
 
 

VILNIUS GEDIMINAS TECHNICAL UNIVERSITY 

                FACULTY OF AEROSPACE ENGINEERING 

DEPARTMENT OF AERONAUTICAL ENGINEERING 

 

 

 

 

 

Azar Musayev 
 

RESEARCH ON THE ROTORCRAFT UAV SWARM POSSIBILITES 
 
 
 

Master‘s degree Thesis 

 

AEROSPACE ENGIEERING, state code 6211EX060 
 

Aerospace Engineering_specialisation 

Aerospace Engineering_study field 

 

 

 

 

 
 

 

 

 

 

 

 

 

Vilnius, 2023 



 
 

 

VILNIUS GEDIMINAS TECHNICAL UNIVERSITY 

                FACULTY OF AEROSPACE ENGINEERING 

DEPARTMENT OF AERONAUTICAL ENGINEERING 

 

 

 

 

 

Azar Musayev 
 

RESEARCH ON THE ROTORCRAFT UAV SWARM POSSIBILITES 
 
 
 

Master‘s degree Thesis 

 

AEROSPACE ENGIEERING, state code 6211EX060 

 

Aerospace Engineering_specialisation 

Aerospace Engineering_study field 

 

 

 

Supervisor ________Doc. Dr. Darius Rudinskas____________
                          (Title, Name, Surname)                 

 
Consultant ______________________________________                      

                       (Title, Name, Surname)                 
 
Consultant ______________________________________                      

                         (Title, Name, Surname)                 
 

 

 

 
 
 
 
 
 

 



 
 

OBJECTIVES FOR MASTER THESIS 
 

 In the master`s final thesis, conduct a study of the flight behavior of various swarms 

based on the formation of UAVs. Determine how the UAV swarm avoids obstacles. Conduct 

research using a virtual environment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Vilnius Gediminas Technical University

Antanas Gustaitis' Aviation Institute

Department of Aeronautical Engineering

ISBN ISSN

Copies No. .........

Date ..........-.....-.....

Master Degree Studies Aerospace Engineering study programme Master Graduation Thesis

Title Research on the Rotorcraft UAV Swarm Flight Possibilities

Author Azar Musayev

Academic supervisor Darius Rudinskas

 Thesis language: English

Annotation

        This Master's thesis presents a study of UAV swarm possibilities. Different tools such as Robot Operating System framework, GAZEBO and Rviz
simulator has been used in order to test and analyze different UAV swarm topologies in simulated environment. Mapping technique used to map the
environment simultaneously during flight. Two different approaches implemented for navigation purpose such as global and local path planner and
social proximity layer technique used for collision avoidance. Four different topologies has been implemented in order to compare behavior of UAV
swarm possibilities such as individual decision making, leader follower, predecessor and two nearest predecessor topologies. All of these topologies'
performance has advantages and disadvantages according to results extracted from log files by plotting graphs. UAV swarm flight performance has
been improved by giving different input parameters such as velocity, acceleration, cost map and searching radius. Different input parameters
contributed to improve flight performance in terms of execution time, blocking time etc.
         Structure: introduction, applications of UAV swarm, classification of UAVs, sensors, UAV swarm communication architecture, path planning,
collision avoidance, obstacle avoidance, conclusions and references.
         Thesis consist of: 78 p. 53 figures, 8 tables and 32 bibliographical entries.
        
 

Keywords: Unmanned Aerial Vehicle, swarm, obstacle avoidance, collision avoidance, global path planning, local path planning, social proximity layer,
costmap, infilation radius, searching radious.



5 
 

Table of Contents 
INTRODUCTION .................................................................................................................... 9 
1. LITERATURE REVIEW ................................................................................................... 10 
1.1. UAV swarm applications ................................................................................................. 10 
1.2. Classification of UAV ...................................................................................................... 12 
1.3. UAV sensors analysis ....................................................................................................... 15 
1.4. UAV swarm communication architecture ........................................................................ 18 
1.5. UAV swarm control architecture. .................................................................................... 22 
Conclusion ............................................................................................................................... 26 
2. METODOLOGY ................................................................................................................ 29 
2.1 Robot operating system (ROS) .......................................................................................... 29 
2.2. Mapping of the environment. ........................................................................................... 31 
2.3. Path planning .................................................................................................................... 36 
2.4. Collision Avoidance ......................................................................................................... 40 
Conclusion ............................................................................................................................... 41 
3. PRACTICAL PART ........................................................................................................... 42 
3.1. Overall system description ............................................................................................... 42 
3.2 Mapping ............................................................................................................................. 50 
3.3 Navigation ......................................................................................................................... 55 
3.3 Collision Avoidance .......................................................................................................... 59 
3.4 Formation-based Leader-Follower Control ....................................................................... 61 
3.5 Comparison of different formation-based swarm.............................................................. 67 
3.6. Compare different parameters using LF topology ........................................................... 71 
3.7 Conclusion ......................................................................................................................... 74 
CONCLUSIONS ..................................................................................................................... 75 
REFERENCES ........................................................................................................................ 76 

 

 

 

 

 

 

 

 



6 
 

 

List of Figures 
Fig. 1. Drones with fire extinguishers. ..................................................................................... 10 
Fig. 2. Bayraktar TB-2 ............................................................................................................. 11 
Fig. 3. Classification of the UAV system. ................................................................................ 12 
Fig. 4. DJI Phantom 4 Quadcopter. .......................................................................................... 14 
Fig. 5. UAV autonomous system ............................................................................................. 18 
Fig. 6. Infrastructure (GCS) based on swarm architecture. ...................................................... 20 
Fig. 7. FANET swarm architecture. ......................................................................................... 21 
Fig. 8. Cellular network UAV swarm architecture. ................................................................. 22 
Fig. 9. Deliberative architecture ............................................................................................... 23 
Fig. 10. Reactive architecture ................................................................................................... 24 
Fig. 11. Hybrid architecture ..................................................................................................... 25 
Fig. 12. The Behavior Control Architecture ............................................................................ 26 
Fig. 13. ROS structure. ............................................................................................................. 30 
Fig.14. System overview of HECTOR SLAM......................................................................... 33 
Fig. 15. Global and local path planning. .................................................................................. 36 
Fig. 16. System diagram for multi-UAV collision avoidance .................................................. 42 
Fig. 17. Field of view ............................................................................................................... 43 
Fig. 18. Hector quadrotors ........................................................................................................ 44 
Fig. 19. Important ROS launches and scripts. .......................................................................... 45 
Fig. 20. Launch command ........................................................................................................ 45 
Fig. 21. Initial positions of drones. ........................................................................................... 46 
Fig. 22. Lunch Rviz function ................................................................................................... 46 
Fig. 23. Four quadrotor installed with 2D LIDAR on a Gazebo Simulator ............................. 47 
Fig. 24. mapping_and_navigation_multi_uav_4.launch .......................................................... 48 
Fig. 25. Launch command for flight test. ................................................................................. 49 
Fig. 26. Logger files for extracting data. .................................................................................. 49 
Fig. 27. Hector SLAM parameter configuration ...................................................................... 50 
Fig. 28. Different map generated by Hector SLAM with different free and occupied update 
factor parameters. (a) 0.45 and 0.8 (b) 0.25 and 0.8 (c) 0.45 and 0.9 ...................................... 51 
Fig. 29. Code snippet of quadrotor_move_base.launch. .......................................................... 52 
Fig. 30. Costmap parameters configuration ............................................................................. 54 
Fig. 31. Global costmap using different parameters ................................................................ 54 
Fig. 32. Global path. ................................................................................................................. 55 
Fig. 33. A* parameters. ............................................................................................................ 56 
Fig. 34. DWA parameters......................................................................................................... 58 
Fig. 35. Execution time between different velocity limit by using individual control............. 58 
Fig. 36. Social proximity process. ............................................................................................ 60 
Fig. 37. Several topologies for leader-follower method ........................................................... 61 
Fig. 38. Leader control algorithm pseudo code ........................................................................ 62 
Fig. 39. Code snippet for leader control. .................................................................................. 62 
Fig. 40. Follower control algorithm pseudo code .................................................................... 63 
Fig. 41. How each leader-follower topology works. ................................................................ 63 
Fig. 42. Snippet codes for follower control .............................................................................. 66 
Fig. 43. The average mission time among different topologies ............................................... 68 
Fig. 44. The average blocking time among different topologies.............................................. 68 
Fig. 45. The average distance to neighbors among different topologies .................................. 69 
Fig. 46. The accumulative trajectory length among different topologies ................................ 69 



7 
 

Fig. 47. The average distance to nearest obstacle among different topologies ........................ 70 
Fig. 48. The trajectory of using different topologies. ............................................................... 70 
Fig. 49. The average mission time among different parameters .............................................. 71 
Fig. 50. Blocking time among different parameter .................................................................. 72 
Fig. 51. The average distance among different parameters ...................................................... 72 
Fig. 52. Average trajectory length among different parameters ............................................... 73 
Fig. 53. Average distance to nearest obstacle among different parameters ............................. 73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

 

List of Tables 

Table 1. Classification of UAV depend on number of propeller............................................. 13 
Table 2. UAV types with main characteristics. ....................................................................... 14 
Table 3. UAV sensors used in agriculture monitoring. ........................................................... 15 
Table 4. Sensors with detection and avoidance capabilities .................................................... 17 
Table 5. General characteristics of UAV swarm communication architectures...................... 27 
Table 6.General characteristics of UAV swarm control architectures. ................................... 27 
Table 7. Initial and goal positions of drones. .......................................................................... 46 
Table 8. Performance of different formation-based swarms. .................................................. 74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 
 

 

INTRODUCTION 
Relevance of the topic. Recent attention has been focused on unmanned aerial vehicle 

(UAV) technologies due to their increasing military and commercial applications.  It has been 

discovered that swarms of UAVs execute certain duties, such as tracking, surveillance, path 

planning, and coordination, significantly more effectively and with superior operating 

parameters than applications employing a single UAV. A fleet of collaborating drones 

generates novel problems that cannot be resolved with a single UAV deployment. Swarms 

that operate as a single entity necessitate techniques for averting collisions both within the 

swarm and with external obstacles. Failure of these systems can cause bodily injury and 

increase manufacturing costs. 

Problem – Collision avoidance, obstacle avoidance and communication are critical 

problems for UAV swarm flight performance. However, these are still not fully solved in this 

industry. 

Research object – Possibilities of rotorcraft UAV swarm possibilities in indoor 

environment. 

Aim – to develop and evaluate behaviour of different UAV formation-based swarm 

flights. 

Tasks to solve the problem.  

1. Formation based swarm of unmanned aerial vehicles,  

2. Avoid from obstacles,  

3. Avoid from collision between other UAVs 

4. Shortest path planning. 

 

Research Methods.   

Establish virtual environments and simulate the behavior of the unmanned aerial 

vehicle swarm through the utilization of simulation tools or platforms, such as ROS, Rviz, and 

Gazebo. Execute the obstacle avoidance algorithm that was formulated and evaluate its 

efficacy across varying scenarios within the simulation environment. 
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1. LITERATURE REVIEW 
In this chapter, some essential topics such as UAV swarm communication 

architectures, applications for both military and commercial purposes and control techniques 

will be discussed in more detail. 

 

1.1. UAV swarm applications 
Recent advancements in the sensory technology integrated into unmanned aerial 

vehicles (UAVs) have facilitated the emergence of novel unmanned operational services and 

applications, thereby expanding the potential use cases for drones. This section provides a 

brief summary of the primary use cases for unmanned aerial vehicles (UAVs).  

Historically, unmanned aerial vehicles (UAVs) have been employed for the purpose of 

conducting military surveillance missions. Unmanned aerial vehicles, commonly known as 

drones, have exhibited remarkable versatility and cost-effectiveness in various sectors, such as 

geophysics and agriculture, for conducting aerial surveys, monitoring activities, and 

performing surveillance tasks. A monitored structure or setting may require revisions in 

response to any detected motion occurring beyond regular business hours. To ensure 

comprehensive surveillance, a substantial workforce would be required for monitoring a vast 

building or area manually. On the contrary, a group of unmanned aerial vehicles has the 

potential to provide superior coverage or surveillance of a given region with minimal human 

intervention, as it can promptly notify the ground station of any detected motion. (Liu,2019) 

Unmanned aerial vehicles (UAVs) possess the capability to rapidly and securely 

penetrate disaster zones that would otherwise pose a risk and prove to be arduous to approach 

in the absence of a calamity. Consequently, they are capable of aiding in disaster assessments 

and the establishment of effective safeguards. 

 
Fig. 1. Drones with fire extinguishers. 

(https://dronelife.com/2021/04/28/drone-swarms-for-firefighting-the-future-of-fire-

https://dronelife.com/2021/04/28/drone-swarms-for-firefighting-the-future-of-fire-supression/
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supression/) 

 

In the event of a wildfire, a considerable area can be rapidly surveyed and controlled 

without endangering human lives by employing a swarm of drones equipped with fire 

extinguishers or similar tools. 

The capabilities of swarm systems have direct applicability to intelligence and 

surveillance operations. Swarms have the capability to be strategically positioned to conduct 

surveillance on a specific target and its environs, while simultaneously tracking stationary or 

mobile entities. This pertains to fundamental activities such as surveillance of a suspected 

adversary establishment and monitoring the vicinity for incoming or outgoing automobiles. 

The utilization of a swarm of drones enables the acquisition of images from multiple locations 

in a simultaneous manner, while also facilitating the survey of a vast expanse of land, thereby 

reducing the time required for an individual drone to execute a task (Hambling,2020). The 

capability renders it advantageous in expeditiously capturing recurrent images across an 

extensive area while simultaneously monitoring alterations in activity at a specific location. 

Swarms have demonstrated efficacy in performing focused offensive operations. 

Despite Armenia's numerical and technological advantages, Azerbaijan emerged victorious in 

the 2020 Karabakh War by defeating Armenian forces. The primary reason for this outcome is 

attributed to the utilization of diverse armed drones by Azerbaijan troops, including the 

Turkish Bayraktar TB-2. The aforementioned drone effectively neutralized 40 fighter aircraft 

and over 250 armored vehicles.  

 

 
Fig. 2. Bayraktar TB-2 

(https://www.yenisafak.com/ekonomi/bayraktar-tb2-16-ulkede- 

ucuyor-3755997) 

 

The military capabilities of Armenia's land and air defenses were significantly 

impaired by the swarms, prompting the Azerbaijani troops to initiate motorized infantry 

https://dronelife.com/2021/04/28/drone-swarms-for-firefighting-the-future-of-fire-supression/
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operations aimed at recapturing the contested region. A group that initially appeared to be in a 

weaker position utilized 16 swarms to enhance its offensive capabilities. The swarms had a 

debilitating impact on Armenia's ability to engage in ground and air warfare, as they caused 

extensive damage to numerous assets. 

 

1.2. Classification of UAV 
In contemporary times, with the progression of technology, there has been a surge in 

the utilization of unmanned aerial vehicles, commonly known as drones, for various purposes 

such as transportation of food, production of captivating cinematography, and military 

operations. The payload is a crucial factor that necessitates consideration during the 

development of a drone. The payload refers to the supplementary mass that an individual 

drone has the capacity to elevate (Jang, 2020). A drone designed for delivery purposes is 

capable of carrying a maximum payload of 25 kg, thereby enabling transportation of packages 

weighing up to the aforementioned weight.  

UAVs are available in various forms and may be utilized in a variety of situations. 

There are numerous different categorization methods, as seen in Fig.1.  

 

 
Fig. 3. Classification of the UAV system. 

(https://www.sciencedirect.com/topics/engineering/unmanned-aerial-vehicle 

 

Drones can be classified based on various factors such as size, range, and technology. 

The dimensions of objects can be classified into four categories: nano, small, standard or 
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huge. Similarly, the extent of a range can be categorized as extremely close, close, short, 

mid or endurance. Drones have the potential to be equipped with various technological 

features such as cameras, stabilizers, sensors and Global Positioning Systems (GPS). 

According to the information presented in Table 1, drones can be classified into four 

primary classifications, namely fixed-wing, fixed-wing hybrid, single rotor, and multirotor. 

The predominant application of fixed wing unmanned aerial vehicles (UAVs) is for the 

purposes of conducting aerial mapping and inspection. These items are expensive and 

necessitate specialized training for operation (Chand, Mahalakshmi, Naidu 2019). Despite 

requiring additional space for takeoff and landing, they possess the capability to cover a 

broader expanse. This particular drone model is deemed unsuitable for typical aerial 

photography applications due to its lack of vertical takeoff and landing (VTOL) or hovering 

capabilities. Nevertheless, in case they are propelled by gasoline-powered engines, they can 

persist in the atmosphere for up to sixteen hours. 

                               

Table 1. Classification of UAV depend on number of propeller 

Drones Number of propeller 

Tricopter 3 

Quadcopter 4 

Hexacopter 5 

Octocopter 8 

 

On the contrary, fixed-wing hybrid unmanned aerial vehicles integrate automated and 

manual gliding techniques. At present, the subject in question remains in the developmental 

phase and exhibits limited proficiency in both hovering and forward flight. The utilization of 

delivery drones is incorporated by Amazon in its business operations. In contrast, single rotor 

unmanned aerial vehicles (UAVs) exhibit intricate mechanical configurations and operational 

hazards such as vibration and sizable rotating blades. Consequently, the operator necessitates 

proficiency training. These devices are costly and possess the ability to maneuver larger loads 

such as LiDAR sensors. They have the potential to be powered by a combustion engine, 

thereby increasing their overall durability. 
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Table 2. UAV types with main characteristics. 

Drones Main characteristics 

Fixed-Wing long endurance and fast flight speed 

Fixed-Wing Hybrid  VTOL and long endurance flight 

Single Rotor 

 

VTOL, hover and long endurance 

flight 

Multirotor VTOL, hover and short endurance 

flight 

 

Multirotor unmanned aerial vehicles (UAVs) are considered to be a cost-effective and 

relatively simple option for construction.  Unmanned aerial vehicles (UAVs), commonly 

referred to as drones, are frequently employed for routine activities such as aerial photography 

and video monitoring (Plathottam, 2018). Various types of unmanned aerial vehicles, such as 

tricopters, quadcopters, hexacopters, and octocopters, are viable options for a range of tasks. 

(Table 1). Nonetheless, the limited velocity, flight range, and energy efficiency of such 

unmanned aerial vehicles render them unsuitable for conducting extensive aerial cartography 

and long-range monitoring. 

 
Fig. 4. DJI Phantom 4 Quadcopter. 

(https://www.bhphotovideo.com/explora/video/buying-guide/introduction-drones-and-uavs) 

 

Quadcopter is one of these multirotor drones with four rotors. Every rotor has its own 

https://www.bhphotovideo.com/explora/video/buying-guide/introduction-drones-and-uavs


15 
 

motor and propeller. Swarm of quadcopter will be analyzed in next chapters in this research. 

DJI Phantom 4 Quadcopter is shown as an example in photo 3. 

 

 

1.3. UAV sensors analysis 
Unmanned Aerial Vehicles (UAVs) operate within the aerial environment. Aircrafts 

are required to ascertain their location and attitude, ground and air speed, angle of attack, and 

barometric pressure. Additionally, they may need to acquire their location data or exchange it 

with other aircrafts. UAVs' flight location and orientation can be determined by employing 

accelerometers in conjunction with tilt sensors and gyroscopes. Subsequently, the flight 

control system is furnished with the aircraft's position and orientation data to maintain its 

horizontal flight. Flight routes and directions are regulated through the utilization of inertial 

measurement units (IMUs) in conjunction with the Global Positioning System (GPS)/Global 

Navigation Satellite System (GNSS). The GPS/GNSS signal may exhibit instability in areas 

with dense forestation, urban canyons, and enclosed spaces. This is due to various factors that 

can cause interference or jamming, resulting in a weak or lost signal. As a result, many indoor 

UAV systems utilize optical cameras, often in conjunction with other technologies such as 

ultrasonic (US) technology. 

 

Table 3. UAV sensors used in agriculture monitoring. (Jang, G. Review: Cost-Effective 

Unmanned Aerial Vehicle (UAV) Platform, 2020) 
 

 

 

Table 3 presents a selection of UAV sensors utilized in various fields, including 

agriculture for crop monitoring and management, archaeology for site visualization, 

excavation documentation, and aerial reconnaissance, as well as for general purposes to 
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ensure UAV sensing and avoidance capabilities (Jang, G.2020). RGB digital cameras offer 

high spatial resolution measurements of radiation values within the red, green, and blue 

spectral bands. The spatial resolution of the RGB sensor is a determining factor in the quality 

of the captured images. Through the analysis of aerial photographs captured by a camera 

equipped with this particular sensor, it is possible to obtain measurements related to plant 

area, plant height, and color indices. Spectral sensors are utilized to collect data by monitoring 

the light that is reflected, emitted, and transmitted from the objective. These sensors are 

categorized as either multispectral or hyperspectral, depending on the number of frequency 

bands and the width of each band. Thermal sensors generate visual representations by 

detecting and capturing the electromagnetic radiation emitted by an object within the infrared 

(IR) wavelength spectrum. Remote sensing technologies are employed in the agricultural 

sector owing to their capacity to provide information on plant surface temperature and crop 

water stress index. Multispectral cameras offer notable advantages over RGB cameras in the 

agricultural domain due to their ability to capture additional information, including the 

detection of imperceptible physiological changes in plants. Compared to other sensor types, 

RGB cameras have the potential to offer superior spatial resolution. The utilization of 

hyperspectral cameras in agriculture applications is not common due to their weight and size, 

as well as their need for integration with additional equipment, such as a battery, frame 

grabber, and data storage device, to ensure proper functionality on UAV platforms. The 

utilization of hyperspectral sensors is expected to increase due to their continued 

miniaturization, leading to a greater number of tasks that may incorporate them. Variations in 

atmospheric conditions and the existence of objects that emit or reflect thermal infrared 

radiation can potentially undermine the precision of thermal camera data. As a result, regular 

calibration is required to ensure accuracy. 

LiDAR sensors utilize illumination to target a specific point and analyze the reflected 

light in order to determine the distance to said point. This particular sensor has the potential to 

provide a wide-ranging field-of-view (FOV), denoting the extent of the observable area, while 

simultaneously exhibiting exceptional precision. Nevertheless, with regards to the 

requirements of UAV payloads, the dimensions and mass could potentially pose a significant 

issue.  LiDAR sensors are utilized in archaeological contexts to gather information on the 

impact of ancient artifacts buried beneath the surface on the topography of the surrounding 

terrain. They have the capability to offer extensive digital representations of terrain and 

surface features. Spectral sensors provide measurements in the field of archaeology that 

facilitate the identification of variations in the terrain matrix, thereby aiding in the assessment 

of the significance of an archaeological site.  Thermal sensors have the potential to be utilized 
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in the field of archaeology for the purpose of gathering pertinent information through the 

analysis of recorded readings. The presence of static and/or dynamic obstructions poses a 

significant challenge that poses a direct threat to the dependability of unmanned aerial 

vehicles (UAVs), particularly those that operate at lower elevations. It is imperative for all 

Unmanned Aerial Vehicle (UAV) applications to consider these factors. Table 4 presents a 

selection of sensors and their respective detection ranges that have the potential to facilitate 

unmanned aerial vehicles (UAVs) in acquiring information pertaining to the presence of 

obstacles and environmental factors. 

 

Table 4. Sensors with detection and avoidance capabilities 

Sensors Detection range 

Radar 35 km 

LIDAR 15 km 

Electro-optic sensor 20 km 

 

Radars are capable of detecting obstacles by emitting electromagnetic waves that 

propagate at the speed of light on a continuous basis (Adamopoulos,2020). When waves are 

emitted and subsequently reflected back towards an obstacle, the presence of said obstacle is 

detected. The temporal duration between the waves that are emitted and subsequently 

reflected is utilized to compute the distance of the obstacle.  

Radar technology is capable of expeditiously scanning a designated area and possesses 

a wide-ranging capacity for detection. Despite having a shorter detection range compared to 

radar, LiDAR offers the advantage of furnishing data on both the range and distance of 

impediments. 

Electro-optic sensors possess the capability to ascertain the obstruction's elevation and 

azimuth through employment of a camera. However, they lack the ability to provide data 

regarding the distance or velocity of the obstruction. The efficacy of electro-optic sensors is 

notably influenced by meteorological conditions, in contrast to radar and LiDAR. 

Ultrasonic sensors achieve target detection through the emission of sound waves. 

Despite its cost-effectiveness and compact size, this method's precision is compromised, and 

its limited scope may lead to blind spots during target identification operations. Furthermore, 

ultrasonic sensors are employed for the purpose of detecting obstacles, often in conjunction 
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with other sensors such as visual cameras, which are utilized to detect obstacles such as 

scattered rocks that may not be accurately mapped, or thermal sensors, which are used to 

account for the impact of temperature fluctuations on the accuracy of distance detection. 

 

1.4. UAV swarm communication architecture 
A swarm is commonly defined as a group of entities that collaborate to produce a 

significant or favorable result or conduct. Numerous occurrences of collective behavior, 

known as swarming, can be observed in the natural world. The collective efforts of bees are 

crucial for the sustenance of their colony. Migratory geese exhibit efficient aerial coordination 

to successfully complete their journey. A swarm of UAVs refers to a group of unmanned 

aerial vehicles that operate in a coordinated manner to accomplish a specific mission or a 

predetermined set of tasks (Zhang, 2020). The degree of autonomy exhibited by unmanned 

aerial vehicles (UAVs) is subject to variation. The degree of self-governance exhibited by a 

vehicle is determined by its capacity to perform tasks, coordinate actions, and make decisions 

without the need for human intervention. It is conceivable that a collective of unmanned aerial 

vehicles (UAVs) could potentially attain a sufficient degree of self-governance. A Cyber-

Physical System (CPS) can be classified as an Unmanned Aerial Vehicle (UAV) swarm. The 

pivotal characteristic of an autonomous system is its ability to make decisions independently, 

without human intervention. The operation and movement of an unmanned aerial vehicle 

(UAV) is completely managed and directed by a human operator who is responsible for 

making decisions related to the UAV's mission accomplishment. Algorithms can make 

decisions within a fully autonomous system. Algorithms are capable of making decisions 

within a fully autonomous system. The decision-making paradigm employed by an 

autonomous CPS comprises three key steps, namely data, control, and process. The decision-

making process of a swarm of unmanned aerial vehicles (UAVs) would adhere to the 

paradigm illustrated in Figure 5. 

 
Fig. 5. UAV autonomous system 

(S.Plathottam and P. Ranganathan, “Next Generation Distributed and Networked 

Autonomous Vehicles Review” ) 
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The sensor-based data component of the paradigm. Sensors are utilized to collect 

pertinent data regarding the surrounding environment in which a specific task is to be 

executed, and subsequently transmit this information to a computer system to facilitate its 

execution. UAV swarm sensors may comprise a range of components, such as GPS, airspeed, 

sound sensors, cameras, and other relevant devices, contingent upon the specific application. 

The control stage comprises the subphases of perception and planning. 

Transforming confusing data into informative information defines perception. In order 

to make a choice to carry out the activity, planning is the process of utilizing the perceived 

information. Most of the time, a GCS is simultaneously in charge of each individual UAV. A 

computer performing as a GCS and run ground control software is being utilized to 

control UAV swarms. The computers have a transceiver that transmits and receives telemetry 

information from linked UAVs. GPS data, groundspeed, and other metrics gathered by 

payload sensors are examples of telemetry data. These transceivers mainly transmit and 

receive data using unlicensed Radio Frequency (RF) channels like 900MHz. Drones with 

higher degrees of autonomy would be able to use their internal processing capability to make 

decisions (Gualda,2019). One of two common swarm communication architectures used in 

current UAV swarm demonstrations are infrastructure-based swarm architecture and ad hoc 

network-based architecture. 

A ground control station (GCS) that collects sensor values from each drone in the 

swarm and transmits orders back to each UAV independently makes up the infrastructure-

based architecture. Sometimes the GCS sends orders to the flight controllers of each UAV in 

real-time communication with the individual drones. In other situations, a flight operation is 

pre-programmed on each UAV, and the separate flight plans of every UAV are 

simultaneously performed with the GCS in this case duties of GCS is only about to observe 

the system (Navilli,2020). These UAV swarms are regarded as being semi-autonomous since 

they still need guidance from a centralized controller in order to execute the given mission. 

The most popular swarm design for UAV swarms is infrastructure-based. The 

foundational infrastructure-based swarm capabilities are already present in GCS software. 

Infrastructure-based swarming has the benefit that optimization and calculations may be 

carried out in real time by a GCS through a higher speed computer than could be carried on a 

UAV. Additionally, there is no requirement for drone networking.  

Infrastructure-based swarm designs rely on the GCS to manage drone coordination. 

Lack of system redundancy is brought on by this reliance. The working principle of the entire 

swarm is endangered in the case of an attack or a failure to any GCS activity. Additionally, 

infrastructure-based techniques need for all UAVs to be in the GCS's propagation range. 
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Unlicensed RF communications have the disadvantage that they may be subject to 

interference. (Argyriou,2018) The technology required to establish dependable connection 

with an infrastructure may restrict the value of infrastructure-based swarms due to the small 

payload capacity of UAVs. Lack of dispersed decision-making is another negative. In an 

infrastructure-based design, the GCS sets up all UAV decision-making based on calculations 

and algorithms created in the GCS. Figure 6 displays a swarm design that is built on 

infrastructure. 

 

 
Fig. 6. Infrastructure (GCS) based on swarm architecture. 

 (https://www.researchgate.net/publication/365780355_A_Proposed_System_for_Multi-

UAVs_in_Remote_Sensing_Operations/figures?lo=1) 

 

A single network is proposed for the usage of Flying Ad-Hoc Networks (FANETs) to 

coordinate drone communication. A wireless ad hoc network (WANET) is a type of wireless 

network that is not built using preexisting infrastructure. Adhoc networks don't need routers 

or access points. Instead, depending on dynamic routing algorithms, nodes are assigned and 

reassigned dynamically (Smith, 2019). In a FANET, a system of communications is created 

between the UAVs that includes all the UAVs. UAVs may communicate in real time thanks 

to this network. 

As compared to an infrastructure-based decision engine, direct communication among 

https://www.researchgate.net/publication/365780355_A_Proposed_System_for_Multi-UAVs_in_Remote_Sensing_Operations/figures?lo=1
https://www.researchgate.net/publication/365780355_A_Proposed_System_for_Multi-UAVs_in_Remote_Sensing_Operations/figures?lo=1
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UAVs necessitates dispersed decision making (Aguilera,2019). As the total swarm does not 

rely on a structure to carry out the necessary duties, this also offers built-in redundancy. The 

main benefit of FANETs is this. Each UAV needs networking devices in order to create a 

FANET. In a FANET, the maximum distance that UAVs may successfully communicate with 

one another is a restriction on its application. Additionally, dynamic route reconfiguration for 

UAV swarm applications is a difficult process that might cause packet loss. Establishing a 

trustworthy FANET is a challenge for situations where precise data transmission between 

UAVs is essential. Figure 7 displays a block schematic of a FANET. 

 

 
Fig. 7. FANET swarm architecture. 

 (https://www.researchgate.net/publication/365780355_A_Proposed_System_for_Multi-

UAVs_in_Remote_Sensing_Operations/figures?lo=1) 

 

This research suggests a hybrid infrastructure-based network that uses cellular 

network infrastructure while also building network protocol amongst drones without the 

assistance of a GCS. The suggested UAV swarm design makes use of both systems' 

advantages while minimizing some of its disadvantages. 

The proposed architecture is a modification of an infrastructure-based ad hoc network. 

The infrastructure specifically supports comprehensive UAV-to-UAV communication, in 

which each UAV's telemetry is sent to every other UAV over cellular mobile infrastructure. 

Although communication is relayed over infrastructure, unlike a pure FANET, it is similar to 

a FANET in that the infrastructure does not make any choices. Instead, decision-making is 

divided among the UAVs and the infrastructure serving just as a means of data transmission. 

https://www.researchgate.net/publication/365780355_A_Proposed_System_for_Multi-UAVs_in_Remote_Sensing_Operations/figures?lo=1
https://www.researchgate.net/publication/365780355_A_Proposed_System_for_Multi-UAVs_in_Remote_Sensing_Operations/figures?lo=1
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Figure 8 displays a block diagram of the suggested architecture.  

 

 
Fig. 8. Cellular network UAV swarm architecture. 

(https://cdnsciencepub.com/doi/pdf/10.1139/juvs-2018-0009) 

 

We explore a case where a swarm of cellular-connected unmanned aerial vehicles 

(UAVs) must work together to monitor a target area and transmit the sensing data to a distant 

base station (BS) ( Argyriou,2018). The devices may self-organize without much manual 

assistance due to cooperative multi-UAV deployment, which also expands the service's 

service area. Furthermore, using a swarm of cellular-connected UAVs could be significantly 

cost-effective than using a single UAV for a task. 

 

1.5. UAV swarm control architecture. 
A UAV's sensing and perception skills, task determination and behavior in certain 

environmental situations are all defined by the UAV control architecture which is a global 

strategy and set of specialized algorithms. The processing time, the requirement to properly 

understand the operational environment, the ability to handle a wide range of operations, the 

capacity to fulfill goals in the face of uncertainty and the amount of autonomy are all 

impacted by the control architecture. 

In terms of control architectures, several advancements have been made. Beyond the 

well-known control systems, deliberative strategy based on the sense-plan-act paradigm is 

discovered. A collection of condition-action pairings constitute the reactive architecture. The 

hybrid method is a synthesis of proactive and reactive capacities. The behavior method has 

also been described as a collection of behavior sequences each of which accomplishes a 

particular task (Paredes, 2018). The main goal for all these contributions is to create an 
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autonomous control system that is capable of making appropriate decisions, carrying out 

several jobs, planning a feasible trajectory, and escaping both static and moving obstacles. 

High performance systems have been developed using a variety of control structures. They all 

provide innovative thinking in an effort to create an autonomous robot. The control 

architectures now in use are examined in detail in the following sections. Upper edge 

perspective is used in the architecture of deliberative control.  

The deliberative method considers goals and restrictions to ultimately carry out low-

level orders to complete a specific task. Sensing, planning and acting modules constitute the 

majority of its three general sequential functions (Zhu, 2019). The sensing module observes 

the robot's surroundings to modify a predetermined world model for the objectives of each 

mission. The planning module creates a legitimate work plan taking into account the 

drone's limitations in order to accomplish the mission aim. Finally, the acting module converts 

the job plan into low-level commands for drones and then carries out these actions. After that, 

the drone performs these successive functions until it completes its objective. 

 

 

 

 

 
Fig. 9. Deliberative architecture 

(S. Emel’yanov, D. Makarov, A. I. Panov, and K. Yakovlev, “Multilayer cognitive 

architecture for UAV control,”, 2018.) 

 

In some situations, this design offers a significant source of vulnerability. Here are a 

few of them: 

• The entire design will collapse if one of the components malfunctions. 

• In a dynamic or unpredictable context, it is ineffectual. 
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• It has a larger likelihood of failure if the representation of the world model is not correct nor 

full.  

• It demands high performance computing capabilities: memory and processing time. 

A bottom-up method named reactive control architecture was created to address 

several flaws in the deliberative control architecture. This architecture provides a control 

strategy as a group of condition-action relations that relates sensor input to robot action. It 

comprises of reactive rules set that reacts with environmental changes. It may function in a 

dynamic context without creating a world model or carrying out planning tasks by merely 

producing control instructions based on sensory data. 

 
Fig. 10. Reactive architecture 

(D. Nakhaeinia, S. H. Tang, S. M. Noor, and O. Motlagh, “A review of control architectures 

for autonomous navigation of mobile robots,” 2019.) 

 

As seen in Figure 10, the drone gathers sensor data to comprehend its environment 

before making a decision on what to do. This design responds more quickly to dynamic 

changes without any prior knowledge of the environment and is computationally quicker than 

the deliberative method(Yakovlev, 2019). 

A combination of reactive and deliberative architecture elements is necessary to carry 

out a drone's task in the actual world. The hybrid technique was created to handle high-level 

goals and comprehensive limitations in a dynamic environment. It presents a middle ground 

between reactive and deliberate methods. The hybrid control architecture typically uses three 

hierarchical levels (see Figure 11). 
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Fig. 11. Hybrid architecture 

(C. Sampedro, , “A flexible and dynamic mission planning architecture for UAV swarm 

coordination,”, 2018.) 

 

Decision-making at a high level (the deliberative layer). This level carries out complex 

calculations to provide a task plan that corresponds to a list of actions. Each action specifies a 

particular command flow that is transmitted to the reactive layer to produce the intended 

action. The relationship between the high level and low level is supervised by the middle 

level. Low level for low control perceives the surroundings (the reactive layer). It looks after 

the drone's immediate safety including obstacle avoidance. Low level executes the actions 

specified by the deliberative layer to produce the decision-making at a high level (the 

deliberative layer). 

The goal of the biologically inspired behavior-based control architecture is to execute 

a reactive mapping among perception and action modules. Basically, as illustrated in Figure 

12, the behavior approach separates the control technique into a group of behaviors. Each of 

these are in charge of a certain duty. 
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Fig. 12. The Behavior Control Architecture 

(H. T. Dinh, “Sound and complete reactive uav behavior using constraint programming,” 

2018.) 

 

This design has a few benefits that give this strategy an edge over the reactive one. 

Both reactive and deliberate skills can be provided by each conduct. Without needing to be 

familiar with the surroundings, this design might handle an unanticipated circumstance the 

drone could encounter. Additionally, it provides a set of concurrent and parallel actions that 

work independently to accomplish the robot's goals. Additionally, it offers a suitable answer 

to the issue of drones doing duties in various uncharted areas. 

But this architecture has a few inconveniences: 

This method requires combining and coordinating many actions in order to operate a robot. 

However, in some circumstances, it might be challenging to decide which previous behavior 

to carry out first. Since actions relate to low-level control, high-level goals may not be 

addressed by them. Lack of a planning module might make it difficult to complete 

challenging jobs. 

 

Conclusion 
This chapter has summarized recent UAV swarm application areas, classification of 

UAVs, UAV swarm communication and control architecture. General characteristics will be 

summarized in the table 5. 

 

 

 

 



27 
 

Table 5. General characteristics of UAV swarm communication architectures. 

 GCS swarm FANET swarm Cellular network swarm 

Advantages No need for UAV to 

UAV network. 

Individual decision making. 

Long distance propagation. 

Individual decision making. 

Long distance propagation. 

Reliable communication 

Disadvantages Short propagation 

Not reliable. 

Difficult to build trustworthy 

communication. 

 

Common Real time operation Real time operation Real time operation 

 

Cellular network swarm architecture has more advantages comparison with other 

communication architectures while minimizing others’ disadvantages as shown in the table. 

 

Table 6.General characteristics of UAV swarm control architectures. 

 Deliberative 

control 

Reactive control Hybrid control  

Disadvantages Vulnerable to 

dynamic 

environment.  

 

Execute low level 

commands. 

Do not operate 

concurrent and 

parallel actions. 

Lack of 

planning 

module. 

Advantages Carries out 

complex 

calculations. 

Function in 

dynamic 

environment. 

Carries out 

complex 

calculations. 

Function in 

dynamic 

environment. 

Set of 

concurrent and 

parallel actions. 
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In a static environment, the deliberate technique can achieve difficult tasks. The 

reactive approach stays clear of moving obstacles. The reactive and deliberative capacities are 

both combined in the hybrid architecture. The behavior approach specifies a number of 

modules that may all be used separately. The following characteristics are necessary for 

constructing an autonomous UAV for civil purposes as a conclusion to this work. 

• Using continuous improvement to achieve complicated objectives 

• Quickness of reaction to avoid moving impediments  

• The capacity to adapt to a variety of missions. 

• Flexibility to incorporate new features 

• The capacity to expand in order to increase the control architecture's existing level of 

autonomy 

My ongoing research will be focused on developing a control architecture for 

unmanned aerial vehicles (UAVs) that operate in civil areas. The suggested architecture must 

do challenging tasks, calculate a workable trajectory, avoid hazards and provide a suitable 

flight plan. 
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2. METODOLOGY 
This chapter will examine some of the design-related tools, various path planning 

methods and swarm functionality. Robot operating system (ROS) for UAV swarm control, 

different algorithms for mapping, localization and navigation will be discussed in more detail. 

 

2.1 Robot operating system (ROS)  
The present study aims to execute the creation of a group of unmanned aerial vehicles 

utilizing the Robot Operating System (ROS) platform within an enclosed setting. The ROS 

framework is a widespread platform utilized for building of robotics software. The platform 

offers a diverse array of tools and libraries that streamlining the process of creating robotics 

applications. 

ROS is an open-source computing platform that enables smooth communication and 

cooperation among different components of a robotic system. Under the publish-subscribe 

messaging model of the system, diverse components have the ability to both send and receive 

to messages on multiple topics. This enables inter-component communication and information 

exchange, even across disparate machines.  

One of the primary advantages of ROS is its modularity. The system is designed to be 

adaptable to growth by organizing various components into packages. As a consequence, a 

robotic system can readily incorporate novel components and features or repurpose pre-

existing components for use in alternative projects. 

A variety of tools are available through ROS for viewing and troubleshooting robotic 

systems. In addition to tools for logging and analyzing system data, these tools also provide a 

graphical user interface for displaying the system's components and connections.  

 Numerous robotics-related fields, such as mobile robotics, industrial automation and 

research use ROS extensively. A significant developer and user base that supports the system 

works together to create new tools, libraries, and components. 

The ROS Master serves as the foundation of ROS. The Master enables communication 

between and discovery of all further ROS software modules (Nodes). So, we never have to 

explicitly say, "Send this sensor data to that computer. We only need to instruct Node 1 to 

communicate with Node 2. 
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Fig. 13. ROS structure. 

(https://www.clearpathrobotics.com/assets/guides/melodic/ros/Intro%20to%20the%20Robot

%20Operating%20System.html) 

 

One of the potential applications of ROS is the deployment of swarms of Unmanned 

Aerial Vehicles (UAVs). A group of unmanned aerial vehicles that are capable of 

collaborating to achieve a shared goal is commonly referred to as a UAV swarm. A group of 

unmanned aerial vehicles engage in inter-drone communication to share data and coordinate 

tasks. The software utilized by these drones to operate in a collective manner was designed on 

a robust platform known as ROS. 

ROS has a modular architecture that enables programmers to combine smaller, 

reusable components to create complex systems. ROS makes it possible to create software 

parts for UAV swarms that can communicate with one another over a network. These 

elements could include communication modules, controls, and sensors. Additionally, the ROS 

framework offers a sizable collection of libraries that make it simple to integrate features like 

navigation, mapping, and localization. 

The availability of a standardized communication protocol offered by ROS makes it 

one of the main benefits of employing it in the development of UAV swarms. This implies 

that the drones in the swarm may communicate the same language to one another. This 

facilitates the integration of additional drones into the swarm and guarantees that all the 

drones are cooperating efficiently. ROS offers a simulation environment which is another 

advantage of employing it in the building of UAV swarms. As a result, programmers can test 

their software components in a simulated setting before putting them into use on actual 

drones. The simulation environment is also helpful for testing the swarm's behavior under 

various scenarios, such as shifting environmental factors or various mission objectives. 

Finally, ROS offers an effective platform to develop software for UAV swarms. It is 

the best option for designing complicated systems that need for cooperation amongst 

https://www.clearpathrobotics.com/assets/guides/melodic/ros/Intro%20to%20the%20Robot%20Operating%20System.html
https://www.clearpathrobotics.com/assets/guides/melodic/ros/Intro%20to%20the%20Robot%20Operating%20System.html
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numerous drones due to its modular architecture, common communication protocol and 

simulation environment. With ROS, programmers may develop software that enables drones 

to cooperate to complete a task, like as mapping a region, carrying out search and rescue 

missions or keeping track of wildlife populations. 

 

2.2. Mapping of the environment. 
The process of mapping plays a crucial role in the context of indoor drone swarming, 

as it enables the drones to gain a comprehensive comprehension of the surrounding 

environment in which they are deployed. Unmanned aerial vehicles (UAVs) have the 

capability to employ a variety of sensors, including but not limited to cameras, LIDAR, and 

GPS, for the purpose of mapping their immediate environment. Typically, the process of 

environment mapping entails the following series of steps: 

Flight planning is necessary to make sure that the full region of interest is covered by 

the UAV's fly route. Using software that automatically creates flight plans based on user-

defined criteria including altitude, overlap and camera settings or manually planning the flight 

path is an option. 

Data gathering: Using its onboard sensors, the UAV gathers information about the 

environment while in flight. Images, LIDAR scans or GPS coordinates could all be included 

in the data. 

Processing of data: In order to produce an environment map, the UAV's data must be 

processed. This could involve processing GPS coordinates to build a topographical map, 

using LIDAR scans to create a point cloud, or mosaics together photos to make an image. 

Map creation. The data can be used to build a map of the environment once it has been 

processed (Liu, 2019). The map may include details about the landscape, the amount of 

vegetation and the locations of various structures. 

Analysis of the map: The map can be examined to extract important environmental 

information such as the location of obstacles, changes in terrain elevation, areas of vegetation 

growth. 

Map updating: As new information is gathered, the map can be revised over time, 

allowing for the tracking and analysis of environmental changes. 

Overall, UAVs can map the environment using a combination of sensors and data 

processing techniques, providing valuable information about the environment that can be used 

for a wide range of applications including agriculture, environmental monitoring, and urban 

planning. Mapping will be used for navigation in this research. 
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Authors have employed a variety of mapping techniques and a brief review of several 

of these strategies has been provided. 

Structure from Motion (SfM): A 3D model of the environment is produced using the 

photogrammetric approach of Structure from Motion (SfM), which employs photos collected 

from various perspectives. With this method, characteristics are extracted from the photos and 

then used to calculate the relative positions of the images. Applications for UAV mapping 

frequently use SfM. 

Simultaneous Localization and Mapping (SLAM): Simultaneous Localization and 

Mapping (SLAM) is a method that enable a drone (or UAV) map a new environment while 

also figuring out where it is in relation to the environment. This method involves gathering 

data about the surroundings and the location of the drone using sensors like cameras, LIDAR 

and inertial measurement units (IMUs). 

Occupancy Grid Mapping: A approach called occupancy grid mapping uses a grid of 

cells to represent the environment with each cell reflecting the probability that it contains an 

obstruction. Using this method, a probability map of the environment is created by merging 

data from several sensors. 

Fast SLAM: A particle filter is used in this SLAM variation to estimate the drone's 

position and image the surrounding area. This method is especially helpful in settings with 

plenty of details such as indoor settings. 

Geometric Hashing: Geometric Hashing is a technique that includes comparing 

characteristics of a scene to a database of previously computed characteristics (Wang, 2019). 

In mapping applications where surroundings are recognized in advance such as in a factory or 

warehouse, this technique is frequently utilized. 

After studying these mapping techniques, SLAM technique has been chosen to be 

utilized in this research due to some reasons.  

 SLAM techniques are deemed highly appropriate for mapping indoor environments 

due to the complex layout of interior spaces, which can pose challenges for conventional 

mapping methods. In indoor environments, a drone is capable of utilizing a diverse range of 

features to determine its position and orientation with regularity. Landmarks such as walls, 

furniture, and other objects can be employed to aid the robot in generating a map of its 

environment. Precise localization is a prerequisite for the robot to navigate effectively in this 

demanding setting. By utilizing data from various sensors, the unmanned aerial vehicle has 

the capability to employ simultaneous localization and mapping (SLAM) methodologies to 

create a spatial representation of the surroundings, while concurrently establishing its own 

position within the mapped area. The sensors employed for the purpose of identifying 
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environmental landmarks may include cameras, LIDAR, or other range sensors. Simultaneous 

Localization and Mapping (SLAM) is particularly suitable for indoor environments due to its 

ability to effectively handle complex and densely populated surroundings that are commonly 

encountered in such settings. Unmanned aerial vehicles (UAVs) have the capability to 

perform precise indoor mapping through the utilization of simultaneous localization and 

mapping (SLAM) techniques, despite the presence of obstacles and other complexities that 

may impede traditional mapping methodologies. 

 

 
Fig.14. System overview of HECTOR SLAM. (www.semanticscholar.org/paper/An-

Improved-Hector-SLAM-Algorithm-based-on-Fusion-Yu-Zhang) 
 

Data collection: The UAV has sensors like LIDAR, IMU and odometry to gather 

information about its surroundings. Measurements of range and orientation are provided by 

the LIDAR, estimations of motion are provided by the odometry, and measurements of 

acceleration and orientation are provided by the IMU. 

Information Pre-processing: To extract important details such as the UAV's location, 

orientation and motion estimates, the acquired sensor data from the UAV's sensors is initially 

pre-processed. The SLAM algorithm uses this data as an input. 

Fusion based EKF: An Extended Kalman Filter (EKF) or another sensor fusion algorithm is 

then utilized to fuse the collected sensor data. The covariance matrix that illustrates the 

uncertainty of the predicted pose is updated by the EKF which also estimates the UAV's pose 

(position and orientation). 

Scan Matching: After the sensor data has been fused, the current LIDAR scan is 

matched with a previous scan or a map. This process aids in determining the UAV's motion 

http://www.semanticscholar.org/paper/An-Improved-Hector-SLAM-Algorithm-based-on-Fusion-Yu-Zhang
http://www.semanticscholar.org/paper/An-Improved-Hector-SLAM-Algorithm-based-on-Fusion-Yu-Zhang
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and increases the pose estimate's precision. 

Construction of the Map: A map of the environment is created using the aligned 

LIDAR scans. Depending on the particular HECTOR SLAM implementation, the map may 

be shown as a grid map, point cloud or occupancy grid. 

Localization: After a map has been created, HECTOR SLAM offers real-time localization 

estimates of the UAV's pose within the map, enabling the UAV to navigate and operate in its 

surroundings. 

The performance of the HectorSLAM method can be modified by modifying the 

following important parameters: 

• Map resolution: Resolution of the map: This parameter controls how detailed the 

algorithm's resulting grid map will be. Higher resolution maps offer more detail, but 

they also need more storage and processing power. 

• Map size: The size of the map that the algorithm creates is determined by this option. 

It's critical to select a map size that is appropriate for the size of the environment being 

mapped. 

• Laser range: Using this option, the algorithm can specify the laser sensor's operating 

range. Although it uses more computing power and may be less accurate, a longer-

range laser offers better coverage. 

• Max update rate: The maximum rate at which the algorithm can update the map is 

indicated by the max update rate parameter. It's critical to select a value that maintains 

a balance between computational effectiveness and map quality. 

• Max iterations: This option determines the most iterations that the algorithm may 

carry out when generating the map. Higher numbers can offer greater accuracy but 

also call for more processing power. 

• Min distance: The minimum distance the robot must travel before updating the map is 

specified by this option. A lower number can produce more precise maps but can also 

cause the process to run more slowly. 

• Max distance: This setting determines how far the robot can move before the map 

needs to be updated. A greater number may result in more effective mapping but less 

accurate maps. 

• Use odometry: This selection controls whether the algorithm updates the map using 

odometry data from the robot. Odometry can increase the map's accuracy but it can 

also cause inaccuracies if the data is noisy. 

Overall, the environment and task requirements of the mapping task influence the 
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parameters chosen for HectorSLAM. These settings can be carefully adjusted to improve the 

algorithm's performance and result in high-quality maps. 

Mathematical model of HectorSLAM is consist of prediction and correction step. Based 

on the robot's present location and velocity, the prediction phase of the Hector SLAM 

algorithm estimates the robot's position and orientation. The prediction stage is provided by: 

 

                                               𝑥𝑥𝑘𝑘 = 𝑓𝑓(𝑥𝑥𝑘𝑘 − 1, 𝑢𝑢𝑘𝑘) + 𝑤𝑤_𝑘𝑘    (1) 

 

This equation represents a recursion relation where we are calculating the value of x at 

the kth iteration or time step(Kumar, 2018). The value of x at the kth iteration depends on the 

value of x at the previous iteration (k-1) and the input u at the current iteration (k), as well as 

some noise w_k. 

𝑥𝑥𝑥𝑥 is the value of x at the kth iteration 

𝑥𝑥𝑥𝑥−1 is the value of x at the previous iteration (k-1) 

𝑢𝑢𝑢𝑢 is the input at the current iteration (k) 

𝑓𝑓(𝑥𝑥𝑥𝑥−1,𝑢𝑢𝑢𝑢) is a function that takes the value of x at the previous iteration and the input at the 

current iteration, and returns a new value of x at the current iteration (k) 

𝑤𝑤𝑤𝑤 is some random noise or disturbance at the current iteration (k) 

The Hector SLAM algorithm's corrective stage modifies the robot's orientation and 

location depending on data from the laser range finder. The step for rectification is provided 

by: 

 

𝑧𝑧𝑘𝑘 = ℎ(𝑥𝑥𝑘𝑘) + 𝑦𝑦𝑘𝑘          (2) 

 

where 𝑧𝑧𝑘𝑘 is the measurement at time k, h is the nonlinear measurement function and 𝑦𝑦𝑘𝑘 is the 

measurement noise. 

The measurement equation is crucial for drone navigation since it enables us to update 

our estimation of the drone's state variables using sensor measurements. We may determine 

an error term that represents the difference between the predicted and actual measurements by 

comparing the expected measurements from ℎ(𝑥𝑥𝑘𝑘) to the actual measurements 𝑧𝑧𝑘𝑘. This error 

term may then be used to modify our estimation of the drone's state variables and enhance the 

precision of our projections of the drone's future orientation and location. 
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2.3. Path planning 
Finding the best route from the drone's current location to a destination while avoiding 

obstacles is known as path planning. Path planning is essential in indoor drone swarming to 

allow the drones to move across the space securely and effectively. There are two primary 

approaches. 

• Global path planning 

• Local path planning 

 

 
Fig. 15. Global and local path planning. ( https://www.researchgate.net/figure/Global-and-

local-path-planning-approaches_fig3_360268568) 

 

The distinctions between global and local path planning are summarized as follows: 

Global path planning is the process of determining the best or nearly best route from the UAV 

swarm's initial point to the destination or goal position while taking into account the mission 

requirements and the surrounding environment. (Figure 15.) A high-level model of the 

environment such as map or grid is often created and path planning algorithms scan through 

this representation to find the optimum path. The UAV swarm's mission is often 

planned either offline or before launch. 

The task of Local Path Planning involves the creation of a secure and obstacle-free 

trajectory for each unmanned aerial vehicle within a group, considering its present location, 

speed, and nearby surroundings. The diagram depicted in Figure 15. During the process of 

local path planning, various factors are considered such as the UAV's kinematic capacities, 

sensor limitations, communication restrictions, as well as immediate challenges and dynamic 

https://www.researchgate.net/figure/Global-and-local-path-planning-approaches_fig3_360268568
https://www.researchgate.net/figure/Global-and-local-path-planning-approaches_fig3_360268568
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obstacles. The process of local path planning is frequently executed in an online or real-time 

manner in the context of a mission involving a swarm of unmanned aerial vehicles (UAVs). 

Short comparison of some common global path planning algorithms has been reviewed with 

disadvantages. 

Dijkstra's Algorithm: Dijkstra's algorithm is a well-known global path planning 

algorithm that identifies the shortest route between a starting point and a final destination by 

first examining the breadth of the graph or search space. It ensures optimality but because it 

extends nodes uniformly without taking heuristic information into account, it can be 

computationally expensive, especially in vast and complicated contexts. 

The Breadth-First Search: (BFS) global path planning algorithm expands all of the nearby 

nodes before moving on to the next level of nodes. BFS is a straightforward and commonly 

used global path planning algorithm. BFS is comprehensive and determines the best course of 

action but it may not be memory and computationally efficient especially in big and 

complicated contexts. 

Depth-First Search (DFS): Another straightforward global path planning technique is 

called depth-first search which expands one path as far as it can go before turning around. 

DFS can be memory-efficient, but it might not always take the best course of action and might 

become bogged down in dead ends or loops (Kiesel, 2019). 

Rapidly exploring Random Trees (RRT): RRT is a probabilistic global path planning 

technique that grows a tree of possible starting points and goals by using random sampling. It 

can effectively navigate through challenging situations and is especially well suited for 

continuous and high-dimensional landscapes. RRT may result in poor pathways and does not 

ensure optimality. 

Probabilistic Roadmaps (PRM): Another probabilistic global path planning approach 

is called Probabilistic Roadmaps (PRM) which builds a network of interconnected nodes in 

the environment's free space and then looks for a route from the starting point to the goal 

inside this network. PRM is effective in high-dimensional environments although it needs pre-

processing to create the graph but, in some cases, may be affected by the computational 

complexity of a path planning algorithm. 

A* Algorithm: A* (pronounce "A-star") is a popular global path planning method that 

combines the best elements of unrestrained best-first search and uniform cost search from 

Dijkstra's algorithm. It maintains a priority queue to choose the most promising node for 

expansion and utilizes a heuristic function to calculate the cost of getting there from where it 

is now. A* is effective and frequently used because it can locate ideal or almost ideal paths in 

a variety of situations, particularly in discrete or grid-based contexts. 
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A* start algorithm has been chosen to use in this research for global path planning due 

to its advantages mentioned above. 

A common graph PPA is the A* algorithm. The A* is an accurate iterative heuristic 

search algorithm, or a popular kind of iterative best-first search. The algorithm executes using 

the static path tree with the lowest cost between the beginning and target points. In this 

regard, it functions similarly to Dijkstra's algorithm, which it modifies. The A* algorithm's 

goal is to determine the shortest path and it uses a heuristic function to focus its search on 

states that are along that path. As a result, the A* algorithm is more effective than Dijkstra. In 

some situations, this method is applied in dynamic contexts. The A* algorithm chooses the 

least expensive route and assesses its cost: 

                                         𝒇𝒇(𝒏𝒏) = 𝒈𝒈(𝒏𝒏) + 𝒉𝒉(𝒏𝒏)                                  (3) 

 

Where 𝒏𝒏 shows location of UAV, 𝒇𝒇(𝒏𝒏) - is the cost of path from start point to final 

point, 𝒈𝒈(𝒏𝒏) – is the actual cost from node 𝒏𝒏 to the first node and 𝒉𝒉(𝒏𝒏) – is the heuristic 

function which calculates cost of optimal path from node 𝒏𝒏 to the target node. The heuristic is 

the value of the A* algorithm's minimum cost evaluation from any node to the target node. 

Additionally, this feature contributes in minimizing the quantity of passing nodes. Therefore, 

the choice of the heuristic function directly affects the algorithm's effectiveness. Heuristic 

functions for the method include Euclidean distance, Manhattan distance, Chebyshev distance 

and diagonal distances. (4-7) 

Manhattan distance heuristic function: 

                                     𝒉𝒉(𝒏𝒏) = |𝒙𝒙𝒑𝒑 − 𝒙𝒙𝒒𝒒| + �𝒚𝒚𝒑𝒑 − 𝒚𝒚𝒒𝒒�                  (4) 

Eucklidean distance heuristic function: 

                                         𝒉𝒉(𝒏𝒏) = ��𝒙𝒙𝒑𝒑 − 𝒙𝒙𝒒𝒒�
𝟐𝟐

+ �𝒚𝒚𝒑𝒑 − 𝒚𝒚𝒒𝒒�
𝟐𝟐
        (5) 

Chebyshev distance heuristic function: 

                                               𝒉𝒉(𝒏𝒏) = 𝒎𝒎𝒎𝒎𝒎𝒎(�𝒙𝒙𝒑𝒑 − 𝒙𝒙𝒒𝒒�, �𝒚𝒚𝒑𝒑 − 𝒚𝒚𝒒𝒒�)    (6) 

Dioganal distance heuristic function: 

                       𝒉𝒉(𝒏𝒏) = �𝒙𝒙𝒑𝒑 − 𝒙𝒙𝒒𝒒� + �𝒚𝒚𝒑𝒑 − 𝒚𝒚𝒒𝒒� + (√𝟐𝟐 − 𝟐𝟐)𝒎𝒎𝒎𝒎𝒎𝒎(�𝒙𝒙𝒑𝒑 − 𝒙𝒙𝒒𝒒�, �𝒚𝒚𝒑𝒑 − 𝒚𝒚𝒒𝒒�)    (7) 

 

It is a significantly more straightforward and computationally less intensive method 

than many other PPAs, given its efficiency appropriate for working in embedded systems. It 

generates the shortest roads by determining the best course using heuristic data. The 

complexity of the map however significantly raises computing time and memory 
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requirements. 

Local path planning: 

A widely used approach for local path planning in mobile robots, including drones is 

the Dynamic Window Approach (DWA). To find the optimal route to the target, the algorithm 

creates a viable velocity, space or "dynamic window," and assesses potential paths within of 

it. The optimal route is the one that minimizes a cost function while meeting many 

requirements, including acceleration, velocity, and obstacle avoidance. 

Mathematical model: 

Calculate the dynamic window: 

The collection of potential robot speeds and directions that the robot can go to in the 

next step is known as the dynamic window. The robot's current speed, maximum speed, 

maximum acceleration and maximum angular velocity all contribute to defining the dynamic 

window. The following equation is used to determine the dynamic window: 

                                         Vdynamic={v∣vmin≤v≤vmax}       (8) 

 

                                         ωdynamic={ω∣ωmin≤ω≤ωm} (9)    

where vmin and vmax are the minimum and maximum linear velocities of the robot, ωmin and 

ωmax are the minimum and maximum angular velocities of the robot. 

Evaluate possible trajectories: 

The algorithm sets up a trajectory by simulating the robot's motion for a brief time 

period for each velocity and direction in the dynamic window. The trajectory will be generated 

based on its closeness to obstacles, its distance from the objective and if it violates any 

limitations, the trajectory will be evaluated. The following equation is used to compute each 

trajectory's cost: 

                                                    C=α Cobs+β Cgoal+γ Csmooth         (10)                                  

 

 

where Cobs is the cost of the trajectory based on its proximity to obstacles, Cgoal is the cost of 

the trajectory based on its distance to the goal, Csmooth is the cost of the trajectory based on its 

smoothness and α, β, and γ are the weights assigned to each cost term. 

Select the best trajectory: 

 The selection of the optimal trajectory is based on the algorithm's determination 

of its path with the minimum cost. The velocity and moving of the robot are configured 

to match those of the optimal trajectory. Subsequently, the robot proceeds along the 
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designated path for the subsequent movement. 

 

2.4. Collision Avoidance 
The UAV should take into account both the position and the velocity of other UAVs in 

order to ensure free-collision behavior in a multi-agent system. Social proximity approach has 

been implemented for this reason in order to take advantage of other UAVs' positions to 

change the costmap. LIDAR (Light Detection and Ranging) sensors can be used in social 

proximity techniques to determine the position and speed of other drones around. LIDAR 

operates by emitting laser pulses and calculate how long it takes for the pulses to return from 

surrounding objects, such as other drones. The position and speed of the drones can be 

determined by examining the patterns of laser reflections. 

A general description of the operation of LIDAR-based social proximity approaches is 

given below: 

Sensor setup: The drone is equipped with a LIDAR sensor or sensors which are 

orientated and positioned to offer a 360-degree picture of the surroundings. 

Detection and tracking: The LIDAR sensors continuously generate laser pulses which they 

then pick up as reflections from other drones nearby, allowing them to detect and track nearby 

objects. Through the use of methods like clustering, filtering and data association, the 

reflections are processed in order to find and locate the other drones (Felner, 2018). The 

coordinates and velocities of the discovered drones are estimated, and they are given 

distinctive IDs. 

Social proximity calculation: Calculation of social closeness: The other drones' 

positions and speeds are taken into account when determining the drone's social vicinity. This 

can be achieved by modeling the drones as point masses and computing the forces between 

the drones using a potential field or a social force model. The drone's behavior can be 

controlled by the resulting social proximity measure which can be used to advise it to keep a 

safe distance or avoid crashes. 

Control and decision-making: the drone's control and decision-making algorithms 

modify the trajectory and speed of the drone based on the estimated social proximity measure. 

The drone might slow down or change course to avoid a collision, for instance, if the social 

proximity measure indicates a high danger of collision with another drone. 

In general, LIDAR-based social proximity algorithms can implement efficient 

collision avoidance tactics by providing real-time information on the positions and velocities 

of other drones nearby. They might be constrained, though, by the LIDAR sensors' precision 
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and range as well as the environment's complexity and other drones' activity. 

The assessment of other drones' position and velocity can be made more precise and 

robust by combining the 2D Gaussian kernel with LIDAR in social proximity approaches. 

The probability density function (PDF) of the position and speed of the other drones, based on 

the LIDAR observations can be modelled specifically using the 2D Gaussian kernel. In 

basically, the costmap incorporates a 2D Gaussian kernel, where the mean represents the 

position of the neighbor and the covariance represents the velocity of the neighbor. The social 

kernel also known as the 2D Gaussian kernel is defined as: 

 

                        𝑺𝑺�𝒙𝒙,𝒚𝒚,𝒗𝒗𝒙𝒙,𝒗𝒗𝒚𝒚� = 𝑨𝑨 𝐞𝐞𝐞𝐞𝐞𝐞 �−𝟏𝟏
𝟐𝟐
� (𝒊𝒊−𝒙𝒙)𝟐𝟐

 (𝝈𝝈 𝒇𝒇 𝒗𝒗𝒙𝒙)𝟐𝟐 + (𝒋𝒋−𝒚𝒚)𝟐𝟐

 �𝝈𝝈 𝒇𝒇 𝒗𝒗𝒚𝒚�
𝟐𝟐��        (11) 

 

Some variables (𝑥𝑥, 𝑦𝑦), (𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦) and (𝑖𝑖, 𝑗𝑗) are UAV’s position, velocity and costmap 

grid coordinate respectively. 𝐴𝐴 is the amplitude of the kernel. This means how strong other 

UAVs position affect the costmap. 𝜎𝜎 and 𝑓𝑓 are covariance and weighting factor for the 

velocity. Moreover, there is another parameter called cut-off which is used as the smallest 

value to publish on costmap adjustments. 

 

Conclusion 
In this chapter, different mapping and path planning algorithms has been 

analyzed. HECTOR SLAM algorithm chosen for mapping technique for indoor 

environment. A* algorithm chosen for global path planning and Dynamic Window 

Approach algorithms chosen for global and local path planning. Social proximity 

technique has been explained to calculate neighbours’ position and velocity 
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3. PRACTICAL PART 

Mapping, navigation and collision avoidance techniques will be implemented in this 

chapter by using ROS framework and GAZEBO simulation tool in unknown environment. 

Different formation of UAV swarms will be implemented in order to compare experimental 

results and the most effective topology will be chosen according to results.   

 

3.1. Overall system description 
 The present study involved the development and implementation of a collision 

avoidance mechanism intended for the autonomous navigation of multiple unmanned aerial 

vehicles (UAVs) within an unfamiliar setting. The utilization of the ROS framework and 

Gazebo as the simulation environment was employed for the implementation. The 

hector_quadrotor ROS package serves as a quadrotor model. The Hector SLAM and Move 

Base ROS packages are utilized for the purposes of localization and mapping, as well as 

navigation system, correspondingly. 

 

 
                        Fig. 16. System diagram for multi-UAV collision avoidance 

 
 The Hector Simultaneous Localization and Mapping (SLAM) algorithm 

produces a map and pose estimation, comprising the position and orientation, that is 

subsequently utilized by the navigation system. The navigation system comprises three 
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components, namely the costmap, global planner, and local planner. The costmap is a 

cartographic representation of the likelihood of traversability of a given area, derived 

from the underlying raw map data. The construction of a trajectory from the starting 

point to the destination is facilitated by the implementation of the A* global planner. 

Subsequently, the trajectory is employed by the DWA local planner to produce a 

velocity that can pursue the intended trajectory. 
 

 
Fig. 17. Field of view 

Each UAV is installed with 2D LIDAR with 270 degree Field of View (FoV) as shown in the 

figure 17. 
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Fig. 18. Hector quadrotors 

 

 The coordination of this set of unmanned aerial vehicles (UAVs) is achieved through a 

decentralized topology, wherein each individual UAV executes algorithms by means of inter-

communication with its counterparts. To account for uncertain environmental conditions, it is 

recommended that each unmanned aerial vehicle (UAV) acquire information regarding its 

surrounding area through the use of LIDAR technology. In addition, the unmanned aerial 

vehicles (UAVs) are required to perform location estimation. Simultaneous Localization and 

Mapping (SLAM) is a technique that can be employed to address this matter. Authors have 

utilized various SLAM algorithms. Hector SLAM is considered a promising Simultaneous 

Localization and Mapping (SLAM) algorithm, primarily due to its ability to accommodate 6 

degrees of freedom (6DOF) robots, which possess both 3D position and 3D orientation. The 

Hector Simultaneous Localization and Mapping (SLAM) algorithm produces a map and pose 

estimation, encompassing both position and orientation, that is subsequently utilized for the 

navigation system. 
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Fig. 19. Important ROS launches and scripts. 

• Green files: launch files related to Gazebo environment.  

• Red files: Main launch files for opening Gazebo and all control system.  

• Blue files: Python scripts related to collision avoidance control with and without 

formation and the social proximity technique for estimation of velocity and position.  

• Purple files: Python scripts related to logger. Orange: Launch files related to mapping 

and navigation.  

• Yellow files: Files related to navigation and costmap parameters. 

 

In the implementation, a main ROS launch named indoor_slam_gazebo_4.launch is 

created for: 

• Opening the Gazebo with indoor environment (indoor_environment.launch) 

• Spawning quadrotors (hector_quadrotor_model package) 

• Creating a transformation or coordinate as the map reference for each UAV and  

• Opening Rviz for visualization.  
 

 

 
Fig. 20. Launch command 
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The indoor_slam_gazebo_4.launch code snippet is shown in Figure 3 below. Figure 

3a shows how the initial position of UAVs are initialized and the indoor_environment.launch 

is included to open the Gazebo. Figure 3b shows how the quadrotors are spawned using 

groups with different namespaces. Figure 3c shows how some new frames were created using 

tf_static_transform_publisher for each UAVs and also opening Rviz function at the end. After 

launching,  the walls and quadrotors installed with 2D LIDAR are spawned on a Gazebo 

Simulator as it is shown in table 7.  

 

Table 7. Initial and goal positions of drones. 

Position UAV 1 UAV 2 UAV 3 UAV 4 

X 2 0 2 0 

Y -15 -15 -17 -17 

Z 0.3 0.3 0.3 0.3 

Position UAV 1 UAV 2 UAV 3 UAV 4 

X 42 42 40 40 

Y -2 2 -1 1 

Z 0.3 0.3 0.3 0.3 

 

 

 
Fig. 21. Initial positions of drones. 

 

 
                 Fig. 22. Lunch Rviz function 

This function is used to visualize how drones map the environment. In the beginning 
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of the flight the environment is unknown but the drones map the environment by LIDAR 
sensors. 
 
 

  
                                             (a)                                                                  (b) 

                     Fig. 23. Four quadrotor installed with 2D LIDAR on a Gazebo Simulator 

 
 The move_base ROS package is utilized to implement the navigation system. The 

navigation system produces a costmap that contains a grid of unknown dimensions, with each 

grid cell assigned a probability value indicating whether it is occupied or free. The costmap is 

produced by taking into account two unchanging variables, namely the robot's footprint and 

inflation radius. The inflation radius serves the function of maintaining a safety buffer 

between unmanned aerial vehicles and potential obstructions. Nonetheless, the 

aforementioned approach solely accounts for stationary impediments, such as walls or other 

immobile entities, as the 2D LIDAR may not always detect other UAVs. The term "footprint" 

refers to the physical dimensions of a drone. 

 In order to prevent collisions with other unmanned aerial vehicles (UAVs), it is 

necessary for each UAV to possess information regarding the location of its neighboring 

UAVs. The term used to refer to this concept is social proximity. The incorporation of this 

social factor leads to in the generation of an updated costmap. The configuration of the 

importance for the dynamic obstacle can be achieved by adjusting the parameters associated 

with the social proximity algorithm, including amplitude and covariance. Furthermore, 

utilizing the preceding position to compute the approximated velocity would also enhance 

safety. 

 Once the costmap has been prepared to include both static and dynamic obstacles, the 

global and local costmaps are distributed to the navigation system. The global costmap and 
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local costmap are two distinct costmaps utilized in unmanned aerial vehicle (UAV) 

navigation. The former pertains to the costmap that encompasses the entirety of the map, 

while the latter refers to the costmap that is confined within a specific radius surrounding the 

UAV. The global planner utilizes the global costmap. The A* algorithm was employed in the 

present study to produce the global trajectory. Subsequently, the local planner utilizes the 

global trajectory. The Dynamic Window Approach (DWA) is employed as the local planner. 

The unmanned aerial vehicle (UAV) adheres to the trajectory that is locally generated by the 

dynamic window approach (DWA) through the issuance of commands for linear and angular 

velocity. The map merging algorithm is utilized for visualization purposes, with the 

assumption of the initial relative position of each UAV. 
 

 
(a) 

 

 
(b) 

 
(c) 

          Fig. 24. mapping_and_navigation_multi_uav_4.launch 

 
 

The code snippet is shown in Figure 24. Figure 24 (a) shows a group of the 1st UAV 

which has mapping, high level control for formation or individual control and the social 

proximity. Figure 24b shows how some move_base packages are included for each UAV. 

There are four important parameters related to map merging (figure 24b). Parameter 

merging_rate is the rate at which the maps are merged. This parameter specifies how often 

the node will merge the maps. In this case, we set the frequency to 4 Hz which means the 

map merging algorithm will be executed with 0.25 seconds period. The discovery_rate is 
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the rate at which the node looks for new robots. This parameter specifies how often the 

node will check for new robots that have joined to the network. The estimation_rate is the 

rate at which the node estimates the pose of each robot. This parameter specifies how often 

the node will estimate the pose of each robot. We set the discovery_rate and 

estimation_rate to 0.5 Hz. The last parameter is estimation_confidence which is the 

confidence threshold for the pose estimation. This parameter specifies the minimum 

confidence required for the node to accept a pose estimate. A higher value will result in 

more accurate pose estimates but a higher estimation confidence will require more 

computation time. Figure 24(c) indicates logger for simulation results. 

Besides implementing the ROS architecture for quadrotors collision avoidance, 

another contribution is to investigate different techniques for a swarm of quadrotors using 

some leader-follower formation-based control strategies. As it is depicted in Figure 16, the 

global planner needs a goal for each UAV. For individual behavior (no formation), each UAV 

only needs one static final goal. However, for leader-follower strategy, only the leader which 

has a static goal. The followers have dynamic goals according to the desired formation. 

 
Fig. 25. Launch command for flight test. 

All of the functions related to SLAM, navigation and other controls are implemented 

in a launch file as shown on figure 25.  

 

 
Fig. 26. Logger files for extracting data. 
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The logger script is used for storing the data such as position, orientation, linear and 

angular velocity, velocity command and nearest obstacle for each UAV. The data for a 

mission is stored in a csv file under the log folder in logger package (see Figure 6). 
 

 
3.2 Mapping 

Hector SLAM - Hector SLAM is a popular SLAM algorithm that is often used for 

UAV equipped with a 2D LIDAR sensor. It is designed to create a map of an unknown 

environment and localize the UAV within that map in real-time. One of the main advantages 

of using Hector SLAM with a 2D LIDAR is its ability to generate a highly accurate map of 

the environment even in the presence of noise and disturbances in the sensor data. It achieves 

this by using a scan matching technique that aligns successive LIDAR scans to create a 

continuous map. 

Another advantage of Hector SLAM is its ability to operate in real-time which is 

essential for UAV applications where fast and accurate mapping and localization are critical. 

To set up Hector SLAM for mapping and localization, several parameters need to be 

configured in mapping.launch. These parameters include: map resolution, distance and angle 

threshold for map update and free and occupied update factors. The code snippet of 

mapping.launch related to the parameters is shown in Figure 27. 
 

 
Fig. 27. Hector SLAM parameter configuration 

Map resolution determines the granularity of the map and should be set based on the 

size of the environment and the level of detail required in the map. In Hector SLAM, the map 

is updated based on the distance and angle between successive LIDAR scans. Especially the 

map is updated only if the distance between the current pose estimate and the previous pose 

estimate exceeds a certain distance threshold or if the angle between the current pose estimate 

and the previous pose estimate exceeds a certain angle threshold. In addition to the distance 

and angle thresholds, Hector SLAM also uses free and occupied update factors to update the 

map. The free update factor determines how much weight is given to free space in the map, 

while the occupied update factor determines how much weight is given to occupied space in 

the map.  
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                  Fig. 28. Different map generated by Hector SLAM with different free and 
occupied update factor parameters. (a) 0.45 and 0.8 (b) 0.25 and 0.8 (c) 0.45 and 0.9 

 

 The optimal values for the update factors of free and occupied states are 0.45 and 0.8, 

respectively, as depicted in Figure 28. The stability of the map depicted in Figure 28a 

surpasses that of Figures 28b and 28c. Reducing the free update factor, as illustrated in Figure 

28b, results in a decrease in the speed at which the Hector SLAM algorithm updates the cells 

of the occupancy grid that are categorized as free space. Consequently, the algorithmically 

generated map may exhibit a higher degree of caution and incorporate imprecise obstructions, 

even in regions devoid of tangible barriers. The update factor for occupancy is a crucial 

parameter that governs the pace at which the algorithm labels cells as being occupied. In cases 

where the occupied update factor is excessively high, as depicted in Figure 28c, Hector 

SLAM may incorrectly designate cells as occupied, resulting in false positives. This 

phenomenon may lead to the production of a map that portrays a greater number of obstacles 

than what exists in reality. 
 

Costmap - A costmap is a cartographic representation that endows each cell in the 

map with a numerical value or cost, which is determined by the cell's occupancy state and 

various other factors, such as its proximity to obstacles, terrain characteristics, or other 

environmental limitations. The primary objective of a costmap is to furnish a depiction of the 

surroundings, which can be employed by path planning algorithms to produce paths that are 

free from collisions for an unmanned aerial vehicle or a robot. Nonetheless, the present study 

solely takes into account the measurement of the distance to stationary obstructions and the 



52 
 

social proximity as the measurement of the distance to mobile obstructions. 

The costmap utilizes the map produced by the SLAM algorithm in order to construct a 

depiction of the surroundings that takes into account the physical limitations and sensor 

constraints of the unmanned aerial vehicle. The costmap is generated through the 

superimposition of a grid of cells onto the original map, with each cell being assigned a cost 

that is determined by its occupancy status and other variables such as proximity to 

obstructions or other environmental limitations. 

The costmap is implemented in an available ROS package named: move_base. The 

move_base is called in a launch file named: quadrotor_move_base.launch under 

quadrotor_navigation package. The code snippet of quadrotor_move_base.launch is shown in 

Figure 29.  

 
             Fig. 29. Code snippet of quadrotor_move_base.launch. 

 
The parameters of significant importance can be utilized to configure the cost 

attributed to individual cells within the costmap. The inflation radius stands out as the 

foremost significant parameter. The inflation radius parameter is utilized to specify the extent 

to which the costmap is expanded in the vicinity of obstacles. The inflation radius denotes the 

magnitude of the spatial buffer encompassing obstructions within the costmap, serving as a 

protective boundary.  The purpose of this mechanism is to guarantee that the unmanned aerial 

vehicle (UAV) sustains a secure separation from impediments, and it can be established in 

accordance with the dimensions and velocity of the UAV. The occupancy threshold represents 

the second parameter. The occupancy threshold is a crucial parameter that is utilized to 

classify a cell as either occupied or free in the costmap. The establishment of parameters for 

path planning can be contingent upon the precision of the LIDAR sensor and the degree of 

complexity deemed necessary. 

The scaling factors of the third parameter play a crucial role in determining the 

relative importance assigned to various factors in the costmap, such as environmental 
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constraints and distance to obstacles. It is possible to configure them in a manner that 

equalizes the impact of said factors on the process of path planning. It is possible to establish 

a parameter that determines the frequency at which the costmap is updated in response to new 

sensor data. The parameter can be configured in accordance with the velocity of the 

unmanned aerial vehicle.  

The yaml configuration file specifies the parameters for a UAV’s obstacle avoidance 

system, which is a critical component of autonomous robotic navigation. The file defines four 

layers: obstacle_layer, inflation_layer, static_layer, and social_layer. Moreover, the radius of 

the UAV’s should also be defined in robot_radius parameter. In this case, we define the radius 

is 0.6 meters. 

The obstacle_layer assumes the responsibility of detecting obstacles and attributing 

costs to them. The observation source utilized by the system is a laser scanner, denoted as 

"laser_scan" in the configuration file. The obstacle height parameters have been established 

with a minimum value of -5.0 and a maximum value of 10.0. Any obstacles that fall outside 

of this designated range will be disregarded. The established lethal cost threshold is 100. 

Consequently, any obstacle that surpasses this value will be deemed as lethal, prompting the 

robot to take measures to evade it. The parameters obstacle_range and raytrace_range have 

been assigned a value of 9.0, indicating that objects and beams will be taken into account 

within a distance of 9.0 meters. The combination method has been assigned a value of 1, 

indicating that the expenses incurred due to the presence of overlapping obstacles will be 

amalgamated by employing the highest value. The boolean variable track_unknown_space 

has been assigned a value of true, indicating that the robot's mapping algorithm will 

dynamically adjust the cost of unexplored areas as it navigates through the environment. The 

variable known as "unknown_cost_value" is assigned a value of negative one, indicating that 

any space with an unknown cost is also assigned a value of negative one. The boolean value 

of publish_voxel_map has been assigned as false, indicating that the publication of the voxel 

map has been disabled. The inflation layer is tasked with the responsibility of expanding the 

obstacles in order to generate a safety buffer zone around them. The value assigned to the 

cost_scaling_factor parameter is 5.0, thereby indicating that the cost associated with the 

expanded region is multiplied by a factor of 5.0. The inflation radius has been designated as 

1.0, indicating that the obstacles will undergo a 1.0 meter inflation. 

The static_layer is used to assign costs to areas of the map that are known to be free of 

obstacles. It is enabled in the configuration file, which means that it will likely use a pre-built 

map or a map generated by SLAM to assign costs to free space. 

The social_layer is used to take into account the presence of other robots or agents in 
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the environment. It uses a Gaussian distribution to model the influence of other agents. The 

amplitude is set to 150.0, which determines the strength of the social layer's influence. The 

covariance is set to 0.3, which determines the shape of the distribution. The factor is set to 

7.0, which determines the maximum cost of the social layer. 
 

 
Fig. 30. Costmap parameters configuration 

 
 

 
              (a.)                                                 (b.)                                                 (c.) 

 Global costmap using different parameters (inflation radius and cost scaling factor).  
(a.) 1.0 and 2.0  
(b.) 1.0 and 5.0 
 (c.) 0.2 and 1.0 

                                    Fig. 31. Global costmap using different parameters 

                              
The inflation radius is a parameter that governs the extent to which the obstacles 

present in the environment are dilated in the costmap. As depicted in Figures 31a and 31b, an 

increase in the inflation radius results in a more cautious trajectory for the UAV, as it 

endeavors to maintain a safe distance from obstacles. Nonetheless, an increased inflation 

radius may lead to the robot traversing a lengthier route to attain its objective, given that it 
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might have to circumvent impediments that it could have otherwise traversed. 

 The cost scaling factor is a crucial parameter that determines the relative importance 

of the costmap in the computation of the optimal path by the path planning algorithm. 

Increasing the cost scaling factor (as depicted in Figure 31b) will cause the path planning 

algorithm to assign greater importance to the costmap. This can result in the generation of 

safer trajectories that circumvent obstacles. Nevertheless, an elevated cost scaling factor may 

lead to a delay in the robot's achievement of its objective, as it could prioritize caution over 

effectiveness. The parameter depicted in Figure 31b is given greater priority to safety as 

opposed to efficiency. Figure 31c places a higher priority on efficiency over safety, whereas 

Figure 11a prioritizes both safety and efficiency. 
 

3.3 Navigation 
Global planner - The global costmap is used as the underlying graph for path planning 

by A* algorithm. Specifically, each cell in the costmap is represented as a node in the graph 

and edges are defined between adjacent cells in the costmap. The cost of each edge is based 

on the cost assigned to the cells in the costmap and any other environmental constraints that 

are considered during path planning. 

To generate a path using A*, the algorithm searches the graph for the shortest path from the 

UAV's current location to the goal location while considering the costs of each node and edge 

in the graph. The algorithm uses a heuristic function that estimates the cost of reaching the 

goal from each node in the graph and uses this estimate to guide the search towards the goal. 
 

 
                                                      Fig. 32. Global path. 

 
The A* algorithm can be configured using several parameters such as the heuristic 
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function, cost and goal tolerance. The heuristic function estimates the cost of reaching the 

goal from each node in the graph and can be used to guide the search towards the goal. The 

cost of each node and edge in the graph and can be configured based on the environmental 

constraints and the UAV's physical limitations. Finally, the goal tolerance parameter 

determines the distance and heading at which the goal is reached and can be set based on the 

accuracy of the UAV's sensors and the level of precision required for path planning. 
 

 
            Fig. 33. A* parameters. 

 
The same as the costmap, the global planner is also implemented in move_base and 

called in a launch file named quadrotor_move_base.launch under quadrotor_navigation 

package. The A* parameters can be set in global_planner_params.yaml (Figure 33).  

 

Here are the details of the parameters shown in Figure 33: 

 

• default_tolerance: This parameter determines the default tolerance used by the Global 

Planner when checking whether the goal has been reached. The tolerance specifies 

how close the robot needs to be to the goal location in order for the planner to consider 

the goal reached. 

• publish_scale: This parameter determines the resolution of the published potential map 

used by the Global Planner. The potential map is a representation of the cost of 

moving to each point in the map, and the publish_scale parameter determines the 

resolution of this map 

• planner_costmap_publish_frequency: This parameter determines how often the Global 

Planner will publish the costmap used for planning. The costmap is a representation of 

the obstacles in the environment, and the planner_costmap_publish_frequency 

parameter determines how often this map is updated and published. 

• lethal cost: This parameter determines the cost assigned to cells in the map that 

represent lethal obstacles, such as walls or large obstacles that the robot cannot pass 
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through. The maximum is 255. In this case, we consider lethal obstacles if the cost is 

more than 253. 

• neutral cost: This parameter determines the cost assigned to cells in the map that 

represent neutral or unknown areas of the environment. In this case, area with the cost 

less than 50 is considered as safe area. 

• cost_factor: This parameter determines the weighting factor applied to the cost of 

moving from one cell to another in the map. A higher cost factor will encourage the 

planner to avoid paths with high costs. 

• publish_potential: This parameter determines whether the Global Planner will publish 

the potential map used for planning. Setting this parameter to true will publish the 

potential map, while setting it to false will not publish the map. 
 

The local planner is responsible for generating a low-level control signal that specifies the 

velocity and orientation of the UAV to follow the global trajectory generated by the global 

planner. The purpose of the local planner is to adjust the UAV's velocity and orientation in 

real-time based on the obstacles and terrain features in the local environment to ensure that 

the UAV stays on the planned path and avoids collisions. 

DWA is a popular algorithm used for local path planning in robotics. It uses a set of 

dynamically generated candidate trajectories to select a velocity and orientation that avoids 

obstacles and follows the global trajectory. The advantage of using DWA is that it can handle 

dynamic environments and adjust the UAV's velocity and orientation in real-time to ensure 

safe and efficient navigation. 

To generate a local path using DWA, the algorithm uses the local costmap which provides 

a high-resolution map of the local environment around the UAV. The costmap is used to 

detect obstacles and determine the safest path to follow while staying close to the global 

trajectory generated by the global planner. 

The DWA algorithm has several key parameters that can be adjusted for optimal 

performance. The first important parameter is the linear and angular velocity limits. These 

limits define the highest and lowest velocities that the UAV can attain and are based on the 

physical capabilities of the UAV. 

Other important parameters are related to the weighting factors which balance the tradeoff 

between safety and efficiency when selecting a trajectory. These factors help to adjust the 

algorithm's preference for trajectories that prioritize either safety or efficiency depending on 

the needs of the application. 
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            Fig. 34. DWA parameters. 

The DWA local planner is also implemented in move_base and called in a launch file 

named quadrotor_move_base.launch under quadrotor_navigation package. The DWA 

parameters can be set in dwa_local_planner_params.yaml (see Figure 19 and Figure 34 for the 

code snippet). Figure 35 shows the difference of the time elapsed from the start to goal 

position between difference velocity limitations. This infers that the parameters in 

dwa_local_planner_params.yaml works as expected. 
 

 
Fig. 35. Execution time between different velocity limit by using individual control. 

 
 

The parameters changes are: (a.) max_vel_x=1.5, max_vel_y=-1.5,  acc_lim_x=1.0 and 
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acc_lim_y=1.0 (b.) max_vel_x=4.0, max_vel_y=-4.0,  acc_lim_x=2.0 and acc_lim_y=2.0.  

 

As shown from this figure, higher velocity and acceleration improve flight 

performance. The drones complete the mission faster in figure b than figure a. 

 

3.3 Collision Avoidance 
To guarantee the free-collision behavior in a multi-agent system, the UAV should also 

consider both position and velocity of other UAVs. One of the solutions is exploiting the 

position of other UAVs to modify the costmap using social proximity technique.  

The flowchart of technique for this social proximity behavior is shown in Figure 36 

below: 

 

 
(a.) 
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        (b.) Code snippet related in social_proximity.py. 

 
                  Fig. 36. Social proximity process. 

From the flowchart above, a UAV has some process according to social proximity 

process.  It has 1+n processes which are the main program which processes the social kernel 

and n-subscriber which obtains the neighbor’s pose. The velocity is estimated by subtracting 

the current position with the previous position divided by the delta time.  

The script related to social proximity calculation and how the UAV gets the position from the 

neighbors are implemented in social_navigation_layers and social_proximity.py respectively. 

In social_proximity.py, we consider the neighbors as People and one UAV as a person. The 

relative position is abstained using tf transformation ROS library. The parameters such as 

amplitude, cut-off, variance and factor can be set in costmap_common_params.yaml.  

Line 53-55 shows how the people msg is initialized. From line 56, iterate for each 

neighbor. Get the relative position of each neighbor in line 57 and get the position relative 

(trans) to assign the person msg (line 58-62). In line 64, we check whether the previous 

position is existed or not. If not, we cannot estimate the velocity. Therefore, the velocity is 

assigned as zero (line 64-67). Otherwise, we can estimate the velocity (line 68-71). In line 73 

and 74, the current pose is stored to the previous pose for the next iteration. After getting all 

the position and velocity of the person (neighbor of UAV), publish the message (line 76). 

Then, sleep for a particular second. In this code, we sleep for 0.5 second (line 77). Line 78-79 

shows how If the relative position to neighbor is failed to get, It should continually try until 

the relative position is obtained. 
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3.4 Formation-based Leader-Follower Control 
There are applications whereas the formation-based control is useful for. Target 

tracking in the military domain using a flock of UAVs, a single heavy payload transportation 

using multi UAVs and entertaining drone performance are some examples of application in 

formation-based control for multi UAVs. Moreover, the formation-based control, which 

maintains the distance among the UAVs, is beneficial for the communication between the 

UAVs. Without maintaining the distance, there is a possibility that a UAV is not in a line of 

sight with the others. This may cause a higher communication delay or even the connection 

can be disconnected. 

The leader-follower method is a popular approach in formation-based control because 

it allows for a distributed control strategy where each agent only needs to communicate with 

its immediate neighbors. This can simplify the communication requirements for large groups 

of agents and make the overall system more scalable. 

In the leader-follower method, one agent (the leader) is designated to determine the 

desired formation shape and trajectory, while the other agents (the followers) adjust their 

positions to maintain the desired formation relative to the leader. This method also allows for 

greater flexibility in the formation shape and trajectory since the leader can be changed 

dynamically. 

There are several topologies in the leader-follower domain. However, in this work, we 

will compare three topologies: Leader Following (LF), Predecessor Following  (PF) and Two-

Nearest Predecessor Following (TNPF). Figure 37 shows a diagram for LF, PF and TNPF 

topologies. 
 

 
               Fig. 37. Several topologies for leader-follower method 
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The general algorithm for leader-follower is shown in Figure 38 and 40 for leader and 

follower. What makes it different is the topology used. Each topology has a different rule for 

generating the goal for each follower. 

 
            Fig. 38. Leader control algorithm pseudo code 

 
The leader is not only going to the goal but is also waiting for others if there is a UAV 

which is far.  In the algorithm above, there are two states. State zero is going to the goal and 

state one is waiting. The leader will change the state to waiting if there is a UAV with the 

relative distance more than MAX_DISTANCE. The leader may wait for infinite time because 

there may be a possibility that another UAV is stuck or crashes. To prevent that behavior, 

timeout is needed. Therefore, the leader will only wait for MAX_TIME seconds. The 

implementation of the leader control algorithm is in control_leader_follower.py. The code 

snippet is shown in Figure 39.  

 
Fig. 39. Code snippet for leader control. 

 

The max_distance in line 709 belongs to MAX_DISTANCE and max_time in line 799  

belongs to MAX_TIME parameters. The relative position between the leader and follower is 
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obtained using the tf transformation in line 783. 
 

 

 
Fig. 40. Follower control algorithm pseudo code 

 
The follower will always ask for the leader position (GET_LEADER_POSITION) and 

update its goal while the leader and itself have not yet reached the final goal. By using the 

leader position, each follower calculates the current goal based on the topology (TOPO) 

which are LF, PF or TNPF. How the GET_FORMATION_GOAL works is shown in Figure 

41.  
 

 
Fig. 41. How each leader-follower topology works.  

 (a.) LF (b) PF (c) TNPF 
 
LF topology will always give rectangle formation as in Figure 41a. PF topology shape 

is like a snake or a line graph as it is seen in Figure 41b. The TNPF topology will search for 
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two nearest predecessor leaders and then get the center between those two nearest predecessor 

leader positions. The center coordinate is then pulled with a specific distance to the current 

position of the follower.  

After getting the desired goal, the follower needs to get the cost of a costmap in that 

desired goal coordinate. If it is not considered as an obstacle (the cost is less than 

COSTMAP_THRES), then the follower can use that coordinate to go. Otherwise, the follower 

needs to search another nearest possible goal around the desired goal. The searching radius 

can be set using the SEARCHING_RADIUS parameter. The greater the searching radius 

value, the higher the possibility to get a new goal but more time consuming. If the new goal is 

found, the follower can go there. Otherwise, the old goal will not be updated. The follower 

should wait for the leader to move and make the follower have a valid new goal. The 

implementation of the follower algorithm is also written in control_leader_follower.py (see 

Figure 42). 

Figure 42a shows the main program for the follower control. The relative position for 

the leaders and other neighbors are obtained using the tf transformation (line 589-595). If the 

leader has almost arrived (line 601), the followers should go to the ultimate goal. Otherwise, it 

should do the formation control (line 619-633) according to the topology (LF, PF or TNPF). 

Figure 42b shows a function for getting the nearest coordinate from the desired coordinate 

(x,y) using the SEARCHING_RADIUS parameter. This function iterates the grid from (x,y) 

to a wider area according to the SEARCHING RADIUS parameter. This function will return a 

new coordinate if a cell with the cost less than the max_cost or COSTMAP_THRES is found. 
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(a.)  

 
(b.) 

 
(c.) 
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(d.) 

 
(e.) 

 
(f.) 

Fig. 42. Snippet codes for follower control 
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 (a.) main program which is executed after taking off (b.) code for finding another coordinate 

with SEARCHING_RADIUS (c.) code for getting the cost in a particular coordinate (d.) code 

for validating and updating the goal after it has the desired goal (e.) code for getting the 

desired goal according to the topology used (f.) code for TNPF in getting the nearest two 

predecessor leader. 

Figure 42c is useful for obtaining the cost in particular coordinate of the costmap. If 

the coordinate is outside the costmap, then, it returns infinite. Figure 42d shows how the 

desired goal is validated and updated depending on the value of costmap. Line 353 and 354 

calculate the desired goal. Line 356 gets the cost. Line 358 checks whether the cost is less 

than the threshold or not. If that condition is satisfied, then, we can directly update the goal 

(line 359-372). Otherwise, it should run the function that belongs to Figure 42b. If a new goal 

is found, then we can update the goal. Otherwise, keep the old goal as it is. 

Figure 42e shows the implementation of the calculation of desired goal by using PF or 

TNPF topology. Line 437-451 shows how the TNPF calculates the desired goal from two 

leaders. Line 453-457 shows how the PF topology is simpler than TNPF as it only considers 

one predecessor leader. Figure 42f shows how two nearest leaders are obtained. Line 496-499 

shows how to keep only the predecessor neighbors. The set of distance is calculated in line 

501-503. The nearest neighbor is found in line 504 and 505. This should also consider the first 

follower which only has one leader (line 507-508). If this follower is not the first follower 

(has predecessor more than one), then we should find the second nearest neighbor (Line 510-

512). 

 

3.5 Comparison of different formation-based swarm. 
In this section, the result and analysis of comparing some leader-follower topology 

will be explained. The three topologies (LF, PF and TNPF) are also compared with a 

distributed individual strategy labeled with “None”. Some metrics which correlated with 

obstacle and collision avoidance in multi-UAVs system are the mission time, blocking time, 

distance to others, trajectory length, and the distance to the nearest obstacle. There are two 

parts in this section. Part 1 is focused on comparing different topologies and part 2 is focused 

on different parameters (speed, SEARCHING_RADIUS and COSTMAP_THRES) using LF 

topology. 

It is expected that without any topology, the group of UAVs will arrive at the goal 

efficiently (see Figure 43). However, it is not the objective as the distance among the UAVs 

should be maintained for several purposes. Among LF, PF and TNPF topology, LF topology 
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has the most efficient time but it is just slightly better than the others. LF topology is 

considered as efficient topology as it has the least blocking time as it is shown in Figure 44. 

The blocking time in this case is the time when a UAV is not moving in a particular time. In 

our case, we consider a UAV to be blocked if it moves less than 0.1 meters for a second. The 

PF topology has the worst efficiency as it has the highest blocking time. With this topology, it 

seems that each follower is waiting for each other. This behavior causes a higher possibility of 

blocking time. 

 
               Fig. 43. The average mission time among different topologies 

 
                              Fig. 44. The average blocking time among different topologies 

 
In this experiment, the static obstacle is simple in early time. At the end, there are 

more obstacles which makes the obstacle avoidance more challenging. In formation-based 
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control, if the obstacle is complex and the space is narrow, then the formation will be more 

chaotic. In Figure 45, it is shown that by using LF topology, the distance between the UAVs 

is near at first. Nevertheless, after t=150s, the distance significantly increases due to the 

presence of more challenging obstacles. 

Therefore, in a complex environment, PF and TNPF topology behavior are more 

stable. However, the TNPF topology is better than PF topology as it has two nearest leaders 

instead of only one nearest leader. Furthermore, it can be investigated that without any 

formation, the distance among the UAVs is not controllable. A UAV which is separated with 

a long distance from other UAVs in a real environment contribute to lack of connection with 

the others.   

 
                Fig. 45. The average distance to neighbors among different topologies 

 
                           Fig. 46. The accumulative trajectory length among different topologies 
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Figure 46 shows the average accumulative trajectory length. The result shows that 

there is no significant difference among the strategies. Interestingly, the individual strategy 

has the longest trajectory. This metric can also imply the energy consumption as the longer 

the UAV traveled, the more the battery power used although the time should also be taken 

into account. The shortest trajectory obtained by using PF topology as the formation is more 

stable, only considering one nearest leader. 

 
                   Fig. 47. The average distance to nearest obstacle among different topologies 

 
Figure 47 indicates the safety of each strategy in terms of collision and obstacle avoidance.  

 

 
                                 Fig. 48. The trajectory of using different topologies.  

(a.) None (b.) LF (c.) PF (d.) TNPF 
 

It seems that LF topology is the safest topology. This is correlated with the trajectory 

shown in Figure 48. Using PF (Figure 48c) and TNPF (Figure 48d) topology causes four 
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UAVs to navigate through a narrow gap. By using LF (Figure 48b) topology, several UAVs 

split up to find another space. 
 

 

3.6. Compare different parameters using LF topology 
In this subsection, the focus is on comparing different parameters (speed, 

SEARCHING_RADIUS or SR, COSTMAP_THRES or CT). The speed labeled with “Slow” 

has the linear velocity limit 1.5 m/s and linear acceleration limit 1 m/s^2. The speed labeled 

with “Fast” has the linear velocity limit 5.0 m/s and linear acceleration limit 2 m/s^2. The 

topology used in this subsection is LF topology as it is the fastest topology evaluated in 

subsection 3.5. 

 
                                 Fig. 49. The average mission time among different parameters 
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                                         Fig. 50. Blocking time among different parameter 

It is expected that increasing the velocity and acceleration limit also increases the 

efficiency. However, changing the other parameters does not sagnificanly improve the 

efficiency. The average mission time as it is seen in Figure 49 among different parameters 

with “Fast” speed seems similar although the blocking time (see Figure 50) is different.  

 
                                Fig. 51. The average distance among different parameters 

 
In Figure 51, it is investigated that the average distance to the neighbors increases with 

the increasing of the speed. However, it is difficult to judge the difference of distance to the 

neighbors by using different searching radius and costmap threshold values. 
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                              Fig. 52. Average trajectory length among different parameters 

This can also be seen from the trajectory length which is almost similar (see Figure 

52), whereas the trajectory by using different parameters is identical. However, it seems that a 

larger searching radius will maintain the distance slightly better. Increasing or decreasing the 

costmap threshold does not infer anything about the formation maintenance. More 

comprehensive experiments may be needed to get the correlation between the costmap 

threshold and the formation maintenance. 
 

 
                       Fig. 53. Average distance to nearest obstacle among different parameters 

Figure 53 shows the distance with the nearest obstacle over time. It is expected that 

increasing the searching radius and decreasing the costmap threshold will slightly improve the 
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safety factor of this formation-based leader-follower control. By increasing the searching 

radius, the possibility to find a safer area is higher. Also, by having a lower costmap 

threshold, the selection of the desired goal further away from the obstacle. This implies that 

shrinking the costmap makes the UAV movement safer from collisions. 
 

 
3.7 Conclusion 

Each topology has advantages and disadvantages related to trajectory length, safety 

and formation maintenance.  

 

Table 8. Performance of different formation-based swarms. 

Results LF PF TNPF 

Average distance to 

obstacles 

1.81 m 1.67 m 1.62 m 

Trajectory length 50.04 m 48.13 m 48.71 m 

Deviation from 

neighbors 

0.89 m 0.09 m 0.08 m 

 

1. The most efficient topology is LF topology as it has more safe behavior in terms of 

distance to obstacles. It has the lowest possibility of colliding with the obstacle.  

2. However, PF and TNPF topologies are more promising for maintaining the 

formation. In addition, PF topology has slightly shorter trajectory than others.  

3. LF topology does not show satisfying performance in terms of keeping formation in 

contrast PF and TNPF topologies have significantly better performance as shown in table 8. 

4. Changing the parameters related to the leader-follower control does not give 

significant improvement in efficiency in formation and trajectory. However, it improves 

safety and mission time. By increasing the searching radius and decreasing the costmap 

threshold, the UAVs will find more safe area.  
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CONCLUSIONS 
1) UAV swarm is extensively used for military purposes 

2) The deliberate approach has been found to be effective in accomplishing challenging 

objectives within a stable setting. 

3) The reactive approach has been developed with the purpose of maneuvering around 

dynamic obstacles. 

4) The hybrid architecture integrates reactive and deliberative capabilities. 

5) The most efficient topology is LF topology as it has more safe behavior in terms of 

distance to obstacles. It has the lowest possibility of colliding with the obstacle.  

6) PF and TNPF topologies are more promising for maintaining the formation. 
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