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A B S T R A C T   

Measuring and analysing carbon leakage are the foundation for improving environmental responsibility. Based 
on the origin–destination approach and spatial spillover analysis, this study explores factors of China’s inter- 
provincial carbon leakage. A multiregional input–output model was used to obtain the carbon footprint of 
consumption, and the factors of carbon leakage were assessed. The results revealed that the economic devel
opment and environmental regulations of the origin and destination have opposite effects on carbon leakage. 
Accordingly, provinces with high-energy intensity and abundant energy resources are mainly net-exported 
carbon, whereas provinces with underdeveloped secondary industries are mainly net-imported carbon. 
Notably, a positive spillover effect of energy intensity exists at the origin, and a negative one occurs at the 
destination. Moreover, a positive spillover affects the origin’s energy output, and the surrounding areas’ energy 
endowment can create favourable conditions for carbon leakage at the origin. Finally, corresponding policy 
suggestions are presented based on the above analysis.   

1. Introduction 

Measuring carbon leakage requires constructing consumption-based 
footprint databases. The interlinkages among multiple regions further 
complicate this issue if the entire supply chain needs to be tracked, 
which may involve multiple regions. The consumption-based carbon 
footprint and carbon leakage must be adequately measured to address 
one of the significant concerns regarding climate change, which can be 
achieved by integrating input–output models and econometric tools. In 
particular, spatial spillover effects may interest policymakers as groups 
of regions that enjoy or suffer from carbon leakage may emerge. Indeed, 
effective policies should be developed to reduce carbon costs across 
regions to minimise carbon leakage. 

These issues are of potential concern in major economies highly 
focused on primary and secondary industries. China is particularly 
interesting because it is the largest carbon dioxide emitter in the world. 
China set a crucial plan in 2020, accelerating the construction of a new 
development pattern with the domestic cycle as the main body, with the 
domestic and international cycles mutually reinforcing each other. The 
regions smooth the links of production, distribution, circulation and 

consumption and form value transfers to meet the demand for produc
tion and consumption in domestic circulation. In this process, the 
transfer of product value also transfers the carbon footprint. In other 
words, from the perspective of economic circulation, the carbon foot
print considers final demand to be the driver of carbon emissions, 
including the sum of direct and indirect carbon emissions caused by final 
demand (Feng et al., 2013). Therefore, scientifically analysing the scale 
of the carbon footprint transfer and its determinants under the regional 
economic cycle is the premise of the scientific accounting of regional 
carbon responsibility and reasonable allocation of carbon emission 
rights. It is also conducive to forming a favourable situation of source 
governance and coordinated control to promote carbon emission 
reduction. 

With sustainable development and a low-carbon economy as the 
ultimate goals, research on transforming a low-carbon economy into a 
green economy is constantly enriched (Saraji et al., 2021; Yu et al., 
2020; Zhang and Ding, 2022). Energy, a vital source of carbon footprint 
and carbon leakage, is also a research hotspot (Streimikiene et al., 2021; 
Zhu et al., 2021). As a byproduct of energy consumption and the eco
nomic cycle, with the deepening division of labour and collaboration of 
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production activities between regions, the problem of carbon footprint 
transfer has become increasingly prominent. Scholars have increasingly 
begun to discuss carbon footprint transfer and the factors influencing it 
(Xu et al., 2022; Ran et al., 2022), using gravity model or MRIO to 
measure regional carbon footprint (Song and Zhang, 2019; Liang et al., 
2007), and using decomposition or Quadratic Assignment Procedure 
techniques to analyse the social, economic and environmental factors of 
carbon footprint transfer (Dong et al., 2022; Huo et al., 2022). However, 
there are several limitations to the existing research. 

The extant literature has not adequately addressed the following 
problems. First, measuring the carbon footprint transfer scale is biased. 
Several scholars use the gravity model to measure the scale of carbon 
footprint transfer in research on the factors influencing the carbon 
footprint transfer network (Song and Zhang, 2019); however, this model 
lacks sufficient economic theoretical support. The determinants of 
bilateral flows chosen in the gravity model are limited (Wang and Feng, 
2017), and it is difficult to consider the complexity and diversity of 
social phenomena. Further problems, such as assumptions of conditions 
and uncertainties of social factors, lead to bias in measuring the carbon 
footprint transfer scale. 

Second, differences in carbon footprint origins and destinations were 
ignored in the analysis of carbon footprint transfer. No characteristic 
factor distinguishes carbon footprint sources and sinks for the scale 
network of the carbon footprint transfer, either using factor decompo
sition or regional differences (or correlations) (Wang et al., 2017; Li and 
Li, 2022). Bilateral origin and destination (OD) flow must consider the 
unique characteristics of the origin and destination. That is, the char
acteristics of the demand and supply sides and the spatial interaction 
between the two sides must be considered common determinants of 
carbon footprint transfer flows (Marrocu and Paci, 2013). 

Third, spatial spillover of the carbon footprint transfer was not 
considered. Factors such as energy and the economy in China’s prov
inces are spatially dependent, and different regions have different 
resource allocations; hence, carbon footprint transfer may have a spatial 
spillover effect (Peng et al., 2020). Thus, evaluating the determinants of 
bilateral OD flows should be done in a framework considering neigh
bouring areas’ influence (Marrocu and Paci, 2013). 

Therefore, this study aims to measure the scale and determinants of 
carbon footprint transfer, as analysed using the multiregional 
input–output (MRIO) model and OD-based spatial interaction models, 
from the perspective of an economic cycle. The main innovations of this 
study are as follows. First, based on the MRIO model, a framework for 
analysing the determinants of inter-provincial carbon footprint transfer 
from the perspective of the economic cycle is proposed. Second, aimed 
at the two-way network of carbon footprint transfer, the characteristics 
of source and sink places are incorporated into the spatial interaction 
model; the differences in the determinants between source and sink 
places are studied. Third, the analysis framework incorporates the 
spatial spillover effect of the determinants and quantifies the influence 
of the characteristics of the surrounding areas on the inter-provincial 
carbon footprint transfer of source and sink areas. 

The remainder of this paper is structured as follows. Section 2 pro
vides a literature review and relevant literature on the determinants of 
inter-provincial carbon footprint transfer. Section 3 discusses the ideas 
of this study, while Section 4 describes the methodology, introduces the 
models and methods for estimating inter-provincial carbon footprint 
transfer, studies the determining factors and analyses spatial spillover. 
Section 5 presents the results and discussion and analyses the charac
teristics of inter-provincial carbon footprint transfer, the influencing 
effect of determining factors on carbon footprint transfer and its spatial 
spillover. Finally, Section 6 provides conclusions and policy 
implications. 

2. Literature review 

The inter-provincial carbon footprint transfer forms a close and 

complex network. There are many driving factors behind this, sum
marised as energy endowment factors and economic, geographical and 
environmental regulation factors. 

Energy endowment factors refer to the richness of regional energy 
resources. According to the factor endowment theory, energy abun
dance determines energy prices and regional energy-consumption pat
terns (Adom and Adams, 2018). For example, the low supply cost in 
energy-rich areas loosens the resource constraints of enterprises, easily 
leading to extensive energy use and low energy efficiency, thus directly 
increasing carbon emissions (Wu et al., 2021). 

Moreover, rich natural resources tend to distort regional industrial 
structures, resulting in high-energy consumption and emissions from 
regional industries (Wang et al., 2019); therefore, for regions with high 
resource endowments, reducing energy-consumption intensity or 
improving energy-consumption efficiency is the key to reducing the 
carbon footprint (Chen and Zhu, 2019; Kyriakopoulos, 2021). Techno
logical progress can reduce energy waste by improving energy efficiency 
(Tetteh et al., 2021; Ahmed et al., 2021; Kyriakopoulos, 2021) as an 
indirect means or cause the relocation of high-energy industries by 
promoting industrial transformation (Xia et al., 2022). This approach 
effectively improves regional energy-consumption efficiency (Chen 
et al., 2020). 

Economic factors refer to the influence of regional economic circu
lation through economic structure and level of economic development, 
which then influences the transfer of the regional carbon footprint 
contained in economic circulation (Lei et al., 2017; Yang et al., 2022) 
through channels such as the value-added economic rate, the industrial 
structure, the population size, urbanisation (Xia et al., 2022; Dong et al., 
2022; Khan et al., 2022). The level of economic development somewhat 
reflects the economic status of each region, and provinces with similar 
economic statuses are more likely to produce carbon transfers because of 
the flow of resource factors (Ma et al., 2019). In other words, the greater 
the difference in economic level between the carbon footprint transfer 
origin and destination, the lower the possibility of carbon footprint 
transfer (Shao and Wang, 2021). 

Furthermore, industrial structure optimisation is beneficial for en
ergy conservation and emissions reduction (Zhao et al., 2022; Zhu and 
Shan, 2020). For example, regions upstream of the industrial structure 
and the value chain division of labour tend to export more carbon- 
intensive products (Fang et al., 2022), which is the net transfer of car
bon footprint out of provinces. In contrast, downstream regions should 
import carbon-intensive products from upstream industrial areas to 
meet production and living needs; therefore, these regions are more 
likely to be net transfer positive for the carbon footprint. Moreover, 
cross-regional industrial structure optimisation, including industrial 
transfer, is more conducive to reducing carbon emissions than single- 
region industrial structure optimisation (Zhu and Zhang, 2021), 
affecting the entire region’s carbon footprint transfer. 

Geographical factors, including distance and location, can affect the 
transfer of carbon footprints between regions through economic link
ages, transportation costs and efficiency. According to the first law of 
geography, in terms of spatial distribution, geographical objects or at
tributes are related; the closer the distance, the closer the connection 
(Tobler, 1970). Therefore, geographically adjacent provinces can form 
an economic circle owing to a close association; convenience within the 
economic circle promotes the flow of economic value more frequently, 
making the transfer of the carbon footprint between regions more 
closely connected. Geographical distance also plays a decisive role in 
transportation costs and efficiency. The closer the distance, the lower 
the cost yet higher the efficiency; thus, carbon transfer is more likely to 
occur between neighbouring regions (Shao and Wang, 2021). 

Environmental regulation factors protect the environment and 
regulate all types of behaviours that pollute the environment. Such 
regulation determines the production costs and development of enter
prises. In response to strict environmental regulations, enterprises can 
improve their energy efficiency through technological innovation and 
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directly reduce their regional carbon footprints (Pan et al., 2017). En
terprises can also choose industrial transfers to areas with low envi
ronmental regulation to avoid environmental production costs, which 
affect the carbon footprints of the two regions. From the perspective of 
difference, the greater the variance in the level of environmental regu
lation, the more likely an up–down industrial chain relationship exists 
between the two regions; thus, the carbon transfer relationship is closer 
(Yu and Gong, 2020). Nonetheless, regions with similar levels of envi
ronmental protection have closer economic ties and greater associations 
with carbon transfer (Bai et al., 2020). Given the lag in environmental 
regulation, its impact on the carbon emissions network may have a 
threshold, showing a nonlinear relationship (Jiang and Ma, 2021). 

3. Theoretical framework 

This study aims to calculate the scale of hidden carbon emission 
transfer in the process of the economic cycle, explore the influence of the 
characteristics of carbon footprint transfer sources and sinks on inter- 
provincial carbon footprint transfer and analyse the influence of fac
tors on carbon footprint transfer in surrounding areas from the 
perspective of spatial spillover. 

The carbon footprint is a concept based on the ecological footprint 
and is applied to measure carbon emissions. From a narrow perspective, 
the carbon footprint refers only to the direct carbon emissions generated 
by fossil fuel combustion. From a broad perspective, the carbon footprint 
refers to the total CO2 emissions directly and indirectly caused by pro
duction activities. The carbon footprint can be transferred between re
gions in many ways, such as through air circulation, photosynthesis and 
natural material circulation; however, the carbon footprint shift gener
ated by the economic cycle is the most crucial component. Economic 
circulation refers to the virtuous cycle driven by domestic demand in 
every economic activity link, including production, distribution, circu
lation, investment and consumption. In domestic economic circulation, 
various regions perform activities to meet the demand for production 
and consumption, such as exchanging production materials and 
distributing production value and consumption, forming a value transfer 
chain. 

Furthermore, the transfer of carbon emissions hidden in the value 
chain cannot be ignored. According to the consumer principle of carbon 
emissions accounting, producers provide products and services to de
partments in other regions, and the responsibility for the carbon emis
sions should be attributed to consumers. Therefore, this study considers 
the carbon footprint as the complete carbon emissions caused by the 
region’s final demand, including the transfer of embodied carbon 
emissions caused by transferring products and services in and out of 
regions during economic circulation. 

Inter-provincial carbon footprint transfer is a two-way time transfer 
network comprising directional flows between origins and destinations, 
the size of which is affected by both its origin and destination. Moreover, 
the impacts of origin and destination characteristics on carbon footprint 
transfer differ significantly. Regarding carbon footprint transfer origins, 
regions with excellent energy endowments are typically the main areas 
of energy consumption, and their energy intensity is relatively high. In 
these regions, energy consumption is the direct cause of carbon emis
sions, and the possibility of carbon footprint transfer is high; therefore, 
the energy factor is a key factor affecting the carbon footprint transfer of 
origin. 

For the transfer destination, industrial products with high-energy 
consumption imported for production and consumption demand are 
the main components of carbon footprint transfer. Regions with tertiary 
industries as the primary industrial structure and a high economic level 
lack the local supply of such products and have a great demand from 
foreign provinces. Therefore, economic factors will likely affect the 
carbon footprint transfer destination; however, at the economic level, 
the effects of carbon transfer in and out may be the same because 
embodied carbon transfer mainly relies on economic flow. The higher 

the economic level, the more frequent the economic flow, which pro
motes both carbon transfer and carbon transfer-out. 

The determinants affect the local region’s carbon footprint transfer 
and surrounding areas through the spatial spillover effect. From an 
economic perspective, spillover refers to the externality of economic 
activities, realised through four paths: demonstration, competition, ag
gregation and factor mobility effect (Hong et al., 2020; Fosfuri et al., 
2001). The demonstration effect refers to the convergence phenomenon 
formed by the interaction and influence between regions, generating 
spatial spillovers through imitation. For example, the ‘environmental 
dividend’ brought by a region with strict environmental regulation 
causes other regions to follow and improve the level of environmental 
regulation, thus affecting the transfer of the inter-provincial carbon 
footprint. The competition effect, or the crowding effect, occurs when an 
excessive concentration of enterprises leads to mutual disadvantage; 
accordingly, enterprises spread to the surrounding areas to avoid 
competition, resulting in spatial spillover. 

Under the influence of the competition effect, changes in industrial 
structure and energy intensities in surrounding areas may lead to 
changes in the scale of carbon footprint transfer. The agglomeration 
effect is the phenomenon of the spatial accumulation of enterprises with 
a division of labour and cooperation in a specific region, which gener
ates spatial spillover through industrial agglomeration. For example, the 
areas surrounding a region with energy endowment advantages are 
often gathering places for enterprises with high-energy consumption; 
attracting enterprises with high-energy consumption can increase the 
scale of carbon footprint transfer. The factor mobility effect refers to the 
connection or interaction between neighbouring regions through tech
nology, personnel and capital flows (Hao et al., 2021), resulting in 
spatial spillovers. In other words, the flow of personnel, technology and 
capital can cause changes in the industrial structure of both regions and 
affect the scale of inter-provincial carbon footprint transfer. 

Based on the above theoretical foundation, this study’s research 
framework comprises three parts. (1) This study measures the carbon 
footprint transfer scale. The premise of studying the factors influencing 
carbon footprint transfer is to measure the scale of the carbon footprint 
transfer. (2) This study calculates the inter-provincial carbon footprint 
transfer behind the economic cycle based on MRIO and examines the 
factors influencing carbon footprint transfer. Several factors influence 
carbon footprint transfer, such as energy, economic factors and the 
geographical environment, and the effects of origin and destination are 
different. This study explores the impact of economic factors, 
geographical environment and energy on carbon transfer from the per
spectives of origin and destination. (3) Finally, this study investigates 
the spatial spillover effects of factors affecting carbon footprint transfer. 
The characteristic factors of a region affect the carbon transfer of sur
rounding areas through demonstrations, competition, industrial 
agglomeration, factor flow and other effects. Therefore, this study ana
lyses the influence of origin and destination characteristics on the car
bon footprint transfer of surrounding areas through the spatial spillover 
effect (Fig. 1). 

4. Methodology 

4.1. The calculation model of carbon footprint transfer 

From the economic cycle perspective, sectors in different regions are 
related through intermediate inputs, and carbon emissions are trans
ferred accordingly, forming a close spatial transfer network of the car
bon footprint. The input–output analysis provides a basic method for 
measuring the economic links between regions and sectors. Therefore, 
this study uses the MRIO model to measure inter-provincial carbon 
footprint transfer, which is the basis and premise of research on the 
determinants of carbon footprint transfer. 

The multiregional input–output table contains three quadrants. The 
first quadrant is the intermediate goods flow matrix, the second quad
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rant is the final use matrix, and the third is the value-added component. 
If the intermediate flow matrix has n departments and m provinces, the 
horizontal balance relationship is as follows: 

∑n

j=1

∑m

s=1
xrs

ij +
∑m

s=1
yrs

i = xr
i (1)  

where xr
i represents the total output of sector i in region r. xrs

ij represents 
the input of industry i in region r to the production process of industry j 
in region s, and yrs

i represents the demand of region s for the final product 
of industry i in region r. 

The direct consumption coefficient, ars
ij , represents the products of 

sector i in region r directly consumed by sector j in region s per unit of 
total output in the production process. It is calculated as follows: 

ars
ij = xrs

ij

/
xs

j (2)  

where xrs
ij represents the input of industry i in region r in the production 

process of sector j in region s. xs
j represents the total input of sector j in 

region s. Substituting the direct consumption coefficient into Eq. (1) and 

expressing it in matrix form, we obtain 

ARSXR +YRS = XR (3)  

where ARS =
[
ars

ij

]
is the matrix of the direct consumption coefficient. 

XR =
[
xr

i
]

is the total output column matrix for each department in each 
province, and YRS =

[
yrs

i
]

is the final demand matrix. Under the condi
tion that the technical conditions between regions remain unchanged, 
we transform (3) to obtain 

XRS =
(
I − ARS)YRS (4)  

where 
(
I − ARS)− 1 is the Leontief inverse matrix, also known as the 

complete demand matrix and denoted by BRS =
(
I − ARS)− 1. The 

element brs
ij represents the input of sector i in region r required to meet 

the unit final product demand of sector j in region s. 
Inter-provincial carbon footprint transfer is the transferral of carbon 

emissions accompanied by interregional and intersectoral flows of goods 
and services. These processes occur in two stages: intermediate input 
and final use. Taking the two regions as examples, Fig. 2 depicts the 

Fig. 1. The theoretical framework. 
Note: Created by the author (Visio). 
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carbon footprint transfer resulting from the relationship between goods 
and service flows between sectors and regions. 

In Fig. 2 (a), Fr and Fs represent the carbon emissions generated by 
production and final use in regions r and s. Frs and Fsr represent, 
respectively, the carbon transfer caused by production in regions r and s 
and the final use in regions s and r. Trs and Tsr represent, respectively, the 
carbon transfer caused by intermediate inputs from production sectors 
in regions r and s to production sectors in regions s and r. Er and Es 
represents the carbon transfer that occurs when carbon is produced in 
regions r and s and exported to foreign countries. Fig. 2 (b) shows a 
region’s carbon transfer caused by intersectoral intermediate inputs. Wij 
and Wji represent, respectively, the carbon transfer caused by interme
diate inputs from production sectors i and j to production sectors j and i 
in region r. Ui and Uj are the sums of the carbon transfer caused by the 
intermediate use of sectors i and j in region r from all other regions. Vi 
and Vj include, respectively, the carbon transfer caused by intermediate 
inputs from sectors i and j in region r to all other regions, final use 
outside the province and foreign countries. 

The direct carbon emission coefficient was introduced into the 
multiregional input–output model to measure the inter-provincial car
bon footprint transfer scale. The direct carbon emission coefficient is 

acr
j = cr

j

/
xr

j (5)  

where acr
j represents the carbon dioxide emitted per unit of the total 

output of sector j in region r. cr
j represents the carbon emissions of sector 

j in region r, and xr
j represents the total output of sector j in region r. The 

direct carbon emission coefficients of acr
j m and n sectors were arranged 

in a diagonal matrix to obtain the direct carbon emission coefficient 
matrix, Ac, covering n sectors in m regions. 

The complete carbon emission coefficient is the sum of the direct and 
indirect carbon emissions per unit of the final product; its matrix is 
obtained by multiplying the direct carbon emission coefficient matrix Ac 

by the Leontief inverse matrix, namely the complete demand matrix BRS. 
The complete carbon emission coefficient matrix ERS is 

ERS = Ac ×BRS = Ac
(
I − ARS)− 1 (6) 

The inter-provincial carbon footprint transition matrix, TRS, was 
obtained by multiplying the complete carbon emission coefficient ma
trix, ERS, by the final demand matrix, YRS. 

TRS = ERSYRS = BRSYRS = Ac
(
I − ARS)− 1YRS (7)  

where TRS =
[
trsi
]

trs
i represents the carbon transfer from industry i in 

region r to region s. 

4.2. Study design of determinants of inter-provincial carbon footprint 
transfer 

The formation of the inter-provincial transfer of the carbon footprint 
is affected by several factors. This study selects explanatory variables 
from three aspects: energy endowment, economic factors, and envi
ronmental regulation. Furthermore, this study constructs an OD-based 
spatial interaction model from the gravity model to explore the de
terminants of inter-provincial carbon footprint transfer. This approach 
allows us to distinguish the influence differences of various character
istic factors between origins and destinations and to consider the spatial 
spillover effect. 

4.2.1. Model 
The gravity model, derived from Newton’s law of universal gravi

tation, has been widely used in studying international trade, 
geographical economies and regional networks. Traditional gravity 
models usually only analyse individuals in space without considering 
the spatial influence characteristics of the surrounding areas. Griffith 
(2007) pointed out that bilateral spatial flows have spatial autocorre
lation and are not independent; therefore, he proposed a spatial gravity 
model. This model analyses paired-flow data between two places in 
space, where each region can be an origin or destination. This model 
studies the correlation between the origin and destination and the de
terminants of the flow level. Assuming that Oi, Dj and F(I,j) represent the 
origin, destination and spatial separation functions, respectively, the 
flow levels at the origin and destination can be expressed as 

Ω(i, j) = C×O(i)×D(j)×F(i, j). (8) 

Owing to the directional changes in the origin and destination of 
inter-provincial carbon footprint transfer, using the gravity model to 
explore the determinants of the carbon footprint transfer scale of the 
origin and destination is suitable. The expression form of Eq. (8) is 
transformed, and the gravity model based on the ordinary linear model 
(LM) is expressed as follows: 

Y = ατn +Xoβo +Xdβd +Dβ+ ε (9)  

where Y is the explained variable, namely the inter-provincial carbon 
footprint transfer amount. Xo is the set of characteristic variables of the 
origin, and Xd is the set of characteristic variables of the destination. D is 
the geographical distance from the origin to the destination. А and μ are 
constant and error terms, respectively, while τn represents the column 
vector with element 1. 

The gravity model of Eq. (9) uses only the characteristics of carbon 
footprint transfer origin, destination and geographical distance to 
explain the scale of carbon footprint transfer; it does not consider the 
spatial distribution pattern and spatial interaction among regions. Given 
the spatial correlation of inter-provincial carbon footprint transfer and 

Fig. 2. The transfer of carbon emissions between regions and sectors. 
Note: Created by the author (Visio). 
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reflecting spatial dependence, this study combines the spatial econo
metric model with the gravity model to construct an OD-based spatial 
interaction model by referring to the spatial OD model proposed by 
LeSage and Pace (2008). 

The spatial interaction effect has three primary forms. The first is the 
interaction effect between explained variables of different samples, and 
the second is the interaction effect between explanatory variables. 
Third, the interaction effect is transmitted through an intersample error 
term. A general nested model (GNS), including all spatial interaction 
effects, is expressed as follows: 
{

Y = ρW1Y + ατN + Xβ + W2Xθ + μ
μ = λW3μ + ε (10)  

where Y is the explained variable, and X is the explanatory variable. W1, 
W2 and W3 are the spatial weight matrices describing the spatial cor
relation between the explained variable, explanatory variable and error 
term, respectively. ρ, θ and λ are the three spatial effect parameters. Е 
and μ are the error terms. 

Common spatial econometric models include the spatial lag model 
(SAR), spatial error model (SEM), spatial Durbin model (SDM) and 
spatial Durbin error model (SDEM). When ρ ∕= 0, θ = 0 and λ = 0 (that is, 
there is only an interaction effect between explained variables), Eq. (10) 
is the SAR. When ρ = 0, θ = 0 and λ ∕= 0 (that is, there is only an 
interaction effect between error terms), Eq. (10) is the SEM. When ρ ∕= 0, 
θ ∕= 0 and λ = 0 (that is, there is an interaction effect between explained 
variables and explanatory variables), Eq. (10) is the SDM. When ρ = 0, θ 
∕= 0 and λ ∕= 0 (that is, there is an interaction effect between explanatory 
variables and the error term), Eq. (10) is the SDEM. 

Inter-provincial carbon transfer in China mainly depends on other 
provincial factors, such as economic factors, energy endowment and the 
geographical environment. Therefore, it is necessary to add the spatial 
lag term of the influencing factors of carbon transfer, namely the spatial 
Durbin term, into the model. By adding a spatial Durbin term, this study 
builds a spatial OD interaction model based on the SDM and SDEM. The 
specific model is expressed in Eqs. (11) and (12). 

Y = ρWodY + ατN +Xoβo +Xdβd +Dβ+WodXoθo +WodXdθd +WodDθ+ μ
(11)  

{
Y = ατN + Xoβo + Xdβd + Dβ + WodXoθo + WodXdθd + WodDθ + μ
μ = λWodμ + ε (12) 

Eq. (11) is the SDM, and Eq. (12) is the SDEM, where Y is the 
explained variable, namely the inter-provincial carbon footprint trans
fer. Xo is the set of characteristic variables of the origin, and Xd is the set 
of characteristic variables of the destination. D is the geographical dis
tance. The α constant term, ε and μ are error terms. ρ, θ and λ are the 
spatial effect parameters of the explained, explanatory, and error vari
ables, respectively. τN represents a column vector containing one 
element. Wod is a spatial weight matrix constructed based on the spatial 
correlation of the double contiguity of origin and destination. This 
matrix is built by performing the Kronecker product of the spatial weight 
matrix W of 30 provinces constructed based on the geographical dis
tance between provinces (i.e. W⨂W) and finally obtaining the Wod. 

Based on the above analysis, this study uses the gravity model based 
on the ordinary linear regression (LM) model, namely Eq. (9), as the 
benchmark model. The spatial OD interaction model based on the SDM 
and SDEM, namely Eqs. (11) and (12), was used to explore the factors 
influencing carbon footprint transfer from the perspective of spatial 
spillover. 

4.2.2. Variables 
The dependent variable of this study’s OD-based spatial interaction 

model was bilateral flow data calculated from the inter-provincial car
bon footprint transfer scale. Furthermore, starting from the three aspects 
of energy endowment, economic factors and geographical environment, 

six indicators (energy output, economic level, industrial structure, en
ergy intensity, environmental regulations and geographical distance) 
were selected as explanatory variables. 

Energy Output (EP): As mentioned above, regions with excellent en
ergy endowments are often the main provinces with carbon footprint 
transfers, and the impact of energy output on carbon footprint transfers 
cannot be ignored. The calculation method of energy output is as fol
lows. The energy production of each province is converted into standard 
coal using the discounted coal coefficient, then summed and the loga
rithm is taken. 

Energy Intensity (E): Energy intensity is closely related to the regional 
energy structure and technological level, and differences in energy 
structure and technology level promote cross-regional cooperation, thus 
bringing about interregional economic value flow. Energy intensity is 
the total regional energy-consumption ratio to gross domestic product 
(GDP). 

Environmental regulations (P): Environmental regulations restrict 
regional economic development. High levels of environmental regula
tion imply high production costs for enterprises with high-energy con
sumption and emissions. After weighing the advantages and 
disadvantages, enterprises consider industrial transfer to areas with a 
low level of environmental regulation, which can affect the transfer of 
carbon footprint. Environmental regulation is the ratio of a completed 
investment in regional industrial pollution control to regional industrial 
added value. 

Industrial Structure (I): Provinces with developed secondary in
dustries export more carbon-intensive products, thereby affecting the 
transfer of the inter-provincial carbon footprint (Chen et al., 2020). The 
industrial structure is the ratio of the added value of the regional sec
ondary industry to the GDP. 

Geographic distance (D): Geographical distance negatively affects 
inter-provincial carbon footprint transfers. The greater the geographical 
distance, the greater the transportation cost, the lower the trans
portation efficiency and the smaller the carbon footprint transferred. 
Furthermore, geographically adjacent provinces form an economic cir
cle, and the flow of economic value within this circle is more frequent 
owing to the influence of various policies; therefore, carbon transfer is 
more likely to occur between adjacent provinces. Geographical distance 
is taken as the spherical distance between the capital cities of the two 
provinces and then as the reciprocal. 

Economic Level (G): Economic development reflects each region’s 
economic status and frequency of economic activity. The higher the 
economic level, the more frequent the economic activities and the 
greater the possibility of carbon footprint transfer. In this study, GDP 
refers to the regional economic level and a logarithmic operation is 
performed. 

4.3. Model of spillover analysis 

Determinants have a feedback effect and simultaneity, and consid
ering only spatial coefficients cannot accurately determine the spillover 
effect of the determinants (Anselin, 2010). Therefore, a partial differ
ential estimation method was adopted to decompose the spatial effects 
of independent variables into direct and indirect effects to analyse the 
determinants of inter-provincial carbon footprint transfer. 

The GNS equation is rewritten as follows: 

Y = (I − ρW)
− 1
(Xβ+WXθ) +R (13)  

where R represents the intercept and is the error term. The partial de
rivative of the expected value of Y concerning X is expressed as 
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(14)  

where In the identity matrix of order n, r = 1,2, …, k, k is the number of 
explanatory variables, and wij is the (i, j) element of the spatial weight 
matrix W. βr is the regression coefficient of the r-th explanatory variable, 
and θr represents the estimated coefficient of the r-th variable of WX. 

The direct and indirect effects of different observations vary; thus, a 
comprehensive index was used to measure their direct and indirect ef
fects. The average direct effect is that of the r-th independent variable in 
region i on the dependent variable in region i averaged over Sr(W)ii. The 
average indirect effect cannot be obtained directly but only by sub
tracting the average direct effect from the average total effect. 

Based on the above principles, spatial effect decomposition of the 
spatial OD interaction model can be performed. The influence of the 
local region was interpreted as the direct effect, the influence on other 
regions as the indirect effect, and the sum of the direct and indirect ef
fects as the total effect. 

4.4. Data collection and processing 

First, the data basis for calculating the inter-provincial carbon foot
print transfer scale was the 2017 interregional input–output table for 31 
provinces and cities in China (Zheng et al., 2020). Considering data 
availability, the 42 industries in the input–output table were combined 
into 6 industries, consistent with the industry classification in the energy 
balance table. The six major industries include farming, forestry, animal 
husbandry and fisheries; manufacturing; construction; wholesale, retail, 
accommodation and catering; transport, storage and postal services; 
other industries. 

Second, because of the lack of energy balance sheet data, this study 
examined 30 provinces in China, excluding Tibet, Hong Kong, Macao 
and Taiwan. After stripping Tibet’s data from the input–output table, a 
multiregional input–output table of 30 provinces and 6 major industries 
was finally obtained. Moreover, data for 17 types of energy consumption 
were sourced from the terminal consumption of the 2017 provincial en
ergy balance sheet, including raw coal, cleaned coal, other washed coal, 
briquette coal, coke, coke oven gas, other gas, crude oil, gasoline, 
kerosene, diesel, fuel oil, liquefied petroleum gas, refinery dry gas, other 
petroleum products, other coking products and natural gas. Among 
them, the energy used as raw materials and materials in industries where 
such materials are not burned to release carbon must be removed. 
Furthermore, because electricity and heat, as secondary energy sources, 
do not directly emit carbon dioxide, the fuel consumption used for 
thermal power generation and heating in processing conversion is 
included in industrial carbon emission accounting. 

Third, energy data were obtained from the 2017 provincial energy 
balance sheet. The carbon dioxide emission factor was calculated using 
energy data from the Guidelines for Compilation of Provincial Greenhouse 
Gas Inventories (Trial), and the missing energy data refer to the carbon 
emission factor calculated by Sun et al. (2015). The calculation of car
bon emissions for each region and sector was based on the Guidelines for 
Compilation of Provincial Greenhouse Gas Inventories (Trial), summarised 
in Eqs. (15) and (16). 

Fα = LCα ×CPCα ×COα ×
44
12

(15)  

C =
∑l

α=1
Fα ×ECα (16)  

where Fα represents the carbon dioxide emission factor of the α-th en
ergy. LCα is the average low calorific value of the α-th energy, CPCα is the 
carbon content per unit calorific value of the α-th energy and COα is the 
carbon oxidation rate of the α-th energy. C represents the carbon dioxide 
emissions of all energy fuels, and ECα is the consumption of the α-th 
energy fuel. 

Lastly, data on the variables are from the China Energy Statistical 
Yearbook of 2017 and the 2017 China Statistical Yearbook. The spherical 
distance between the two provincial capitals was obtained using 
autonomous calculations. 

5. Results and discussion 

5.1. Measurement of inter-provincial carbon footprint transfer 

Carbon footprint transfer includes transfer-in and transfer-out, which 
refer to the transfer of embodied carbon emissions caused by the transfer 
of goods to or from other provinces. The total carbon footprint transfer 
of all provinces in 2017 was estimated to be 34.51 × 108 t, and signif
icant differences exist in the transfer of the carbon footprint of different 
industries in different provinces. 

5.1.1. Industrial distribution of carbon footprint transfer 
Fig. 3 presents the carbon transfer-outs for each industry. It is not 

difficult to determine that the carbon transfer is mainly concentrated in 
the manufacturing industry, and its transfer amount is as high as 30.05 
× 108 t, far exceeding the carbon transfer amount of nonmanufacturing 
industries. Furthermore, almost all provinces, except Beijing, had the 
highest proportion of carbon transfer from industry, indicating that the 
industrial sector is mainly responsible for China’s energy consumption 
and carbon emissions. Owing to the characteristics of energy con
sumption, industry inevitably has the highest amount of carbon transfer 
in all provinces, which plays a decisive and key role in the transfer of 
carbon footprint. Accordingly, the determinants of carbon footprint 
transfer should focus on industrial characteristics. 

5.1.2. Inter-provincial flows of carbon footprint transfers 
The carbon footprint transfer network was directed. A flow direction 

diagram of the inter-provincial carbon footprint transfer is shown in 
Figs. 4 and 5 to analyse the flow direction characteristics of China’s 
inter-provincial carbon footprint transfer. 

Fig. 4 shows the inter-provincial flow direction of large-scale carbon 
footprint transfer. Large-scale carbon footprint transfer (above 0.3 ×
108 t) occurs in the carbon transfer from Inner Mongolia to Hebei, 
Zhejiang and Henan and from Liaoning to Guangdong. As a significant 
energy province, Inner Mongolia is the main province of carbon transfer, 
while Liaoning and Guangdong are coastal cities with frequent eco
nomic flows. Large-scale (0.2–0.3 × 108 t) and medium-scale (0.15–0.2 

Fig. 3. Carbon footprint transfer-out industry distribution. 
Note: Created by the author based on the scale of carbon footprint transfer. 
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Fig. 4. Inter-provincial carbon footprint transfer (large-scale) flows in China. 
Note: Created by the author based on the scale of carbon footprint transfer (programmed in Python). 

Fig. 5. Inter-provincial carbon footprint transfer (small scale) flows in China. 
Note: Created by the author based on the scale of carbon footprint transfer (programmed in Python). 
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× 108 t) carbon footprint shifts mainly occurred between Hebei and 
Beijing, Guangxi and Guangdong, as well as between Inner Mongolia, 
Shanxi, Zhejiang, Jiangsu and Guangdong. 

Furthermore, the carbon transfer networks in the Yangtze River 
Delta region were relatively close. In summary, carbon transfer is more 
likely to occur between neighbouring regions, and there is a greater 
likelihood of carbon transfer between provinces with abundant energy 
resources and those with leading economies. 

Fig. 5 shows the inter-provincial flowchart of carbon footprint 
transfer at a small scale (0.1–0.15 × 108 t). The origins and destinations 
of smaller carbon footprint transfers are more diversified and involve 
more provinces, among which North China, East China, and north- 
central China have higher network densities. The main provinces of 
carbon transfer were Inner Mongolia, Hebei and Liaoning, while the 
main provinces of carbon transfer were Zhejiang, Jiangsu, Guangdong 
and Yunnan. The inter-provincial carbon transfer network is complex, 
and the provinces are closely connected. Additionally, energy and in
dustrial resources were the main determinants of carbon transfer. 

5.2. Determinant analysis of inter-provincial carbon footprint transfer 

5.2.1. Spatial autocorrelation test and model selections 
The inter-provincial carbon footprint transfer is likely to be affected 

by neighbouring regions; therefore, it is necessary to use Moran’s index 
to test whether spatial autocorrelation exists in the inter-provincial 
carbon footprint transfer. If this exists, a spatial econometric model is 
required. Table 1 lists the calculated results for the global Moran index, 
showing that Moran’s I = 0.117 of carbon transfer is greater than 0, and 
its P value is much less than 0.01. This result indicates an apparent 
spatial aggregation effect of carbon transfer. Moran’s indices of energy 
output, economic level, energy intensity and environmental regulation 
were all greater than 0, and the P value was far less than 0.01, indicating 
a significant positive spatial correlation; however, Moran’s index of 
industrial structure is − 0.061, and the P value is less than 0.01, indi
cating an obvious negative spatial correlation between industrial 
structures. 

Fig. 6 shows Moran’s I scattergram of the carbon footprint transfer, 
showing that most scattered points are located in the first and third 
quadrants, and the trend line slope is significantly higher than 0. These 
findings indicate that most provinces are located in the ‘high–high’ or 
‘low–low’ region, and there is an evident clustering phenomenon in the 
geographical spatial distribution, meaning that the amount of carbon 
transfer in this region has a positive radiation effect on neighbouring 
areas (i.e. the spatial spillover effect). 

The results of the spatial correlation test confirm the necessity of 
using a spatial econometric model; however, which spatial econometric 
model is more appropriate needs to be tested and compared. This study 
used the Lagrange multiplier method (LM) for the model selection of 
SAR and SEM, and the results are shown in Table 2. Both LMerr and 
LMlag are significant at the 1 % level, and RLMerr and RLMlag are 
significant at the 1 % level, indicating that SAR and SEM can be used. 
This study constructs a spatial OD interaction model based on SDM and 
SDEM to explore the spatial spillover effect of factors influencing carbon 
transfer. Simultaneously, a spatial OD interaction model based on SAR 
and SEM was constructed to compare and test the robustness of 

parameter estimates for each variable. 

5.2.2. The analysis of determinants 
The spatial model cannot be compared according to the size of R2; 

therefore, three statistics are provided to compare the models: log- 
likelihood (Log L), Akaike information criterion (AIC) and Schwarz 
Criterion (SC). This study used the log-likelihood (Log L) and Akaike 
information criterion (AIC) to determine the model’s goodness of fit. The 
regression results are shown in Table 3. According to Log L and AIC, the 
SDEM-based spatial OD model was superior. At the same time, both the 
spatial influence coefficients ρ and λ are positively significant at the 1 % 
level, indicating a significant positive spatial dependence of carbon 
transfer. 

The economic origin and destination effectively promote inter- 
provincial carbon transfer; the higher the economic level, the more 
frequent the carbon transfer. Table 3 shows that regardless of whether 
spatial correlation and spillover are considered, the economic levels of 
origin and destination positively affect carbon transfer at a significance 
level of 1 %. The coefficient values of the economic level of the origin are 
0.552, 0.534, 0.369, 0.362 and 0.417, indicating that when the eco
nomic level of the origin area increases by 1 %, carbon transfer-out in
creases by 0.55 %, 0.53 %, 0.37 %, 0.36 % and 0.42 %, correspondingly. 

The coefficient values of the economic level of the destination are 
0.672, 0.687, 0.667, 0.432 and 0.446, indicating that when the eco
nomic level of the destination increases by 1 %, carbon transfer increases 
by 0.67 %, 0.69 %, 0.67 %, 0.43 % and 0.45 %. Carbon transfer is hidden 
behind the economic circulation, and regions with high economic levels 
usually have frequent economic activities; therefore, carbon transfer is 
more likely to occur. In terms of carbon origin, when the inter-provincial 
products are transferred out to obtain economic benefits, carbon is 
transferred out. Regarding destination, the supply of high-carbon 
products in provinces with higher economic levels is lower, so they 
need to be transferred from outside the province to form carbon trans
fers; therefore, carbon transfer is more likely to occur among provinces 
with similar economic levels (Ma et al., 2019), particularly among 
provinces with high economic levels. 

Table 1 
Moran I for testing the spatial correlation.  

Variable Notation Moran’s I P(I) 

Carbon Footprint Transfer T  0.117  0.000 
Energy Output EP  0.242  0.000 
Economic Level G  0.148  0.000 
Industrial Structure I  − 0.061  0.000 
Energy Intensity E  0.306  0.000 
Environmental Regulation P  0.043  0.000 

Note: Created by the author (Stata). 

Fig. 6. Moras I scattergram of carbon footprint transfer. 
Note: Created by the author (Stata). 

Table 2 
Lagrange multiplier method (LM) test results.  

Statistic Estimate P value 

LMerr  104.430  0.000 
LMlag  11.027  0.000 
RLMerr  102.520  0.000 
RLMlag  9.108  0.002 

Note: Created by the author (R). 
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Provinces with high-energy intensity and excellent energy endow
ments are dominated by carbon transfer-out, whereas provinces with a 
small proportion of secondary industries are dominated by carbon 
transfer-in. In the optimal spatial OD interaction model, the origin en
ergy intensity and energy output have a significantly positive impact on 
carbon transfer at confidence levels of 10 % and 1 %, respectively, where 
the coefficient values of energy intensity and energy output are 0.291 
and 0.263, respectively. When the source energy intensity and energy 
output levels increased by 1 %, carbon transfer increased by 0.30 % and 
0.26 %, respectively. Provinces with high-energy intensity and excellent 
energy endowments have low energy-consumption structures (Chen 
et al., 2018) and generally develop relatively developed high-energy- 
consuming industries. For example, in Hebei, Inner Mongolia, Shanxi, 
Liaoning and other provinces rich in energy resources and with high- 
energy consumption, the output is mostly transferred out of the prov
ince in the form of carbon transfer, such as in the Yangtze River Delta 
region, to meet the needs of production and life outside the province. 

The coefficient value of the industrial structure of the destination is 
− 1.911, which is less than 0 and significant at the 1 % confidence level, 
indicating that the smaller the proportion of the secondary industry, the 
greater the carbon transfer at the destination. As the primary province of 
carbon transfer, the industrial structure is generally dominated by the 
tertiary industry, and the industrial output cannot meet the demand in 
the province; therefore, it needs to be imported from outside the prov
ince to cause carbon transfer-in. 

Environmental regulation inhibits carbon transfer; however, its ef
fect is negligible. In the SDM and SDEM, origin and destination envi
ronmental regulations were significantly negative at the 1 % confidence 
level, but the influence coefficient was small. Among them, the envi
ronmental regulation coefficient values of the source are − 0.006 and 
− 0.008, and the environmental regulation coefficient values of the sink 
are − 0.009 and − 0.008. Environmental regulation helps China’s in
dustrial technology move closer to green progress (Chen et al., 2022), 
and progress in emission reduction technology helps reduce carbon 

Table 3 
Estimation results.  

Coefficient Model 1 Model 2 Model 3 Model 4 Model 5 

LM SLM SAR SDM SDEM 

Intercept 14.533*** 
(− 19.034) 

− 15.301 ** 
(− 18.823) 

− 13.924*** 
(− 15.384) 

− 7.096* 
(− 1.900) 

− 15.800*** 
(− 4.200) 

Go 0.552*** 
(9.540) 

0.534*** 
(9.345) 

0.369*** 
(7.376) 

0.362*** 
(4.954) 

0.417*** 
(5.557) 

EPo 0.315*** 
(10.080) 

0.311*** 
(10.055) 

0.320*** 
(11.490) 

0.302*** 
(11.152) 

0.263*** 
(8.351) 

Io 1.311*** 
(2.755) 

0.993** 
(2.064) 

0.707* 
(1.884) 

− 0.995* 
(− 1.649) 

− 0.970 
(− 1.295) 

Eo 0.253* 
(1.907) 

0.293** 
(2.211) 

0.135 
(1.180) 

0.230 
(1.404) 

0.291* 
(1.695) 

Po 0.003* 
(1.857) 

0.001 
(0.839) 

− 0.003** 
(− 2.237) 

− 0.008*** 
(− 3.993) 

− 0.006*** 
(− 2.792) 

Gd 0.672*** 
(11.615) 

0.687*** 
(11.982) 

0.667*** 
(13.336) 

0.432*** 
(6.025) 

0.446*** 
(5.940) 

EPd 0.11*** 
(3.517) 

0.105*** 
(3.409) 

0.044 
(1.579) 

0.108*** 
(3.901) 

0.168*** 
(5.332) 

Id − 0.56 
(− 1.177) 

− 0.928* 
(− 1.921) 

− 0.788** 
(− 2.100) 

− 0.518 
(− 0.865) 

− 1.911** 
(− 2.551) 

Ed 0.151 
(1.141) 

0.300** 
(2.178) 

0.275** 
(2.406) 

− 0.223 
(− 1.373) 

− 0.213 
(− 1.245) 

Pd − 0.005*** 
(− 3.186) 

− 0.007*** 
(− 4.122) 

− 0.008*** 
(− 5.013) 

− 0.008*** 
(− 3.845) 

− 0.009*** 
(− 4.152) 

D 0.625*** 
(31.503) 

0.605*** 
(26.696) 

0.741*** 
(32.238) 

0.869*** 
(35.137) 

0.883*** 
(35.566) 

Lag. Go    0.586** 
(2.494) 

1.071*** 
(4.640) 

Lag. EPo    − 0.065 
(− 0.715) 

− 0.059 
(− 0.637) 

Lag. Io    0.765** 
(0.659) 

1.704 
(1.243) 

Lag. Eo    1.056*** 
(2.010) 

2.320*** 
(4.535) 

Lag. Po    0.026*** 
(4.690) 

0.038*** 
(6.784) 

Lag. Gd    − 0.832*** 
(− 3.636) 

− 0.510** 
(− 2.210) 

Lag. EPd    0.472*** 
(5.524) 

0.647*** 
(7.013) 

Lag. Id    2.286** 
(1.924) 

− 1.102 
(− 0.804) 

Lag. Ed    − 1.639*** 
(− 3.171) 

− 1.313** 
(− 2.567) 

Lag. Pd    0.014*** 
(2.623) 

0.013** 
(2.262) 

Lag. D    − 1.155*** 
(− 13.841) 

− 1.017*** 
(− 9.319) 

ρ  0.234***  0.447***  
λ   0.949***  0.914*** 
AIC 2217.3 2209.6 2129.1 1933.6 1880.5 
Log L  − 1090.812 1050.571 − 941.788 − 915.272 

Note: Values in parentheses are t-statistics. ***, ** and * represent significance at the 1 %, 5 % and 10 % levels, respectively. Created by the author (R). 
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emissions and indirectly reduces carbon transfer; however, enterprises 
with high-energy consumption and emissions tend to be located in areas 
with low levels of environmental regulation. Therefore, the higher the 
environmental regulation is, the smaller the amount of carbon transfer 
is; however, its impact is limited. 

The positive and significant effect of geographical distance on carbon 
transfer indicates that the longer the geographical distance, the higher 
the transportation cost and risk, the lower the time efficiency and the 
less likely carbon transfer is to occur. Furthermore, the energy output 
variable at the destination has a significantly positive impact on carbon 
transfer, indirectly indicating that the primary sector of carbon transfer 
is the industrial sector, which depends on energy resources. The regions 
with lower energy production have correspondingly smaller industrial 
demand. 

5.3. Spillover analysis of the determinants of inter-provincial carbon 
footprint transfer 

Owing to the existence of spatial dependence, when a variable 
changes, it will cause changes in the amount of carbon transfer in the 
local area and changes in the amount of carbon transfer in adjacent 
areas, which are transmitted back through the spatial feedback effect. 
The partial differential decomposition decomposed the spatial spillover 
effect into direct and indirect effects. The decomposition results for the 
spatial effects are presented in Table 4. The SDEM does not have a 
spatial lag term of the explained variable; thus, its spillover effect is the 
regression coefficient of the spatial lag term of the explanatory variable. 
The following section focuses on the indirect effect (i.e. the spillover 
effect). 

The surrounding area’s economic level promotes or inhibits carbon 
transfer. In the spatial OD interaction model, the indirect effect values of 
the source area’s economic level were 1.342 and 1.071, which were 
significantly positive at the 1 % confidence level. The indirect effect 
coefficients of the economic level of the sink are − 1.146 and − 0.51, 
which are significantly negative at the 5 % confidence level. Interest
ingly, the economic level has a positive spillover effect in terms of car
bon transfer-out and a negative spillover effect in terms of carbon 
transfer. Regions with a high economic level often focus on upgrading 
their industrial structure and developing downstream industries, such as 
high-tech and light industries. To meet production and living needs, 
transferring specific scales of upper and middle-stream products from 
the surrounding areas is necessary to promote carbon transfer. 

Simultaneously, industrial migration occasionally occurs when 
upgrading the industrial structure of regions with high economic levels. 
Some midstream enterprises are more likely to move to the surrounding 
areas to increase output supply and reduce demand outside the prov
ince, thereby reducing the scale of carbon transfer in the surrounding 
areas. 

Regarding origin, there is a positive spillover effect of energy in
tensity, and an increase in energy intensity in the surrounding areas 
effectively promotes carbon transfer. According to the data in Table 4, 
the indirect effect coefficients of the energy intensity of origin are 2.081 
and 2.32, which are significant at confidence levels of 5 % and 1 %, 
respectively. High-energy intensity generally means high-energy con
sumption and relatively low economic output. Heavy industries with 
high-energy consumption and high emissions are the primary industries. 
Forming regional industrial clusters around provinces with excellent 
energy endowments is easy. Through the path of industrial agglomera
tion in the spatial spillover effect, the regions with higher energy in
tensity exert the ‘siphon effect’, inducing the midstream enterprises to 
gather in the surrounding areas, thus effectively promoting the carbon 
transfer out of the surrounding areas. 

Regarding destination, there is a negative spillover effect of energy 
intensity, and a reduction in energy intensity in the surrounding areas 
effectively promotes carbon transfer. The data in Table 4 indicate that 
the indirect effect coefficients of energy intensity at the sink are − 3.121 
and − 1.313, and both are significant at the 5 % confidence level. 
Furthermore, the reduction of energy intensity in the surrounding areas 
promotes carbon transfer into the destination, which may be related to 
the economic structure of the surrounding areas. For example, Beijing 
and other regions with high economic levels can transfer midstream 
industries, such as industries with high-energy consumption and emis
sions, to surrounding areas (Yuan and Zhou, 2021). Consequently, the 
energy intensity and industrial concentration in the region decreased 
while midstream industries in the surrounding areas developed, thus 
promoting carbon transfer in the surrounding areas. 

Energy output has a positive spillover effect on carbon transfer at the 
destination; that is, the excellent energy endowment in the surrounding 
areas provides favourable resource conditions for carbon transfer. The 
indirect effect coefficients of the energy output at the destination were 
0.934 and 0.647, respectively, significantly greater than zero at the 1 % 
confidence level, indicating that the energy endowment in the sur
rounding areas had a positive spatial spillover effect on carbon transfer. 
On the one hand, the energy industry breeds. To save energy 

Table 4 
Spatial effect decomposition results.   

Direct effect Indirect effect Total effect 

SDM SDEM SDM SDEM SDM SDEM 

Go 0.371*** 
(5.366) 

0.417*** 
(5.557) 

1.342*** 
(3.093) 

1.071*** 
(4.640) 

1.714*** 
(3.587) 

1.489*** 
(5.107) 

EPo 0.303*** 
(11.230) 

0.263*** 
(8.351) 

0.126 
(0.648) 

− 0.059 
(− 0.637) 

0.429** 
(2.194) 

0.204* 
(1.787) 

Io − 0.991* 
(− 1.681) 

− 0.970 
(− 1.295) 

0.575 
(0.236) 

1.704 
(1.243) 

− 0.416 
(− 0.153) 

0.734 
(0.361) 

Eo 0.245 
(1.512) 

0.291* 
(1.695) 

2.081** 
(2.111) 

2.320*** 
(4.535) 

2.326** 
(2.138) 

2.611*** 
(4.030) 

Po − 0.008*** 
(− 3.811) 

− 0.006*** 
(− 2.792) 

0.040*** 
(3.209) 

0.038*** 
(6.784) 

0.032** 
(2.406) 

0.032*** 
(4.620) 

Gd 0.424*** 
(5.683) 

0.446*** 
(5.940) 

− 1.146** 
(− 2.221) 

− 0.510** 
(− 2.210) 

− 0.722 
(− 1.361) 

− 0.064 
(− 0.220) 

EPd 0.115*** 
(4.332) 

0.168*** 
(5.332) 

0.934*** 
(3.947) 

0.647*** 
(7.013) 

1.048*** 
(4.385) 

0.815*** 
(7.128) 

Id − 0.493 
(− 0.686) 

− 1.911** 
(− 2.551) 

3.687 
(1.397) 

− 1.102 
(− 0.804) 

3.195 
(1.080) 

− 3.013 
(− 1.481) 

Ed − 0.245 
(− 1.518) 

− 0.213 
(− 1.245) 

− 3.121** 
(− 2.393) 

− 1.313** 
(− 2.567) 

− 3.366** 
(− 2.430) 

− 1.527** 
(− 2.358) 

Pd − 0.007*** 
(− 3.678) 

− 0.009*** 
(− 4.152) 

0.020* 
(1.788) 

0.013** 
(2.262) 

0.012 
(1.101) 

0.004 
(0.567) 

Note: ***, ** and * represent significance at the 1 %, 5 % and 10 % levels, respectively. Created by the author (with R). 
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transportation costs, enterprises with high-energy consumption gather 
in the surrounding areas of provinces with excellent energy endow
ments, such as Hebei Province, which is backed by Inner Mongolia and is 
adjacent to Shaanxi Province in the west. It is necessary to transfer in
dustrial raw materials from surrounding areas with excellent energy 
endowments to promote carbon transfer and meet the demand for in
dustrial production. On the other hand, the areas with high-energy en
dowments are mainly concentrated in the northern regions such as 
Heilongjiang, Inner Mongolia, Shanxi, Ningxia and other northern re
gions; that is, the energy resources have spatial aggregation, showing a 
positive spillover impact on carbon transfer. 

The environmental regulation in the surrounding areas negatively 
affects carbon transfer. In the spatial OD interaction model, the coeffi
cient values of the indirect effect of environmental regulation at the 
origin and destination were all greater than zero and significant at 
different levels. According to the ‘pollution haven’ hypothesis, with the 
continuous improvement of environmental regulation levels in a 
particular region, high-emission industrial enterprises prioritise the 
surrounding areas with relatively low environmental regulation levels 
for industrial migration, thus promoting carbon transfer in the sur
rounding areas. 

6. Conclusion and policy implications 

6.1. Conclusion 

Under the ‘dual carbon’ policy, starting from the economic cycle, this 
study investigates the current situation of China’s inter-provincial car
bon footprint transfer. It reveals the factors influencing the origin and 
destination of spatial carbon footprint transfer, which is of great prac
tical significance for cross-regional coordinated development and 
emission reduction policy formulation. Meanwhile, it is of great theo
retical significance to creatively use the perspectives of origin, destina
tion and spatial spillover to enrich the research on carbon footprint 
transfer. This study first calculates the carbon footprint transfer of six 
provincial departments using the multiregional input–output model. It 
then establishes an OD-based spatial interaction model to analyse the 
determinants and spatial spillover of carbon footprint transfer from the 
perspective of the origin and destination. 

The results exhibit the following. First, the economic level and 
environmental regulation of the origin and destination have the same 
effect on carbon transfer in and out; the former promotes carbon 
transfer, while the latter inhibits it. Second, provinces with high-energy 
intensity and excellent energy endowments mainly transfer carbon out. 
In contrast, provinces with a small proportion of secondary industries 
mainly transfer carbon. Third, regarding the origin, there is a positive 
spillover effect of energy intensity, and an increase in energy intensity in 
the surrounding area effectively promotes carbon transfer. Regarding 
destination, there is a negative spillover effect of energy intensity, and a 
reduction in energy intensity in surrounding areas effectively promotes 
carbon transfer. Fourth, a positive spillover effect exists on the origin’s 
energy output, and the surrounding areas’ energy endowment can create 
favourable basic conditions for the carbon transfer of the origin. In 
conclusion, differences and similarities exist in the factors influencing 
the inter-provincial carbon footprint on carbon transfer in and out. 
Moreover, the factors influencing inter-provincial carbon footprint 
transfer can affect the surrounding areas through the spatial spillover 
effect. 

6.2. Policy implications 

The above research shows that the realisation of the ‘dual carbon’ 
goal cannot only consider a single province but should start from the 
regional linkage network as a whole and develop a suitable long-term 
collaborative emission reduction mechanism. Therefore, we propose 
the following policy suggestions. 

The calculation of regional carbon emission responsibilities should 
consider the transfer of the carbon footprint between regions. According 
to this study’s calculations, the inter-provincial carbon footprint transfer 
scale is enormous; thus, the inter-provincial carbon footprint hidden 
behind the economic cycle should be paid attention to. Provinces should 
share environmental responsibilities while generating revenue through 
cross-regional industrial cooperation. Based on the principle of fairness, 
the total carbon footprint is considered an indicator of cumulative car
bon emissions to reflect the emission reduction responsibilities of in
dustries. This approach considers direct and indirect carbon emissions in 
the measurement system, which helps clarify the emission reduction 
tasks of provinces and realise cross-regional collaborative governance. 

An energy structure transformation policy should be implemented 
for the core provinces of carbon transfer. The leading role of energy 
endowment and energy intensities on carbon transfer means that its 
emission reduction status in the ‘dual carbon’ process deserves atten
tion. Furthermore, the optimisation of the energy structure of the origin 
and reduce coal consumption to a certain extent should be promoted, 
along with the development of new and renewable energy. Additionally, 
dependence on fossil energy should be reduced, the diversification of the 
energy structure and low-carbon energy structure should be realised, 
and provinces must fundamentally achieve the effect of emission 
reduction. 

Full play should be given to the inhibition effect of environmental 
regulations on the transfer of the carbon footprint and implement 
environmental regulation strategies. For example, a pollution charge 
system should be formulated, and enterprises that exceed prescribed 
discharge standards can charge fees to exceed the standard discharge. 
Pollutant discharge fees can also be levied on all polluters. Based on 
specific local pollution conditions, a tiered pollution fee system should 
be designed to raise charges, and market-driven environmental laws and 
regulations should be used to encourage enterprises to realise a low- 
carbon transition. 

Multiple measures should be taken to curb undesirable spatial 
spillovers and promote benign ones. The spatial spillover of the carbon 
footprint transfer is significant. Thus, it is necessary to strengthen co
ordinated development among regions from the perspective of spatial 
spillover effects. On the one hand, the ‘siphon effect’ occurs in areas with 
high-energy endowment and intensity. Therefore, the surrounding areas 
can formulate the immigration threshold criteria for enterprises, such as 
setting the upper limit of energy consumption per unit output value to 
filter out enterprises with high-energy consumption. Moreover, regional 
cooperation should be improved, economic ties within the region should 
be strengthened, strategic alliances and cross-regional economic entities 
should be formed and the interregional flow of capital should be pro
moted along with labour and technological resources. All of these 
measures could drive the region’s overall coordinated development. 

6.3. Limitations and future research directions 

This study has some limitations, which provide directions for future 
research. First, the data cover only one year, so it is difficult to ascertain 
the trend of the influencing factors of carbon footprint transfer over 
time. Future studies should combine the spatial OD interaction model 
with panel data to analyse the carbon footprint transfer on a timescale. 
Second, the OD-based spatial interaction model was used to study car
bon footprint transfer at the provincial level, which confirms the ne
cessity of discussing the difference between origin and destination. This 
method can also be applied to carbon footprint transfers between 
countries and departments based on data availability. Finally, the spatial 
spillover effect of inter-provincial carbon footprint transfers is un
equivocal; thus, spatial spillover decomposition technology could be 
used in further studies in the future. 
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research is linked to addressing of sustainable development issues in energy, agriculture 
etc. 
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