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Abstract: Omission of frequency-dependent hydraulic resistance (skin friction) during modelling
of the water hammer phenomenon is unacceptable. This resistance plays a major role when the
transient liquid flow occurs in rigid-walled pipes (steel, copper, etc.). In the literature, there are
at least two different modelling approaches to skin friction. The first group consists of models
based on instantaneous changes in local and convective velocity derivatives, and the second group
are models based on the convolution integral and full history of the flow. To date, more popular
models are those from the first group, but their use requires empirical coefficients. The second
group is still undervalued, even if based on good theoretical foundations and does not require any
empirical coefficients. This is undoubtedly related to the calculation complexity of the convolution
integral. In this work, a new improved effective solution of this integral is further validated, which is
characterised with the use of a simplified weighting function consisting of just two exponential
terms. This approach speeds the numerical calculations of the basic flow parameters (pressure
and velocity) significantly. Presented comparisons of calculations using the new procedure with
experimental pressure runs show the usefulness of the proposed solution and prove that it maintains
sufficient accuracy.

Keywords: water hammer; hydraulic transients; unsteady friction; convolution-based model;
numerical simulation

1. Introduction

In water supply networks, power hydraulics systems, transmission and heating lines,
etc., unsteady flows are common. Sudden changes in flow velocity are the source of
pressure waves which propagate in these systems. Conditions caused by breakdowns or
those related to incorrectly set operating conditions of the components (valves, pumps,
motors, distributors, pipelines, etc.) are particularly dangerous in the event of a power
failure. Large pressures may occur in the case of liquid column separation and unwanted
wave interference. Their values may even exceed the Joukowsky pressure rise ∆p:

∆p = ρc∆v, (1)

where: ρ—liquid density; c—pressure wave speed; ∆v—velocity change at the valve after
its closure.
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An interesting practical example can be drawn using the dependency graph for pres-
sure wave speeds in water flows presented in Pothof and Karney’s Chapter 1 of Guidelines
for Transient Analysis in Water Transmission and Distribution Systems [1]. It is shown that
a typical pressure wave speed in a steel pipe with elasticity modulus E = 2·1011 N/m2

and inner diameter to wall thickness ratio (D/e) equal to 2·102 is about 1300 m/s, while
for the same ratio of D/e in a PVC pipe (E = 3.5·1010 N/m2) c is about 400 m/s and in a
HDPE pipe (E = 8·109 N/m2) c is just about 200 m/s. These values show that the pressure
wave speed in metal pipes is more than three times larger than in PVC pipes and more
than six times than in HDPE ones. Therefore, the initial pressure rise resulting from the
Equation (1) is significantly larger in metal pipes than in plastic pipes, and that is why metal
pipes are the subject of this research. During water hammer events, several accompanying
phenomena may occur, including: cavitation [2–4] (when the pressure drops to the vapour
pressure of the liquid), unsteady friction [5–7] (resistance of the liquid during unsteady
flow against the pipe wall), and fluid–structure interaction [8–10] (interactions of movable
or deformable pipe structure with an internal or surrounding fluid flow). Assuming the
adequate restraint of the pipe elements and pressure above the liquid vapour pressure,
then the modelling of the unsteady friction remains the greatest challenge. To date, most of
the hydraulic resistance models can be classified into one of two groups: (a) instantaneous
acceleration-based (IAB) models or (b) convolution-based models (CBM).

IAB-type models were introduced by Daily et al. [11], Carstens and Roller [12],
and Safwat and van der Polder [13]. Chronologically, this model approach was refined
by Brunone et al. [14], Vítkovský et al. [15], Ramos et al. [16], Reddy et al. [17], and
Cao et al. [18]. Currently, it is widely used [19–23], despite a serious drawback which is the
necessity to experimentally calibrate the dissipation coefficient k.

The CBM-type models are derived theoretically. A pioneering work has been done
by Zielke [24]. The model is based on the convolutional integral. The solution of the
convolutional integral requires a continuous return to the historical values of the local fluid
accelerations, which are multiplied by analytical weighting factors. Such a procedure in its
original form requires a large number of calculations, which translates into a large load for
computer processors in the analysis of long transient runs (t > 4 s). Trikha [25] developed a
method that simplifies these calculations significantly. It requires an approximation form of
the weighting function. Trikha’s method was improved by Kagawa et al. [26], Schohl [27],
and recently by Urbanowicz [28]. In this work, the procedure simplifying the CBM model
is verified by referring to the experimental studies of water hammer carried out at the
Institute of Fluid-Flow Machinery of the Polish Academy of Sciences by Adamkowski
and Lewandowski [29]. The simplification of CBM consists in filtering the weighting
function to just two exponential terms. The CBM solution requires simplifications, as the
review of commercial programs [22] for modelling transients in pressurized conduits has
shown that the quasi-steady model and IAB are widely used, and the CBM model has
still not been implemented. However, the CBM model is characterised by high model
consistency in a wide range of Reynolds numbers (transient laminar and turbulent pipe
flows—the weighting function for laminar flow was developed by Zielke [24] and for
turbulent flows by Vardy and Brown [30]). The objective of this paper is aimed to further
test a computationally effective and accurate CBM model developed by Urbanowicz [31].
In an earlier work, this approach was verified only for the case of unsteady flows with
cavitation [31]; therefore, in this paper, we validate the model against the experimental
results without cavitation [29]. The second objective is verification of the effectiveness of
Johnston’s lumped friction model [32], according to which the unsteady friction can be
concentrated only at the boundary nodes of the numerical grid.
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2. Basic Equations

The basic continuity (2) and momentum (3) equations describing the unsteady pipe
flow in horizontal pipes [33] follow:

∂p
∂t

+ ρc2 ∂v
∂x

= 0, (2)

∂p
∂x

+ ρ
∂v
∂t

+
2
R

τ = 0, (3)

where: p—pressure; t—time; v—average liquid velocity; R—inner pipe radius; τ—wall
shear stress.

The system of Equations (2) and (3) above contains three unknowns: v, p, and τ.
In order to close the system, an additional relationship should be established, which is
most often the relationship between the wall shear stress τ and the average flow velocity
τ = f (v). Numerical details of modelling the wall stress on the pipe wall are the subject of
the next section in this work.

Using the commonly known method of characteristics [33], Equations (2) and (3) can
be led to the form:

C+ :

{
dx
dt = +c

1
cρ

dp
dt +

dv
dt +

2
ρR τ = 0

C− :

{
dx
dt = −c

− 1
cρ

dp
dt +

dv
dt +

2
ρR τ = 0

. (4)

At any internal point D of the characteristics grid (Figure 1), through which two
characteristics C+ and C− pass, between points D and A as well as D and B, the integration
can be performed using the finite linear differences. As a result, the following equations
are obtained:

1
cρ (pD − pA) + (vD − vA) +

2∆t
ρR τA = 0

− 1
cρ (pD − pB) + (vD − vB) +

2∆t
ρR τB = 0

}
. (5)
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Figure 1. Method of characteristics grid.

Solving the system of Equation (5), one can find the final formulas for the calculated
values of pressure and velocity at the inner node D of the characteristics grid in the
following form:

pD =
1
2

[
(pA + pB) + cρ(vA − vB) +

2c∆t
R

(τB − τA)

]
, (6)
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vD =
1
2

[
(vA + vB) +

1
cρ

(pA − pB)−
2∆t
ρR

(τA + τB)

]
. (7)

In order to develop a complete solution of the presented task, it is necessary to know
the boundary conditions (Figure 2).
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Figure 2. Boundary conditions.

When at the i = 1 node (cross-section) of the characteristics grid, the flow velocity v is
determined (quickly closing valve) for time t > 0, and at the i = N + 1 node the pressure p is
known (reservoir pressure), then:

pM = pR + cρ(vM − vR) +
2c∆t

R
τR, (8)

vN = vS −
1
cρ

(pN − pS)−
2∆t
ρR

τS. (9)

Conversely, if the pressure p was determined as the boundary condition at the i = 1
node of the characteristics grid (reservoir section), and the value of the flow velocity v at
the i = N + 1 node (valve section), then:

vM = vR +
1
cρ

(pM − pR)−
2∆t
ρR

τR, (10)

pN = pS − cρ(vN − vS)−
2c∆t

R
τS. (11)

3. Modelling Wall Shear Stress

Commonly used quasi-steady, one-dimensional model of friction losses based on the
Darcy–Weisbach formula can be used in the case of slow changes in liquid velocity at
the pipe cross-section. However, it fails in the case of simulation for fast-changing flow,
i.e., in the case of water hammer, the calculated results significantly differ from the results
of measurements [29,34,35].

Models of unsteady friction losses, as mentioned in the introduction, can be divided
into two groups. The first group consists of models based on the instantaneous values of
velocity and acceleration (in literature often named Instantaneous Accelerated Based (IAB)
model). The forerunner in this group was the model proposed by Daily et al. [11]. The term
associated with the unsteady shear stress at pipe wall is proportional to the acceleration of
liquid. This model was later improved by other researchers [12,13]. In this group falls the
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Brunone et al. model [14], in which the wall shear stress is proportional not only to local
derivative of flow velocity but also to its convective derivative:

τ =
fqρv|v|

8
+

kρD
4

(
∂v
∂t
− c

∂v
∂x

)
, (12)

where: fq—Darcy–Weisbach friction factor; k—empirical unsteady friction coefficient of the
IAB model; D—inner pipe diameter.

This model underwent further modifications. Vítkovský et al. [15] rightly pointed out
that the acoustic convection term c(∂v/∂x) should be added or subtracted depending on
the type of the flow:

τ =
fqρv|v|

8
+

kρD
4

(
∂v
∂t

+ c
|v|
v

∣∣∣∣
∂v
∂x

∣∣∣∣
)

. (13)

The next major change was the introduction of separate unsteady friction coefficients
for the local derivative kt and convective derivative kx by Ramos et al. [16]:

τ =
fqρv|v|

8
+

ρD
4

(
kt

∂v
∂t

+ kxc
|v|
v

∣∣∣∣
∂v
∂x

∣∣∣∣
)

. (14)

Ramos et al. [16] proved numerically that the expression kt(∂v/∂t) affects the phase
shift of pressure waves and that kx(∂v/∂x) affects the rate of attenuation of these waves.
The coefficients kt and kx can be calculated on the basis of known experimental results
using the method presented by Reddy et al. [17]. The main disadvantage of this approach
is the need to determine kt and kx empirically, and that the shape of simulated pressures
differs significantly from the shape observed in experiments. Owing to its simplicity, the
expression above is often cited and used in practise. It should be noted, however, that the
details of the implementation of Equation (14) in the method of characteristics have been
described in a comprehensive and clear manner only in one conference article, namely, in
reference [15] written by Vítkovský et al. In all other papers the procedure to determine the
spatial derivative ∂v

∂x , in particular at the boundary, is unclear. The most recent improvement
of this model has been presented by Cao et al. [18]:

τ =
fqρv|v|

8
+

kρD
4

(
∂v
∂t

+ c
|v|
v

∣∣∣∣
∂v
∂x

∣∣∣∣
)
− kdρD

4

∣∣∣∣
∂2v
∂x2

∣∣∣∣, (15)

where: kd = µ′
ρ ≈ 716.1·ln(0.135·ln(Re)); µ′—is the second viscosity coefficient.

This model is a further modification of Vítkovský et al. model Equation (13). It takes
into account an additional energy dissipation term describing a compression–expansion
effect of the fluid. Although the Cao et al. model is an interesting alternative, but this
model has a problem with guaranteeing the appropriate dispersion (delay, phase shift) of
the pressure wave for low Reynolds numbers [18].

The second group consists of models based on the history of the flow
(CBM—convolution-based models). The wall shear stress (and hence the instantaneous
coefficient of friction losses) depends here on the frequency of changes in flow and pressure.
These models reflect relatively well not only the degree of dissipation of pressure waves
but also dispersion. They treat the pressure histories in detail. The forerunner in this
group of models has been proposed by Zielke [24], who developed the wall shear stress
for transient laminar pipe flow in the form of the sum of quasi-steady shear stress and
unsteady contribution, which is an integral convolution of the mean local acceleration of
the liquid and a weighting function w(t):

τ(t) = τq + τu =
4µ

R
v +

2µ

R

∫ t

0
w(t− u)

∂v(u)
∂t

du, (16)

where: µ—dynamic viscosity; u—time, used in convolution integral; w(t)—weighting function.
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The wall shear stress time domain solution given above is an inverse Laplace transform
of the WSS function written in the frequency domain. For laminar flow, this function has a
form based on multiplication of a certain frequency-dependent function F̂(s) with a partial
time derivative of velocity transform. This form was firstly derived and presented by Zielke
in his doctoral thesis [36]:

τ̂(s) = F̂(s)
∂v̂(s)

∂t
=

ρR

j
√

s R2
ν J0

(
j
√

s R2
ν

)

J1

(
j
√

s R2
ν

) − 2

∂v̂(s)
∂t

, (17)

where: s—Laplace parameter; ν—kinematic viscosity of liquid; j—imaginary unit; J0 and
J1—Bessel functions of the first kind (order 0 and 1). Zielke calculated the inverse Laplace
transform of F(s), which gives the following time domain function:

F(t) =
4µ

R
+

2µ

R ∑∞
n=1 e−κ2

n t̂. (18)

A time-domain solution of multiplication of two frequency-dependent functions is a
convolutional integral, Equation (16). According to Equation (18), the weighting function
in Equation (16) is an infinite series of exponential terms that has the following form for the
laminar flow [36]:

wlam
(
t̂
)
= ∑∞

n=1 e−κ2
n t̂. (19)

where κn in the power of exponent are nth zeros of the Bessel function of type J2. Zielke
approximated this function [24,36] in the following way:

wlam,classic
(
t̂
)
= ∑6

i=1 mi t̂(i−2)/2, for t̂ ≤ 0.02, (19a)

wlam,classic
(
t̂
)
=

5

∑
i=1

e−mi t̂, for t̂ > 0.02, (19b)

where: m1 = 0.282095; m2 =−1.25; m3 = 1.057855; m4 = 0.9375; m5 = 0.396696; m6 =−0.351563;
n1 = 26.3744; n2 = 70.8493; n3 = 135.0198; n4 = 218.9216; and n5 = 322.5544.

For turbulent flow, much more complicated formulas for impedance have been derived
by Vardy and Brown [30] and Zarzycki [37]. Both Zarzycki and Vardy and Brown concluded
that in time domain the solution of Equation (16) can be used for turbulent flow, the
only difference is that in this flow the weighting function shape depends not only on
dimensionless time but also on the initial Reynolds number and characteristic roughness
size. In this work, the Vardy and Brown weighting function is used for transient turbulent
pipe flow:

wturb,classic
(
t̂, Re

)
≈ A∗e−B∗ t̂

√
t̂

, (20)

where: A∗ =
√

1/4π, B*= Reκ/12.86, κ = log10(15.29/Re0.0567)—for smooth pipes [30]

and A∗ = 0.0103 ( ε
D )

0.39√
Re, B∗ = 0.352Re

(
ε
D
)0.41 for rough pipes [38]; the ratio ε/D is a

relative roughness.
In the method of characteristics based on a rectangular grid, the classical numerical

solution of the convolution integral Equation (16) can be expressed as:

τu =
2µ

R ∑n−1
j=1

(
vi,j+1 − vi,j

)
· w
(
(n− j)∆t̂− ∆t̂

2

)
=

2µ

R ∑n−1
j=1

(
vi,n−j+1 − vi,n−j

)
· w
(

j∆t̂− ∆t̂
2

)
. (21)
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In the above equation, ∆t̂ is a dimensionless time step, which is:

∆t̂ = ∆t · ν

R2 =
∆x
c
· ν

R2 =
L
N
· ν

c · R2 =
Wh
N

, (22)

where: ∆t—numerical time step; ∆x—reach length between the nodes; L—pipe length;
N—number of reaches (number of analysed pipe cross-sections—spatial nodes); Wh = νL

cR2

—water hammer number [39].
One can see in Equation (21) that the number of iterations required to determine the

shear stress increases with the time of simulation of the transient event. In the last forty
years, a number of authors showed at least three distinct effective solutions. A simplified
recursive solution was first presented by Trikha in 1975 [25]. Its drawback is due to an
excessive number of simplifications; thus, it is not suitable for the calculation in a wide
range of dimensionless times. Improved forms of recursive formulas have been presented
by Kagawa et al. [26] and Schohl [27], respectively:

τu(t + ∆t) ≈ 2µ

R ∑j
i=1


yi(t) · e−ni ·∆t̂ + mi · e−ni ·( ∆t̂

2 ) ·
[
v(t+∆t) − vt

]

︸ ︷︷ ︸
yi(t+∆t)


, (23)

τu(t + ∆t) ≈ 2µ

R

j

∑
i=1




yi(t) · e−ni ·∆t̂ +
mi

∆t̂ · ni
·
[
1− e−ni ·∆t̂

]
·
[
v(t+∆t) − vt

]

︸ ︷︷ ︸
yi(t+∆t)




. (24)

Kagawa et al. [26] assumed that the integral of the weighting function can be approxi-
mated in the following form:

∫ t+∆t

t
eni · ν

R2 ·udu ≈ eni · ν
R2 ·(t+ ∆t

2 ) ·
∫ t+∆t

t
du. (25)

Schohl [27] calculated the same integral symbolically:

∫ t+∆t

t
eni · ν

R2 ·udu =
R2

ni · ν
·
[
eni · ν

R2 ·(t+∆t) − eni · ν
R2 ·t
]
. (26)

It is worth noting that in all efficient solutions the weighting function needs to be
written as a finite sum of exponential terms:

we f f . = mieni ·t̂. (27)

Recently, Vardy-Brown [40] pointed out an overlooked error in a classical computa-
tionally inefficient methodology of Equation (21) and suggested calculating the wall shear
stress by using the following equation:

τu =
2µ

R ∑n−1
j=1

[
(
vi,n−j+1 − vi,n−j

)
·
∫ j∆t̂

(j−1)∆t̂
w
(
t̂
)
dt̂

]
. (28)

That is why in this work a corrected solution of CBM is used, which is an effective
counterpart of the above-corrected Equation (28):

τu =
2µ

R ∑j
i=1

[
yi(t) · Ai + η · Bi ·

[
v(t+∆t) − v(t)

]
+ [1− η] · Ci ·

[
v(t) − v(t−∆t)

]]

︸ ︷︷ ︸
yi(t+∆t)

, (29)
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where: η—correction factor. The details of the derivation of Equation (29) can be found
in [28]. The constants in the formula above are calculated as follows:

Ai = e−ni ·∆t̂; Bi =
mi

∆t̂ · ni
· [1− Ai]; Ci = Ai · Bi, (30)

where: ni and mi—coefficients describing the effective weighting functions. The algorithm
for determining the values of these coefficients is presented in Appendix A. In this efficient
formula, Equation (29), the effective weighting function, does not need to have an extended
range of applicability in dimensionless time to correctly model transient flows. For the
dimensionless time range from 0 to ∆t̂, the integral for the effective weighting function
is replaced with either the integral from the classical laminar-flow weighting function
according to the Zielke Equation (19) or the turbulent-flow weighting function according
to Vardy-Brown Equation (20) (depending on the type of flow that takes place: laminar or
turbulent) as presented in Figure 3. In addition to the standard model in which the friction
term is calculated in the same way at each node of the numerical grid of characteristics, this
work also investigates a model lumping the unsteady friction factor only at the boundary
nodes of the pipe. The author of this approach is Johnston, who described its basics in [32].
The lumping of τu at the sections i = 1 and i = N + 1 significantly shortens the numerical
computational time, because in all other nodes calculations are based on the quasi-steady
solution (τq). However, this approach requires modification of the velocity values vM,c and
vN,c at the boundary nodes, as follows:

vM,c =
1
2

(
vM +

pM
ρc

)
; vN,c =

1
2

(
vN +

pN
ρc

)
, (31)
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Figure 3. Areas under classic and efficient weighting function for low dimensionless times.

Equation (31) is used to determine the lumped values of the wall shear stress at the
boundary nodes. This model has been recently investigated by Xu et al. [41] with an
objective to develop an ultrafast numerical solution based on a gridless scheme.

In some recent works [31,42], the impact of (i) the number of terms describing the
effective weighting function, (ii) the scope of applicability in dimensionless time, and
(iii) the lumped friction model, were analysed. The main conclusion from these studies
was that the time range of applicability of the effective weighting function in order to
model unsteady pressure events with sufficient accuracy should be from ∆t̂ to ∆t̂·103.
This indicates that the effective weighting functions do not need to be composed of many
exponential terms, as only two are sufficient and it is less than in the well-known effective
weighting function presented by Trikha [25]. In addition, Bergant et al. [43] found that CBM
cannot produce a small-frequency shift in pressure history observed in experimental results.
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This deficiency can be eliminated either by inclusion of the momentum correction factor in
the inertia term of Equation (3) or by using the measured pressure wave propagation speed.

4. Analysis of the Results

The experimental tests of Adamkowski and Lewandowski [29], in which a simple
water hammer event in a reservoir–pipeline–valve system occurred due to rapid closure
of the valve, were selected for our comparison analysis. A test stand was located at the
Institute of Fluid-Flow Machinery in Gdańsk, Poland, the main element of which was a
long metal copper pipe. The pipe was 98 m long and a large part of it was wound on a steel
cylinder (with a diameter of about 1.6 m; please note that pipe was rigidly mounted to the
cylinder coating in order to minimise its vibrations), as can be seen in Figure 4. Horizontal
parts of the pipeline (not coiled) were constrained with the help of steel clamps, spaced
at about every 0.4 m to the concrete base of the laboratory. The upstream end tank is a
pressure reservoir with a capacity of 1.6 m3. Its main role was to maintain constant pressure
during steady-flow conditions and near-constant pressure under transient operation. The
test rig was equipped with absolute semiconductor pressure transducers (measuring range
from 0 to 4 MPa; transmitted frequency band from 0 to 2 kHz, and precision class equal to
0.2%), turbine flowmeter (range of 1.5 m3/h and precision class of 1%), ball valve (installed
between the quick-closing valve and flowmeter), and feed pump (with adjustable rotational
speed). The two elements mentioned (ball valve and feed pump) were used to adjust
required initial conditions in the system. A water hammer event was generated by a
quick-closing valve in which the closing time was minimised using a specially designed
spring driving mechanism.
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Detailed values describing the basic parameters of the experimental apparatus are
presented in Table 1, where: Tvc—valve full closing time; T—temperature; e—pipe wall
thickness. These parameters were used as input parameters in a proprietary computer
program written in the MATLAB environment.

Table 1. Test rig details.

L
[m]

D
[m]

e
[m]

Tvc
[s]

T
[°C]

ν
[m2/s]

ρ
[kg/m3]

98.11 0.016 0.001 0.003 22.6 9.493·10−7 997.65

Comparative analysis was performed for nine test cases. Additional details on the
boundary and initial conditions necessary to model these cases are summarized in Table 2.
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Table 2. Analysed flow cases.

Case v0 [m/s] Re0 [−] pR [Pa] c [m/s]

01 0.066 1100 1.265·106 1300
02 0.162 2750 1.264·106 1300
03 0.340 5750 1.265·106 1300
04 0.467 7900 1.253·106 1305
05 0.559 9400 1.264·106 1300
06 0.631 10,650 1.264·106 1303
07 0.705 11,900 1.263·106 1300
08 0.806 13,600 1.263·106 1300
09 0.940 15,850 1.264·106 1300

v0 and Re0—initial velocity and Reynolds number, respectively; pR—reservoir pressure.

Water hammer simulation, especially with the use of the classical full-convolutional
integral and its computationally ineffective solution, takes a long time. Therefore, the com-
parative studies were limited to computational time of t = 5.5 s. This time covers eighteen
water hammer periods (t/(4L/c)), more than enough for an adequate comparison study.

The influence of the mesh refinement of the method of characteristics on the ob-
tained results was also examined. The results obtained for the simplified CBM model
(SM—Equation (29)) and the lumped friction model (LFM—Equation (31)) were analysed
for meshes with the following densities: coarse mesh N = 32 (nodes ≈ 77,000); N = 52
(nodes ≈ 201,000), N = 102 (nodes ≈ 766,000), and very fine mesh N = 202
(nodes ≈ 2,989,000). The N parameter influences not only the mesh refinement along
its length, but also the time step ∆t, which determines the mesh refinement in time (due to
Courant–Friedrichs–Lewy CFL stability condition):

∆x = L/N and ∆t = ∆x/c. (32)

All the results using the classical computationally ineffective solution of the convolu-
tional integral (FULL CONV.) were realised only for N = 32. In this case, to perform 5.5 s
simulation required about an hour; thus, in order to save the time, it was decided not to
repeat these tests for fine meshes.

When analysing the results of experimental studies by Adamkowski and Lewandowski,
one can notice an atypical pressure peak at the first amplitude of all the runs (Figure 5) to a
value much higher than the predicted value, which can be calculated from the Joukowsky
Equation (1). These short-duration peaks at the first pressure amplitude plateau are most
probably the result of undesired mechanical vibrations produced by the valve closing
drive [44]. They are quickly damped out for all types of supports and are present only at
the first pressure pulse and do not influence further water hammer pressure oscillations.
The other reason for these peaks (initial disturbances) can be probably linked to the system
response due to the excitation from the step-load induced by the fast-closing valve [45]. An-
other source of such peaks can be explained to be the result of the type of valve used [46,47].
The use of the globe valve instead of the ball valve allows elimination of their presence in
experiments. These peaks, however, with the correct restraint of the valve and pressure
measurement sections, should not occur; therefore, the maximum pressure values from
these peaks are not taken into account in the quantitative analysis. The maximum bulk
pressure pulse is taken into consideration, as illustrated in Figure 5. At subsequent ampli-
tudes, the observed maximum pressure values and the times in which these maximums
appeared were taken into account (see Figure 6).
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Figure 6. Analysed bulk pressure peaks in the quantitative comparison.

As an example, the simulation results (N = 102) for Case 02 (Re = 2750) are shown in
Figure 7. On the other hand, Figure 8 shows the enlargement of the three initial pressure
amplitude crests (Figure 8a) and valleys (Figure 8b). It can be seen that the LFM slightly
underestimates the pressure in the initial period of the water hammer event and delicately
distorts the valleys of these amplitudes. However, from the fourth amplitude to the
eighteenth amplitude, there is a reasonable match. The analysed quantitative parameters
were calculated from the following formulas:

Ep =
∑18

i=1

∣∣∣ pis−pie
pie

∣∣∣ · 100%

18
; Et =

∑17
i=1

∣∣∣ tis−tie
tie

∣∣∣ · 100%

17
. (33)

Note: In the time analysis, while calculating the Et parameters, the focus was on the
times of the peaks at successive amplitudes starting from the second (excluding first). It is
related to the registered fact of “overpressures” and their influence on this parameter on
the first amplitude; if they were taken into account, the error Et value would be distorted.

The final results of the Ep errors from all simulation tests are summarised graphically
(Figure 9), while the results of the Et errors are summarised in Table 3.
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Figure 9. Variation in Ep error coefficient for: (a) standard method (SM); (b) lumped friction
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Table 3. Quantitative results of the Et coefficients.

Case
Velocity

[m/s]
SM—Standard Method LFM—Lumped Friction Method Full

Conv.N = 32 N = 52 N = 102 N = 202 N = 32 N = 52 N = 102 N = 202

01 0.066 1.72 1.59 1.49 1.49 1.82 1.66 1.54 1.53 1.48
02 0.162 0.96 0.82 0.70 0.70 1.02 0.87 0.75 0.75 0.66
03 0.340 0.92 0.78 0.67 0.66 0.98 0.84 0.73 0.72 0.63
04 0.467 1.10 0.97 0.86 0.85 1.16 1.02 0.91 0.90 0.86
05 0.559 1.16 1.03 0.93 0.91 1.22 1.09 0.98 0.97 0.86
06 0.631 0.94 0.81 0.71 0.69 1.00 0.87 0.77 0.75 0.69
07 0.705 0.72 0.61 0.50 0.48 0.78 0.65 0.56 0.54 0.48
08 0.806 1.32 1.21 1.11 1.09 1.39 1.26 1.16 1.14 1.01
09 0.940 1.03 0.92 0.82 0.80 1.10 0.98 0.88 0.85 0.86

Table 3 shows that the time consistency Et of the transient pressure waveforms sim-
ulated in the way proposed in this work was worse than the waveforms simulated with
the full-convolutional integral. However, it was noticed during the implementation of
these simulations that this disadvantage representing the simplified simulations can be
easily minimised. Namely, during the simulation for N = 32, assuming only one param-
eter other than in the case of the waveform simulated with the full convolution (ineffec-
tive), this parameter is a speed of pressure wave propagation c. Assuming the value of
ce = 1.01 * cfc (one percent higher) during effective simulations, a significant improvement
in the temporal consistency of the simulated waveforms is obtained (compare exemplary
results presented in Figures 10 and 11 for Case 09—Re = 15,850), while maintaining very
good agreement of the modelling of the maximum pressures (Figure 11). This necessity to
modify the speed of pressure wave propagation can be explained by the use of a simplified
weighting function in the calculations (made up of only two exponential terms). The quan-
titative results obtained from the additional simulations performed, presented in Figure 12,
also indicate the improvement of the compliance fit. This improvement confirms similar
findings by Bergant et al. [44].
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of these simulations that this disadvantage representing the simplified simulations can be 

easily minimised. Namely, during the simulation for N = 32, assuming only one param-

eter other than in the case of the waveform simulated with the full convolution (ineffec-

tive), this parameter is a speed of pressure wave propagation c. Assuming the value of ce 

= 1.01 * cfc (one percent higher) during effective simulations, a significant improvement in 

the temporal consistency of the simulated waveforms is obtained (compare exemplary 

results presented in Figures 10 and 11 for Case 09—Re = 15,850), while maintaining very 

good agreement of the modelling of the maximum pressures (Figure 11). This necessity to 

modify the speed of pressure wave propagation can be explained by the use of a simpli-

fied weighting function in the calculations (made up of only two exponential terms). The 

quantitative results obtained from the additional simulations performed, presented in 

Figure 12, also indicate the improvement of the compliance fit. This improvement con-

firms similar findings by Bergant et al. [44]. 
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Figure 12. Variation in error coefficients: (a) Ep; (b) Et.

Completed extensive simulations have shown that modelling of hydraulic resistance
during water hammer using the SM does not have to be a very complicated issue. The
main conclusions of the research carried out are as follows:

- Use of simplified weighting functions, as shown in this paper, built from only two expo-
nential terms, guarantees the results of a high agreement with the experimental results;

- Division of the pipeline along its length into 52 computational reaches guarantees the
results with the lowest Ep errors;

- The smallest errors of parameter Et representing the time compliance of the simulated
amplitudes were obtained using the largest division, i.e., 202 elements. It should be
noted, however, that the application of a simple correction in the form of a slight
increase (decrease) in the value of the pressure wave speed c significantly reduces
this error.

Apart from the advantages, there are also disadvantages of the above-examined procedure:

- Necessity to use a constant time step (in a way, it is also a disadvantage of the
characteristics method);

- Necessity of one-time analytical calculation of appropriate values of the weighting
function coefficients (from the formulas presented in the Appendix A);

- Owing to the filtering of the upper range of the weighting function (from 103·t̂ to ∞),
this method can only be used for modelling water hammer. Thus, preliminary analyses
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showed that it is not suitable for modelling typically unidirectional flows (accelerated
and delayed).

Further work should be aimed at an attempt to completely replace the weighting
function built from a sum of exponential expressions with another simple function.

5. Conclusions

This paper investigates the performance of the computationally effective and accurate
convolutional-based unsteady skin friction model (CBM) developed recently by Urbanow-
icz [31]. The weighting function is constructed from just two exponential terms, although
then the coefficients mi and ni need to be calculated from the formulas given in the Ap-
pendix A. These coefficients are a function of the assumed dimensionless time step ∆t̂ in
the numerical method. The simplification of the weighting function in conjunction with
the corrected effective method for solving the convolution integral enables the determina-
tion of resistances from the final formulas of mathematical complexity similar to the IAB
model. Contrary to the IAB models, in the analysed CBM approach, there is no need to
calibrate the parameters describing the wall shear stress. A further possibility to simplify
the modelling of unsteady resistance may be to use a model that lumps unsteady friction at
the boundary nodes. The simulations carried out with the use of Johnston’s model showed
that the analysed transient waveforms were simulated with sufficient compliance with
this model, which also used the two-term weighting function. Thus, we do hope that the
validated simplifications of the CBM model implemented in this paper will find wider
practical application, for example, in commercial programs for modelling transient flows in
hydraulic pipe networks.
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Nomenclature

Ai, Bi and Ci unsteady friction coefficients (-)
c pressure wave speed (m/s)
D pipe internal diameter (m)
Ep and Et pressure and time compliance parameters (%)
e pipe-wall thickness (m)
f transient friction factor (-)
fq Darcy–Weisbach friction factor (-)
g acceleration due to gravity (m/s2)
j imaginary unit (-)
k empirical unsteady friction coefficient of the IAB model (-)
L pipe length (m)
mi and ni frictional weighting function coefficients (-)
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N number of computational reaches (-)
p pressure (Pa)
pR reservoir pressure (Pa)
R pipe internal radius (m)
Re0 initial Reynolds number (-)
s Laplace parameter (1/s)
T temperature in Celsius degrees (◦C)
t time (s)
u dummy variable (s)
Wh water hammer number (-)
w weighting function of unsteady friction (-)
v average flow velocity (m/s)
v0 initial liquid velocity (m/s)
x space coordinate (m)
yi time dependent historical velocity effect (m/s)
∆t numerical time step (s)
∆t̂ dimensionless time step (-)
∆x numerical spatial step (m)
∆v velocity change at the valve (m/s)
ε pipe-wall roughness (m)
η correction factor of unsteady friction (-)
κn nth zeros of the Bessel function of type J2 (-)
µ dynamic viscosity (Pa·s)
µ′ second viscosity coefficient (Pa·s)
ν kinematic viscosity of liquid (m2/s)
ρ liquid density (kg/m3)
τ wall shear stress (Pa)
Acronyms
CBM convolution-based model
CFM Courant–Friedrichs–Lewy condition
CORR corrected
EXP experimental
FULL CONV ineffective solution of the convolutional integral
HDPE high-density polyethylene
IAB instantaneous acceleration-based model
LFM lumped friction method
MOC method of characteristics
PVC polyvinyl chloride
SM standard method

Appendix A. Estimation of the Weighting Function Coefficients

The estimation of the weighting function coefficients is performed at the initial stage
of transient simulations (set-up of the initial conditions) by the following procedure:

I. First calculate the constant time step ∆t, next the dimensionless time step:

∆t̂ = ∆t · ν

R2 =
Wh
N

, (A1)

where: Wh = νL
cR2 is a water hammer number.

II. When a dimensionless time step is known, calculate efficient weighting function
coefficients m1, m2 and n1, n2 (for a simplified two-term function):

(a) m1 calculation when ∆t̂ ≤ 10−4:

m1 = 0.03234 · ∆t̂−0.5 + 48.35 · ∆t̂0.5437 + 9.717 · ∆t̂3.85 − 1.318, (A2)

m1 calculation when ∆t̂ > 10−4:

146



Water 2022, 14, 3151

m1 = 0.148 · exp
(
−∆t̂ · 188.8

)
+ 0.3227 · exp

(
−∆t̂ · 1316

)
+ 0.8039 · exp

(
−∆t̂ · 5728

)
+ 2.458 · exp

(
−∆t̂ · 19, 270

)
+ 1, (A3)

(b) m2 calculation when ∆t̂ ≤ 10−4:

m2 = 0.1963 · ∆t̂−0.5 + 2.88 · ∆t̂3.575 − 0.2661 · ∆t̂5.276 − 0.2351, (A4)

m2 calculation when ∆t̂ > 10−4:

m2 = 2.214 · exp
(
−∆t̂ · 62.02

)
+ 4.155 · exp

(
−∆t̂ · 386.6

)
+ 7.929 · exp

(
−∆t̂ · 2191

)
+ 20.485 · exp

(
−∆t̂ · 12, 570

)
+ 1, (A5)

(c) n1 calculation when ∆t̂ ≤ 10−5:

n1 = 0.001476 · ∆t̂−1 + 0.1203 · ∆t̂−0.5 + 526.7 · ∆t̂0.5567 + 6.091, (A6)

n1 calculation when ∆t̂ > 10−5:

n1 = 9.317 · exp
(
−∆t̂ · 4459

)
+ 87 · exp

(
−∆t̂ · 29, 320

)
+ 188.1 · exp

(
−∆t̂ · 104, 300

)
+ 477.43 · exp

(
−∆t̂ · 290, 500

)
+ 26.3744, (A7)

(d) n2 calculation when ∆t̂ ≤ 10−4:

n2 = 0.09021 · ∆t̂−1 + 0.382 · ∆t̂−0.4592 + 218.1 · ∆t̂0.2615, (A8)

n2 calculation when ∆t̂ > 10−4:

n2 = 56.56 · exp
(
−∆t̂ · 79.71

)
+ 136.5 · exp

(
−∆t̂ · 489.6

)
+ 396.7 · exp

(
−∆t̂ · 2880

)
+ 1903.3 · exp

(
−∆t̂ · 15, 760

)
+ 70.8493. (A9)

III. Calculate correction coefficient η:

(a) For laminar flow when ∆t̂ ≤ 0.02:

η =

[
2 ·m1z · ∆t̂0.5 + m2z · ∆t̂1 +

(
2
3

)
·m3z · ∆t̂1.5 +

(
1
2

)
·m4z · ∆t̂2 +

(
2
5

)
·m5z · ∆t̂2.5 +

(
1
3

)
·m6z · ∆t̂3

]

∑2
i=1

mi
ni
·
(

1− e−ni ·∆t̂
) , (A10)

where: m1z = 0.282095; m2z = −1.25; m3z = 1.057855; m4z = 0.9375; m5z = 0.396696; and
m6z = −0.351563.

For laminar flow when ∆t̂ > 0.02:

η =
C1 + C2

∑2
i=1

mi
ni
·
(

1− e−ni ·∆t̂
) , (A11)

where:

C1 = 2 ·m1z · 0.020.5 + m2z · 0.021 +

(
2
3

)
·m3z · 0.021.5 +

(
1
2

)
·m4z · 0.022 +

(
2
5

)
·m5z · 0.022.5 +

(
1
3

)
·m6z · 0.023, (A12)

C2 = ∑5
i=1

(
1− e−niz ·∆t̂

)

niz
−∑5

i=1

(
1− e−niz ·0.02)

niz
, (A13)

and: n1z = 26.3744; n2z = 70.8493; n3z = 135.0198; n4z = 218.9216; and n5z = 322.5544;

(b) For turbulent flow (Re > 2320):
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η =
A∗ ·

√
π
B∗ · er f

(√
∆t̂ · B∗

)

∑2
i=1

mi
nis
·
(

1− e−nis ·∆t̂
) , (A14)

where:

A∗ =

√
1

4π
; B∗ =

Reκ

12.86
; κ = log10

(
15.29/Re0.0567

)
, (A15)

nis is scaled coefficient using a universal scaling procedure:

n1s = n1 − 171.6545 + B∗; n2s = n2 − 171.6545 + B∗. (A16)

IV. Calculate the constants in the efficient solution of convolution integral

A1 = e−n1·∆t̂; B1 =
m1

∆t̂ · n1
· [1− A1]; C1 = A1 · B1, (A17)

A2 = e−n2·∆t̂; B2 =
m2

∆t̂ · n2
· [1− A2]; C2 = A2 · B2 . (A18)

Finally, the temporary unsteady friction factor during simulations is calculated by the
following equation:

f(t+∆t) = fq,(t+∆t) +
32ν

D
∣∣∣v(t+∆t)

∣∣∣v(t+∆t)

·
2

∑
i=1

[
yi(t) · Ai + η · Bi ·

(
v(t+∆t) − v(t)

)
+ (1− η) · Ci ·

(
v(t) − v(t−∆t)

)]

︸ ︷︷ ︸
yi(t+∆t)

(A19)

Note that:

• when calculated velocity is in range −10−5 < v < 10−5, assume v = −10−5 if it has a
minus sign and v = 10−5 when it has a positive sign (to avoid division by zero);

• select optimal number of grid points through the pipe axis; it should generally not
exceed N = 52;

• set yi(t) = 0 as an initial condition (for steady flow).
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43. Bergant, A.; Karadžić, U.; Vítkovský, J.P.; Vušanović, I.; Simpson, A.R. A discrete gas cavity model that considers the frictional

effects of unsteady pipe flow. Stroj. Vestn.-J. Mech. Eng. 2005, 51, 692–710.

149



Water 2022, 14, 3151

44. Adamkowski, A.; Henclik, S.; Janicki, W.; Lewandowski, M. The influence of pipeline supports stiffness onto the water hammer
run. Eur. J. Mech. B/Fluids 2016, 61, 297–303. [CrossRef]

45. Henclik, S. Numerical modeling of water hammer with fluid–structure interaction in a pipeline with viscoelastic supports.
J. Fluids Struct. 2018, 76, 469–487. [CrossRef]

46. Holmboe, E.L. Viscous Distortion in Wave Propagation as Applied to Waterhammer and Short Pulses. Doctoral Thesis, Carnegie
Institute of Technology, Pittsburgh, PA, USA, 1964.

47. Covas, D. Inverse Transient Analysis for Leak Detection and Calibration of Water Pipe Systems Modelling Special Dynamic
Effects. Doctoral Thesis, Imperial College London (University of London), London, UK, 2003.

150


