

VILNIUS GEDIMINAS TECHNICAL UNIVERSITY

 FACULTY OF AEROSPACE ENGINEERING

DEPARTMENT OF AERONAUTICAL ENGINEERING

Azar Musayev

RESEARCH ON THE ROTORCRAFT UAV SWARM POSSIBILITES

Master‘s degree Thesis

AEROSPACE ENGIEERING, state code 6211EX060

Aerospace Engineering_specialisation

Aerospace Engineering_study field

Vilnius, 2023

VILNIUS GEDIMINAS TECHNICAL UNIVERSITY

 FACULTY OF AEROSPACE ENGINEERING

DEPARTMENT OF AERONAUTICAL ENGINEERING

Azar Musayev

RESEARCH ON THE ROTORCRAFT UAV SWARM POSSIBILITES

Master‘s degree Thesis

AEROSPACE ENGIEERING, state code 6211EX060

Aerospace Engineering_specialisation

Aerospace Engineering_study field

Supervisor ________Doc. Dr. Darius Rudinskas____________
 (Title, Name, Surname)

Consultant ______________________________________

 (Title, Name, Surname)

Consultant ______________________________________

 (Title, Name, Surname)

OBJECTIVES FOR MASTER THESIS

 In the master`s final thesis, conduct a study of the flight behavior of various swarms

based on the formation of UAVs. Determine how the UAV swarm avoids obstacles. Conduct

research using a virtual environment.

Vilnius Gediminas Technical University

Antanas Gustaitis' Aviation Institute

Department of Aeronautical Engineering

ISBN ISSN

Copies No.

Date-.....-.....

Master Degree Studies Aerospace Engineering study programme Master Graduation Thesis

Title Research on the Rotorcraft UAV Swarm Flight Possibilities

Author Azar Musayev

Academic supervisor Darius Rudinskas

 Thesis language: English

Annotation

 This Master's thesis presents a study of UAV swarm possibilities. Different tools such as Robot Operating System framework, GAZEBO and Rviz
simulator has been used in order to test and analyze different UAV swarm topologies in simulated environment. Mapping technique used to map the
environment simultaneously during flight. Two different approaches implemented for navigation purpose such as global and local path planner and
social proximity layer technique used for collision avoidance. Four different topologies has been implemented in order to compare behavior of UAV
swarm possibilities such as individual decision making, leader follower, predecessor and two nearest predecessor topologies. All of these topologies'
performance has advantages and disadvantages according to results extracted from log files by plotting graphs. UAV swarm flight performance has
been improved by giving different input parameters such as velocity, acceleration, cost map and searching radius. Different input parameters
contributed to improve flight performance in terms of execution time, blocking time etc.
 Structure: introduction, applications of UAV swarm, classification of UAVs, sensors, UAV swarm communication architecture, path planning,
collision avoidance, obstacle avoidance, conclusions and references.
 Thesis consist of: 78 p. 53 figures, 8 tables and 32 bibliographical entries.

Keywords: Unmanned Aerial Vehicle, swarm, obstacle avoidance, collision avoidance, global path planning, local path planning, social proximity layer,
costmap, infilation radius, searching radious.

5

Table of Contents
INTRODUCTION .. 9
1. LITERATURE REVIEW ... 10
1.1. UAV swarm applications ... 10
1.2. Classification of UAV .. 12
1.3. UAV sensors analysis ... 15
1.4. UAV swarm communication architecture .. 18
1.5. UAV swarm control architecture. .. 22
Conclusion ... 26
2. METODOLOGY .. 29
2.1 Robot operating system (ROS) .. 29
2.2. Mapping of the environment. ... 31
2.3. Path planning .. 36
2.4. Collision Avoidance ... 40
Conclusion ... 41
3. PRACTICAL PART ... 42
3.1. Overall system description ... 42
3.2 Mapping ... 50
3.3 Navigation ... 55
3.3 Collision Avoidance .. 59
3.4 Formation-based Leader-Follower Control ... 61
3.5 Comparison of different formation-based swarm.. 67
3.6. Compare different parameters using LF topology ... 71
3.7 Conclusion ... 74
CONCLUSIONS ... 75
REFERENCES .. 76

6

List of Figures
Fig. 1. Drones with fire extinguishers. ... 10
Fig. 2. Bayraktar TB-2 ... 11
Fig. 3. Classification of the UAV system. .. 12
Fig. 4. DJI Phantom 4 Quadcopter. .. 14
Fig. 5. UAV autonomous system ... 18
Fig. 6. Infrastructure (GCS) based on swarm architecture. .. 20
Fig. 7. FANET swarm architecture. ... 21
Fig. 8. Cellular network UAV swarm architecture. ... 22
Fig. 9. Deliberative architecture ... 23
Fig. 10. Reactive architecture ... 24
Fig. 11. Hybrid architecture ... 25
Fig. 12. The Behavior Control Architecture .. 26
Fig. 13. ROS structure. ... 30
Fig.14. System overview of HECTOR SLAM... 33
Fig. 15. Global and local path planning. .. 36
Fig. 16. System diagram for multi-UAV collision avoidance .. 42
Fig. 17. Field of view ... 43
Fig. 18. Hector quadrotors .. 44
Fig. 19. Important ROS launches and scripts. .. 45
Fig. 20. Launch command .. 45
Fig. 21. Initial positions of drones. ... 46
Fig. 22. Lunch Rviz function ... 46
Fig. 23. Four quadrotor installed with 2D LIDAR on a Gazebo Simulator 47
Fig. 24. mapping_and_navigation_multi_uav_4.launch .. 48
Fig. 25. Launch command for flight test. ... 49
Fig. 26. Logger files for extracting data. .. 49
Fig. 27. Hector SLAM parameter configuration .. 50
Fig. 28. Different map generated by Hector SLAM with different free and occupied update
factor parameters. (a) 0.45 and 0.8 (b) 0.25 and 0.8 (c) 0.45 and 0.9 51
Fig. 29. Code snippet of quadrotor_move_base.launch. .. 52
Fig. 30. Costmap parameters configuration ... 54
Fig. 31. Global costmap using different parameters .. 54
Fig. 32. Global path. ... 55
Fig. 33. A* parameters. .. 56
Fig. 34. DWA parameters... 58
Fig. 35. Execution time between different velocity limit by using individual control............. 58
Fig. 36. Social proximity process. .. 60
Fig. 37. Several topologies for leader-follower method ... 61
Fig. 38. Leader control algorithm pseudo code .. 62
Fig. 39. Code snippet for leader control. .. 62
Fig. 40. Follower control algorithm pseudo code .. 63
Fig. 41. How each leader-follower topology works. .. 63
Fig. 42. Snippet codes for follower control .. 66
Fig. 43. The average mission time among different topologies ... 68
Fig. 44. The average blocking time among different topologies.. 68
Fig. 45. The average distance to neighbors among different topologies 69
Fig. 46. The accumulative trajectory length among different topologies 69

7

Fig. 47. The average distance to nearest obstacle among different topologies 70
Fig. 48. The trajectory of using different topologies. ... 70
Fig. 49. The average mission time among different parameters .. 71
Fig. 50. Blocking time among different parameter .. 72
Fig. 51. The average distance among different parameters .. 72
Fig. 52. Average trajectory length among different parameters ... 73
Fig. 53. Average distance to nearest obstacle among different parameters 73

8

List of Tables

Table 1. Classification of UAV depend on number of propeller... 13
Table 2. UAV types with main characteristics. ... 14
Table 3. UAV sensors used in agriculture monitoring. ... 15
Table 4. Sensors with detection and avoidance capabilities .. 17
Table 5. General characteristics of UAV swarm communication architectures...................... 27
Table 6.General characteristics of UAV swarm control architectures. 27
Table 7. Initial and goal positions of drones. .. 46
Table 8. Performance of different formation-based swarms. .. 74

9

INTRODUCTION
Relevance of the topic. Recent attention has been focused on unmanned aerial vehicle

(UAV) technologies due to their increasing military and commercial applications. It has been

discovered that swarms of UAVs execute certain duties, such as tracking, surveillance, path

planning, and coordination, significantly more effectively and with superior operating

parameters than applications employing a single UAV. A fleet of collaborating drones

generates novel problems that cannot be resolved with a single UAV deployment. Swarms

that operate as a single entity necessitate techniques for averting collisions both within the

swarm and with external obstacles. Failure of these systems can cause bodily injury and

increase manufacturing costs.

Problem – Collision avoidance, obstacle avoidance and communication are critical

problems for UAV swarm flight performance. However, these are still not fully solved in this

industry.

Research object – Possibilities of rotorcraft UAV swarm possibilities in indoor

environment.

Aim – to develop and evaluate behaviour of different UAV formation-based swarm

flights.

Tasks to solve the problem.

1. Formation based swarm of unmanned aerial vehicles,

2. Avoid from obstacles,

3. Avoid from collision between other UAVs

4. Shortest path planning.

Research Methods.

Establish virtual environments and simulate the behavior of the unmanned aerial

vehicle swarm through the utilization of simulation tools or platforms, such as ROS, Rviz, and

Gazebo. Execute the obstacle avoidance algorithm that was formulated and evaluate its

efficacy across varying scenarios within the simulation environment.

10

1. LITERATURE REVIEW
In this chapter, some essential topics such as UAV swarm communication

architectures, applications for both military and commercial purposes and control techniques

will be discussed in more detail.

1.1. UAV swarm applications
Recent advancements in the sensory technology integrated into unmanned aerial

vehicles (UAVs) have facilitated the emergence of novel unmanned operational services and

applications, thereby expanding the potential use cases for drones. This section provides a

brief summary of the primary use cases for unmanned aerial vehicles (UAVs).

Historically, unmanned aerial vehicles (UAVs) have been employed for the purpose of

conducting military surveillance missions. Unmanned aerial vehicles, commonly known as

drones, have exhibited remarkable versatility and cost-effectiveness in various sectors, such as

geophysics and agriculture, for conducting aerial surveys, monitoring activities, and

performing surveillance tasks. A monitored structure or setting may require revisions in

response to any detected motion occurring beyond regular business hours. To ensure

comprehensive surveillance, a substantial workforce would be required for monitoring a vast

building or area manually. On the contrary, a group of unmanned aerial vehicles has the

potential to provide superior coverage or surveillance of a given region with minimal human

intervention, as it can promptly notify the ground station of any detected motion. (Liu,2019)

Unmanned aerial vehicles (UAVs) possess the capability to rapidly and securely

penetrate disaster zones that would otherwise pose a risk and prove to be arduous to approach

in the absence of a calamity. Consequently, they are capable of aiding in disaster assessments

and the establishment of effective safeguards.

Fig. 1. Drones with fire extinguishers.

(https://dronelife.com/2021/04/28/drone-swarms-for-firefighting-the-future-of-fire-

https://dronelife.com/2021/04/28/drone-swarms-for-firefighting-the-future-of-fire-supression/

11

supression/)

In the event of a wildfire, a considerable area can be rapidly surveyed and controlled

without endangering human lives by employing a swarm of drones equipped with fire

extinguishers or similar tools.

The capabilities of swarm systems have direct applicability to intelligence and

surveillance operations. Swarms have the capability to be strategically positioned to conduct

surveillance on a specific target and its environs, while simultaneously tracking stationary or

mobile entities. This pertains to fundamental activities such as surveillance of a suspected

adversary establishment and monitoring the vicinity for incoming or outgoing automobiles.

The utilization of a swarm of drones enables the acquisition of images from multiple locations

in a simultaneous manner, while also facilitating the survey of a vast expanse of land, thereby

reducing the time required for an individual drone to execute a task (Hambling,2020). The

capability renders it advantageous in expeditiously capturing recurrent images across an

extensive area while simultaneously monitoring alterations in activity at a specific location.

Swarms have demonstrated efficacy in performing focused offensive operations.

Despite Armenia's numerical and technological advantages, Azerbaijan emerged victorious in

the 2020 Karabakh War by defeating Armenian forces. The primary reason for this outcome is

attributed to the utilization of diverse armed drones by Azerbaijan troops, including the

Turkish Bayraktar TB-2. The aforementioned drone effectively neutralized 40 fighter aircraft

and over 250 armored vehicles.

Fig. 2. Bayraktar TB-2

(https://www.yenisafak.com/ekonomi/bayraktar-tb2-16-ulkede-

ucuyor-3755997)

The military capabilities of Armenia's land and air defenses were significantly

impaired by the swarms, prompting the Azerbaijani troops to initiate motorized infantry

https://dronelife.com/2021/04/28/drone-swarms-for-firefighting-the-future-of-fire-supression/

12

operations aimed at recapturing the contested region. A group that initially appeared to be in a

weaker position utilized 16 swarms to enhance its offensive capabilities. The swarms had a

debilitating impact on Armenia's ability to engage in ground and air warfare, as they caused

extensive damage to numerous assets.

1.2. Classification of UAV
In contemporary times, with the progression of technology, there has been a surge in

the utilization of unmanned aerial vehicles, commonly known as drones, for various purposes

such as transportation of food, production of captivating cinematography, and military

operations. The payload is a crucial factor that necessitates consideration during the

development of a drone. The payload refers to the supplementary mass that an individual

drone has the capacity to elevate (Jang, 2020). A drone designed for delivery purposes is

capable of carrying a maximum payload of 25 kg, thereby enabling transportation of packages

weighing up to the aforementioned weight.

UAVs are available in various forms and may be utilized in a variety of situations.

There are numerous different categorization methods, as seen in Fig.1.

Fig. 3. Classification of the UAV system.

(https://www.sciencedirect.com/topics/engineering/unmanned-aerial-vehicle

Drones can be classified based on various factors such as size, range, and technology.

The dimensions of objects can be classified into four categories: nano, small, standard or

13

huge. Similarly, the extent of a range can be categorized as extremely close, close, short,

mid or endurance. Drones have the potential to be equipped with various technological

features such as cameras, stabilizers, sensors and Global Positioning Systems (GPS).

According to the information presented in Table 1, drones can be classified into four

primary classifications, namely fixed-wing, fixed-wing hybrid, single rotor, and multirotor.

The predominant application of fixed wing unmanned aerial vehicles (UAVs) is for the

purposes of conducting aerial mapping and inspection. These items are expensive and

necessitate specialized training for operation (Chand, Mahalakshmi, Naidu 2019). Despite

requiring additional space for takeoff and landing, they possess the capability to cover a

broader expanse. This particular drone model is deemed unsuitable for typical aerial

photography applications due to its lack of vertical takeoff and landing (VTOL) or hovering

capabilities. Nevertheless, in case they are propelled by gasoline-powered engines, they can

persist in the atmosphere for up to sixteen hours.

Table 1. Classification of UAV depend on number of propeller

Drones Number of propeller

Tricopter 3

Quadcopter 4

Hexacopter 5

Octocopter 8

On the contrary, fixed-wing hybrid unmanned aerial vehicles integrate automated and

manual gliding techniques. At present, the subject in question remains in the developmental

phase and exhibits limited proficiency in both hovering and forward flight. The utilization of

delivery drones is incorporated by Amazon in its business operations. In contrast, single rotor

unmanned aerial vehicles (UAVs) exhibit intricate mechanical configurations and operational

hazards such as vibration and sizable rotating blades. Consequently, the operator necessitates

proficiency training. These devices are costly and possess the ability to maneuver larger loads

such as LiDAR sensors. They have the potential to be powered by a combustion engine,

thereby increasing their overall durability.

14

Table 2. UAV types with main characteristics.

Drones Main characteristics

Fixed-Wing long endurance and fast flight speed

Fixed-Wing Hybrid VTOL and long endurance flight

Single Rotor

VTOL, hover and long endurance

flight

Multirotor VTOL, hover and short endurance

flight

Multirotor unmanned aerial vehicles (UAVs) are considered to be a cost-effective and

relatively simple option for construction. Unmanned aerial vehicles (UAVs), commonly

referred to as drones, are frequently employed for routine activities such as aerial photography

and video monitoring (Plathottam, 2018). Various types of unmanned aerial vehicles, such as

tricopters, quadcopters, hexacopters, and octocopters, are viable options for a range of tasks.

(Table 1). Nonetheless, the limited velocity, flight range, and energy efficiency of such

unmanned aerial vehicles render them unsuitable for conducting extensive aerial cartography

and long-range monitoring.

Fig. 4. DJI Phantom 4 Quadcopter.

(https://www.bhphotovideo.com/explora/video/buying-guide/introduction-drones-and-uavs)

Quadcopter is one of these multirotor drones with four rotors. Every rotor has its own

https://www.bhphotovideo.com/explora/video/buying-guide/introduction-drones-and-uavs

15

motor and propeller. Swarm of quadcopter will be analyzed in next chapters in this research.

DJI Phantom 4 Quadcopter is shown as an example in photo 3.

1.3. UAV sensors analysis
Unmanned Aerial Vehicles (UAVs) operate within the aerial environment. Aircrafts

are required to ascertain their location and attitude, ground and air speed, angle of attack, and

barometric pressure. Additionally, they may need to acquire their location data or exchange it

with other aircrafts. UAVs' flight location and orientation can be determined by employing

accelerometers in conjunction with tilt sensors and gyroscopes. Subsequently, the flight

control system is furnished with the aircraft's position and orientation data to maintain its

horizontal flight. Flight routes and directions are regulated through the utilization of inertial

measurement units (IMUs) in conjunction with the Global Positioning System (GPS)/Global

Navigation Satellite System (GNSS). The GPS/GNSS signal may exhibit instability in areas

with dense forestation, urban canyons, and enclosed spaces. This is due to various factors that

can cause interference or jamming, resulting in a weak or lost signal. As a result, many indoor

UAV systems utilize optical cameras, often in conjunction with other technologies such as

ultrasonic (US) technology.

Table 3. UAV sensors used in agriculture monitoring. (Jang, G. Review: Cost-Effective

Unmanned Aerial Vehicle (UAV) Platform, 2020)

Table 3 presents a selection of UAV sensors utilized in various fields, including

agriculture for crop monitoring and management, archaeology for site visualization,

excavation documentation, and aerial reconnaissance, as well as for general purposes to

16

ensure UAV sensing and avoidance capabilities (Jang, G.2020). RGB digital cameras offer

high spatial resolution measurements of radiation values within the red, green, and blue

spectral bands. The spatial resolution of the RGB sensor is a determining factor in the quality

of the captured images. Through the analysis of aerial photographs captured by a camera

equipped with this particular sensor, it is possible to obtain measurements related to plant

area, plant height, and color indices. Spectral sensors are utilized to collect data by monitoring

the light that is reflected, emitted, and transmitted from the objective. These sensors are

categorized as either multispectral or hyperspectral, depending on the number of frequency

bands and the width of each band. Thermal sensors generate visual representations by

detecting and capturing the electromagnetic radiation emitted by an object within the infrared

(IR) wavelength spectrum. Remote sensing technologies are employed in the agricultural

sector owing to their capacity to provide information on plant surface temperature and crop

water stress index. Multispectral cameras offer notable advantages over RGB cameras in the

agricultural domain due to their ability to capture additional information, including the

detection of imperceptible physiological changes in plants. Compared to other sensor types,

RGB cameras have the potential to offer superior spatial resolution. The utilization of

hyperspectral cameras in agriculture applications is not common due to their weight and size,

as well as their need for integration with additional equipment, such as a battery, frame

grabber, and data storage device, to ensure proper functionality on UAV platforms. The

utilization of hyperspectral sensors is expected to increase due to their continued

miniaturization, leading to a greater number of tasks that may incorporate them. Variations in

atmospheric conditions and the existence of objects that emit or reflect thermal infrared

radiation can potentially undermine the precision of thermal camera data. As a result, regular

calibration is required to ensure accuracy.

LiDAR sensors utilize illumination to target a specific point and analyze the reflected

light in order to determine the distance to said point. This particular sensor has the potential to

provide a wide-ranging field-of-view (FOV), denoting the extent of the observable area, while

simultaneously exhibiting exceptional precision. Nevertheless, with regards to the

requirements of UAV payloads, the dimensions and mass could potentially pose a significant

issue. LiDAR sensors are utilized in archaeological contexts to gather information on the

impact of ancient artifacts buried beneath the surface on the topography of the surrounding

terrain. They have the capability to offer extensive digital representations of terrain and

surface features. Spectral sensors provide measurements in the field of archaeology that

facilitate the identification of variations in the terrain matrix, thereby aiding in the assessment

of the significance of an archaeological site. Thermal sensors have the potential to be utilized

17

in the field of archaeology for the purpose of gathering pertinent information through the

analysis of recorded readings. The presence of static and/or dynamic obstructions poses a

significant challenge that poses a direct threat to the dependability of unmanned aerial

vehicles (UAVs), particularly those that operate at lower elevations. It is imperative for all

Unmanned Aerial Vehicle (UAV) applications to consider these factors. Table 4 presents a

selection of sensors and their respective detection ranges that have the potential to facilitate

unmanned aerial vehicles (UAVs) in acquiring information pertaining to the presence of

obstacles and environmental factors.

Table 4. Sensors with detection and avoidance capabilities

Sensors Detection range

Radar 35 km

LIDAR 15 km

Electro-optic sensor 20 km

Radars are capable of detecting obstacles by emitting electromagnetic waves that

propagate at the speed of light on a continuous basis (Adamopoulos,2020). When waves are

emitted and subsequently reflected back towards an obstacle, the presence of said obstacle is

detected. The temporal duration between the waves that are emitted and subsequently

reflected is utilized to compute the distance of the obstacle.

Radar technology is capable of expeditiously scanning a designated area and possesses

a wide-ranging capacity for detection. Despite having a shorter detection range compared to

radar, LiDAR offers the advantage of furnishing data on both the range and distance of

impediments.

Electro-optic sensors possess the capability to ascertain the obstruction's elevation and

azimuth through employment of a camera. However, they lack the ability to provide data

regarding the distance or velocity of the obstruction. The efficacy of electro-optic sensors is

notably influenced by meteorological conditions, in contrast to radar and LiDAR.

Ultrasonic sensors achieve target detection through the emission of sound waves.

Despite its cost-effectiveness and compact size, this method's precision is compromised, and

its limited scope may lead to blind spots during target identification operations. Furthermore,

ultrasonic sensors are employed for the purpose of detecting obstacles, often in conjunction

18

with other sensors such as visual cameras, which are utilized to detect obstacles such as

scattered rocks that may not be accurately mapped, or thermal sensors, which are used to

account for the impact of temperature fluctuations on the accuracy of distance detection.

1.4. UAV swarm communication architecture
A swarm is commonly defined as a group of entities that collaborate to produce a

significant or favorable result or conduct. Numerous occurrences of collective behavior,

known as swarming, can be observed in the natural world. The collective efforts of bees are

crucial for the sustenance of their colony. Migratory geese exhibit efficient aerial coordination

to successfully complete their journey. A swarm of UAVs refers to a group of unmanned

aerial vehicles that operate in a coordinated manner to accomplish a specific mission or a

predetermined set of tasks (Zhang, 2020). The degree of autonomy exhibited by unmanned

aerial vehicles (UAVs) is subject to variation. The degree of self-governance exhibited by a

vehicle is determined by its capacity to perform tasks, coordinate actions, and make decisions

without the need for human intervention. It is conceivable that a collective of unmanned aerial

vehicles (UAVs) could potentially attain a sufficient degree of self-governance. A Cyber-

Physical System (CPS) can be classified as an Unmanned Aerial Vehicle (UAV) swarm. The

pivotal characteristic of an autonomous system is its ability to make decisions independently,

without human intervention. The operation and movement of an unmanned aerial vehicle

(UAV) is completely managed and directed by a human operator who is responsible for

making decisions related to the UAV's mission accomplishment. Algorithms can make

decisions within a fully autonomous system. Algorithms are capable of making decisions

within a fully autonomous system. The decision-making paradigm employed by an

autonomous CPS comprises three key steps, namely data, control, and process. The decision-

making process of a swarm of unmanned aerial vehicles (UAVs) would adhere to the

paradigm illustrated in Figure 5.

Fig. 5. UAV autonomous system

(S.Plathottam and P. Ranganathan, “Next Generation Distributed and Networked

Autonomous Vehicles Review”)

19

The sensor-based data component of the paradigm. Sensors are utilized to collect

pertinent data regarding the surrounding environment in which a specific task is to be

executed, and subsequently transmit this information to a computer system to facilitate its

execution. UAV swarm sensors may comprise a range of components, such as GPS, airspeed,

sound sensors, cameras, and other relevant devices, contingent upon the specific application.

The control stage comprises the subphases of perception and planning.

Transforming confusing data into informative information defines perception. In order

to make a choice to carry out the activity, planning is the process of utilizing the perceived

information. Most of the time, a GCS is simultaneously in charge of each individual UAV. A

computer performing as a GCS and run ground control software is being utilized to

control UAV swarms. The computers have a transceiver that transmits and receives telemetry

information from linked UAVs. GPS data, groundspeed, and other metrics gathered by

payload sensors are examples of telemetry data. These transceivers mainly transmit and

receive data using unlicensed Radio Frequency (RF) channels like 900MHz. Drones with

higher degrees of autonomy would be able to use their internal processing capability to make

decisions (Gualda,2019). One of two common swarm communication architectures used in

current UAV swarm demonstrations are infrastructure-based swarm architecture and ad hoc

network-based architecture.

A ground control station (GCS) that collects sensor values from each drone in the

swarm and transmits orders back to each UAV independently makes up the infrastructure-

based architecture. Sometimes the GCS sends orders to the flight controllers of each UAV in

real-time communication with the individual drones. In other situations, a flight operation is

pre-programmed on each UAV, and the separate flight plans of every UAV are

simultaneously performed with the GCS in this case duties of GCS is only about to observe

the system (Navilli,2020). These UAV swarms are regarded as being semi-autonomous since

they still need guidance from a centralized controller in order to execute the given mission.

The most popular swarm design for UAV swarms is infrastructure-based. The

foundational infrastructure-based swarm capabilities are already present in GCS software.

Infrastructure-based swarming has the benefit that optimization and calculations may be

carried out in real time by a GCS through a higher speed computer than could be carried on a

UAV. Additionally, there is no requirement for drone networking.

Infrastructure-based swarm designs rely on the GCS to manage drone coordination.

Lack of system redundancy is brought on by this reliance. The working principle of the entire

swarm is endangered in the case of an attack or a failure to any GCS activity. Additionally,

infrastructure-based techniques need for all UAVs to be in the GCS's propagation range.

20

Unlicensed RF communications have the disadvantage that they may be subject to

interference. (Argyriou,2018) The technology required to establish dependable connection

with an infrastructure may restrict the value of infrastructure-based swarms due to the small

payload capacity of UAVs. Lack of dispersed decision-making is another negative. In an

infrastructure-based design, the GCS sets up all UAV decision-making based on calculations

and algorithms created in the GCS. Figure 6 displays a swarm design that is built on

infrastructure.

Fig. 6. Infrastructure (GCS) based on swarm architecture.

 (https://www.researchgate.net/publication/365780355_A_Proposed_System_for_Multi-

UAVs_in_Remote_Sensing_Operations/figures?lo=1)

A single network is proposed for the usage of Flying Ad-Hoc Networks (FANETs) to

coordinate drone communication. A wireless ad hoc network (WANET) is a type of wireless

network that is not built using preexisting infrastructure. Adhoc networks don't need routers

or access points. Instead, depending on dynamic routing algorithms, nodes are assigned and

reassigned dynamically (Smith, 2019). In a FANET, a system of communications is created

between the UAVs that includes all the UAVs. UAVs may communicate in real time thanks

to this network.

As compared to an infrastructure-based decision engine, direct communication among

https://www.researchgate.net/publication/365780355_A_Proposed_System_for_Multi-UAVs_in_Remote_Sensing_Operations/figures?lo=1
https://www.researchgate.net/publication/365780355_A_Proposed_System_for_Multi-UAVs_in_Remote_Sensing_Operations/figures?lo=1

21

UAVs necessitates dispersed decision making (Aguilera,2019). As the total swarm does not

rely on a structure to carry out the necessary duties, this also offers built-in redundancy. The

main benefit of FANETs is this. Each UAV needs networking devices in order to create a

FANET. In a FANET, the maximum distance that UAVs may successfully communicate with

one another is a restriction on its application. Additionally, dynamic route reconfiguration for

UAV swarm applications is a difficult process that might cause packet loss. Establishing a

trustworthy FANET is a challenge for situations where precise data transmission between

UAVs is essential. Figure 7 displays a block schematic of a FANET.

Fig. 7. FANET swarm architecture.

 (https://www.researchgate.net/publication/365780355_A_Proposed_System_for_Multi-

UAVs_in_Remote_Sensing_Operations/figures?lo=1)

This research suggests a hybrid infrastructure-based network that uses cellular

network infrastructure while also building network protocol amongst drones without the

assistance of a GCS. The suggested UAV swarm design makes use of both systems'

advantages while minimizing some of its disadvantages.

The proposed architecture is a modification of an infrastructure-based ad hoc network.

The infrastructure specifically supports comprehensive UAV-to-UAV communication, in

which each UAV's telemetry is sent to every other UAV over cellular mobile infrastructure.

Although communication is relayed over infrastructure, unlike a pure FANET, it is similar to

a FANET in that the infrastructure does not make any choices. Instead, decision-making is

divided among the UAVs and the infrastructure serving just as a means of data transmission.

https://www.researchgate.net/publication/365780355_A_Proposed_System_for_Multi-UAVs_in_Remote_Sensing_Operations/figures?lo=1
https://www.researchgate.net/publication/365780355_A_Proposed_System_for_Multi-UAVs_in_Remote_Sensing_Operations/figures?lo=1

22

Figure 8 displays a block diagram of the suggested architecture.

Fig. 8. Cellular network UAV swarm architecture.

(https://cdnsciencepub.com/doi/pdf/10.1139/juvs-2018-0009)

We explore a case where a swarm of cellular-connected unmanned aerial vehicles

(UAVs) must work together to monitor a target area and transmit the sensing data to a distant

base station (BS) (Argyriou,2018). The devices may self-organize without much manual

assistance due to cooperative multi-UAV deployment, which also expands the service's

service area. Furthermore, using a swarm of cellular-connected UAVs could be significantly

cost-effective than using a single UAV for a task.

1.5. UAV swarm control architecture.
A UAV's sensing and perception skills, task determination and behavior in certain

environmental situations are all defined by the UAV control architecture which is a global

strategy and set of specialized algorithms. The processing time, the requirement to properly

understand the operational environment, the ability to handle a wide range of operations, the

capacity to fulfill goals in the face of uncertainty and the amount of autonomy are all

impacted by the control architecture.

In terms of control architectures, several advancements have been made. Beyond the

well-known control systems, deliberative strategy based on the sense-plan-act paradigm is

discovered. A collection of condition-action pairings constitute the reactive architecture. The

hybrid method is a synthesis of proactive and reactive capacities. The behavior method has

also been described as a collection of behavior sequences each of which accomplishes a

particular task (Paredes, 2018). The main goal for all these contributions is to create an

23

autonomous control system that is capable of making appropriate decisions, carrying out

several jobs, planning a feasible trajectory, and escaping both static and moving obstacles.

High performance systems have been developed using a variety of control structures. They all

provide innovative thinking in an effort to create an autonomous robot. The control

architectures now in use are examined in detail in the following sections. Upper edge

perspective is used in the architecture of deliberative control.

The deliberative method considers goals and restrictions to ultimately carry out low-

level orders to complete a specific task. Sensing, planning and acting modules constitute the

majority of its three general sequential functions (Zhu, 2019). The sensing module observes

the robot's surroundings to modify a predetermined world model for the objectives of each

mission. The planning module creates a legitimate work plan taking into account the

drone's limitations in order to accomplish the mission aim. Finally, the acting module converts

the job plan into low-level commands for drones and then carries out these actions. After that,

the drone performs these successive functions until it completes its objective.

Fig. 9. Deliberative architecture

(S. Emel’yanov, D. Makarov, A. I. Panov, and K. Yakovlev, “Multilayer cognitive

architecture for UAV control,”, 2018.)

In some situations, this design offers a significant source of vulnerability. Here are a

few of them:

• The entire design will collapse if one of the components malfunctions.

• In a dynamic or unpredictable context, it is ineffectual.

24

• It has a larger likelihood of failure if the representation of the world model is not correct nor

full.

• It demands high performance computing capabilities: memory and processing time.

A bottom-up method named reactive control architecture was created to address

several flaws in the deliberative control architecture. This architecture provides a control

strategy as a group of condition-action relations that relates sensor input to robot action. It

comprises of reactive rules set that reacts with environmental changes. It may function in a

dynamic context without creating a world model or carrying out planning tasks by merely

producing control instructions based on sensory data.

Fig. 10. Reactive architecture

(D. Nakhaeinia, S. H. Tang, S. M. Noor, and O. Motlagh, “A review of control architectures

for autonomous navigation of mobile robots,” 2019.)

As seen in Figure 10, the drone gathers sensor data to comprehend its environment

before making a decision on what to do. This design responds more quickly to dynamic

changes without any prior knowledge of the environment and is computationally quicker than

the deliberative method(Yakovlev, 2019).

A combination of reactive and deliberative architecture elements is necessary to carry

out a drone's task in the actual world. The hybrid technique was created to handle high-level

goals and comprehensive limitations in a dynamic environment. It presents a middle ground

between reactive and deliberate methods. The hybrid control architecture typically uses three

hierarchical levels (see Figure 11).

25

Fig. 11. Hybrid architecture

(C. Sampedro, , “A flexible and dynamic mission planning architecture for UAV swarm

coordination,”, 2018.)

Decision-making at a high level (the deliberative layer). This level carries out complex

calculations to provide a task plan that corresponds to a list of actions. Each action specifies a

particular command flow that is transmitted to the reactive layer to produce the intended

action. The relationship between the high level and low level is supervised by the middle

level. Low level for low control perceives the surroundings (the reactive layer). It looks after

the drone's immediate safety including obstacle avoidance. Low level executes the actions

specified by the deliberative layer to produce the decision-making at a high level (the

deliberative layer).

The goal of the biologically inspired behavior-based control architecture is to execute

a reactive mapping among perception and action modules. Basically, as illustrated in Figure

12, the behavior approach separates the control technique into a group of behaviors. Each of

these are in charge of a certain duty.

26

Fig. 12. The Behavior Control Architecture

(H. T. Dinh, “Sound and complete reactive uav behavior using constraint programming,”

2018.)

This design has a few benefits that give this strategy an edge over the reactive one.

Both reactive and deliberate skills can be provided by each conduct. Without needing to be

familiar with the surroundings, this design might handle an unanticipated circumstance the

drone could encounter. Additionally, it provides a set of concurrent and parallel actions that

work independently to accomplish the robot's goals. Additionally, it offers a suitable answer

to the issue of drones doing duties in various uncharted areas.

But this architecture has a few inconveniences:

This method requires combining and coordinating many actions in order to operate a robot.

However, in some circumstances, it might be challenging to decide which previous behavior

to carry out first. Since actions relate to low-level control, high-level goals may not be

addressed by them. Lack of a planning module might make it difficult to complete

challenging jobs.

Conclusion
This chapter has summarized recent UAV swarm application areas, classification of

UAVs, UAV swarm communication and control architecture. General characteristics will be

summarized in the table 5.

27

Table 5. General characteristics of UAV swarm communication architectures.

 GCS swarm FANET swarm Cellular network swarm

Advantages No need for UAV to

UAV network.

Individual decision making.

Long distance propagation.

Individual decision making.

Long distance propagation.

Reliable communication

Disadvantages Short propagation

Not reliable.

Difficult to build trustworthy

communication.

Common Real time operation Real time operation Real time operation

Cellular network swarm architecture has more advantages comparison with other

communication architectures while minimizing others’ disadvantages as shown in the table.

Table 6.General characteristics of UAV swarm control architectures.

 Deliberative

control

Reactive control Hybrid control

Disadvantages Vulnerable to

dynamic

environment.

Execute low level

commands.

Do not operate

concurrent and

parallel actions.

Lack of

planning

module.

Advantages Carries out

complex

calculations.

Function in

dynamic

environment.

Carries out

complex

calculations.

Function in

dynamic

environment.

Set of

concurrent and

parallel actions.

28

In a static environment, the deliberate technique can achieve difficult tasks. The

reactive approach stays clear of moving obstacles. The reactive and deliberative capacities are

both combined in the hybrid architecture. The behavior approach specifies a number of

modules that may all be used separately. The following characteristics are necessary for

constructing an autonomous UAV for civil purposes as a conclusion to this work.

• Using continuous improvement to achieve complicated objectives

• Quickness of reaction to avoid moving impediments

• The capacity to adapt to a variety of missions.

• Flexibility to incorporate new features

• The capacity to expand in order to increase the control architecture's existing level of

autonomy

My ongoing research will be focused on developing a control architecture for

unmanned aerial vehicles (UAVs) that operate in civil areas. The suggested architecture must

do challenging tasks, calculate a workable trajectory, avoid hazards and provide a suitable

flight plan.

29

2. METODOLOGY
This chapter will examine some of the design-related tools, various path planning

methods and swarm functionality. Robot operating system (ROS) for UAV swarm control,

different algorithms for mapping, localization and navigation will be discussed in more detail.

2.1 Robot operating system (ROS)
The present study aims to execute the creation of a group of unmanned aerial vehicles

utilizing the Robot Operating System (ROS) platform within an enclosed setting. The ROS

framework is a widespread platform utilized for building of robotics software. The platform

offers a diverse array of tools and libraries that streamlining the process of creating robotics

applications.

ROS is an open-source computing platform that enables smooth communication and

cooperation among different components of a robotic system. Under the publish-subscribe

messaging model of the system, diverse components have the ability to both send and receive

to messages on multiple topics. This enables inter-component communication and information

exchange, even across disparate machines.

One of the primary advantages of ROS is its modularity. The system is designed to be

adaptable to growth by organizing various components into packages. As a consequence, a

robotic system can readily incorporate novel components and features or repurpose pre-

existing components for use in alternative projects.

A variety of tools are available through ROS for viewing and troubleshooting robotic

systems. In addition to tools for logging and analyzing system data, these tools also provide a

graphical user interface for displaying the system's components and connections.

 Numerous robotics-related fields, such as mobile robotics, industrial automation and

research use ROS extensively. A significant developer and user base that supports the system

works together to create new tools, libraries, and components.

The ROS Master serves as the foundation of ROS. The Master enables communication

between and discovery of all further ROS software modules (Nodes). So, we never have to

explicitly say, "Send this sensor data to that computer. We only need to instruct Node 1 to

communicate with Node 2.

30

Fig. 13. ROS structure.

(https://www.clearpathrobotics.com/assets/guides/melodic/ros/Intro%20to%20the%20Robot

%20Operating%20System.html)

One of the potential applications of ROS is the deployment of swarms of Unmanned

Aerial Vehicles (UAVs). A group of unmanned aerial vehicles that are capable of

collaborating to achieve a shared goal is commonly referred to as a UAV swarm. A group of

unmanned aerial vehicles engage in inter-drone communication to share data and coordinate

tasks. The software utilized by these drones to operate in a collective manner was designed on

a robust platform known as ROS.

ROS has a modular architecture that enables programmers to combine smaller,

reusable components to create complex systems. ROS makes it possible to create software

parts for UAV swarms that can communicate with one another over a network. These

elements could include communication modules, controls, and sensors. Additionally, the ROS

framework offers a sizable collection of libraries that make it simple to integrate features like

navigation, mapping, and localization.

The availability of a standardized communication protocol offered by ROS makes it

one of the main benefits of employing it in the development of UAV swarms. This implies

that the drones in the swarm may communicate the same language to one another. This

facilitates the integration of additional drones into the swarm and guarantees that all the

drones are cooperating efficiently. ROS offers a simulation environment which is another

advantage of employing it in the building of UAV swarms. As a result, programmers can test

their software components in a simulated setting before putting them into use on actual

drones. The simulation environment is also helpful for testing the swarm's behavior under

various scenarios, such as shifting environmental factors or various mission objectives.

Finally, ROS offers an effective platform to develop software for UAV swarms. It is

the best option for designing complicated systems that need for cooperation amongst

https://www.clearpathrobotics.com/assets/guides/melodic/ros/Intro%20to%20the%20Robot%20Operating%20System.html
https://www.clearpathrobotics.com/assets/guides/melodic/ros/Intro%20to%20the%20Robot%20Operating%20System.html

31

numerous drones due to its modular architecture, common communication protocol and

simulation environment. With ROS, programmers may develop software that enables drones

to cooperate to complete a task, like as mapping a region, carrying out search and rescue

missions or keeping track of wildlife populations.

2.2. Mapping of the environment.
The process of mapping plays a crucial role in the context of indoor drone swarming,

as it enables the drones to gain a comprehensive comprehension of the surrounding

environment in which they are deployed. Unmanned aerial vehicles (UAVs) have the

capability to employ a variety of sensors, including but not limited to cameras, LIDAR, and

GPS, for the purpose of mapping their immediate environment. Typically, the process of

environment mapping entails the following series of steps:

Flight planning is necessary to make sure that the full region of interest is covered by

the UAV's fly route. Using software that automatically creates flight plans based on user-

defined criteria including altitude, overlap and camera settings or manually planning the flight

path is an option.

Data gathering: Using its onboard sensors, the UAV gathers information about the

environment while in flight. Images, LIDAR scans or GPS coordinates could all be included

in the data.

Processing of data: In order to produce an environment map, the UAV's data must be

processed. This could involve processing GPS coordinates to build a topographical map,

using LIDAR scans to create a point cloud, or mosaics together photos to make an image.

Map creation. The data can be used to build a map of the environment once it has been

processed (Liu, 2019). The map may include details about the landscape, the amount of

vegetation and the locations of various structures.

Analysis of the map: The map can be examined to extract important environmental

information such as the location of obstacles, changes in terrain elevation, areas of vegetation

growth.

Map updating: As new information is gathered, the map can be revised over time,

allowing for the tracking and analysis of environmental changes.

Overall, UAVs can map the environment using a combination of sensors and data

processing techniques, providing valuable information about the environment that can be used

for a wide range of applications including agriculture, environmental monitoring, and urban

planning. Mapping will be used for navigation in this research.

32

Authors have employed a variety of mapping techniques and a brief review of several

of these strategies has been provided.

Structure from Motion (SfM): A 3D model of the environment is produced using the

photogrammetric approach of Structure from Motion (SfM), which employs photos collected

from various perspectives. With this method, characteristics are extracted from the photos and

then used to calculate the relative positions of the images. Applications for UAV mapping

frequently use SfM.

Simultaneous Localization and Mapping (SLAM): Simultaneous Localization and

Mapping (SLAM) is a method that enable a drone (or UAV) map a new environment while

also figuring out where it is in relation to the environment. This method involves gathering

data about the surroundings and the location of the drone using sensors like cameras, LIDAR

and inertial measurement units (IMUs).

Occupancy Grid Mapping: A approach called occupancy grid mapping uses a grid of

cells to represent the environment with each cell reflecting the probability that it contains an

obstruction. Using this method, a probability map of the environment is created by merging

data from several sensors.

Fast SLAM: A particle filter is used in this SLAM variation to estimate the drone's

position and image the surrounding area. This method is especially helpful in settings with

plenty of details such as indoor settings.

Geometric Hashing: Geometric Hashing is a technique that includes comparing

characteristics of a scene to a database of previously computed characteristics (Wang, 2019).

In mapping applications where surroundings are recognized in advance such as in a factory or

warehouse, this technique is frequently utilized.

After studying these mapping techniques, SLAM technique has been chosen to be

utilized in this research due to some reasons.

 SLAM techniques are deemed highly appropriate for mapping indoor environments

due to the complex layout of interior spaces, which can pose challenges for conventional

mapping methods. In indoor environments, a drone is capable of utilizing a diverse range of

features to determine its position and orientation with regularity. Landmarks such as walls,

furniture, and other objects can be employed to aid the robot in generating a map of its

environment. Precise localization is a prerequisite for the robot to navigate effectively in this

demanding setting. By utilizing data from various sensors, the unmanned aerial vehicle has

the capability to employ simultaneous localization and mapping (SLAM) methodologies to

create a spatial representation of the surroundings, while concurrently establishing its own

position within the mapped area. The sensors employed for the purpose of identifying

33

environmental landmarks may include cameras, LIDAR, or other range sensors. Simultaneous

Localization and Mapping (SLAM) is particularly suitable for indoor environments due to its

ability to effectively handle complex and densely populated surroundings that are commonly

encountered in such settings. Unmanned aerial vehicles (UAVs) have the capability to

perform precise indoor mapping through the utilization of simultaneous localization and

mapping (SLAM) techniques, despite the presence of obstacles and other complexities that

may impede traditional mapping methodologies.

Fig.14. System overview of HECTOR SLAM. (www.semanticscholar.org/paper/An-

Improved-Hector-SLAM-Algorithm-based-on-Fusion-Yu-Zhang)

Data collection: The UAV has sensors like LIDAR, IMU and odometry to gather

information about its surroundings. Measurements of range and orientation are provided by

the LIDAR, estimations of motion are provided by the odometry, and measurements of

acceleration and orientation are provided by the IMU.

Information Pre-processing: To extract important details such as the UAV's location,

orientation and motion estimates, the acquired sensor data from the UAV's sensors is initially

pre-processed. The SLAM algorithm uses this data as an input.

Fusion based EKF: An Extended Kalman Filter (EKF) or another sensor fusion algorithm is

then utilized to fuse the collected sensor data. The covariance matrix that illustrates the

uncertainty of the predicted pose is updated by the EKF which also estimates the UAV's pose

(position and orientation).

Scan Matching: After the sensor data has been fused, the current LIDAR scan is

matched with a previous scan or a map. This process aids in determining the UAV's motion

http://www.semanticscholar.org/paper/An-Improved-Hector-SLAM-Algorithm-based-on-Fusion-Yu-Zhang
http://www.semanticscholar.org/paper/An-Improved-Hector-SLAM-Algorithm-based-on-Fusion-Yu-Zhang

34

and increases the pose estimate's precision.

Construction of the Map: A map of the environment is created using the aligned

LIDAR scans. Depending on the particular HECTOR SLAM implementation, the map may

be shown as a grid map, point cloud or occupancy grid.

Localization: After a map has been created, HECTOR SLAM offers real-time localization

estimates of the UAV's pose within the map, enabling the UAV to navigate and operate in its

surroundings.

The performance of the HectorSLAM method can be modified by modifying the

following important parameters:

• Map resolution: Resolution of the map: This parameter controls how detailed the

algorithm's resulting grid map will be. Higher resolution maps offer more detail, but

they also need more storage and processing power.

• Map size: The size of the map that the algorithm creates is determined by this option.

It's critical to select a map size that is appropriate for the size of the environment being

mapped.

• Laser range: Using this option, the algorithm can specify the laser sensor's operating

range. Although it uses more computing power and may be less accurate, a longer-

range laser offers better coverage.

• Max update rate: The maximum rate at which the algorithm can update the map is

indicated by the max update rate parameter. It's critical to select a value that maintains

a balance between computational effectiveness and map quality.

• Max iterations: This option determines the most iterations that the algorithm may

carry out when generating the map. Higher numbers can offer greater accuracy but

also call for more processing power.

• Min distance: The minimum distance the robot must travel before updating the map is

specified by this option. A lower number can produce more precise maps but can also

cause the process to run more slowly.

• Max distance: This setting determines how far the robot can move before the map

needs to be updated. A greater number may result in more effective mapping but less

accurate maps.

• Use odometry: This selection controls whether the algorithm updates the map using

odometry data from the robot. Odometry can increase the map's accuracy but it can

also cause inaccuracies if the data is noisy.

Overall, the environment and task requirements of the mapping task influence the

35

parameters chosen for HectorSLAM. These settings can be carefully adjusted to improve the

algorithm's performance and result in high-quality maps.

Mathematical model of HectorSLAM is consist of prediction and correction step. Based

on the robot's present location and velocity, the prediction phase of the Hector SLAM

algorithm estimates the robot's position and orientation. The prediction stage is provided by:

 𝑥𝑥𝑘𝑘 = 𝑓𝑓(𝑥𝑥𝑘𝑘 − 1, 𝑢𝑢𝑘𝑘) + 𝑤𝑤_𝑘𝑘 (1)

This equation represents a recursion relation where we are calculating the value of x at

the kth iteration or time step(Kumar, 2018). The value of x at the kth iteration depends on the

value of x at the previous iteration (k-1) and the input u at the current iteration (k), as well as

some noise w_k.

𝑥𝑥𝑥𝑥 is the value of x at the kth iteration

𝑥𝑥𝑥𝑥−1 is the value of x at the previous iteration (k-1)

𝑢𝑢𝑢𝑢 is the input at the current iteration (k)

𝑓𝑓(𝑥𝑥𝑥𝑥−1,𝑢𝑢𝑢𝑢) is a function that takes the value of x at the previous iteration and the input at the

current iteration, and returns a new value of x at the current iteration (k)

𝑤𝑤𝑤𝑤 is some random noise or disturbance at the current iteration (k)

The Hector SLAM algorithm's corrective stage modifies the robot's orientation and

location depending on data from the laser range finder. The step for rectification is provided

by:

𝑧𝑧𝑘𝑘 = ℎ(𝑥𝑥𝑘𝑘) + 𝑦𝑦𝑘𝑘 (2)

where 𝑧𝑧𝑘𝑘 is the measurement at time k, h is the nonlinear measurement function and 𝑦𝑦𝑘𝑘 is the

measurement noise.

The measurement equation is crucial for drone navigation since it enables us to update

our estimation of the drone's state variables using sensor measurements. We may determine

an error term that represents the difference between the predicted and actual measurements by

comparing the expected measurements from ℎ(𝑥𝑥𝑘𝑘) to the actual measurements 𝑧𝑧𝑘𝑘. This error

term may then be used to modify our estimation of the drone's state variables and enhance the

precision of our projections of the drone's future orientation and location.

36

2.3. Path planning
Finding the best route from the drone's current location to a destination while avoiding

obstacles is known as path planning. Path planning is essential in indoor drone swarming to

allow the drones to move across the space securely and effectively. There are two primary

approaches.

• Global path planning

• Local path planning

Fig. 15. Global and local path planning. (https://www.researchgate.net/figure/Global-and-

local-path-planning-approaches_fig3_360268568)

The distinctions between global and local path planning are summarized as follows:

Global path planning is the process of determining the best or nearly best route from the UAV

swarm's initial point to the destination or goal position while taking into account the mission

requirements and the surrounding environment. (Figure 15.) A high-level model of the

environment such as map or grid is often created and path planning algorithms scan through

this representation to find the optimum path. The UAV swarm's mission is often

planned either offline or before launch.

The task of Local Path Planning involves the creation of a secure and obstacle-free

trajectory for each unmanned aerial vehicle within a group, considering its present location,

speed, and nearby surroundings. The diagram depicted in Figure 15. During the process of

local path planning, various factors are considered such as the UAV's kinematic capacities,

sensor limitations, communication restrictions, as well as immediate challenges and dynamic

https://www.researchgate.net/figure/Global-and-local-path-planning-approaches_fig3_360268568
https://www.researchgate.net/figure/Global-and-local-path-planning-approaches_fig3_360268568

37

obstacles. The process of local path planning is frequently executed in an online or real-time

manner in the context of a mission involving a swarm of unmanned aerial vehicles (UAVs).

Short comparison of some common global path planning algorithms has been reviewed with

disadvantages.

Dijkstra's Algorithm: Dijkstra's algorithm is a well-known global path planning

algorithm that identifies the shortest route between a starting point and a final destination by

first examining the breadth of the graph or search space. It ensures optimality but because it

extends nodes uniformly without taking heuristic information into account, it can be

computationally expensive, especially in vast and complicated contexts.

The Breadth-First Search: (BFS) global path planning algorithm expands all of the nearby

nodes before moving on to the next level of nodes. BFS is a straightforward and commonly

used global path planning algorithm. BFS is comprehensive and determines the best course of

action but it may not be memory and computationally efficient especially in big and

complicated contexts.

Depth-First Search (DFS): Another straightforward global path planning technique is

called depth-first search which expands one path as far as it can go before turning around.

DFS can be memory-efficient, but it might not always take the best course of action and might

become bogged down in dead ends or loops (Kiesel, 2019).

Rapidly exploring Random Trees (RRT): RRT is a probabilistic global path planning

technique that grows a tree of possible starting points and goals by using random sampling. It

can effectively navigate through challenging situations and is especially well suited for

continuous and high-dimensional landscapes. RRT may result in poor pathways and does not

ensure optimality.

Probabilistic Roadmaps (PRM): Another probabilistic global path planning approach

is called Probabilistic Roadmaps (PRM) which builds a network of interconnected nodes in

the environment's free space and then looks for a route from the starting point to the goal

inside this network. PRM is effective in high-dimensional environments although it needs pre-

processing to create the graph but, in some cases, may be affected by the computational

complexity of a path planning algorithm.

A* Algorithm: A* (pronounce "A-star") is a popular global path planning method that

combines the best elements of unrestrained best-first search and uniform cost search from

Dijkstra's algorithm. It maintains a priority queue to choose the most promising node for

expansion and utilizes a heuristic function to calculate the cost of getting there from where it

is now. A* is effective and frequently used because it can locate ideal or almost ideal paths in

a variety of situations, particularly in discrete or grid-based contexts.

38

A* start algorithm has been chosen to use in this research for global path planning due

to its advantages mentioned above.

A common graph PPA is the A* algorithm. The A* is an accurate iterative heuristic

search algorithm, or a popular kind of iterative best-first search. The algorithm executes using

the static path tree with the lowest cost between the beginning and target points. In this

regard, it functions similarly to Dijkstra's algorithm, which it modifies. The A* algorithm's

goal is to determine the shortest path and it uses a heuristic function to focus its search on

states that are along that path. As a result, the A* algorithm is more effective than Dijkstra. In

some situations, this method is applied in dynamic contexts. The A* algorithm chooses the

least expensive route and assesses its cost:

 𝒇𝒇(𝒏𝒏) = 𝒈𝒈(𝒏𝒏) + 𝒉𝒉(𝒏𝒏) (3)

Where 𝒏𝒏 shows location of UAV, 𝒇𝒇(𝒏𝒏) - is the cost of path from start point to final

point, 𝒈𝒈(𝒏𝒏) – is the actual cost from node 𝒏𝒏 to the first node and 𝒉𝒉(𝒏𝒏) – is the heuristic

function which calculates cost of optimal path from node 𝒏𝒏 to the target node. The heuristic is

the value of the A* algorithm's minimum cost evaluation from any node to the target node.

Additionally, this feature contributes in minimizing the quantity of passing nodes. Therefore,

the choice of the heuristic function directly affects the algorithm's effectiveness. Heuristic

functions for the method include Euclidean distance, Manhattan distance, Chebyshev distance

and diagonal distances. (4-7)

Manhattan distance heuristic function:

 𝒉𝒉(𝒏𝒏) = |𝒙𝒙𝒑𝒑 − 𝒙𝒙𝒒𝒒| + �𝒚𝒚𝒑𝒑 − 𝒚𝒚𝒒𝒒� (4)

Eucklidean distance heuristic function:

 𝒉𝒉(𝒏𝒏) = ��𝒙𝒙𝒑𝒑 − 𝒙𝒙𝒒𝒒�
𝟐𝟐

+ �𝒚𝒚𝒑𝒑 − 𝒚𝒚𝒒𝒒�
𝟐𝟐
 (5)

Chebyshev distance heuristic function:

 𝒉𝒉(𝒏𝒏) = 𝒎𝒎𝒎𝒎𝒎𝒎(�𝒙𝒙𝒑𝒑 − 𝒙𝒙𝒒𝒒�, �𝒚𝒚𝒑𝒑 − 𝒚𝒚𝒒𝒒�) (6)

Dioganal distance heuristic function:

 𝒉𝒉(𝒏𝒏) = �𝒙𝒙𝒑𝒑 − 𝒙𝒙𝒒𝒒� + �𝒚𝒚𝒑𝒑 − 𝒚𝒚𝒒𝒒� + (√𝟐𝟐 − 𝟐𝟐)𝒎𝒎𝒎𝒎𝒎𝒎(�𝒙𝒙𝒑𝒑 − 𝒙𝒙𝒒𝒒�, �𝒚𝒚𝒑𝒑 − 𝒚𝒚𝒒𝒒�) (7)

It is a significantly more straightforward and computationally less intensive method

than many other PPAs, given its efficiency appropriate for working in embedded systems. It

generates the shortest roads by determining the best course using heuristic data. The

complexity of the map however significantly raises computing time and memory

39

requirements.

Local path planning:

A widely used approach for local path planning in mobile robots, including drones is

the Dynamic Window Approach (DWA). To find the optimal route to the target, the algorithm

creates a viable velocity, space or "dynamic window," and assesses potential paths within of

it. The optimal route is the one that minimizes a cost function while meeting many

requirements, including acceleration, velocity, and obstacle avoidance.

Mathematical model:

Calculate the dynamic window:

The collection of potential robot speeds and directions that the robot can go to in the

next step is known as the dynamic window. The robot's current speed, maximum speed,

maximum acceleration and maximum angular velocity all contribute to defining the dynamic

window. The following equation is used to determine the dynamic window:

 Vdynamic={v∣vmin≤v≤vmax} (8)

 ωdynamic={ω∣ωmin≤ω≤ωm} (9)

where vmin and vmax are the minimum and maximum linear velocities of the robot, ωmin and

ωmax are the minimum and maximum angular velocities of the robot.

Evaluate possible trajectories:

The algorithm sets up a trajectory by simulating the robot's motion for a brief time

period for each velocity and direction in the dynamic window. The trajectory will be generated

based on its closeness to obstacles, its distance from the objective and if it violates any

limitations, the trajectory will be evaluated. The following equation is used to compute each

trajectory's cost:

 C=α Cobs+β Cgoal+γ Csmooth (10)

where Cobs is the cost of the trajectory based on its proximity to obstacles, Cgoal is the cost of

the trajectory based on its distance to the goal, Csmooth is the cost of the trajectory based on its

smoothness and α, β, and γ are the weights assigned to each cost term.

Select the best trajectory:

 The selection of the optimal trajectory is based on the algorithm's determination

of its path with the minimum cost. The velocity and moving of the robot are configured

to match those of the optimal trajectory. Subsequently, the robot proceeds along the

40

designated path for the subsequent movement.

2.4. Collision Avoidance
The UAV should take into account both the position and the velocity of other UAVs in

order to ensure free-collision behavior in a multi-agent system. Social proximity approach has

been implemented for this reason in order to take advantage of other UAVs' positions to

change the costmap. LIDAR (Light Detection and Ranging) sensors can be used in social

proximity techniques to determine the position and speed of other drones around. LIDAR

operates by emitting laser pulses and calculate how long it takes for the pulses to return from

surrounding objects, such as other drones. The position and speed of the drones can be

determined by examining the patterns of laser reflections.

A general description of the operation of LIDAR-based social proximity approaches is

given below:

Sensor setup: The drone is equipped with a LIDAR sensor or sensors which are

orientated and positioned to offer a 360-degree picture of the surroundings.

Detection and tracking: The LIDAR sensors continuously generate laser pulses which they

then pick up as reflections from other drones nearby, allowing them to detect and track nearby

objects. Through the use of methods like clustering, filtering and data association, the

reflections are processed in order to find and locate the other drones (Felner, 2018). The

coordinates and velocities of the discovered drones are estimated, and they are given

distinctive IDs.

Social proximity calculation: Calculation of social closeness: The other drones'

positions and speeds are taken into account when determining the drone's social vicinity. This

can be achieved by modeling the drones as point masses and computing the forces between

the drones using a potential field or a social force model. The drone's behavior can be

controlled by the resulting social proximity measure which can be used to advise it to keep a

safe distance or avoid crashes.

Control and decision-making: the drone's control and decision-making algorithms

modify the trajectory and speed of the drone based on the estimated social proximity measure.

The drone might slow down or change course to avoid a collision, for instance, if the social

proximity measure indicates a high danger of collision with another drone.

In general, LIDAR-based social proximity algorithms can implement efficient

collision avoidance tactics by providing real-time information on the positions and velocities

of other drones nearby. They might be constrained, though, by the LIDAR sensors' precision

41

and range as well as the environment's complexity and other drones' activity.

The assessment of other drones' position and velocity can be made more precise and

robust by combining the 2D Gaussian kernel with LIDAR in social proximity approaches.

The probability density function (PDF) of the position and speed of the other drones, based on

the LIDAR observations can be modelled specifically using the 2D Gaussian kernel. In

basically, the costmap incorporates a 2D Gaussian kernel, where the mean represents the

position of the neighbor and the covariance represents the velocity of the neighbor. The social

kernel also known as the 2D Gaussian kernel is defined as:

 𝑺𝑺�𝒙𝒙,𝒚𝒚,𝒗𝒗𝒙𝒙,𝒗𝒗𝒚𝒚� = 𝑨𝑨 𝐞𝐞𝐞𝐞𝐞𝐞 �−𝟏𝟏
𝟐𝟐
� (𝒊𝒊−𝒙𝒙)𝟐𝟐

 (𝝈𝝈 𝒇𝒇 𝒗𝒗𝒙𝒙)𝟐𝟐 + (𝒋𝒋−𝒚𝒚)𝟐𝟐

 �𝝈𝝈 𝒇𝒇 𝒗𝒗𝒚𝒚�
𝟐𝟐�� (11)

Some variables (𝑥𝑥, 𝑦𝑦), (𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦) and (𝑖𝑖, 𝑗𝑗) are UAV’s position, velocity and costmap

grid coordinate respectively. 𝐴𝐴 is the amplitude of the kernel. This means how strong other

UAVs position affect the costmap. 𝜎𝜎 and 𝑓𝑓 are covariance and weighting factor for the

velocity. Moreover, there is another parameter called cut-off which is used as the smallest

value to publish on costmap adjustments.

Conclusion
In this chapter, different mapping and path planning algorithms has been

analyzed. HECTOR SLAM algorithm chosen for mapping technique for indoor

environment. A* algorithm chosen for global path planning and Dynamic Window

Approach algorithms chosen for global and local path planning. Social proximity

technique has been explained to calculate neighbours’ position and velocity

42

3. PRACTICAL PART

Mapping, navigation and collision avoidance techniques will be implemented in this

chapter by using ROS framework and GAZEBO simulation tool in unknown environment.

Different formation of UAV swarms will be implemented in order to compare experimental

results and the most effective topology will be chosen according to results.

3.1. Overall system description
 The present study involved the development and implementation of a collision

avoidance mechanism intended for the autonomous navigation of multiple unmanned aerial

vehicles (UAVs) within an unfamiliar setting. The utilization of the ROS framework and

Gazebo as the simulation environment was employed for the implementation. The

hector_quadrotor ROS package serves as a quadrotor model. The Hector SLAM and Move

Base ROS packages are utilized for the purposes of localization and mapping, as well as

navigation system, correspondingly.

 Fig. 16. System diagram for multi-UAV collision avoidance

 The Hector Simultaneous Localization and Mapping (SLAM) algorithm

produces a map and pose estimation, comprising the position and orientation, that is

subsequently utilized by the navigation system. The navigation system comprises three

43

components, namely the costmap, global planner, and local planner. The costmap is a

cartographic representation of the likelihood of traversability of a given area, derived

from the underlying raw map data. The construction of a trajectory from the starting

point to the destination is facilitated by the implementation of the A* global planner.

Subsequently, the trajectory is employed by the DWA local planner to produce a

velocity that can pursue the intended trajectory.

Fig. 17. Field of view

Each UAV is installed with 2D LIDAR with 270 degree Field of View (FoV) as shown in the

figure 17.

44

Fig. 18. Hector quadrotors

 The coordination of this set of unmanned aerial vehicles (UAVs) is achieved through a

decentralized topology, wherein each individual UAV executes algorithms by means of inter-

communication with its counterparts. To account for uncertain environmental conditions, it is

recommended that each unmanned aerial vehicle (UAV) acquire information regarding its

surrounding area through the use of LIDAR technology. In addition, the unmanned aerial

vehicles (UAVs) are required to perform location estimation. Simultaneous Localization and

Mapping (SLAM) is a technique that can be employed to address this matter. Authors have

utilized various SLAM algorithms. Hector SLAM is considered a promising Simultaneous

Localization and Mapping (SLAM) algorithm, primarily due to its ability to accommodate 6

degrees of freedom (6DOF) robots, which possess both 3D position and 3D orientation. The

Hector Simultaneous Localization and Mapping (SLAM) algorithm produces a map and pose

estimation, encompassing both position and orientation, that is subsequently utilized for the

navigation system.

45

Fig. 19. Important ROS launches and scripts.

• Green files: launch files related to Gazebo environment.

• Red files: Main launch files for opening Gazebo and all control system.

• Blue files: Python scripts related to collision avoidance control with and without

formation and the social proximity technique for estimation of velocity and position.

• Purple files: Python scripts related to logger. Orange: Launch files related to mapping

and navigation.

• Yellow files: Files related to navigation and costmap parameters.

In the implementation, a main ROS launch named indoor_slam_gazebo_4.launch is

created for:

• Opening the Gazebo with indoor environment (indoor_environment.launch)

• Spawning quadrotors (hector_quadrotor_model package)

• Creating a transformation or coordinate as the map reference for each UAV and

• Opening Rviz for visualization.

Fig. 20. Launch command

46

The indoor_slam_gazebo_4.launch code snippet is shown in Figure 3 below. Figure

3a shows how the initial position of UAVs are initialized and the indoor_environment.launch

is included to open the Gazebo. Figure 3b shows how the quadrotors are spawned using

groups with different namespaces. Figure 3c shows how some new frames were created using

tf_static_transform_publisher for each UAVs and also opening Rviz function at the end. After

launching, the walls and quadrotors installed with 2D LIDAR are spawned on a Gazebo

Simulator as it is shown in table 7.

Table 7. Initial and goal positions of drones.

Position UAV 1 UAV 2 UAV 3 UAV 4

X 2 0 2 0

Y -15 -15 -17 -17

Z 0.3 0.3 0.3 0.3

Position UAV 1 UAV 2 UAV 3 UAV 4

X 42 42 40 40

Y -2 2 -1 1

Z 0.3 0.3 0.3 0.3

Fig. 21. Initial positions of drones.

 Fig. 22. Lunch Rviz function

This function is used to visualize how drones map the environment. In the beginning

47

of the flight the environment is unknown but the drones map the environment by LIDAR
sensors.

 (a) (b)

 Fig. 23. Four quadrotor installed with 2D LIDAR on a Gazebo Simulator

 The move_base ROS package is utilized to implement the navigation system. The

navigation system produces a costmap that contains a grid of unknown dimensions, with each

grid cell assigned a probability value indicating whether it is occupied or free. The costmap is

produced by taking into account two unchanging variables, namely the robot's footprint and

inflation radius. The inflation radius serves the function of maintaining a safety buffer

between unmanned aerial vehicles and potential obstructions. Nonetheless, the

aforementioned approach solely accounts for stationary impediments, such as walls or other

immobile entities, as the 2D LIDAR may not always detect other UAVs. The term "footprint"

refers to the physical dimensions of a drone.

 In order to prevent collisions with other unmanned aerial vehicles (UAVs), it is

necessary for each UAV to possess information regarding the location of its neighboring

UAVs. The term used to refer to this concept is social proximity. The incorporation of this

social factor leads to in the generation of an updated costmap. The configuration of the

importance for the dynamic obstacle can be achieved by adjusting the parameters associated

with the social proximity algorithm, including amplitude and covariance. Furthermore,

utilizing the preceding position to compute the approximated velocity would also enhance

safety.

 Once the costmap has been prepared to include both static and dynamic obstacles, the

global and local costmaps are distributed to the navigation system. The global costmap and

48

local costmap are two distinct costmaps utilized in unmanned aerial vehicle (UAV)

navigation. The former pertains to the costmap that encompasses the entirety of the map,

while the latter refers to the costmap that is confined within a specific radius surrounding the

UAV. The global planner utilizes the global costmap. The A* algorithm was employed in the

present study to produce the global trajectory. Subsequently, the local planner utilizes the

global trajectory. The Dynamic Window Approach (DWA) is employed as the local planner.

The unmanned aerial vehicle (UAV) adheres to the trajectory that is locally generated by the

dynamic window approach (DWA) through the issuance of commands for linear and angular

velocity. The map merging algorithm is utilized for visualization purposes, with the

assumption of the initial relative position of each UAV.

(a)

(b)

(c)

 Fig. 24. mapping_and_navigation_multi_uav_4.launch

The code snippet is shown in Figure 24. Figure 24 (a) shows a group of the 1st UAV

which has mapping, high level control for formation or individual control and the social

proximity. Figure 24b shows how some move_base packages are included for each UAV.

There are four important parameters related to map merging (figure 24b). Parameter

merging_rate is the rate at which the maps are merged. This parameter specifies how often

the node will merge the maps. In this case, we set the frequency to 4 Hz which means the

map merging algorithm will be executed with 0.25 seconds period. The discovery_rate is

49

the rate at which the node looks for new robots. This parameter specifies how often the

node will check for new robots that have joined to the network. The estimation_rate is the

rate at which the node estimates the pose of each robot. This parameter specifies how often

the node will estimate the pose of each robot. We set the discovery_rate and

estimation_rate to 0.5 Hz. The last parameter is estimation_confidence which is the

confidence threshold for the pose estimation. This parameter specifies the minimum

confidence required for the node to accept a pose estimate. A higher value will result in

more accurate pose estimates but a higher estimation confidence will require more

computation time. Figure 24(c) indicates logger for simulation results.

Besides implementing the ROS architecture for quadrotors collision avoidance,

another contribution is to investigate different techniques for a swarm of quadrotors using

some leader-follower formation-based control strategies. As it is depicted in Figure 16, the

global planner needs a goal for each UAV. For individual behavior (no formation), each UAV

only needs one static final goal. However, for leader-follower strategy, only the leader which

has a static goal. The followers have dynamic goals according to the desired formation.

Fig. 25. Launch command for flight test.

All of the functions related to SLAM, navigation and other controls are implemented

in a launch file as shown on figure 25.

Fig. 26. Logger files for extracting data.

50

The logger script is used for storing the data such as position, orientation, linear and

angular velocity, velocity command and nearest obstacle for each UAV. The data for a

mission is stored in a csv file under the log folder in logger package (see Figure 6).

3.2 Mapping

Hector SLAM - Hector SLAM is a popular SLAM algorithm that is often used for

UAV equipped with a 2D LIDAR sensor. It is designed to create a map of an unknown

environment and localize the UAV within that map in real-time. One of the main advantages

of using Hector SLAM with a 2D LIDAR is its ability to generate a highly accurate map of

the environment even in the presence of noise and disturbances in the sensor data. It achieves

this by using a scan matching technique that aligns successive LIDAR scans to create a

continuous map.

Another advantage of Hector SLAM is its ability to operate in real-time which is

essential for UAV applications where fast and accurate mapping and localization are critical.

To set up Hector SLAM for mapping and localization, several parameters need to be

configured in mapping.launch. These parameters include: map resolution, distance and angle

threshold for map update and free and occupied update factors. The code snippet of

mapping.launch related to the parameters is shown in Figure 27.

Fig. 27. Hector SLAM parameter configuration

Map resolution determines the granularity of the map and should be set based on the

size of the environment and the level of detail required in the map. In Hector SLAM, the map

is updated based on the distance and angle between successive LIDAR scans. Especially the

map is updated only if the distance between the current pose estimate and the previous pose

estimate exceeds a certain distance threshold or if the angle between the current pose estimate

and the previous pose estimate exceeds a certain angle threshold. In addition to the distance

and angle thresholds, Hector SLAM also uses free and occupied update factors to update the

map. The free update factor determines how much weight is given to free space in the map,

while the occupied update factor determines how much weight is given to occupied space in

the map.

51

 Fig. 28. Different map generated by Hector SLAM with different free and
occupied update factor parameters. (a) 0.45 and 0.8 (b) 0.25 and 0.8 (c) 0.45 and 0.9

 The optimal values for the update factors of free and occupied states are 0.45 and 0.8,

respectively, as depicted in Figure 28. The stability of the map depicted in Figure 28a

surpasses that of Figures 28b and 28c. Reducing the free update factor, as illustrated in Figure

28b, results in a decrease in the speed at which the Hector SLAM algorithm updates the cells

of the occupancy grid that are categorized as free space. Consequently, the algorithmically

generated map may exhibit a higher degree of caution and incorporate imprecise obstructions,

even in regions devoid of tangible barriers. The update factor for occupancy is a crucial

parameter that governs the pace at which the algorithm labels cells as being occupied. In cases

where the occupied update factor is excessively high, as depicted in Figure 28c, Hector

SLAM may incorrectly designate cells as occupied, resulting in false positives. This

phenomenon may lead to the production of a map that portrays a greater number of obstacles

than what exists in reality.

Costmap - A costmap is a cartographic representation that endows each cell in the

map with a numerical value or cost, which is determined by the cell's occupancy state and

various other factors, such as its proximity to obstacles, terrain characteristics, or other

environmental limitations. The primary objective of a costmap is to furnish a depiction of the

surroundings, which can be employed by path planning algorithms to produce paths that are

free from collisions for an unmanned aerial vehicle or a robot. Nonetheless, the present study

solely takes into account the measurement of the distance to stationary obstructions and the

52

social proximity as the measurement of the distance to mobile obstructions.

The costmap utilizes the map produced by the SLAM algorithm in order to construct a

depiction of the surroundings that takes into account the physical limitations and sensor

constraints of the unmanned aerial vehicle. The costmap is generated through the

superimposition of a grid of cells onto the original map, with each cell being assigned a cost

that is determined by its occupancy status and other variables such as proximity to

obstructions or other environmental limitations.

The costmap is implemented in an available ROS package named: move_base. The

move_base is called in a launch file named: quadrotor_move_base.launch under

quadrotor_navigation package. The code snippet of quadrotor_move_base.launch is shown in

Figure 29.

 Fig. 29. Code snippet of quadrotor_move_base.launch.

The parameters of significant importance can be utilized to configure the cost

attributed to individual cells within the costmap. The inflation radius stands out as the

foremost significant parameter. The inflation radius parameter is utilized to specify the extent

to which the costmap is expanded in the vicinity of obstacles. The inflation radius denotes the

magnitude of the spatial buffer encompassing obstructions within the costmap, serving as a

protective boundary. The purpose of this mechanism is to guarantee that the unmanned aerial

vehicle (UAV) sustains a secure separation from impediments, and it can be established in

accordance with the dimensions and velocity of the UAV. The occupancy threshold represents

the second parameter. The occupancy threshold is a crucial parameter that is utilized to

classify a cell as either occupied or free in the costmap. The establishment of parameters for

path planning can be contingent upon the precision of the LIDAR sensor and the degree of

complexity deemed necessary.

The scaling factors of the third parameter play a crucial role in determining the

relative importance assigned to various factors in the costmap, such as environmental

53

constraints and distance to obstacles. It is possible to configure them in a manner that

equalizes the impact of said factors on the process of path planning. It is possible to establish

a parameter that determines the frequency at which the costmap is updated in response to new

sensor data. The parameter can be configured in accordance with the velocity of the

unmanned aerial vehicle.

The yaml configuration file specifies the parameters for a UAV’s obstacle avoidance

system, which is a critical component of autonomous robotic navigation. The file defines four

layers: obstacle_layer, inflation_layer, static_layer, and social_layer. Moreover, the radius of

the UAV’s should also be defined in robot_radius parameter. In this case, we define the radius

is 0.6 meters.

The obstacle_layer assumes the responsibility of detecting obstacles and attributing

costs to them. The observation source utilized by the system is a laser scanner, denoted as

"laser_scan" in the configuration file. The obstacle height parameters have been established

with a minimum value of -5.0 and a maximum value of 10.0. Any obstacles that fall outside

of this designated range will be disregarded. The established lethal cost threshold is 100.

Consequently, any obstacle that surpasses this value will be deemed as lethal, prompting the

robot to take measures to evade it. The parameters obstacle_range and raytrace_range have

been assigned a value of 9.0, indicating that objects and beams will be taken into account

within a distance of 9.0 meters. The combination method has been assigned a value of 1,

indicating that the expenses incurred due to the presence of overlapping obstacles will be

amalgamated by employing the highest value. The boolean variable track_unknown_space

has been assigned a value of true, indicating that the robot's mapping algorithm will

dynamically adjust the cost of unexplored areas as it navigates through the environment. The

variable known as "unknown_cost_value" is assigned a value of negative one, indicating that

any space with an unknown cost is also assigned a value of negative one. The boolean value

of publish_voxel_map has been assigned as false, indicating that the publication of the voxel

map has been disabled. The inflation layer is tasked with the responsibility of expanding the

obstacles in order to generate a safety buffer zone around them. The value assigned to the

cost_scaling_factor parameter is 5.0, thereby indicating that the cost associated with the

expanded region is multiplied by a factor of 5.0. The inflation radius has been designated as

1.0, indicating that the obstacles will undergo a 1.0 meter inflation.

The static_layer is used to assign costs to areas of the map that are known to be free of

obstacles. It is enabled in the configuration file, which means that it will likely use a pre-built

map or a map generated by SLAM to assign costs to free space.

The social_layer is used to take into account the presence of other robots or agents in

54

the environment. It uses a Gaussian distribution to model the influence of other agents. The

amplitude is set to 150.0, which determines the strength of the social layer's influence. The

covariance is set to 0.3, which determines the shape of the distribution. The factor is set to

7.0, which determines the maximum cost of the social layer.

Fig. 30. Costmap parameters configuration

 (a.) (b.) (c.)

 Global costmap using different parameters (inflation radius and cost scaling factor).
(a.) 1.0 and 2.0
(b.) 1.0 and 5.0
 (c.) 0.2 and 1.0

 Fig. 31. Global costmap using different parameters

The inflation radius is a parameter that governs the extent to which the obstacles

present in the environment are dilated in the costmap. As depicted in Figures 31a and 31b, an

increase in the inflation radius results in a more cautious trajectory for the UAV, as it

endeavors to maintain a safe distance from obstacles. Nonetheless, an increased inflation

radius may lead to the robot traversing a lengthier route to attain its objective, given that it

55

might have to circumvent impediments that it could have otherwise traversed.

 The cost scaling factor is a crucial parameter that determines the relative importance

of the costmap in the computation of the optimal path by the path planning algorithm.

Increasing the cost scaling factor (as depicted in Figure 31b) will cause the path planning

algorithm to assign greater importance to the costmap. This can result in the generation of

safer trajectories that circumvent obstacles. Nevertheless, an elevated cost scaling factor may

lead to a delay in the robot's achievement of its objective, as it could prioritize caution over

effectiveness. The parameter depicted in Figure 31b is given greater priority to safety as

opposed to efficiency. Figure 31c places a higher priority on efficiency over safety, whereas

Figure 11a prioritizes both safety and efficiency.

3.3 Navigation
Global planner - The global costmap is used as the underlying graph for path planning

by A* algorithm. Specifically, each cell in the costmap is represented as a node in the graph

and edges are defined between adjacent cells in the costmap. The cost of each edge is based

on the cost assigned to the cells in the costmap and any other environmental constraints that

are considered during path planning.

To generate a path using A*, the algorithm searches the graph for the shortest path from the

UAV's current location to the goal location while considering the costs of each node and edge

in the graph. The algorithm uses a heuristic function that estimates the cost of reaching the

goal from each node in the graph and uses this estimate to guide the search towards the goal.

 Fig. 32. Global path.

The A* algorithm can be configured using several parameters such as the heuristic

56

function, cost and goal tolerance. The heuristic function estimates the cost of reaching the

goal from each node in the graph and can be used to guide the search towards the goal. The

cost of each node and edge in the graph and can be configured based on the environmental

constraints and the UAV's physical limitations. Finally, the goal tolerance parameter

determines the distance and heading at which the goal is reached and can be set based on the

accuracy of the UAV's sensors and the level of precision required for path planning.

 Fig. 33. A* parameters.

The same as the costmap, the global planner is also implemented in move_base and

called in a launch file named quadrotor_move_base.launch under quadrotor_navigation

package. The A* parameters can be set in global_planner_params.yaml (Figure 33).

Here are the details of the parameters shown in Figure 33:

• default_tolerance: This parameter determines the default tolerance used by the Global

Planner when checking whether the goal has been reached. The tolerance specifies

how close the robot needs to be to the goal location in order for the planner to consider

the goal reached.

• publish_scale: This parameter determines the resolution of the published potential map

used by the Global Planner. The potential map is a representation of the cost of

moving to each point in the map, and the publish_scale parameter determines the

resolution of this map

• planner_costmap_publish_frequency: This parameter determines how often the Global

Planner will publish the costmap used for planning. The costmap is a representation of

the obstacles in the environment, and the planner_costmap_publish_frequency

parameter determines how often this map is updated and published.

• lethal cost: This parameter determines the cost assigned to cells in the map that

represent lethal obstacles, such as walls or large obstacles that the robot cannot pass

57

through. The maximum is 255. In this case, we consider lethal obstacles if the cost is

more than 253.

• neutral cost: This parameter determines the cost assigned to cells in the map that

represent neutral or unknown areas of the environment. In this case, area with the cost

less than 50 is considered as safe area.

• cost_factor: This parameter determines the weighting factor applied to the cost of

moving from one cell to another in the map. A higher cost factor will encourage the

planner to avoid paths with high costs.

• publish_potential: This parameter determines whether the Global Planner will publish

the potential map used for planning. Setting this parameter to true will publish the

potential map, while setting it to false will not publish the map.

The local planner is responsible for generating a low-level control signal that specifies the

velocity and orientation of the UAV to follow the global trajectory generated by the global

planner. The purpose of the local planner is to adjust the UAV's velocity and orientation in

real-time based on the obstacles and terrain features in the local environment to ensure that

the UAV stays on the planned path and avoids collisions.

DWA is a popular algorithm used for local path planning in robotics. It uses a set of

dynamically generated candidate trajectories to select a velocity and orientation that avoids

obstacles and follows the global trajectory. The advantage of using DWA is that it can handle

dynamic environments and adjust the UAV's velocity and orientation in real-time to ensure

safe and efficient navigation.

To generate a local path using DWA, the algorithm uses the local costmap which provides

a high-resolution map of the local environment around the UAV. The costmap is used to

detect obstacles and determine the safest path to follow while staying close to the global

trajectory generated by the global planner.

The DWA algorithm has several key parameters that can be adjusted for optimal

performance. The first important parameter is the linear and angular velocity limits. These

limits define the highest and lowest velocities that the UAV can attain and are based on the

physical capabilities of the UAV.

Other important parameters are related to the weighting factors which balance the tradeoff

between safety and efficiency when selecting a trajectory. These factors help to adjust the

algorithm's preference for trajectories that prioritize either safety or efficiency depending on

the needs of the application.

58

 Fig. 34. DWA parameters.

The DWA local planner is also implemented in move_base and called in a launch file

named quadrotor_move_base.launch under quadrotor_navigation package. The DWA

parameters can be set in dwa_local_planner_params.yaml (see Figure 19 and Figure 34 for the

code snippet). Figure 35 shows the difference of the time elapsed from the start to goal

position between difference velocity limitations. This infers that the parameters in

dwa_local_planner_params.yaml works as expected.

Fig. 35. Execution time between different velocity limit by using individual control.

The parameters changes are: (a.) max_vel_x=1.5, max_vel_y=-1.5, acc_lim_x=1.0 and

59

acc_lim_y=1.0 (b.) max_vel_x=4.0, max_vel_y=-4.0, acc_lim_x=2.0 and acc_lim_y=2.0.

As shown from this figure, higher velocity and acceleration improve flight

performance. The drones complete the mission faster in figure b than figure a.

3.3 Collision Avoidance
To guarantee the free-collision behavior in a multi-agent system, the UAV should also

consider both position and velocity of other UAVs. One of the solutions is exploiting the

position of other UAVs to modify the costmap using social proximity technique.

The flowchart of technique for this social proximity behavior is shown in Figure 36

below:

(a.)

60

 (b.) Code snippet related in social_proximity.py.

 Fig. 36. Social proximity process.

From the flowchart above, a UAV has some process according to social proximity

process. It has 1+n processes which are the main program which processes the social kernel

and n-subscriber which obtains the neighbor’s pose. The velocity is estimated by subtracting

the current position with the previous position divided by the delta time.

The script related to social proximity calculation and how the UAV gets the position from the

neighbors are implemented in social_navigation_layers and social_proximity.py respectively.

In social_proximity.py, we consider the neighbors as People and one UAV as a person. The

relative position is abstained using tf transformation ROS library. The parameters such as

amplitude, cut-off, variance and factor can be set in costmap_common_params.yaml.

Line 53-55 shows how the people msg is initialized. From line 56, iterate for each

neighbor. Get the relative position of each neighbor in line 57 and get the position relative

(trans) to assign the person msg (line 58-62). In line 64, we check whether the previous

position is existed or not. If not, we cannot estimate the velocity. Therefore, the velocity is

assigned as zero (line 64-67). Otherwise, we can estimate the velocity (line 68-71). In line 73

and 74, the current pose is stored to the previous pose for the next iteration. After getting all

the position and velocity of the person (neighbor of UAV), publish the message (line 76).

Then, sleep for a particular second. In this code, we sleep for 0.5 second (line 77). Line 78-79

shows how If the relative position to neighbor is failed to get, It should continually try until

the relative position is obtained.

61

3.4 Formation-based Leader-Follower Control
There are applications whereas the formation-based control is useful for. Target

tracking in the military domain using a flock of UAVs, a single heavy payload transportation

using multi UAVs and entertaining drone performance are some examples of application in

formation-based control for multi UAVs. Moreover, the formation-based control, which

maintains the distance among the UAVs, is beneficial for the communication between the

UAVs. Without maintaining the distance, there is a possibility that a UAV is not in a line of

sight with the others. This may cause a higher communication delay or even the connection

can be disconnected.

The leader-follower method is a popular approach in formation-based control because

it allows for a distributed control strategy where each agent only needs to communicate with

its immediate neighbors. This can simplify the communication requirements for large groups

of agents and make the overall system more scalable.

In the leader-follower method, one agent (the leader) is designated to determine the

desired formation shape and trajectory, while the other agents (the followers) adjust their

positions to maintain the desired formation relative to the leader. This method also allows for

greater flexibility in the formation shape and trajectory since the leader can be changed

dynamically.

There are several topologies in the leader-follower domain. However, in this work, we

will compare three topologies: Leader Following (LF), Predecessor Following (PF) and Two-

Nearest Predecessor Following (TNPF). Figure 37 shows a diagram for LF, PF and TNPF

topologies.

 Fig. 37. Several topologies for leader-follower method

62

The general algorithm for leader-follower is shown in Figure 38 and 40 for leader and

follower. What makes it different is the topology used. Each topology has a different rule for

generating the goal for each follower.

 Fig. 38. Leader control algorithm pseudo code

The leader is not only going to the goal but is also waiting for others if there is a UAV

which is far. In the algorithm above, there are two states. State zero is going to the goal and

state one is waiting. The leader will change the state to waiting if there is a UAV with the

relative distance more than MAX_DISTANCE. The leader may wait for infinite time because

there may be a possibility that another UAV is stuck or crashes. To prevent that behavior,

timeout is needed. Therefore, the leader will only wait for MAX_TIME seconds. The

implementation of the leader control algorithm is in control_leader_follower.py. The code

snippet is shown in Figure 39.

Fig. 39. Code snippet for leader control.

The max_distance in line 709 belongs to MAX_DISTANCE and max_time in line 799

belongs to MAX_TIME parameters. The relative position between the leader and follower is

63

obtained using the tf transformation in line 783.

Fig. 40. Follower control algorithm pseudo code

The follower will always ask for the leader position (GET_LEADER_POSITION) and

update its goal while the leader and itself have not yet reached the final goal. By using the

leader position, each follower calculates the current goal based on the topology (TOPO)

which are LF, PF or TNPF. How the GET_FORMATION_GOAL works is shown in Figure

41.

Fig. 41. How each leader-follower topology works.

 (a.) LF (b) PF (c) TNPF

LF topology will always give rectangle formation as in Figure 41a. PF topology shape

is like a snake or a line graph as it is seen in Figure 41b. The TNPF topology will search for

64

two nearest predecessor leaders and then get the center between those two nearest predecessor

leader positions. The center coordinate is then pulled with a specific distance to the current

position of the follower.

After getting the desired goal, the follower needs to get the cost of a costmap in that

desired goal coordinate. If it is not considered as an obstacle (the cost is less than

COSTMAP_THRES), then the follower can use that coordinate to go. Otherwise, the follower

needs to search another nearest possible goal around the desired goal. The searching radius

can be set using the SEARCHING_RADIUS parameter. The greater the searching radius

value, the higher the possibility to get a new goal but more time consuming. If the new goal is

found, the follower can go there. Otherwise, the old goal will not be updated. The follower

should wait for the leader to move and make the follower have a valid new goal. The

implementation of the follower algorithm is also written in control_leader_follower.py (see

Figure 42).

Figure 42a shows the main program for the follower control. The relative position for

the leaders and other neighbors are obtained using the tf transformation (line 589-595). If the

leader has almost arrived (line 601), the followers should go to the ultimate goal. Otherwise, it

should do the formation control (line 619-633) according to the topology (LF, PF or TNPF).

Figure 42b shows a function for getting the nearest coordinate from the desired coordinate

(x,y) using the SEARCHING_RADIUS parameter. This function iterates the grid from (x,y)

to a wider area according to the SEARCHING RADIUS parameter. This function will return a

new coordinate if a cell with the cost less than the max_cost or COSTMAP_THRES is found.

65

(a.)

(b.)

(c.)

66

(d.)

(e.)

(f.)

Fig. 42. Snippet codes for follower control

67

 (a.) main program which is executed after taking off (b.) code for finding another coordinate

with SEARCHING_RADIUS (c.) code for getting the cost in a particular coordinate (d.) code

for validating and updating the goal after it has the desired goal (e.) code for getting the

desired goal according to the topology used (f.) code for TNPF in getting the nearest two

predecessor leader.

Figure 42c is useful for obtaining the cost in particular coordinate of the costmap. If

the coordinate is outside the costmap, then, it returns infinite. Figure 42d shows how the

desired goal is validated and updated depending on the value of costmap. Line 353 and 354

calculate the desired goal. Line 356 gets the cost. Line 358 checks whether the cost is less

than the threshold or not. If that condition is satisfied, then, we can directly update the goal

(line 359-372). Otherwise, it should run the function that belongs to Figure 42b. If a new goal

is found, then we can update the goal. Otherwise, keep the old goal as it is.

Figure 42e shows the implementation of the calculation of desired goal by using PF or

TNPF topology. Line 437-451 shows how the TNPF calculates the desired goal from two

leaders. Line 453-457 shows how the PF topology is simpler than TNPF as it only considers

one predecessor leader. Figure 42f shows how two nearest leaders are obtained. Line 496-499

shows how to keep only the predecessor neighbors. The set of distance is calculated in line

501-503. The nearest neighbor is found in line 504 and 505. This should also consider the first

follower which only has one leader (line 507-508). If this follower is not the first follower

(has predecessor more than one), then we should find the second nearest neighbor (Line 510-

512).

3.5 Comparison of different formation-based swarm.
In this section, the result and analysis of comparing some leader-follower topology

will be explained. The three topologies (LF, PF and TNPF) are also compared with a

distributed individual strategy labeled with “None”. Some metrics which correlated with

obstacle and collision avoidance in multi-UAVs system are the mission time, blocking time,

distance to others, trajectory length, and the distance to the nearest obstacle. There are two

parts in this section. Part 1 is focused on comparing different topologies and part 2 is focused

on different parameters (speed, SEARCHING_RADIUS and COSTMAP_THRES) using LF

topology.

It is expected that without any topology, the group of UAVs will arrive at the goal

efficiently (see Figure 43). However, it is not the objective as the distance among the UAVs

should be maintained for several purposes. Among LF, PF and TNPF topology, LF topology

68

has the most efficient time but it is just slightly better than the others. LF topology is

considered as efficient topology as it has the least blocking time as it is shown in Figure 44.

The blocking time in this case is the time when a UAV is not moving in a particular time. In

our case, we consider a UAV to be blocked if it moves less than 0.1 meters for a second. The

PF topology has the worst efficiency as it has the highest blocking time. With this topology, it

seems that each follower is waiting for each other. This behavior causes a higher possibility of

blocking time.

 Fig. 43. The average mission time among different topologies

 Fig. 44. The average blocking time among different topologies

In this experiment, the static obstacle is simple in early time. At the end, there are

more obstacles which makes the obstacle avoidance more challenging. In formation-based

69

control, if the obstacle is complex and the space is narrow, then the formation will be more

chaotic. In Figure 45, it is shown that by using LF topology, the distance between the UAVs

is near at first. Nevertheless, after t=150s, the distance significantly increases due to the

presence of more challenging obstacles.

Therefore, in a complex environment, PF and TNPF topology behavior are more

stable. However, the TNPF topology is better than PF topology as it has two nearest leaders

instead of only one nearest leader. Furthermore, it can be investigated that without any

formation, the distance among the UAVs is not controllable. A UAV which is separated with

a long distance from other UAVs in a real environment contribute to lack of connection with

the others.

 Fig. 45. The average distance to neighbors among different topologies

 Fig. 46. The accumulative trajectory length among different topologies

70

Figure 46 shows the average accumulative trajectory length. The result shows that

there is no significant difference among the strategies. Interestingly, the individual strategy

has the longest trajectory. This metric can also imply the energy consumption as the longer

the UAV traveled, the more the battery power used although the time should also be taken

into account. The shortest trajectory obtained by using PF topology as the formation is more

stable, only considering one nearest leader.

 Fig. 47. The average distance to nearest obstacle among different topologies

Figure 47 indicates the safety of each strategy in terms of collision and obstacle avoidance.

 Fig. 48. The trajectory of using different topologies.

(a.) None (b.) LF (c.) PF (d.) TNPF

It seems that LF topology is the safest topology. This is correlated with the trajectory

shown in Figure 48. Using PF (Figure 48c) and TNPF (Figure 48d) topology causes four

71

UAVs to navigate through a narrow gap. By using LF (Figure 48b) topology, several UAVs

split up to find another space.

3.6. Compare different parameters using LF topology
In this subsection, the focus is on comparing different parameters (speed,

SEARCHING_RADIUS or SR, COSTMAP_THRES or CT). The speed labeled with “Slow”

has the linear velocity limit 1.5 m/s and linear acceleration limit 1 m/s^2. The speed labeled

with “Fast” has the linear velocity limit 5.0 m/s and linear acceleration limit 2 m/s^2. The

topology used in this subsection is LF topology as it is the fastest topology evaluated in

subsection 3.5.

 Fig. 49. The average mission time among different parameters

72

 Fig. 50. Blocking time among different parameter

It is expected that increasing the velocity and acceleration limit also increases the

efficiency. However, changing the other parameters does not sagnificanly improve the

efficiency. The average mission time as it is seen in Figure 49 among different parameters

with “Fast” speed seems similar although the blocking time (see Figure 50) is different.

 Fig. 51. The average distance among different parameters

In Figure 51, it is investigated that the average distance to the neighbors increases with

the increasing of the speed. However, it is difficult to judge the difference of distance to the

neighbors by using different searching radius and costmap threshold values.

73

 Fig. 52. Average trajectory length among different parameters

This can also be seen from the trajectory length which is almost similar (see Figure

52), whereas the trajectory by using different parameters is identical. However, it seems that a

larger searching radius will maintain the distance slightly better. Increasing or decreasing the

costmap threshold does not infer anything about the formation maintenance. More

comprehensive experiments may be needed to get the correlation between the costmap

threshold and the formation maintenance.

 Fig. 53. Average distance to nearest obstacle among different parameters

Figure 53 shows the distance with the nearest obstacle over time. It is expected that

increasing the searching radius and decreasing the costmap threshold will slightly improve the

74

safety factor of this formation-based leader-follower control. By increasing the searching

radius, the possibility to find a safer area is higher. Also, by having a lower costmap

threshold, the selection of the desired goal further away from the obstacle. This implies that

shrinking the costmap makes the UAV movement safer from collisions.

3.7 Conclusion

Each topology has advantages and disadvantages related to trajectory length, safety

and formation maintenance.

Table 8. Performance of different formation-based swarms.

Results LF PF TNPF

Average distance to

obstacles

1.81 m 1.67 m 1.62 m

Trajectory length 50.04 m 48.13 m 48.71 m

Deviation from

neighbors

0.89 m 0.09 m 0.08 m

1. The most efficient topology is LF topology as it has more safe behavior in terms of

distance to obstacles. It has the lowest possibility of colliding with the obstacle.

2. However, PF and TNPF topologies are more promising for maintaining the

formation. In addition, PF topology has slightly shorter trajectory than others.

3. LF topology does not show satisfying performance in terms of keeping formation in

contrast PF and TNPF topologies have significantly better performance as shown in table 8.

4. Changing the parameters related to the leader-follower control does not give

significant improvement in efficiency in formation and trajectory. However, it improves

safety and mission time. By increasing the searching radius and decreasing the costmap

threshold, the UAVs will find more safe area.

75

CONCLUSIONS
1) UAV swarm is extensively used for military purposes

2) The deliberate approach has been found to be effective in accomplishing challenging

objectives within a stable setting.

3) The reactive approach has been developed with the purpose of maneuvering around

dynamic obstacles.

4) The hybrid architecture integrates reactive and deliberative capabilities.

5) The most efficient topology is LF topology as it has more safe behavior in terms of

distance to obstacles. It has the lowest possibility of colliding with the obstacle.

6) PF and TNPF topologies are more promising for maintaining the formation.

76

REFERENCES
David Hambling. “The ‘Magic Bullet’ Drones Behind Azerbaijan’s Victory Over

Armenia.” Forbes, 2020.

Lagkas, T.; Argyriou, V.; Bibi, S.; Sarigiannidis, P. UAV IoT Framework Views and

Challenges: Towards Protecting Drones as “Things”. Sensors 2018,

Zhu, K.; Liu, X.; Pong, P.W.T. Performance Study on Commercial Magnetic Sensors for

Measuring Current of Unmanned Aerial Vehicles. 2019, 1397–1407. [CrossRef]

Galtarossa, L.; Navilli, L.F.; Chiaberge, M. Visual-Inertial Indoor Navigation Systems and

Algorithms for UAV Inspection Vehicles. 2020; pp. 1–16.

 Pérez, M.C.; Gualda, D.; Vicente, J.; Villadangos, J.M.; Ureña, J. Review of UAV

positioning in indoor environments and new proposal based on US measurements. 2019; pp.

267–274.

Paredes, J.A.; Álvarez, F.J.; Aguilera, T.; Villadangos, J.M. 3D Indoor Positioning of UAVs

with Spread Spectrum Ultrasound and Time-of-Flight Cameras. Sensors 2017; pp. 18-89.

Jang, G.; Kim, J.; Yu, J.-K.; Kim, H.-J.; Kim, Y.; Kim, D.-W.; Kim, K.-H.; Lee, C.W.;

Chung, Y.S. Review: Cost-Effective Unmanned Aerial Vehicle (UAV) Platform for Field

Plant Breeding Application. Remote. Sens. 2020.

 Adamopoulos, E.; Rinaudo, F. UAS-Based Archaeological Remote Sensing: Review, Meta-

Analysis and State-of-the-Art. Drones 2020.

Chand, B.N.; Mahalakshmi, P.; Naidu, V.P.S. Sense and avoid technology in unmanned aerial

vehicles: 2017; pp. 512–517.

S. Plathottam and P. Ranganathan, “Next Generation Distributed and Networked Autonomous

Vehicles: Review,” 2018.

77

NVIDIA, “NVIDIA Announces World’s First AI Computer to Make Robotaxis a Reality,”

2017.

N. Smolyanskiy, A. Kamenev, J. Smith, and S.Birchfield, “Toward low-flying autonomous

MAV trail navigation using deep neural networks for environmental awareness,” 2017 pp.

4241–4247.

Y. Zhou, J. Li, L. Lamont, and C. A. Rabbath, “Modeling of packet dropout for UAV wireless

communications,” 2019 pp. 677–682,

S.Huang, R.S.H.Teo, Computationally efficient visibility graph-based generation of 3D

shortest collision-free path among polyhedral obstacles for unmanned aerial vehicles, 2019

pp1218–1223.

X.Zhang,S.Huang, W.Liang,K.K.Tan, HLT*: Real-time and any-angle path planning in 3D

environment, 2019, pp. 14-17

H. Zhu and J. Alonso-Mora, Chance-constrained collision avoidance for maps in dynamic

environments,IEEE Robotics and Automation Letters, 2019, pp. 776-783.

X.Zhang,J.Ma, S.Huang,Z.Cheng,T.H.Lee, Integrated planning and control for collision-free

trajectory generation in 3D environment with obstacles, Proc.of the 19th International

Conference on Control, Automation and Systems, 2019

S.Huang, R.S.H.Teo, W.Liu, Distributed cooperative collision avoidance control for multi-

unmanned aerial vehicles, Actuators,8(1)(2019), pp.1– 25.

A. Andreychuk, K. Yakovlev, D. Atzmon, R. Stern, Multi-agent pathfinding with continuous

time, 2019

J. Li, D. Harabor, P. Stuckey, A. Felner, H. Ma, S. Koenig, Disjoint splitting for multi-agent

path finding with conflict-based search. Proceedings of the Twenty-Ninth International

Conference on Automated Planning and Scheduling 2019, pp.279–283.

W. H¨onig, S. Kiesel, A. Tinka, J. W. Durham, N. Ayanian, Conflictbased search with

78

optimal task assignment, Proceedings of the 17th International Conference on Autonomous

Agents and Multi Agent Systems 2018, pp. 757–765

A. Felner, R. Stern, S. Shimony, E. Boyarski, M. Goldenberg, G. Sharon, N. Sturtevant, G.

Wagner,P. Surynek, Search-based optimal solvers for the multi-agent pathfinding problem.

2018, pp. 20-37

W.H¨onig, S. Kiesel, A. Tinka, J. W.Durham, N. Ayanian, Persistent and robust execution of

MAPF schedules in warehouses.IEEE Robotics and Automation Letters, 2019, pp.1125–1131

https://dronelife.com/2021/04/28/drone-swarms-for-firefighting-the-future-of-fire-supression/

https://www.yenisafak.com/ekonomi/bayraktar-tb2-16-ulkede-ucuyor-3755997

https://www.sciencedirect.com/topics/engineering/unmanned-aerial-vehicle

https://www.bhphotovideo.com/explora/video/buying-guide/introduction-drones-and-uavs

J. R. Galán-Martín, M. A. Gómez-Martínez, J. M. Cañas-Guerrero, and M. A. Vega-

Rodríguez, "ROS-based indoor swarming of drones for surveillance missions," 2018, pp. 821-

829.

M. P. Kumar, S. S. S. Kumar, and S. S. Kumar, "Autonomous indoor navigation of drone

swarm using ROS and machine learning," 2018, pp. 2316-2321.

J. Wang, H. Li, Z. Li, and Y. Li, "Swarm navigation of indoor drones based on ROS and deep

reinforcement learning," Sensors, 2019.

J. Luo, Y. Zhang, L. Zhang, and J. Li, "Cooperative SLAM-based swarm indoor navigation

with heterogeneous MAVs," Robotics and Autonomous Systems, 2019.

Y. Liu, X. Ren, Y. Zhang, and Y. Xu, "Autonomous indoor navigation of multiple drones

using a hybrid approach based on ROS," pp. 171-184, 2019.

https://dronelife.com/2021/04/28/drone-swarms-for-firefighting-the-future-of-fire-supression/
https://www.yenisafak.com/ekonomi/bayraktar-tb2-16-ulkede-ucuyor-3755997
https://www.sciencedirect.com/topics/engineering/unmanned-aerial-vehicle
https://www.bhphotovideo.com/explora/video/buying-guide/introduction-drones-and-uavs

	FACULTY OF AEROSPACE ENGINEERING
	Azar Musayev
	RESEARCH ON THE ROTORCRAFT UAV SWARM POSSIBILITES
	Master‘s degree Thesis

	FACULTY OF AEROSPACE ENGINEERING
	Azar Musayev
	RESEARCH ON THE ROTORCRAFT UAV SWARM POSSIBILITES
	Master‘s degree Thesis

	Table of Contents

	List of Figures
	List of Tables
	INTRODUCTION
	1. LITERATURE REVIEW
	1.1. UAV swarm applications
	1.2. Classification of UAV
	According to the information presented in Table 1, drones can be classified into four primary classifications, namely fixed-wing, fixed-wing hybrid, single rotor, and multirotor. The predominant application of fixed wing unmanned aerial vehicles (UAVs...
	1.3. UAV sensors analysis
	Unmanned Aerial Vehicles (UAVs) operate within the aerial environment. Aircrafts are required to ascertain their location and attitude, ground and air speed, angle of attack, and barometric pressure. Additionally, they may need to acquire their locati...
	LiDAR sensors utilize illumination to target a specific point and analyze the reflected light in order to determine the distance to said point. This particular sensor has the potential to provide a wide-ranging field-of-view (FOV), denoting the extent...
	1.4. UAV swarm communication architecture
	1.5. UAV swarm control architecture.
	Conclusion

	2. METODOLOGY
	2.1 Robot operating system (ROS)
	2.2. Mapping of the environment.
	2.3. Path planning
	2.4. Collision Avoidance
	Conclusion

	3. PRACTICAL PART
	Mapping, navigation and collision avoidance techniques will be implemented in this chapter by using ROS framework and GAZEBO simulation tool in unknown environment. Different formation of UAV swarms will be implemented in order to compare experimental...
	3.1. Overall system description
	The present study involved the development and implementation of a collision avoidance mechanism intended for the autonomous navigation of multiple unmanned aerial vehicles (UAVs) within an unfamiliar setting. The utilization of the ROS framework and...
	3.2 Mapping
	3.3 Navigation
	3.3 Collision Avoidance
	3.4 Formation-based Leader-Follower Control
	3.5 Comparison of different formation-based swarm.
	3.6. Compare different parameters using LF topology
	3.7 Conclusion
	CONCLUSIONS
	1) UAV swarm is extensively used for military purposes
	2) The deliberate approach has been found to be effective in accomplishing challenging objectives within a stable setting.
	3) The reactive approach has been developed with the purpose of maneuvering around dynamic obstacles.
	4) The hybrid architecture integrates reactive and deliberative capabilities.
	5) The most efficient topology is LF topology as it has more safe behavior in terms of distance to obstacles. It has the lowest possibility of colliding with the obstacle.
	6) PF and TNPF topologies are more promising for maintaining the formation.
	REFERENCES

