1,0 − Ûn

Jx1,0
1
2 τ

+
1
h2

x

(
− Sh(Un+1

Jx1−1) + 2Un+1
Jx1,0 −Un+1

Jx1+1,0
)
= 0, (37)

Un+1
Jx2,0 − Ûn

Jx2,0
1
2 τ

+
1
h2

x

(
−Un+1

Jx2−1,0 + 2Un+1
Jx2,0 − Sh(Un+1

Jx2+1)
)
= 0. (38)

Let us define two operators for U ∈ Dh:

AhyU =

{
AhyUij, (xi, yj) ∈ (ωx1 ∪ωx2)× ω̄y,
0, xi ∈ ω̄x3,

AhxU =


AhxUij, (xi, yj) ∈ (ωx1 ∪ωx2)× ω̄y,
AhxUi0, xi ∈ ωx3,
1
h2

x

(
− Sh(Ui−1) + 2Ui0 −Ui+1,0

)
, i = Jx1,

1
h2

x

(
−Ui−1,0 + 2Ui0 − Sh(Ui+1)

)
, i = Jx2,
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Then we can write the ADI scheme in operator form:

Ûn −Un

1
2 τ

+AhxUn +AhyÛn = 0, (39)

Un+1 − Ûn

1
2 τ

+AhxUn+1 +AhyÛn = 0. (40)

The implementation of the first step of the ADI scheme (39) is straightforward—the
systems with three diagonal matrices are solved by using the classical factorization method.
It is important to note, that all systems can be solved in parallel.

The second step of the ADI scheme (40) requires a modification of the factorization
algorithm. First, the solution of equations on mesh ωx1 × ω̄y is represented in the form

Uij = αijg1(yj) + βijUJx1,0 + γij, 0 6 i < Jx1, yj ∈ ω̄y,

and similarly on mesh ωx2 × ω̄y

Uij = αijUJx2,0 + βijg2(yj) + γij, Jx1 < i 6 Jx2, yj ∈ ω̄y.

The solution on ω̄x3 is defined by the discrete problem(
2
τ

I + Ahx

)
Un+1

i0 =
2
τ

Ûn
i0, Jx1 < i < Jx2,(

2
τ
+

1
h2

x
(2− Sh(βi−1))

)
Un+1

i0 − 1
h2

x
Un+1

i+1,0 =
2
τ

Ûn
i0 +

1
h2

x
Sh
(
αi−1g1 + γi−1

)
, i = Jx1, (41)(

2
τ
+

1
h2

x
(2− Sh(βi+1))

)
Un+1

i0 − 1
h2

x
Un+1

i−1,0 =
2
τ

Ûn
i0 +

1
h2

x
Sh
(
αi+1g2 + γi+1

)
, i = Jx2.

It can be solved efficiently by using the classical factorization algorithm. When Un+1
Jx1,0,

Un+1
Jx2,0 are obtained, the remaining part of the solution Un+1 is computed.

Next, we present some basic theoretical results on the stability of the constructed
discrete scheme (this analysis uses techniques presented in [14]).

Lemma 3. The discrete operators Ahx and Ahy are symmetric and positive and non-negative
definite operators, respectively.

Proof. Here, we restrict to the analysis of operator Ahx which includes the most important
specific details of the discrete scheme. We also define vectors U, V on the full mesh ωy:

UJx1,j = UJx1,0, UJx2,j = UJx2,0, VJx1,j = VJx1,0, VJx2,j = VJx2,0, yj ∈ ω̄y.

Let us compute (AhxU, V) for vectors U, V which satisfy homogeneous boundary
conditions. Applying the summation of the parts formula and taking into account the
boundary and conjugation conditions we get



Mathematics 2023, 11, 1984 15 of 18

(AhxU, V) =
Jy

∑
j=0

cj

( Jx1−1

∑
i=1

(
AhxU

)
ijVijhx +

Jx−1

∑
i=Jx2+1

(
AhxU

)
ijVijhx

)
hy

+ Y
( 1

hx

(
− Sh(UJx1−1,·) + 2UJx1,0 −UJx1+1,0

)
VJx1,0 +

Jx2−1

∑
i=Jx1+1

(
AhxU

)
i0Vi0hx

+
1
hx

(
− Sh(UJx2+1,·) + 2UJx2,0 −UJx2−1,0

)
VJx2,0

)
=

Jy

∑
j=0

cj

( Jx1

∑
i=1

∂xUij ∂xVijhx +
Jx

∑
i=Jx2+1

∂xUij ∂xVijhx

)
hy

+ Y
Jx2

∑
i=Jx1+1

∂xUi0 ∂xVi0hx.

Thus, the operator Ahx is symmetric and non-negative definite. The positivity of this
operator follows from the positivity of general elliptic operators with the given bound-
ary conditions.

Taking into account the results of Lemma 3, the stability of the ADI scheme can be
shown in a particular energy norm [18].

Lemma 4. If Un is the solution of ADI scheme (39) and (40), then the following stability estimate
is valid

‖(I +
τ

2
Ah

2)U
n‖ 6 ‖(I +

τ

2
Ah

2)U
0‖. (42)

In Table 7, we present the error e(δ) with which the solution of discrete scheme (39)
and (40) approximates the solution of the Crank–Nicolson scheme (16). Computations are
done for a sequence of truncation parameters δ and the discrete mesh steps are fixed to
τ = 0.004, hx = hy = 0.004.

Table 7. Errors e(δ) with which the solution of the scheme (39) and (40) approximates the solution of
the Crank–Nicolson scheme (16) for a sequence of truncation parameters δ.

δ = 0.8 δ = 0.6 δ = 0.4 δ = 0.3

e(δ) 5.7695× 10−3 2.0002× 10−2 7.3100× 10−2 1.4255× 10−1

It follows from the presented results starting from δ = 0.3 that the solution of the
truncated problem (partially dimension-reduced model) approximates quite accurately the
solution of the Crank–Nicolson scheme (16).

7. Partially Dimension-Reduced Approximation of the BURA-BRASIL-Type Discrete
Scheme (28)

The main idea is to solve all elliptic problems in Equations (29) and (30) by applying the
technique similar to one presented in a previous section for the classical parabolic problem.

Let us consider the full algorithm in detail. We demonstrate how solve a template problem:

(Ah − dIh)V = F, (43)

where constant d 6 0 and discrete vectors V, F belong to a class of partially dimension-
reduced vectors Dh. Note that non-homogeneous boundary conditions of the solution V
are included into the source function F.
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Our aim is to solve problem (43) with non-iterative algorithms of linear algebra. Let
us present the solution V in the following form

Vij =


WL

ij + VJx1,0UL
ij , 0 < i < Jx1, 0 6 j 6 Jy,

Vi0, Jx1 6 i 6 Jx2,
WR

ij + VJx2,0UR
ij , Jx2 < i < Jx, 0 6 j 6 Jy,

(44)

where WL,R are solutions of the problems

(Ah − dIh)WL,R = FL,R. (45)

Since homogeneous boundary conditions are specified for WL,R, i.e.,:

WL
0j = 0, WL

Jx1,j = 0, WR
Jx2,j = 0, WR

Jx ,j = 0, 0 6 j 6 Jy,

then both problems are solved efficiently by using the FFT algorithm. We note that prob-
lems (45) are independent and can be solved in parallel.

UL,R are solutions of the problems

(Ah − dIh)UL = 0, (xi, yj) ∈ ωx1 × ω̄y,

UL
0j = 0, UL

Jx1,j = 1, 0 6 j 6 Jy,

and

(Ah − dIh)UR = 0, (xi, yj) ∈ ωx2 × ω̄y,

UR
Jx2,j = 1, UR

Jx ,j = 0, 0 6 j 6 Jy.

It is easy to see that due to special boundary conditions, the functions UL,R satisfy the
following properties

UL
ij = uL

i , (xi, yj) ∈ ω̄x1 × ω̄y,

UR
ij = uR

i , (xi, yj) ∈ ω̄x2 × ω̄y,

where uL,R are one-dimensional vectors in x dimension. These functions are solutions of
the following problems

(Ahx − dIh)uL = 0, xi ∈ ωx1

uL
0 = 0, uL

Jx1
= 1,

and

(Ahx − dIh)uR = 0, xi ∈ ωx2,

uR
Jx2

= 1, uR
Jx
= 0.

The solution on the mesh ω̄x3 is defined by the discrete problem

(Ahx − dIh)V = F, Jx1 < i < Jx2, (46)(
1
h2

x

(
2− uL

i−1

)
− d
)

Vi0 −
1
h2

x
Vi+1,0 = Fi0 +

1
h2

x
Sh

(
WL

i−1

)
, i = Jx1,(

1
h2

x

(
2− uL

i+1

)
− d
)

Vi0 −
1
h2

x
Vi−1,0 = Fi0 +

1
h2

x
Sh

(
WL

i+1

)
, i = Jx2.
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This system of linear equations can be solved efficiently by using the classical factor-
ization algorithm. When VJx1,0, VJx2,0 are known, the remaining part of the solution V is
computed explicitly.

In Table 8, we present the error with which the solution of the partially dimension-
reduced scheme approximates the solution of the Crank–Nicolson scheme (28). Results are
given for a sequence of truncation parameters δ, fractional power parameter α = 0.75, and
mesh steps τ = 0.004, hx = hy = 0.004.

Table 8. Errors ẽ(δ) for the solution of the BURA-BRASIL-type partially dimension-reduced scheme
for a sequence of truncation parameters δ and α = 3

4 .

δ = 0.8 δ = 0.6 δ = 0.4 δ = 0.3

ẽ(δ) 6.151× 10−3 1.909× 10−2 6.889× 10−2 1.362× 10−1

Again, we see that the solution of the hybrid partially dimension-reduced scheme
approximates quite accurately approximates a solution of the Crank–Nicolson scheme (28).
This scheme solves a parabolic problem with the fractional power elliptic operator.

8. Conclusions

A general approach is proposed regarding how to use the partial dimension reduction
technique in order to solve parabolic problems with fractional power elliptic operators.
The new technique is based on approximation of the differential problem by the BURA-
BRASIL-type Crank–Nicolson scheme. Then, the obtained discrete problems with classical
elliptic operators are solved by using the efficient partial dimension reduction techniques.

Non-iterative solvers of linear equations are proposed and implemented. A stability
and convergence analysis is given for all steps of the proposed discrete scheme. The
results of computational experiments are reported and they illustrate the accuracy of the
discrete algorithms.

It is noted that efficient parallel solvers can be used to implement the given scheme.
These results will be presented in a separate paper.
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