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Abstract 
Due to the use of refined ultimate state theories as well as high strength 

concrete and reinforcement, resulting in longer spans and smaller depths, the 
serviceability criteria often limits application of modern reinforced concrete 
(RC) superstructures. In structural analysis, civil engineers can choose between 
traditional design code methods and numerical techniques. In order to choose a 
particular calculation method, engineers should be aware of accuracy of differ-
ent techniques. Adequate modelling of RC cracking and, particularly, post-
cracking behaviour, as one of the major sources of nonlinearity, is the most im-
portant and difficult task of deformational analysis. In smeared crack approach 
dealing with average cracking and strains, post-cracking effects can be modelled 
by a stress-strain tension-stiffening relationship. Most known tension-stiffening 
relationships have been derived from test data of shrunk tension or shear mem-
bers. Subsequently, these constitutive laws were applied for modelling of bend-
ing elements which behaviour differs from test members. Furthermore, such re-
lationships were coupled with shrinkage effect. Therefore, present research aims 
at developing a technique for deriving a free-of-shrinkage tension-stiffening re-
lationship using test data of shrunk bending RC members. The main objective of 
this PhD dissertation is to investigate shrinkage influence on deformations and 
tension-stiffening of RC members subjected to short-term loading. 

Present study reviews empirical and numerical techniques of deformation 
analysis of RC members as well as material models with the emphasis on shrin-
kage and tension-stiffening effects. Experimental investigation results on con-
crete shrinkage effect on cracking resistance, tension-stiffening and short-term 
deformations of lightly reinforced beams have been reported. 

An innovative numerical procedure has been proposed for deriving free-of-
shrinkage tension-stiffening relationships using moment-curvature relationships 
of RC flexural members. The proposed procedure has been applied to the test 
data reported by the author. For beams of same reinforcement ratio, it was 
shown that tension-stiffening was more pronounced in those with a larger num-
ber of tensile reinforcing bars. 

A statistical procedure for checking adequacy of theoretical predictions to 
the test data taking into account inconsistency of the data has been developed. 
Using this procedure, comparative statistical analyses of various free shrinkage 
and deflection/curvature prediction models have been performed. 

It was concluded that accuracy of deflection/curvature predictions by design 
codes and numerical techniques varied for different ranges of reinforcement ra-
tio and load intensity. Numerical techniques gave more accurate predictions of 
short-term deflections when shrinkage effect was taken into account. 
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Reziumė 
Pastaraisiais metais vis plačiau taikant stiprųjį betoną bei armatūrą, konst-

rukcijų perdengiamos angos didėja, o skerspjūviai mažėja. Todėl projektuojant 
standumo (įlinkių) sąlyga vis dažniau tampa lemiamu veiksniu. Inžinieriai gelž-
betoninių konstrukcijų apskaičiavimams gali taikyti empirinius normų arba skai-
tinius metodus. Vieno ar kito skaičiavimo metodo parinkimas turi būti pagrįstas 
statistiniais tikslumo analizės rezultatais. 

Yra žinoma, kad adekvatus gelžbetoninio elemento pleišėjimo (ypač plyšių 
vystymosi stadijos) modeliavimas yra vienas sudėtingiausių netiesinės mechani-
kos uždavinių. Toks uždavinys gali būti išspręstas taikant vidutinių plyšių kon-
cepciją, kai pleišėjimo proceso modeliavimui naudojama tempiamojo betono 
vidutinių įtempių ir deformacijų diagrama. Dauguma tokių diagramų gautos, 
naudojant tempimo arba šlyties bandymo rezultatus. Pabrėžtina, kad šių diagra-
mų taikymas lenkiamųjų gelžbetoninių elementų modeliavime duoda nemažas 
paklaidas. Kitas svarbus aspektas yra tai, kad gelžbetoniniuose bandiniuose, iki 
juos apkraunant trumpalaike apkrova, vyksta betono susitraukimas. Šiame darbe 
buvo siekiama sukurti metodą, leidžiantį pagal eksperimentinius lenkiamųjų 
gelžbetoninių elementų duomenis gauti tempiamojo betono vidutinių įtempių ir 
deformacijų diagramas, įvertinant betono susitraukimo įtaką. Pagrindinis diser-
tacijos tikslas yra įvertinti ikieksploatacinių betono susitraukimo ir valkšnumo 
poveikį gelžbetoninių elementų, apkrautų trumpalaike apkrova, įtempių ir de-
formacijų būviui. 

Disertacijoje apžvelgti skaitiniai ir analiziniai gelžbetoninių elementų de-
formacijų skaičiavimo metodai bei aptarti medžiagų modeliai, akcentuojant be-
tono susitraukimo ir betono bei armatūros sąveikos reiškinius. Pasiūlyta nauja 
skaitinė procedūra, leidžianti pagal gelžbetoninių lenkiamųjų elementų momentų 
ir kreivių priklausomybes gauti tempiamojo betono vidutinių įtempių ir defor-
macijų diagramas, eliminuojant susitraukimo įtaką. Atlikti silpnai armuotų gelž-
betoninių sijų, apkrautų trumpalaike apkrova, eksperimentiniai tyrimai. Iki ap-
krovimo buvo matuotos betono laisvojo susitraukimo bei valkšnumo 
deformacijos. Taikant šiuos eksperimentinius duomenis bei pasiūlytąją procedū-
rą, gautos tempiamojo betono įtempių ir deformacijų diagramos. 

Buvo sukurta skaičiavimo metodų tikslumo analizės statistinė procedūra, 
kuri įvertina eksperimentinių duomenų nehomogeniškumą. Taikant šią procedū-
rą, atlikta skirtingais skaičiavimo metodais apskaičiuotų betono laisvojo susi-
traukimo bei gelžbetoninių elementų įlinkių/kreivių tikslumo analizė. Analizė 
parodė, kad didžiausią įtaką visų metodų įlinkių apskaičiavimo tikslumui turi 
armavimo koeficientas bei apkrovimo intensyvumas. Skaitinių metodų tikslumas 
padidėjo, įvertinus betono susitraukimą. 
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Notations 

Symbols 
cA  is the area of plain concrete net section; 
sA  is the area of reinforcement; 
s1A  is the area of tensile reinforcement; 
s2A  is the area of compressive reinforcement; 

A C  is the aggregate-to-cement ratio; 
B  is the class of concrete (see page 18) or the beta function (see page 96); 
C  is the creep parameter (see page 155) or the cement content (see page 157); 

cC  is the centroid of plain concrete net section; 
RCC  is the centroid of reinforced concrete section; 

dD  is the energy corresponding to the area between the loading and unloading 
curves, has been dissipated (see page 21); 

cE  is the initial (tangent) modulus of concrete (see page 18); 
c,secE  is the secant (deformation) modulus of concrete; 
caE  is the age-adjusted modulus of concrete (see page 52); 
cmE  is the secant modulus of concrete (see page 18); 
i,secE  is the secant (deformation) modulus of the i-th layer; 
i,kE  is the secant (deformation) modulus derived at the i-th loading increment and 

the k-th iteration (see page 68); 
sE  is the elastic modulus of steel; 
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sE ′ , s,secE  is the secant (deformation) modulus of steel; 
EI  is the flexural stiffness; 
F  is the Fisher’s statistics; 

FG  is the specific tensile fracture energy per unit volume; 
F,cG  is the specific compressive fracture energy per unit volume; 

crI  is the moment of inertia for the fully cracked section at the yielding of rein-
forcement; 

eI  is the moment of inertia of the cracked section (see page 47); 
elI  is the moment of inertia of the uncracked section (see page 48); 
gI  is the moment of inertia for uncracked concrete section ignoring reinforce-

ment; 
redI  is the reduced moment of inertia of fully cracked section; 
αI  is the incomplete beta function (see page 96); 

J  is the compliance function; 
M  is the bending moment; 
M ′  is the level of load intensity (see page 103); 

crM  is the cracking bending moment; 
csM  is the fictitious (shrinkage-induced) bending moment (see page 59); 
extM  is the external bending moment; 

csN  is the fictitious (shrinkage-induced) axial force (see page 54); 
csN  is the effective fictitious (shrinkage-induced) axial force (see page 55); 

P  is the short-term external axial load; 
RH  is the relative humidity; 
T  is the time level (see page 93); 
dU  is the energy stored in an elastic body (see page 21); 
W  is the water content; 
W C  is the water-to-cement ratio; 

Δ,1 2X  is the sample median of the relative error Δ  (see page 96); 
2a  is the cover depth of the compressive reinforcement; 

b  is the width of a section; 
ib  is the width of the i-th layer; 

d  is the effective depth of a section; 
cf ′  is the specified cylinder compressive strength of concrete at test (see page 18); 
cmf  is the 28-day mean compressive cylinder strength of concrete (see page 18); 
cm,cubef  is the 28-day mean compressive cube strength of concrete (see page 18); 
ckf  is the characteristic concrete compressive strength; 
cpf  is the compressive prism strength of concrete (see page 48); 
ctf  is the tensile strength of concrete; 
ct,csf  is the modified tensile strength of concrete (see page 57); 
ct,nf  is the characteristic tensile strength of concrete (see page 48); 
cuf  is the compressive cube strength of concrete at test; 
rf  is the modulus of rupture (see page 47); 
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suf  is the ultimate strength of steel; 
syf  is the yield strength of steel; 
yf  is the yield strength; 

h  is the height of a section; 
0h  is the average thickness of a member (see page 149); 

0l  is the span of a flexural member; 
Dl  is the measurement length of surface strain; 
Δm  is the sample mean of the relative error Δ  (see page 95); 

n  is the number of test points in the statistical analysis; 
n′  is the number of test points in the statistical analysis after sliced data trans-

formation; 
p  is the reinforcement ratio; 
s  is the transfer length (see page 30) or the factor depending on a loading case 

covering the shape of moment distribution (see page 46); 
Δs  is the sample standard deviation of the relative error Δ ; 
2
Δs  is the sample variance of the relative error Δ  (see page 95); 

t  is the age of specimen or t-statistics (Student’s); 
Δt  is the time interval measured from start of loading or drying (see pages 151, 

153); 
it  is the thickness of the i-th layer; 
st  is the age of specimen at beginning shrinkage; 

uα  is the point of a standard normal inverse cumulative distribution function; 
w  is the crack width; 

cw  is the critical crack width; 
cy  is the coordinate of centroid of plain concrete net section; 
iy  is the distance of the i-th layer from the top edge of the section; 
RCy  is the coordinate of centroid of reinforced concrete section; 

Δ  is the relative error of prediction (see pages 94, 103); 
α  is the confidence (significance) level; 
β  is the bond factor (see page 38) or strain parameter (see page 44); 
δ  is the mid-span deflection; 

kδ  is the prediction error obtained at the k-th iteration (see page 68); 
kδ′  is the first derivation of the prediction error obtained at the k-th iteration (see 

page 69); 
ε  is the strain; 

cε , ccε  is the strain of compressive concrete; 
c,csε  is the shrinkage-induced strain of concrete in a reinforced concrete member 

(see page 41); 
c,ultε  is the ultimate strain of compressive concrete; 
c,ε σ  is the strain in compressive due to acting stress (see page 55); 
crε  is the tensile strain capacity; 
creepε  is the shrinkage-induced creep strain; 
csε  is the shrinkage strain of concrete; 
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csε  is the effective shrinkage strain of concrete (see pages 55, 61); 
elε  is the elastic strain; 
plε  is the plastic strain; 
sε  is the strain of steel; 
smε  is the mean strain of tensile reinforcement; 
s,crε  is the tensile reinforcement strain in the cracked section (see page 48); 
s,csε  is the shrinkage-induced strain of a reinforced concrete member (see pages 41, 

54); 
tε , ctε  is the strain of tensile concrete; 
t,ultε  is the ultimate strain of tensile concrete; 
yε  is the yielding strain; 
κ  is the curvature; 
Δμ  is the expectation of the relative error Δ ; 
Δ,1 2ξ  is the median of the relative error Δ ; 
cρ  is the density of concrete (see page 19); 
σ  is the stress; 

2
Δσ  is the variance of the relative error Δ ; 
cσ , ccσ  is the stress of compressive concrete; 
c,csσ  is the shrinkage-induced stress in concrete; 
sσ  is the stress of steel; 
tσ , ctσ  is the stress of tensile concrete; 
ultσ  is the ultimate stress; 
τ , 0t  is the age of specimen at loading; 
φ  is the creep factor; 

nlφ  is the non-linear notional creep coefficient (see page 149); 
χ  is the ageing coefficient; 

2χ  is the χ -square statistics; 
sψ  is the tension-stiffening factor (see page 48); 

Abbreviations 
ANOVA procedure of analysis of variance; 
GFRP glass fibre reinforced polymer; 
FE finite element; 
FPZ fracture process zone; 
HPC high-performance concrete; 
HSC high-strength concrete; 
LEFM linear elastic fracture mechanics; 
MRA modified running-average; 
RC reinforced concrete. 
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Introduction 

Concrete is by far (and for a long time still to come) the material most widely 
used in the world: the range of performance (physical and mechanical) it can 
provide continues to grow. Because of the extensive research work carried out in 
different countries, the ultimate load behaviour of flexural members is now quite 
well understood. Due to the use of the refined ultimate state theories as well as 
high strength concrete and reinforcement, resulting in longer spans of and smal-
ler depths, the serviceability criteria often limits the use of modern RC super-
structures. Cracking and deformations must be controlled to secure serviceability 
of such structures. Shrinkage deformations are one of major causes of defects in 
bridge structures in all over the world. Often the failure mechanism starts with 
the formation of transverse cracks from shrinkage and overloads. Various factors 
that influence the behaviour of the shrunk members (such as concrete mixture 
proportions and material properties, method of curing, ambient temperature and 
humidity conditions, and geometry of the concrete element) need to be taken 
into account during the construction of concrete structures. 

In structural analysis, civil engineers can choose between traditional design 
code methods and numerical techniques. Although design code methods ensure 
safe design, they do not reveal the actual stress-strain behaviour of cracked 
structures and often lack physical interpretation. Numerical methods are based 
on universal principles and can include material nonlinearities. 



2 INTRODUCTION 

 

Cracking and tension-stiffening parameters probably have the most signifi-
cant effect on results of numerical modelling of flexural concrete elements sub-
jected to short-term loading. Tension-stiffening effects usually need to be in-
cluded in such analysis. In order to choose a particular calculation method, 
engineers should be aware of accuracy of different techniques. 

Reasons for Investigation 

Concrete structural components exist in buildings and bridges in different forms. 
Understanding the response of these components during loading is crucial to the 
development of an overall efficient and safe structure. Numerical methods, 
which were rapidly progressing within last four decades, can include all possible 
effects such as material nonlinearities, concrete cracking, creep and shrinkage, 
reinforcement slip, etc, being responsible for complexity of this material. How-
ever, the progress is mostly related to the development of mathematical appara-
tus, but not material models, or in other words, the development was rather 
qualitative than quantitative. Constitutive relationships often are too simplified 
and do not reflect complex nature of the material. 

Composite action of tensile and compressive steel, compressive concrete 
and tensile concrete is responsible for deformational behaviour of RC members. 
Modelling stress-strain relationship for steel is simple. A large number of stress-
strain relationships have been proposed for compressive concrete, however these 
relationships result in similar deformation predictions for flexural members pro-
viding a constant concrete modulus of elasticity was assumed. Adequate model-
ling of RC cracking and, particularly, post-cracking behaviour, as one of the ma-
jor sources of nonlinearity, is the most important and difficult task of 
deformational analysis. In smeared crack approach dealing with average crack-
ing and strains, post-cracking effects can be modelled by a stress-strain tension-
stiffening relationship attributed to tensile concrete. Two main deficiencies can 
be noted concerning most known tension-stiffening relationships: 

• Tension-stiffening relationships were derived using test data of tension or 
shear RC members. Subsequently, these constitutive laws were applied 
for modelling of bending elements which behaviour differs from tension 
or shear members. 

• The RC members employed for deriving the constitutive laws had been 
exposed to shrinkage. Therefore, tension-stiffening was coupled with 
shrinkage effect. 

While being confident about sufficient accuracy of deflection analysis of 
structures with moderate or large amounts of reinforcement, investigators often 
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raise concerns about the validity of chosen tension-stiffening parameters for 
lightly reinforced members. Complexity of the issue is indicated by the wide-
spread use of different code techniques and disparity of their prediction results. 
To check accuracy of the predictive models, very few reports on accurately per-
formed tests of lightly reinforced flexural members are available. 

Present research is dedicated to developing a technique for deriving a free-
of-shrinkage tension-stiffening relationship using test data of shrunk bending RC 
members. 

Research Object 

The object of present study is deformation behaviour of shrunk RC members 
subjected to short-term loading. 

Main Objective and Tasks 

The main objective is to investigate shrinkage influence on deformations and 
tension-stiffening of RC members subjected to short-term loading. In order to 
achieve the objective, the following problems had to be solved: 

1. To review empirical and numerical techniques of deformation analysis of 
RC members as well as material models with the emphasis on shrinkage 
and tension-stiffening effects. 

2. To develop a Layer section model for deformation analysis of cracked RC 
members subjected to short-term loading taking into account shrinkage 
and accompanying creep effect. 

3. To propose a numerical procedure for deriving a free-of-shrinkage ten-
sion-stiffening relationship using test data of shrunk flexural members. 

4. To investigate experimentally concrete shrinkage effect on cracking resis-
tance, tension-stiffening and short-term deformations of lightly reinforced 
beams. 

5. To derive free-of-shrinkage tension-stiffening relationships using the pro-
posed procedure and the test data. 

6. To collect test data on free shrinkage strain of plain concrete specimens 
and deflections of RC bending members. 

7. To develop a statistical procedure for checking adequacy of theoretical 
predictions to the test data taking into account inconsistency of the data. 
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8. To perform comparative statistical analysis of various free shrinkage and 
deflection/curvature prediction models using the proposed statistical pro-
cedure and the collected test data. 

Research Methods 

To investigate the object, the following research methods are chosen: 
• Action: theoretical (analysis and synthesis) study should be performed to 

improve strategies in order to find the solution of the problem. 
• Classification: summarising strength, weaknesses and gaps of literature, 

the dissertation research object should be recognized and understood. 
• Experience: the solution of the problem should be found being guided us-

ing intuition and experience. 
• Experimental: the hypothesis should be tested by taking a practical test. 
• Statistical: conclusions should be drawn collecting, analysing and ex-

plaining the statistical data. 

Scientific Novelty and Originality 

The aspects of scientific novelty on theoretical and experimental investigation of 
shrinkage influence on deformations of RC members and tension-stiffening ef-
fect are as follows: 

1. As a very limited number of tests on deformation behaviour of lightly re-
inforced concrete beams have been reported so far, new experimental data 
has been obtained on cracking resistance, tension-stiffening and short-
term deformations of such members. Tests on eight beams (four couples 
of twin specimens) having constant reinforcement ratio 0,4%, but differ-
ent bar diameter have been carried out. Prior to the tests of the beams, 
measurements on concrete shrinkage and creep were performed. 

2. An innovative numerical procedure has been proposed for deriving free-
of-shrinkage tension-stiffening relationships using test data (moment-
curvature relationships) of flexural RC members. The proposed procedure 
based on Layer approach combines direct and inverse techniques. In the 
direct technique, moment-curvature diagrams are calculated for assumed 
material stress-strain relationships. The inverse technique proposed by the 
supervisor of present dissertation is aimed at determining tension-
stiffening relationships from flexural tests of RC members. Shrinkage is 
eliminated by assuming reverse (expanding) shrinkage strain. A simple 



INTRODUCTION 5 

 

transformation formula has been proposed for symmetrically reinforced 
tension and bending members for deriving a free-of-shrinkage tension-
stiffening relationship. 

3. The proposed numerical procedure has been applied to the test data for 
deriving free-of-shrinkage tension-stiffening relationships. For beams of 
same reinforcement ratio, it was shown that tension-stiffening was more 
pronounced in those with a larger number of tensile reinforcing bars. 

4. A statistical procedure has been proposed for checking adequacy of theo-
retical predictions to the test data taking into account inconsistency of the 
data. The proposed procedure based on grouping of statistical data allows 
obtaining results that are more reliable. Using the proposed procedure, a 
comparative analysis has been carried out to assess accuracy of predic-
tions of free shrinkage strains occurring at relatively early age of concrete 
(up to 150 days). Similar analysis has been performed for deflec-
tion/curvature predictions by different code and numerical methods. 

Basic Statements to be Defended 

The following statements based on the results of present investigation may serve 
as the official hypotheses to be defended: 

1. The numerical technique proposed allows eliminating shrinkage and as-
sociated creep effects from moment-curvature and tension-stiffening rela-
tionships. 

2. The developed statistical procedure for assessing accuracy of predictions 
takes into account inconsistency of the test data. 

3. Accuracy of deflection/curvature predictions by design codes and nu-
merical techniques vary for different ranges of reinforcement ratio and 
load intensity. 

4. To obtain more accurate predictions of short-term deflections, shrinkage 
should be taken into account. Tension-stiffening has to be modelled by a 
free-of-shrinkage relationship. 

5. Layer section model secures reasonable accuracy of deflection predictions 
of RC members applying a simplified linear tension-stiffening relation-
ship and taking into account shrinkage effect. Tensile strength of concrete 
and the ultimate strain are considered as the most important parameters of 
this relationship. 
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Virtual Products Development, Moscow, Russia. 
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Structure of the Dissertation 

Structure of the dissertation is sketched in Fig. 1. The dissertation is structured 
around four main chapters. 

Chapter 1 reviews material models in regard to deformation behaviour of 
RC members. Although the study deals with deformations of members subjected 
to short-term loading, shrinkage and associated creep effects are taken into ac-
count. Various models of free shrinkage and creep have been presented. Shrink-
age influence on crack resistance and deformations of RC members has been 
discussed. Experimental investigations of tension-stiffening and deformations of 
RC members have been reviewed. Different approaches in tension-stiffening and 
methods of deflection analysis of RC members have been observed. Chapter 1 
concludes in formulating of main objective and tasks of present investigation. 

Chapter 2 investigates shrinkage influence on tension-stiffening and stress-
strain state of RC members subjected to short-term loading. An innovative nu-
merical procedure has been proposed for deriving free-of-shrinkage tension-
stiffening relationships using test data of bending RC members. The procedure 
combines direct and inverse techniques of analysis of RC members. Annex B 
presents computer codes of above techniques using MATLAB. Chapter 2 also 
discusses the computational aspects of convergence of the inverse procedure. 

Chapter 3 presents experimental investigation results on cracking, tension-
stiffening and deformations of 8 lightly reinforced concrete beams subjected to 
short-term loading. Prior to the beam tests, measurements on concrete shrinkage 
and creep were performed. Based on the numerical procedure discussed in Chap-
ter 2, free-of-shrinkage tension-stiffening relationships were derived from the 
moment-curvature diagrams of the beam specimens. Annex C gives experimen-
tal measurements of curvature and deflections of the beam specimens. 

Chapter 4 presents a statistical procedure for assessing accuracy of predic-
tions taking into account inconsistency of test data. Results of statistical analyses 
on predictions by various techniques (reviewed in Chapter 1 and Annex A) of 
free shrinkage strain and deflections/curvatures of RC members have been dis-
cussed. 

General conclusions as well as recommendations for further research sum-
marises the present study. It is followed by an extensive list of references and a 
list of 34 publications by the author on the topic of the dissertation. 
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Fig. 1. Structure of the dissertation 
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Dissertation without annexes consists of 146 pages. Count of equations, fig-
ures and tables in all Chapters is given in Table 1. 

Table 1. Content of the dissertation (excluding Annexes) 

Chapters Numbered equations Figures Tables 

Introduction 0 1 1 

Chapter 1 13 17 4 

Chapter 2 25 18 1 

Chapter 3 2 13 6 

Chapter 4 21 7 9 

General conclusions 0 0 0 

Total count 61 56 21 
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1 
Literature Survey on Deformation 

Models of RC Members 

This Chapter reviews material models in regard to deformation behaviour of RC 
members. Although present investigation deals with deformations of members 
subjected to short-term loading, shrinkage and associated creep effects are taken 
into account. Various models of free shrinkage and creep are presented. Shrink-
age influence on crack resistance and deformations are discussed. Experimental 
investigations of cracking, tension-stiffening and deformations of RC members 
are reviewed. Different approaches in tension-stiffening and methods of deflec-
tion analysis of RC members are observed. This Chapter concludes in formulat-
ing of main objective and tasks of present investigation. 

1.1. Shrinkage and Creep of Concrete 

1.1.1. Physical Phenomena 
1.1.1.1. Shrinkage of Concrete 
The four main types of shrinkage associated with concrete are plastic shrinkage, 
autogenous shrinkage, carbonation shrinkage, and drying shrinkage. Plastic 
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shrinkage is associated with moisture loss from freshly poured concrete into the 
surrounding environment. Autogenous shrinkage is the early shrinkage of con-
crete caused by loss of water from capillary pores due to the hydration of cemen-
titious materials, without loss of water into the surrounding environment. This 
type of shrinkage tends to increase at lower water to cementitious materials ratio 
and at a higher cement content of a concrete mixture. Carbonation shrinkage 
caused by the chemical reactions of various cement hydration products with car-
bon dioxide present in the air. Drying shrinkage is a volumetric change caused 
by the movement and the loss of water squeezing out from the capillary pores 
since the internal humidity attempts to make uniform with a lower environ-
mental humidity. Gribniak et al. (2007a, 2008)∗ carried out a comprehensive 
investigation on various aspects of shrinkage. 

The magnitude of shrinkage deformations depends on concrete mixture pro-
portions and material properties, method of curing, ambient temperature and 
humidity conditions, and geometry of the concrete element. Tremper (1961) has 
pointed out these factors affecting the overall shrinkage of concrete: 
• Characteristics of the cement. The proportion of gypsum added to the 

clinker during grinding has a large effect on shrinkage. 
• Clay-like particles and coating on aggregates increase drying shrinkage. 
• Aggregates, even though clean, vary in their contribution to drying shrink-

age. Aggregates of high absorption tend to produce greater shrinkage. 
• There is a general relationship between drying shrinkage and unit water 

content. This statement is compatible with that restraint to shrinkage is pro-
portional to the absolute volume of aggregate. Aggregates of smaller maxi-
mum size require more mixing water and produce more shrinkage. 

• Higher slump require more water and produce greater shrinkage. 
• The higher the temperature of concrete at the time of mixing, the greater the 

quantity of water required to produce a given slump. 
• Concrete that held in a transit mixer with the drum rotating beyond 70 revo-

lutions, the minimum required to produce thorough mixing, requires more 
mixing water because of the formation of dust of abrasion and the absorp-
tion of heat of work. 

• Admixtures have effects on shrinkage. Water-reducing retarders that have 
been compounded to destroy the retarding effect, as a class, appear to pro-
duce the greatest increase in drying shrinkage. 
Generally only two shrinkage components (drying and autogenous) taken 

into account into structural analysis of concrete members. Figure 1.1 schemati-
cally illustrated the ratio of autogenous and drying components in total shrink-
age of concrete (Gribniak et al. 2007a)*. In the case of normal-strength concrete, 
                                                 
∗The reference is given in the list of publications by the author on the topic of the dissertation 
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shrinkage may be treated without distinguishing between autogenous and drying 
shrinkage because for such concrete autogenous shrinkage strain varies between 
20 and 110 micro-strains. This is only 10 to 20% of the long-term shrinkage 
(Silliman & Newtson 2006). 

Consequently, autogenous shrinkage was neglected for many years. On the 
other hand, in the case of high-strength concrete (HSC), autogenous and drying 
shrinkage should be distinguished because the ratio of these shrinkages to total 
shrinkage varies with respect to age when concrete is exposed to drying condi-
tions (Sakata & Shimomura 2004). Persson (2001) and Miller et al. (2006) re-
ported results of more recent investigations on various aspects of shrinkage. 

The term free shrinkage commonly used for the contraction of hardened 
concrete exposed to air, with relative humidity less than 100%. Free shrinkage 
develops gradually with time; the word free refers to the case of a member that 
can shorten without any restraint, thus producing no stresses. Typically, for or-
dinary concrete about 40 and 90% of the ultimate shrinkage will have occurred 
after 1 and 12 months, respectively (Gribniak et al. 2007a)∗. 

One of major properties of concrete elements that concrete shrink as it dries 
under ambient conditions. Tensile stresses in concrete occur when free shrinkage 
is restrained. The combination of high tensile stresses with low fracture resis-
tance of concrete often results in cracking. This cracking reduces the durability 
of a concrete structure (El-Babry & Ghali 2001). Several factors are known to 
affect element’s cracking including structural design, concrete mixture design 
and mixture materials, placing, finishing and curing practices. It has been shown 
that the primary source of the bridge’s deck cracking is attributed to a combina-
tion of shrinkage and thermal stresses, which are influenced by above factors 
(Gribniak et al. 2007a)*. The cracking phenomena will be observed in Section 
1.2.3. 

 

Fig. 1.1. Shrinkage strain components in normal (a) and high-strength (b) 
concrete (Gribniak et al. 2007a)* 

                                                 
∗The reference is given in the list of publications by the author on the topic of the dissertation 
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Fig. 1.2. Shrinkage-induced stresses in a restrained concrete member (Weiss 
1999): stress development (a) and creep relaxation (b) 

Figure 1.2a compares development of the time dependent strength (cracking 
resistance) and shrinkage-induced stresses. If strength and residual stress devel-
opment is as shown in Fig. 1.2a, it is likely that the specimen will crack when 
these two lines intersect. Similarly, if strength of the concrete is always greater 
than the developed stresses, no cracking will occur. 

The residual shrinkage-induced stress that develops in concrete because of 
restraint may sometimes be difficult to quantify. This residual stress cannot be 
calculated directly by multiplying the free shrinkage strain by the elastic modu-
lus (i.e., Hooke’s law) since stress relaxation occurs. Stress relaxation is similar 
to creep, however while creep can be thought of as the time dependent deforma-
tion due to sustained load, stress relaxation is a term used to describe the reduc-
tion in stress under constant deformation. This reduction of stress is illustrated in 
Fig. 1.2b in which a specimen of original length (I) is exposed to drying and a 
uniform shrinkage strain develops across the section. For unrestrained specimen, 
the applied shrinkage would cause the specimen to undergo a change in length 
of ∆L+ (II). To maintain the condition of perfect restraint (i.e., no length change), 
a fictitious load can envision to be applied (III). However, it should be noted that 
if the specimen was free to displace under this fictitious loading the length of the 
specimen would increase (due to creep) by an amount ∆L– (IV). Again, to main-
tain perfect restraint (i.e., no length change) an opposing fictitious stress is ap-
plied (V) resulting in an overall reduction in shrinkage stress (VI). This illus-
trates that creep can play a very significant role in determining the magnitude of 
stresses that develop at early ages and has been estimated to relax the stresses by 
30% to 70% (Weiss 1999). 

1.1.1.2. Creep of Concrete 
Creep of concrete may be separated into two components: basic creep and dry-
ing creep. Basic creep occurs in a sealed condition, without any exchange of 
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water between the concrete and its surroundings. Drying creep involves water 
movement to the surrounding environment. The creep experienced by the in-
nermost region of a large concrete member is predominantly basic creep, since 
very little water is lost to the outside environment. 

Totally, the water contents of concrete plays an essential role in creep: con-
crete, which has dried to the state where evaporable water has been eliminated, 
is not subject to creep. Completely two mechanisms are apparent from kinetic 
analysis of basic creep for pure cement pastes (Guénot-Delahaie 1997) and con-
cretes (Acker & Ulm 2001). Both mechanisms are compatible with the mobility 
of water. The short characteristic time of the first mechanism about 10 days sug-
gests a stress-induced water movement towards the largest diameter pores (char-
acteristic distance of the order of 0,1–1 mm). This short-term creep mechanism 
was first suggested by Ruetz (1966), and pursued by Wittmann (1982). The sec-
ond mechanism corresponds to an irreversible viscous behaviour. This long-term 
creep occurs under almost constant volume, which is consistent with a viscous 
slippage mechanism (Ulm et al. 1999). 

Drying creep, also called the Pickett effect, is the increase in creep observed 
in specimens undergoing drying (Pickett 1942). The interpretation of the excess 
deformation and its mechanisms has been a matter of controversy among re-
searchers, and several hypotheses have been presented over the last 70 years to 
explain this effect (Altoubat & Lange 2002). Two major views exist in the litera-
ture regarding the Pickett effect. One explains the excess deformation by appar-
ent mechanisms related to shrinkage-induced stresses and associated cracking 
(Wittmann & Roelfstra 1980), and the second considers real mechanisms by 
which creep interact with drying (Bažant & Chern 1985 and Bažant & Xi 1994). 
However, neither of the views alone fully explains the phenomenon, and a com-
bination of the two views has prevailed in the literature. Drying creep is now 
widely understood to be the sum of at least two components, an intrinsic drying 
creep with its own mechanisms and a structural drying creep resulting from mi-
cro-cracking effect due to the non-uniformity of drying in the concrete speci-
men. There was no experimental data in the literature that clearly differentiated 
the different mechanisms of drying creep until the study of Bažant & Xi (1994). 
The authors found that drying creep has two sources: micro-cracking and stress-
induced shrinkage. The latter was found to increase continuously, whereas the 
former first increases and then decreases. The basic design of their experiment 
limited its applicability to compressive creep, and was not adapted for tension. 
Thus, there are no available test data on the different mechanisms of tensile dry-
ing creep, and the contribution of each mechanism is still a matter of research. 

At the initial stage of drying, the surface layer of the specimen shrinks more 
than the inner layers. As a result, the surface layer undergoes tension that causes 
micro cracking. Due to the nonlinear inelastic behaviour and irrecoverable creep 
of concrete caused by the tensile stress, the micro cracks cannot fully close when 
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the moisture distribution finally approaches a uniform state. Consequently, the 
measured shrinkage of the drying specimen is always less than the true shrink-
age. However, if the concrete specimen is under compression, the micro crack-
ing effect is counteracted. Therefore, larger shrinkage will occur in the loaded 
specimen than in a free shrinkage specimen, which may falsely appear as creep 
by the traditional definition of creep. Wittmann & Roelfstra (1980) showed 
higher shrinkage in specimens loaded in compression than in unloaded speci-
mens. This led Wittmann to suggest that tensile cracking might perhaps explain 
all of the excess deformation at drying. In contrast to the compression case, 
when the concrete specimen is under tension, the tensile load promotes the sur-
face micro cracking and reduces the shrinkage below that of the free specimen. 
The increase in micro cracking by the tensile load led Kovler (1995) to question 
the effect of micro cracking as a mechanism of tensile drying creep. However, 
since tensile creep and shrinkage are opposite to each other in direction, we be-
lieve that the reduction in shrinkage of the tension specimen will falsely appear 
as an additional tensile drying creep. Thus, the effect of micro cracking remains 
explainable (Altoubat & Lange 2002). 

Experimental results highlight that even thin cement paste specimen’s ex-
hibit drying creep strains (Thelandersson et al. 1988), although they not submit-
ted to a prominent drying-induced cracking. Moreover, numerical simulations 
show that the micro cracking effect fails to retrieve alone the whole part of dry-
ing creep (Thelandersson et al. 1988). Therefore, many authors proposed an in-
trinsic mechanism to explain the additional part that could not be reproduced by 
micro cracking. Among them, one can find the seepage theory (Ruetz 1968 and 
Tamtsia & Beaudoin 2000), the stress-induced shrinkage (Bažant & Chern 1985 
and Bažant & Xi 1994), the drying-induced creep (Kovler 1995), and the pore 
stress effect (Brooks 2001), or thermo pre-stress relaxation (Bažant et al. 1997). 
None of these theories has been universally accepted in the scientific community 
yet. The most used theory is probably the stress-induced shrinkage one, pro-
posed by Bažant & Chern (1985). These authors suggested that simultaneous 
drying and loading cause micro-diffusion of water molecules between micro-
pores and macro-pores. This enhances bond breakage in cement gel, which re-
sults in intrinsic drying creep strain. 

Altoubat & Lange showed that the Pickett effect as in tension (2002) as in 
case of restrained concrete specimens (2001) has two sources: stress-induced 
shrinkage and micro cracking. The components of the Pickett effect are shown in 
Fig. 1.3a. In other words, tensile loads in a restrained concrete specimen sub-
jected to drying reduce the shrinkage of the concrete with respect to the 
unloaded free shrinkage specimen. This reduction in shrinkage Altoubat & 
Lange (2001, 2002) called stress-induced shrinkage. The avoidance of shrinkage 
(reduction) reflects as a positive creep strain, i.e. the net difference between the 
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stress-induced shrinkage (no softening) and the micro cracking (softening) 
viewed as increase in tensile creep, and it explains the avoidance of shrinkage. 
Altoubat & Lange (2002) stated that in the external drying case, softening due to 
micro cracking is inevitable, and this softening reduces the contribution of the 
stress-induced shrinkage term. This suggests that micro cracking must have a 
different sign than stress-induced shrinkage (see Fig. 1.3a). 

Another important aspect revealed by the analysis is the shrinkage behav-
iour under tensile stress. The total shrinkage under the tensile stress is equal to 
the free shrinkage plus the stress-induced shrinkage; typical results for the con-
crete shown in Fig. 1.3b. The results indicated that the tensile stress substantially 
reduced the shrinkage of concrete, and the assumption of equal shrinkage for 
restrained and unrestrained concrete is responsible in part for the observed extra 
creep deformation (Pickett effect). However, recent investigation on tensile 
creep by Reinhardt & Rinder (2006) indicates that shrinkage of loaded speci-
mens is larger than of non-loaded ones. Latter phenomenon seems to be in 
agreement with Powers’ creep theory (Powers 1965, 1968). 

Wittmann (1993) has stated that the influence of stress on shrinkage of con-
crete is most likely sufficient to explain quantitatively the difference between 
shrinkage and creep when taking place separately, and shrinkage and creep when 
taking place simultaneously. The analytical results of this research indicated that 
the stress-induced shrinkage is a major mechanism of the Pickett effect, but not 
the only mechanism. On the other hand, the surface micro cracking formed a 
significant portion of this effect. The surface micro cracking profoundly influ-
enced the time of first cracking and mechanical behaviour of restrained concrete. 

Apparent creep induced by micro cracking forms a significant part of the 
tensile creep of plain concrete (Altoubat & Lange 2001, 2002). Thus, shrinkage 
does not depend only on the moisture diffusion and state of stress, but also on 
the strain softening (Bažant & Raftshol 1982, Alvaredo & Wittmann 1993). 

 

 

Fig. 1.3. Components of the Pickett effect (drying creep) (a) and effect of 
tensile stress on shrinkage (b) (Altoubat & Lange 2002) 
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1.1.2. Shrinkage and Creep Prediction Techniques 
Since 1990, there have been numerous shrinkage and creep prediction models put 
forward, generally by three main contributors; the Comité Euro International du 
Béton (CEB), the American Concrete Institute (ACI), and Réunion Internationale 
des Laboratoires d’Essais et de recherche sur les Matériaux et les Constructions 
(RILEM). Present study discusses accuracy of five predictions models, namely 
the Eurocode 2, ACI 209, Central Institute of Research and Investigation in Civil 
Engineering (CNIIS, Russia), Bažant & Baweia (B3) and Gardner & Lockman 
(GL 2000). These calculation techniques are listed in Annex A. 

Modulus of elasticity (Young’s modulus) of concrete is one of major input 
parameter of material models (Howells et al. 2005, Pintea et al. 2008∗). It is de-
fined as the tangent modulus of elasticity at the origin of the stress-strain dia-
gram. The tangent modulus Ec is approximately equal to the secant modulus Ecm 
of unloading which is usually measured in tests ( c cm1,05E E≈ ⋅ ). Table 1.1 pre-
sents formulas for deriving of modulus of elasticity according to some design 
codes. In this table cmE  is the secant modulus defined as the slope of the line 
drawn from zero stress to a stress cm0, 4 f⋅  or c0, 45 f ′⋅  for the Eurocode 2 and 
the ACI approaches, respectively; 0E  is the asymptotic modulus introduced in 
the B3 model; cmf  and cm,cubef  are the 28-day mean compressive cylinder and 
cube strength (class of concrete cm,cube0,778B f≈ ⋅ , cm,cube cm1, 25f f≈ ⋅ ), re-
spectively; cf ′  is the specified cylinder compressive strength at test. ACI Com-
mittee 209 (2008) recommended taking into consideration influence of concrete 
density cρ  on secant modulus cmE  (see Table 1.1). 

The Young’s modulus evolves substantially with the hardening of the mate-
rial and it increases from zero to a value near its service value. Similarly as the 
compressive strength, it can be regarded as a monotonically increasing continu-
ous function of the maturity of the concrete (Acker & Ulm 2001). Elastic 
modulus at time t, ( )cmE t , can be determined by the equation (CEN 2004): 

 ( ) ( ) { }0,3
cm cc cm ccβ , β exp 1 28E t E s t⎡ ⎤= = −⎣ ⎦ . (1.1) 

Here t is the age of the concrete (days); s is a coefficient which depends on the 
type of cement (for normal cement is equal to 0,25). 

The Young’s modulus of concrete depends on the type of the aggregate, the 
curing conditions and the test method. The influences of these factors are largely 
responsible for the significant scatter that can be observed when experimental 
values of the modulus of elasticity are plotted against the concrete strength 
(Takács 2002: 14). Applying the measured elastic modulus into analysis may 
improve the deformation prediction or may corrupt it (Takács 2002: 30). 

                                                 
∗The reference is given in the list of publications by the author on the topic of the dissertation 
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Table 1.1. Formulas for modulus of elasticity of concrete 

Design method Young’s modulus [MPa] 

Eurocode 2 (CEN 2004) ( )0,3
cm cm22000 0,1E f= ⋅  

CEB-FIP Model Code 1990 (CEB-FIP 1991) 3cm cm9980E f=  

ACI 318 (2008) cm c4734E f ′=  

ACI 209 (2008) 3
cm c c0,043 ρE f ′=  

SP 52-101 (Russian code) (NIIZhB 2006) ( )c 54300 21E B B= ⋅ +  

B3 (Bažant & Baweja 1995a, 1995b) 0 cm7890E f=  

GL 2000 (Gardner 2004) ( ) ( )cm cm3500 4300E t f t= +  

1.1.3. Shrinkage and Creep Models in Comparison 
Test results on shrinkage and creep are marked with large scatter, at least from 
the perspective of existing approach in modelling. The prediction model parame-
ters and corresponding limitations are presented in Table 1.2. In this table A/C is 
the aggregate-to-cement ratio; W/C is the water-to-cement ratio; τ  or ts are the 
age of concrete at loading and beginning shrinkage, respectively. 

The shrinkage strain and the creep compliance given by the theoretical 
models are seen as the expected average value of the responses and the predic-
tion is characterised by the corresponding measure of variation. Consequently, 
the structural response should be considered as a statistical variable rather than a 
deterministic value (Kudzys et al. 2004). The expected statistical variation has to 
be taken into account in the structural design. The reported coefficient of varia-
tion is 35% for the shrinkage strain and 20% for the creep compliance for the 
MC 90 (CEB-FIP 1991). The same values are 34% and 23% for the B3 model 
(Bažant & Baweja 1995a, 1995b). 

Al-Manaseer & Lakshmikantan (1999) performed a comparison of creep 
prediction models. The analysis showed that the Eurocode 2, ACI 209 and B3 
models overestimated the creep for 39%, 23% and 42% of the total number of 
data points, respectively. The mean coefficient of variation for the residuals for 
the Eurocode 2, ACI 209 and B3 models were 31%, 39% and 32%, respectively. 

Meyerson et al. (2002) carried out a comprehensive investigation on accu-
racy of shrinkage and creep prediction models. It has been shown that the Euro-
code 2 predicts the creep and shrinkage strain of concrete with the best accuracy. 
Al-Manaseer & Lam (2005) performed comparative analysis of shrinkage and 
creep models using experimental data from RILEM Data Bank. It has been 
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found that B3 is the best model to predict shrinkage and creep effects, Eurocode 
2 predictions of creep were also considered accurate. 

Schellenberg et al. (2005) compared the creep and shrinkage predictions 
made by Eurocode 2 and ACI 209. It has been stated that the differences be-
tween codes can be significant in the early stages of construction. For longer 
periods there was found no essential difference between predictions. It has been 
pointed out that the moist importance is taking the shrinkage and creep effects 
into consideration, while it is only secondary importance which code is applied. 

Table 1.2. Limits of variables in creep and shrinkage prediction models 

Variable Eurocode 2 ACI 209 CNIIS B3 GL 2000 
fcm [MPa] 20–90(120) – 13–67 17–69 20–82 
A/C – – – 2,5–13,5 – 
Cement [kg/m3] – – – 160–720 – 
W/C – – – 0,35–0,85 – 
RH [%] 40–100 40–100 ≤ 90 40–100 40–100 
Cement type N, S or R N or R – N, S or R N, S or R 
τ  or ts (moist cured) – ≥ 7 days – ts ≤ t0 – 
τ  or ts (steam cured) – ≥ 1 day – ts ≤ t0 – 

1.2. Constitutive Models for Numerical Simulation of 
Reinforced Concrete 

Deformational behaviour of cracked RC members is a complex process includ-
ing a wide range of effects, such as, different strength and deformation proper-
ties of steel and concrete, concrete cracking, tension-softening and tension-
stiffening, bond slip between reinforcement and concrete, etc. Even under low 
load, the behaviour can be non-linear, which presents a challenge for calculation 
of deformations of RC members. 

1.2.1. Idealisation of Constitutive Laws 
Rather than attempting to provide a complete mechanical description of the be-
haviour of concrete, reinforcement and their interaction, physical models are 
aimed at which are as simple as possible and reflect the main influences govern-
ing the response of structural concrete. This Section presents some principles for 
idealisation of material models (Sigrist 1995). 
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The diagrams shown in Figs. 1.4a–1.4c illustrate some basic aspects of ide-
alisations of stress-strain characteristics. Non-linearly elastic response is shown 
in Fig. 1.4a: there is a unique relationship between strains and applied stresses, 
the deformations are completely reversible, and no energy is dissipated. 

The strain energy per unit volume (shown in Fig. 1.4a by the shaded area 
below the stress-strain curve), corresponding to the energy stored in an elastic 
body, can be given as following: 

 ( )1ε

0
σ ε εdU d= ∫ . (1.2) 

Figure 1.4b shows an elastic-plastic stress-strain relationship (the deforma-
tions are not fully reversible). Upon unloading, only the portion of the strain en-
ergy below the unloading curve is released. The remaining energy dD, corre-
sponding to the area between the loading and unloading curves, has been 
dissipated. Strain-hardening branches of stress-strain curves are characterised by 
irreversible deformation and energy dissipation under increasing loads and de-
formation. Strain-softening branches of stress-strain curves, exhibiting decreas-
ing loads with increasing deformation is presented in Fig. 1.4c. Such curves can 
be recorded by means of strict deformation control. 

Figures 1.4d–1.4g illustrate some commonly used idealisations of stress-
strain relationships. In the bilinear idealisation shown in Fig. 1.4d, the response 
is linear elastic for stresses below the yield stress fy. For higher stresses a linear 
strain-hardening takes place. Unloading is assumed to occur parallel to the initial 
elastic loading. If only ultimate loads and initial stiffness are of interest, a linear 
elastic-perfect plastic idealisation (see Fig. 1.4e) may be employed. 

 

 

Fig. 1.4. Stress-strain idealisations: elastic (a); elastic-plastic (b); strain-
softening behaviour (c); bilinear strain hardening (d); linear elastic-perfectly 

plastic (e); brittle fracture (f) and bilinear strain softening (g) 
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A simple brittle cracking idealisation is presented in Fig. 1.4f. Brittle behav-
iour is characterised by the full reduction of the strength after the strength crite-
rion ( ultσ σ> ) has been violated. Figure 1.4g illustrate bilinear stress-strain rela-
tionship with linear strain softening branch. The latter two stress-strain 
relationships are often used for idealisation of plain and reinforced tensile con-
crete behaviour, respectively. Material properties determined from tests depend 
on the particular testing method used. Therefore, to allow for a direct compari-
son of test results, standardised testing methods (including specimen geometry, 
loading ratio and testing device) should be applied (Kaufmann 1998). 

1.2.2. Plain Concrete and Steel 
1.2.2.1. Concrete in Compression 
The uniaxial compressive strength is often the only concrete property specified 
and measured. The response of concrete in uniaxial compression is usually ob-
tained from cylinders with a height to diameter ratio of two as shown in Fig. 
1.5a. The standard in Europe cylinder is 300 mm high by 150 mm in diameter. 
Compressive strength can be also determined from 150 mm cube test (Fig. 1.5b). 
Smaller size cylinders and cubes are standard in some countries (for instance in 
Japan and Canada compressive strength is determined using cylinder 200 mm 
high by 100 mm in diameter). It is well known that strengths measured on smal-
ler specimens are typically higher than those determined from bigger ones since 
the end zones of the specimens are laterally constrained by the stiffer loading 
plates. This effect is more pronounced in small cubes. The difference between 
the cube strength and the cylinder strength decreases with increasing concrete 
strength. Table 1.3 presents compressive strength conversion factors taking 
∅150×300 mm cylinder as reference specimen (CEB-FIP 1990, CEN 2004). 

In early numerical simulation (Hand et al. 1973, Lin & Scordelis 1975), an 
ideally elastic-plastic diagram (Fig. 1.4e) has been assumed for modelling of 
compressive concrete. It has been considered that plastic structural deformations 
were mainly due to cracking of tensile concrete and plastic steel strains but not 
due to plastic deformation of compressive concrete. However, soon importance 
of plastic strains of compressive concrete on total behaviour of structure has be-
en recognised and numerical analyses have employed a great number of stress-
strain relationships developed from uniaxial tests. Such relationships were pro-
posed by Ros (1950), Hognestad (1951), Hognestad et al. (1955), Smith & 
Young (1956), Young (1960), Szulczynski & Sozen (1961), Liebenberg (1962), 
Roy & Sozen (1963), Barnard (1964), Saenz (1964), Popovics (1970, 1973), 
Kent & Park (1971), Park & Paulay (1975), Wang et al. (1978), Dilger et al. 
(1984), Shah & Ahmad (1985), CEB-FIP (1991), Mansur et al. (1997), Deber-
nardi & Taliano (2001) etc. 
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The relationship of compressive concrete recommended by CEN (2004) is 
used in present study (see Section 2.5.2.2 and Fig 2.12b). As shown in Fig 1.5c, 
the compressive stress-strain response of concrete in the pre-peak range can be 
approximated by a parabola. Hognestad (1951: 45) proposed one of the most 
widely used expressions: 

 2
c c c 0 0 c cσ 2ε ε ; ε ε ε ; ε 2f f E⎡ ⎤= − = =⎣ ⎦ . (1.3) 

Here cσ  and cε  are the stress and strain of the compressive concrete, respec-
tively; and cE  is the initial (tangent) modulus of elasticity. 

The response of concrete in compression in the post-peak range is character-
ised by decreasing carrying capacity with increasing deformation, i.e. strain-
softening in compression (see Fig. 1.5c). The strain-softening behaviour of con-
crete in compression is more complicated than that in tension, and no generally 
accepted model such as the fictitious crack model for the behaviour in tension 
(Hillerborg et al. 1976) has yet been established. One reason for this is that the 
specific fracture energy per unit volume GF,c (see Fig. 1.5c) can be evaluated 
from tests only if the fracture process zone (FPZ) is known (Kaufmann 1998). 

The size and shape of the FPZ, which in cylinder test may be assumed to 
extend over a length of double cylinder diameter (Sigrist 1995), cannot be trivi-
ally determined for more complicated geometries. The softening branch of long 
specimens is steeper than that of short ones (Fig. 1.5c). This fact may be attrib-
uted to the localisation of deformation in FPZ, while the other parts of the 
specimen remain undamaged. 

The strain-softening behaviour of concrete in compression depends not only 
on the specimen size, but also on the rate of loading and on the concrete strength 
(Fig 1.5d). High-strength concrete fails in a much more brittle manner than nor-
mal-strength concrete, while the specific fracture energy increases only slightly 
with the concrete strength (Markeset 1993). 

 

 

Fig. 1.5. Compression test specimens (a) and (b); influence of specimen length 
(c) and concrete strength (d) on stress-strain response and strain-softening; 

influence of concrete strength on type of failure (e) and (f) 
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High-strength concrete cylinders often fail by laminar splitting (see Fig. 
1.5f). If there was no friction between the specimen and the loading plates, 
specimens of normal strength concrete would have failed in a similar way. In 
practical applications with constrained specimen ends, sliding failure, as shown 
in Fig. 1.5e, is generally observed for normal-strength concrete. For more details 
and comprehensive survey on other models of compressive failure, see study 
performed by Wang & Shrive (1995). 

Table 1.3. Conversion factors for compressive strength of concrete 

Strength, MPa ∅150×300 ∅100×200 100×100 150×150 200×200 
< 50 1,0 0,93 0,75 0,80 0,84 
50 1,0 0,93 0,75 0,83 0,87 
75 1,0 0,93 0,77 0,83 0,87 
100 1,0 0,93 0,83 0,83 0,87 

1.2.2.2. Concrete in Tension 
The tensile strength fct and tensile strain capacity crε  of concrete are widely 
used for evaluating the occurrence of cracks in concrete members. The tensile 
strain capacity defined as the maximum tensile strain that concrete can with-
stand without crack forming (Wee et al. 2000). Based on the tensile strain capac-
ity rather than the tensile strength, it is more convenient and simpler to evaluate 
cracking (Swaddiwudhipong et al. 2003). 

The tensile strength of concrete is relatively low: the ratio between uniaxial 
tensile and compressive strength may vary considerably but usually ranges be-
tween 0,05 and 0,1. Furthermore, tensile capacity of the member may be af-
fected by additional factors such as restrained shrinkage stresses. Therefore, it is 
common practice to neglect the concrete tensile strength in strength calculations 
of structural concrete members. However, the tensile behaviour of concrete is a 
key factor in serviceability considerations such as the assessment of crack width 
and spacing, concrete and reinforcement stresses and deformations. 

Compared to compression tests on concrete, tensile tests are much more 
problematic to perform because of difficulties in applying the concentric load. 
Strongly stochastic nature of test data also complicates interpretation of experi-
mental results (Lemnitzer et al. 2008). Generally, the tensile strength of concrete 
may be determined from direct tension tests as shown in Fig. 1.6a. Over the 
years, for instance, special grips and special shapes (like the dog-bone type 
specimens) have been designed in order to prevent stress consolidations. How-
ever, direct tensile tests are rarely used. Usually, the concrete tensile strength is 
evaluated indirectly using different techniques (see Figs. 1.6b–1.6d): the bending 
test (determination of the modulus of rupture), the double punch test or the split-
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ting test. Determining the tensile strength by indirect methods requires assump-
tions about the stress state within the specimen in order to calculate the strength 
from measured failure load. It should be noted that the tensile strength measured 
from flexural test or splitting test are evaluated on the assumption that the con-
crete is linearly elastic until failure, while in reality, the stress-strain curve be-
comes nonlinear when the concrete is close to failure (Zeng et al. 2001). There-
fore, calculation of the tensile strength using empirical relationships based on 
uniaxial compressive strength is a common practice. In present study (see Chap-
ter 3), tensile strength at age t was calculated using compressive cylinder 
strength cmf  measured at t = 28 days (CEN 2004): 
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Fig. 1.6. Tension tests: direct tension test (a); bending or modulus of rupture 
test (b); double punch test (c) and split cylinder test (d) 

 

Fig. 1.7. Tension test (a); sketched behaviour of concrete in a load controlled 
(b) and deformation controlled (c) tension tests; and influence of a crack 

localisation on test measurements (d) 



26 1. LITERATURE SURVEY ON DEFORMATION MODELS OF RC MEMBERS 

 

In early experimental investigations (load-controlled), the tensile load was 
increased until the specimen fractured (see Fig. 1.7b). Gonnerman & Shuman 
(1928) performed a comprehensive investigation in which the load was applied 
by special grips. In 1960th, in analogy to that was observed in compression, it 
was investigated whether a post-peak behaviour also exists for tensile loading, as 
shown in Fig. 1.7c (Rüsch & Hilsdorf 1963, Hughes & Chapman 1966 and Ev-
ans & Marathe 1968). In these investigations, the results were presented in 
stress-strain relationships. However, in the tests it is not a strain was measured, 
but a deformation over a certain measuring length measl . By assuming a uniform 
stress distribution over the measuring length (see Fig. 1.7a), given deformation 
results a strain. In the pre-peak region, this transformation is acceptable, but in 
the post-peak region, this has no meaning because the total deformation is the 
sum of elastic deformation and crack opening. Such behaviour implies that frac-
ture of concrete in tension is a local phenomenon. 

Figure 1.7d presents a concrete specimen strained in uniaxial tension when 
deformation-controlled test is performed. A linear load-deformation relation al-
most to the peak load will be obtained. At peak load, the strains start to localise 
within a process zone (softening zone) of micro-cracking, leading to a continu-
ous macro-crack development. The process zone will occur at the weakest sec-
tion of the tension specimen. If this zone develops within the measuring length 
which deformation is used as control parameter, then a load-deformation rela-
tion, as shown by line I in Fig. 1.7d, will be obtained. The load should be re-
duced with an increasing deformation of the process zone and as a result, the 
concrete outside process zone unloads (line II in Fig. 1.7d). 

As was mentioned, the deformation measurements always consist of two 
parts: the crack opening within process zone and elastic deformation over total 
measuring length. When varying the measuring length, the first contribution re-
mains constant, while the latter one changes. Figure 1.8a illustrates this influ-
ence. It can be observed that the decreasing branch becomes steeper for an in-
creasing measuring length. In this example, a relative length meas 1l l =  yields a 
stress-strain relationship with a so-called snap-back. If this length is used as con-
trol parameter for the deformation, then a sudden jump will occur, as indicated 
by the dashed line. In most experimental set-ups, the equipment will not be fast 
enough to overcome such a jump and the result will be unstable fracture, and the 
obtained stress-deformation relationships no longer represents the actual mate-
rial behaviour. It should be pointed out that the same phenomenon is also of 
great importance in numerical analyses (Bosco et al. 1990a, Hordijk 1991). 

Tests show that as in compression, the softening branch of stress-average 
strain relationship of longer specimens is steeper than that of shorter ones (Fig. 
1.8b). For specimens longer than a certain critical length, the softening branch 
cannot be recorded at all (Hordijk 1991). Continuum mechanics models (using 
stress-strain relationship) cannot explain the fact that long specimens fail in a 
more brittle manner than the short ones (Ozbolt & Reinhardt 2002). 
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Fig. 1.8. Stress-deformation relationship as influenced by measuring length 
(Hordijk 1991) (a); influence of specimen length on the tensile behaviour (b) 
and typical load-deformation response of a quasi-brittle material in tension 

(Karihaloo 1995) (c) 

Figure 1.8c sketches behaviour of tensile concrete in the FPZ. Karihaloo 
(1995) stated that the pre-peak nonlinearity (AB) and region of tension-softening 
diagram after the attainment of peak load (BC) are primarily a result of micro-
cracking. The tail region of tension-softening diagram (CD) results from aggre-
gate interlock and other frictional effects. Fracture of the tensile specimen has 
been completed when critical crack width wc is reached. Due to the quasi-brittle 
nature of concrete, linear elastic fracture mechanics (LEFM) cannot be applied 
either, with exception of infinitely large specimens (Liu et al. 2008). 

Hillerborg et al. (1976) and Hillerborg (1983, 1985a, and 1985b) have pro-
posed fictitious crack model (cohesive crack model). According to this model, 
the behaviour of concrete under tensile loading can be split into a stress-strain 
relation for the concrete outside a crack process zone, and a stress-crack opening 
w relation for the crack itself (see Fig. 1.8b). The area under the softening curve 
(shaded in Fig. 1.8b) is defined as the fracture energy. The fracture energy, GF, 
is defined, as the energy required forming a complete crack. According to Witt-
mann (2002), fracture energy and softening curve depend on the composite 
structure of the material: due to the mechanical interaction between aggregates 
and matrix, fracture energy of the composite material becomes considerably lar-
ger than GF of both the aggregates and the matrix. The value of GF can be esti-
mated by the method proposed in the MC 90 (CEB-FIP 1991), in which GF is a 
function of the compressive strength of the concrete and the maximum aggregate 
size. However, recent research by Darwin et al. (2001) indicates that it is rela-
tively independent of the concrete strength or aggregate size. 

Generally, the most direct way to measure the softening curve is by means 
of stable tensile tests (Petersson 1981). This kind of tests seem to provide the 
whole stress-crack width relationships as a direct output from the experiment. 
However, the test results have shown that such an approach is extremely diffi-
cult (if not impossible) because of two major drawbacks (Elices et al. 2002): 
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• The localisation of the crack is not known a priori, and in most occasions 
multiple cracking may occurs (Planas & Elices 1986, Guo & Zhang 1987, 
Philips & Binsheng 1993). 

• When a small crack is introduced to initiate fracture, the specimen tends to 
asymmetric models of fracture, and the crack opening is not uniform across 
the specimen (Rots 1988, Hordijk 1991, Mier van & Vervuut 1995). 
Moreover, when the rotations are avoided using very short specimens and a 
very stiff test machine, or by means of special servo-controlled system, the 
single cracks formed at two opposite sides of the specimen tend to get away 
from each other and overlap never creating one transverse crack (Carpinteri 
& Ferro 1994, Mier van & Vervuut 1995). 
The above difficulties led investigators to apply indirect methods, known as 

inverse analysis, to determine the softening curve based on parametric fitting of 
the test results. These methods usually do not yield identical results for the same 
concrete due to different weight assigned to various test data (Elices et al. 2002). 
Stable tests on notched beams or compact specimens are commonly used to fit 
the softening curve (Yamamoto & Vecchio 2001). 

1.2.2.3. Reinforcing Steel 
The use of iron to reinforce concrete structures date is the mid of the 19th cen-
tury, marks the birth of reinforced concrete construction. In 1848, Joseph-Louis 
Lambot first found that adding thin steel bars or steel fibres to concrete greatly 
increases concrete strength, making it better for use in a variety of applications. 
In the beginning, there were several reinforced system, using different shapes 
and types of iron or steel. Today, common reinforcement types are deformed 
steel bars of circular cross-section for passive reinforcement and steel bars, wires 
or seven-wire strands for pre-stressed reinforcement. 

Structural concrete elements are generally designed such that failure will be 
governed by yielding of the reinforcement. The yield stresses typically amount 
to 400…600 MPa. The deformation capacity of structural concrete elements, an 
important aspect in the design of such structures, mainly depends on the ductility 
of the reinforcement (Sigrist 1995). Therefore, ductility of the reinforcement is 
as essential to structural concrete as its strength. 

The reinforcing bars exhibit a uniaxial response, having strength and stiff-
ness characteristics in the bar direction only. Two different types of stress-strain 
characteristics of reinforcing steel can be distinguished. Figure 1.9a illustrate the 
response of hot-rolled, low carbon or micro-alloyed steel bar in tension exhibits 
an initial linear elastic portion, s s sσ εE= , a yield plateau s syσ f=  (stress level 
beyond which the strain increases under constant loading), and strain-hardening 
range until rupture occurs at the tensile strength, s suσ f= . The extension of the 
yield plateau depends on the steel grade: its length generally decreases with in-
creasing strength. 
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Fig. 1.9. Stress-strain characteristic of reinforcement in uniaxial tension: hot-
rolled, heat-treated, low-carbon or micro-alloyed steel (a); cold-worked or 
high-carbon steel (b) and linear-elastic ideally-plastic material model (c) 

Cold-worked and high-carbon steels exhibit a smooth transition from the 
initial elastic phase to the strain-hardening branch, without a distinct yield point 
(see Fig. 1.9b). The yield stress is often defined as the stress at which a perma-
nent strain of 0,2% remains after unloading or, alternatively, the yield strain 

syε can be specified directly. Unloading at any point of the stress-strain diagram 
occurs with approximately the same stiffness as initial loading. In the present 
study, aimed at the serviceability issues, an ideal elastic-plastic stress-strain re-
sponse of reinforcement is applied. Figure 1.9c presents such an idealisation. 

1.2.3. Cracking Behaviour of Reinforced Concrete Members 
Cracking is a complete or incomplete separation into two or more parts produced 
by breaking or fracturing (ACI 201 2001). Cracks formed in RC members can be 
classified into two main categories: cracks caused by externally applied load and 
cracks that occur independently of the loads (Leonhardt 1977). The latter cracks 
cause problems in concrete structures for construction, resulting from thermal 
stress due to heat of hydration and dry shrinkage strain after wet curing. External 
loading induced cracks may be not orthogonal to the reinforcement (shear or 
torsion cracks) and orthogonal (tensile or flexural cracks). As present study con-
centrates on the latter cracks, inclined shear cracks are not discussed here. 

Figure 1.10a presents a typical load-strain curve of RC members subjected 
to tension. This curve can be divided into three regions (Somayaji & Shah 
1981). First region represents the elastic behaviour of the member up to start of 
cracking. Second region covers deformation behaviour from first primary crack 
to the final cracking point. Third region aims at the behaviour from the final 
cracking point to the yielding of the reinforcement. Before cracking the concrete 
tensile stress (represented by grey-filled area in Fig. 1.10a) increases with load. 
When the stress in concrete first reaches the tensile strength at a weakest section, 
cracking occurs. After cracking, the stress in the concrete at the crack drops to 



30 1. LITERATURE SURVEY ON DEFORMATION MODELS OF RC MEMBERS 

 

zero. The concrete stress increases with distance from the crack due to the bond 
action, until at distance s, called the transfer length, from the crack the concrete 
stress is not affected by the crack, as shown in Fig. 1.10b. Slip at the concrete-
steel interface in the region of significant bond stress (s on either side of the 
crack) causes the crack to open. A relatively small increase in load will cause a 
second crack to develop at a cross-section at some distance from the first crack. 
Under load increasing, the primary cracks form at somewhat regular intervals 
( 2s l s< ≤ ⋅ , see Fig. 1.10b) along the member and primary crack pattern is es-
tablished. The concrete tensile stress at each crack is zero, rising to a value ctσ , 
which never reach the tensile strength of the concrete (see Fig. 1.10b). 

 

 

Fig. 1.10. Tension member: cracking stages (Somayaji & Shah 1981) (a) and 
distribution of axial stresses and strains (Fields & Bischoff 2004) (b) 

 

Fig. 1.11. Formation of secondary cracks (Goto 1971) (a) and (b), and 
idealized bond behaviour (Wu & Gilbert 2008) (c) 
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After the formation of the first primary crack up to the final crack, concrete 
contribution steadily decreases (Gupta & Maestrini 1990). At the final cracking 
point, the stable crack pattern has been reached. Increase in load will result in 
further decrease of concrete contribution due to bond-slip causing cover-
controlled cracks to develop between the primary cracks and a gradual breaking 
down of the bond (Wu & Gilbert 2008). Goto (1971) described this process as 
the formation of internal secondary cracks along the deformed bar due to bond 
stress transfer to the sound concrete in between primary cracks (see Fig. 1.11a). 

Similarly as for tensile members (see Fig 1.10a), cracking behaviour of 
flexural members can be also divided into three phases: the uncracked, the crack 
formation and the stabilised cracking (Borosnyói & Balázs 2005). During un-
cracked phase, concrete and steel behave elastically. At the start of crack forma-
tion phase, first primary crack is formed in a locally weak section. Flexural 
cracks are formed in the tensile zone of the member. After formation of a crack, 
some elastic recovery takes place in concrete on the member surface, contribut-
ing to the crack width. However, some stress and strain is maintained in concrete 
surrounding the reinforcement due to bond-action. As it is in tensile members, 
this contributes to a reduction in the crack width near the bar compared to that at 
the concrete surface (Base et al. 1966, Husain & Ferguson 1968, and Goto 
1971). The compatibility of strains between concrete and reinforcement is no 
longer maintained in the tension chord, as concrete stress drops to zero at the 
crack. At some distance from the crack, the compatibility of strains is recovered. 
As shown in Fig. 1.12a, with increasing load, new primary cracks can be formed 
decreasing average crack spacing. 

The stabilised cracking phase is supposed to be reached when practically no 
more new cracks can be formed. An increase of load causes an increase of the 
crack width only. The bond-action effect dissipates completely, though if there 
is transverse steel or stirrups, some residual ring or hoop, tension will be carried 
(Clark & Speirs 1978). Radial thrusts develop of the bar deformations and must 
be resisted by the ring tension as shown in Figs. 1.11b and 1.12b. In flexural 
members, the reinforcing bars are usually located close to the surface of the 
member, and the contribution of concrete in tension is different at various loca-
tions within a member. Thus, conception of effective concrete area in tension 
(which is not identical with the concrete area under neutral axis, i.e. concrete in 
tension), was introduced for cracking analysis (CEB-FIP 1991). 

Flexural cracks in a varying moment region of a beam develop at a regular 
interval; however, in a constant moment region, these cracks develop at discrete 
intervals (as in tensile member). Their locations depend partly on the occurrence 
and distribution of zone of local weakness in concrete and therefore cracking is 
somewhat a random process (Warner et al. 1998, Fantilli et al. 1998b). As a re-
sult, the exact locations of cracks in a constant moment region may not be pre-
dicted accurately. However, maximum and minimum spacing of adjacent cracks 
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(see Fig. 1.12a) may be predicted with sufficient accuracy by investigating con-
crete stresses developed in the tensile zone of a member. 

After cracking, stiffness of the member along its length varies, which makes 
the calculation of deformations complicated. In a cracked member, the stiffness 
is largest at section within the uncracked region, while it is smallest at cracked 
section. This is because at cracked section, the tensile concrete does not contrib-
ute to the load carrying mechanism. However, at intermediate sections between 
adjacent cracks, the concrete around reinforcement retains some tensile force 
due to the bond-action, which effectively stiffens the member response and re-
duces deflections (see Fig. 1.12b). This effect is known as tension-stiffening. 

A number of researchers (Clark & Speirs 1978, Bosco et al. 1990b, Polak & 
Blackwell 1998, Sule & Breugel 2004, Fantilli et al. 2005, Beeby & Scott 2006, 
Kaklauskas et al. 2008b∗, Gribniak et al. 2009*) have investigated the rein-
forcement bar size and spacing dependence on cracking and tension-stiffening. 
Clark & Speirs (1978) reported that tension-stiffening effect decreases with in-
creasing of bar spacing when the latter exceeds a critical value. Sule & Breugel 
(2004) stated that reinforcement configuration has more influence on cracking 
resistance of bending members than reinforcement ratio. For given reinforce-
ment ratios, tension-stiffening is more pronounced in the members reinforced 
with bars of smaller diameters (Fantilli et al. 2005 and Gribniak et al. 2009*). In 
the investigation of minimum amount of reinforcement for high strength mem-
bers in flexure, Bosco et al. (1990b) reported new experimental results on rein-
forcement ratio and beam depth influence on cracking resistance. 

 

 

Fig. 1.12. Flexural cracking (Borosnyói & Balázs 2005): crack formation and 
crack spacing (a); conception of effective concrete area in tension (b) 

                                                 
∗The reference is given in the list of publications by the author on the topic of the dissertation 
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Many investigators have noted that at the stabilised cracking stage tension-
stiffening decreases with increase of load due to deterioration of bond (Collins & 
Mitchell 1991, Belarbi & Hsu 1994 and Bischoff 2001). If tension-stiffening not 
taken into account, the calculated deflection can become larger dramatically than 
the actual value (Gilbert & Warner 1978, Kaklauskas 2001, Robert-Nicoud et al. 
2005). For accurate assessment of deflection, tension-stiffening needs to be in-
corporated in the calculation. 

1.2.4. Approaches in Tension-Stiffening 
The first studies to define the behaviour of concrete under tensile stress began 
towards the end of 19th century when, though the intense activity of skilful buil-
ders, the technique of RC reached certain stages that were fundamental for its 
subsequent success. Joly (1898a, 1898b) and Considère (1899a, 1899b) who 
made a decisive contribution to explaining the behaviour of RC flexural and ten-
sile members performed first intuitions on the tension-stiffening. After the re-
sponse of the elements to the applied actions had been explained, its behaviour 
was defined though mathematical models, necessary for the calculation theories 
which, according to Albenga (1945), were many and contradictory. 

In the early development of the theory of RC, deformation problems were 
simply ignored. First attempts to assess deflections of flexural RC members 
were based on classical principles of strength of materials. However, elastic cal-
culations may significantly underestimate deflections of cracked members. On 
the other hand, disregard of the tensile concrete may lead to a significant overes-
timation of deflections, particularly for lightly reinforced members. The intact 
concrete between cracks carries tensile force due to the bond between the steel 
and concrete. The average tensile stress in the concrete can be a significant frac-
tion of the tensile strength of concrete. This effect is called by tension-stiffening 
and is often accounted for in design by an empirical adjustment to the stiffness 
of the fully cracked cross-section. 

Many theoretical models of RC in tension have been proposed to predict 
cracking and deformations of RC members. Generally, these models may be se-
parated into four main approaches: 
• Semi-empirical: the earliest approaches were developed based on the 

analysis of test data. Such simplified calculation techniques are broadly 
presented in the design codes. 

• Stress transfer: these approaches aim at modelling bond between concrete 
and reinforcement steel. 

• Fracture mechanics: such approaches use the fracture mechanics principles 
to predict cracking behaviour of RC elements. 

• Average stress-average strain: simple approaches, extensively used in 
numerical analyses, based on smeared crack model. 
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1.2.4.1. Semi-Empirical 
This type of research covers perhaps the largest portion of work done on the 
cracking modelling up to around 1970 (Sjoberg 1999). That it forms the largest 
portion of research, is largely a result of the amount of time in which research 
has been performed. French papers published in 1899 are the pioneer records of 
research found relating to the cracking behaviour of RC members (Siviero & 
Simoncelli 1997). It should be noted that many of the early studies were carried 
out using plain reinforcing bars. 

Murashev (1950) and Gvozdev et al. (1962) quite independently carried out 
the research in the East, and by Branson (1963) and Ghali & Favre (1986), in 
the West. In Russia, based on a large amount of test data, Murashev (1950) has 
developed a qualitatively new method for the calculation of deformations and 
deflections of cracked flexural members. This theory was based on the beam 
theory (plane section assumption) and accounted for nonlinear strains of the 
compressive concrete and tension-stiffening. The latter effect was assessed by a 
factor sψ  taken as the ratio of the average steel strain between two adjacent 
cracks and the steel strain in the cracked section. The method, further developed 
by Gvozdev and his co-workers (1962), was adopted in the Russian design code. 
In 2006th a new issue of the code (SP 52-101) has been proposed by Concrete 
and Reinforced Concrete Research and Technological institute (NIIZhB 2006). 
It is relevant to note that the SP 52-101 method employs a lesser number of em-
pirical parameters than the previous one. Furthermore, this code has adopted a 
numerical approach based on plane section hypothesis and use of stress-strain 
relationships for steel and concrete, both in tension and compression. In the 
USA, Branson (1963) proposed perhaps the best known method in the West (ba-
sed on effective moment of inertia) which was adopted in the codes of the USA 
(ACI 318 2008), Canada, Australia, New Zealand and a number of countries in 
South America. The Eurocode 2 method (CEN 2004) gives an alternative ap-
proaches. These simple design models describe the global behaviour and serve 
everyday engineering design well. However, it can be observed that different 
formulas are used in different codes, which raises a question of their objectivity. 

1.2.4.2. Stress Transfer 
This approach is based on bond-slip relationship, which models the bond-action 
between concrete and reinforcement. Saliger (1936) has first published the basis 
for all theories using this approach. As discussed in Section 1.2.3, the bond-
action at the interface of steel bars and surrounding concrete has great influence 
on the initiation and propagation of cracks in RC members. The bond-action is 
the main contributing factor to the tension-stiffening effect in concrete struc-
tures. In a cracked RC member, an increase in loading will result in an increase 
in steel strain, causing an extension of the reinforcing bar. Consequently, ribs in 
the bar will tend to move towards the nearest crack relative to the surrounding 
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concrete, i.e. bond-slip is initialised (see Fig. 1.11a). This will increase the rib 
bearing stress on concrete, contributing to the bond-slip. 

In a tensile specimen, before any cracks are formed, the slip at the mid point 
between the two ends due to symmetry will be equal to zero. The bond stress at 
the two ends of the specimen will also be equal to zero, although the slip is the 
largest at these points. The same behaviour is valid for concrete section between 
two adjacent cracks. Usually, variation of the bond stress between these three 
points is established experimentally and represented by analytical relationships. 
Lackner & Mang (2003) distinguished two main categories of such models: 
• The first one is characterised by adding extra-stiffness and force terms to 

the stiffness matrix. These terms may be related to the strain in the steel bar 
(Feenstra & Borst de 1995). Ngo & Scordelis (1967) modelled bond 
behaviour by linear springs to compute the additional stiffness force terms. 
This approach was improved by introducing non-linearity of springs (Kwak 
& Filippou 1995, Monti & Spacone 2000). 

• The second one uses so-called tension-stiffening factor, which reflects a 
specific bond-stress distribution along the reinforcement bars. Floegl & 
Mang (1982) have determined this factor assuming a constant distribution 
of the bond-stress. Choi & Cheung (1996) have extended this approach. 
In analytical investigations of RC members, the bond stress-slip relationship 

is of fundamental importance. Such relationships are analogous to the average 
stress-strain laws for concrete or steel (Nilson 1972, Edwards & Yannopoulos 
1979). Unlike the constitutive laws for steel or concrete, a unique relationship 
for the bond stress-slip is not yet available despite the large number of investiga-
tions carried out. Nilson (1972), Mirza & Houde (1979), Ciampi et al. (1981), 
Jiang et al. (1984), Giuriani et al. (1991), Kankam (1997), Wu & Gilbert (2008) 
and many other researchers who have developed such relationships. Various as-
pects of stress transfer approaches has been investigated by Floegl & Mang 
(1986), Fantilli et al. (1998b), Manfredi & Pecce (1998); Polak & Blackwell 
(1998), Kwak & Song (2002), Lackner & Mang (2003), Foster & Marti (2003), 
Borosnyói & Balázs (2005), Eckfeldt (2005) , Ruiz et al. (2007), Vollum et al. 
(2008) and etc. Piyasena (2002) and Leutbecher & Fehlng (2009) have per-
formed a comprehensive survey on the bond stress-slip relationships. 

Stress transfer approach realistically models cracking, crack widths and de-
formations. However, accuracy of numerical results depends on the assumed 
bond stress-slip relationship. Besides, as compared to smeared approach, it is 
more complex and relatively rarely used in practice. 

1.2.4.3. Fracture Mechanics 
Initiated in 1960th by Kaplan (1961), the study of fracture mechanics has pro-
gressed by the turn of the century. Kesler et al. (1972) showed that the LEFM of 
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sharp cracks was inadequate for normal concrete structures. It was also sup-
ported by the results of Walsh (1972, 1976). Inspired by the softening and plastic 
models of FPZ initiated in the works of Barenblatt (1959, 1962), Dugdale 
(1960), Hillerborg et al. (1976) have proposed the first nonlinear theory of frac-
ture mechanics for concrete. 

In the early 1980s, it was recognised that plain concrete is not a perfectly 
brittle material in the Griffith’s sense, but it has some residual load-carrying ca-
pacity after reaching the tensile strength. This has led to the replacement of brit-
tle crack model by tension-softening approach, in which a descending branch 
was introduced to model the gradually diminishing tensile strength of concrete 
upon further crack is opening. Such a descending branch also emerges in most 
tension-stiffening models and much confusion has existed ever since about mod-
elling tension-softening and tension-stiffening in RC (Borst de 2002). 

The introduction of tension-softening in crack models was also motivated 
on theoretical grounds. It was observed that use of strength models (Cedolin & 
Bažant 1980) or the straightforward use of strain-softening models led to an un-
acceptable and unphysical mesh sensitivity (Bažant 1976, Crisfield 1982). Re-
cent developments in the application of fracture mechanics to concrete have 
made it possible to analyse effectively the post-cracking behaviour of plain con-
crete using the finite element (FE) method. These applications have incorporated 
tension-softening models to describe the gradual decay of stress/strain softening 
in plain concrete in tension as cracking propagates. Several researchers adopting 
a tension-softening model have obtained consistent results (Bažant & Oh 1983, 
Cornelissen et al. 1986, Hordijk 1991, Mier van 1991 and Carpinteri 1994). 

Numerical modelling of plain and reinforced concrete started in the late 
1960s with the landmark papers of Ngo & Scordelis (1967) and Rashid (1968) in 
which the discrete and smeared crack models were introduced. In the discrete 
crack model, cracking is assumed to occur as soon as the nodal force normal to 
FE boundaries exceeds the maximum tensile force that can be sustained and con-
tinuous re-meshing is required. In the smeared crack model, a cracked solid is 
imagined to be a continuum, describing the behaviour of cracked concrete by 
stress-strain relationships. This implies that the topology of the original FE mesh 
remains preserved. The latter approach leads to a straightforward computer im-
plementation, and widespread using in practice (Li & Zimmerman 1998). With 
nonlinear fracture mechanics, the range of validity of both approaches was ex-
tended, leading to the fictitious crack model (Hillerborg et al. 1976) and to the 
crack band model (Bažant & Oh 1983). These methods have been well evalu-
ated by Cope et al. (1979), Zimmerman (1986) and Elices & Planas (1989). 

The fictitious crack model (Hillerborg et al. 1976) is a suitable and simple 
model for FPZ, which may be viewed as a specialisation of other more general 
approaches (Elices et al. 2002). For example, Broberg (1999) for materials that 
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fail by crack growth and coalescence depicts the appearance of FPZ in a cross-
section normal to the crack edge. He proposes to describe FPZ, in general, by 
decomposing it into cells. The behaviour of the single sell is defined by relation-
ships between its boundary forces and displacements. This is very similar to the 
definition of FE in computations, and when these cells are assumed to be cubic 
(or prismatic) and to lie along the crack path, the resulting model is very similar 
to the smeared crack approach used for concrete, and, more specifically to the 
Bažant’s crack band approach (Bažant & Planas 1998). The latter model was 
found to be in good agreement with the basic fracture data (Bažant & Oh 1983), 
and has been recognised convenient for programming. Based on the crack band 
model, two crack models were distinguished: the fixed crack and the rotating 
crack. In both models, a crack is initiated when the maximum principal stress 
violates the tensile strength of concrete and the initial orientation of the crack is 
normal to the maximum principal strain. In the fixed crack model, the crack pla-
ne is fixed during the total analysis process, whereas rotating crack model al-
lows the crack plane to rotate (Cope et al. 1979). It is nowadays the main con-
crete fracture model used in industry and commercial FE codes: DIANA (Rots 
1988), SBETA (Cervenka & Pukl 1994, Cervenka et al. 1998) and ATENA (Cer-
venka et al. 2002). 

It is commonly accepted that the consideration of tension-softening is indis-
pensable in analysing the behaviour of concrete structures with relatively large 
un-reinforced areas (see Fig. 1.13a). The fracture mechanics model is often used 
for modelling behaviour of RC structures in combination with other approaches. 
Feenstra & Borst de (1995) proposed a numerical model, which combines frac-
ture mechanics concepts with tension-stiffening. It is assumed that the behaviour 
of cracked RC member, sketched in Fig. 1.13b, can be obtained by superposition 
of the stiffness of plain concrete, a stiffness of reinforcement and additional 
stiffness due to interaction between concrete and reinforcement. The latter effect 
was simulated using model proposed by Cervenka et al. (1990). Fantilli et al. 
(1998a) modelled behaviour of tensile RC members combining the fracture me-
chanics and the stress transfer approaches. 

1.2.4.4. Average Stress-Average Strain 
This simple approach, extensively applied in numerical analyses, is based on use 
of average stress-strain tension-stiffening relationship. The approach introduced 
by Rashid (1968) is based on smeared crack model, i.e. the cracks are smeared 
out in the continuous fashion and the cracked concrete is assumed to remain a 
continuum. The concrete becomes orthotropic with one of the material axes be-
ing oriented along the direction of cracking. 

Differently from the discrete crack model tracing individual cracks, smea-
red crack model deals with average strains and stresses. This model can handle 
single, multiple and distributed cracks in a unified manner. Thus, it can be used 
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for both, plain and RC structures (Cervenka 1995). In FE analysis, smeared 
crack model has proven to be more flexible and more computationally effective 
concerning the discrete crack model since no topological constraints exist. 

Tension-stiffening can be attributed either to tensile reinforcement (steel-
related model) or to concrete (concrete-related model). In the latter approach, it 
may be assumed that tension-stiffening is effective either in the whole tension 
area or in the specified zone (close to reinforcement), called the effective area. 

Gilbert & Warner (1978), Cervenka et al. (1990), Hofstetter & Mang (1995), 
Feenstra & Borst de (1995), Salys et al. (2009)∗ have used the steel-related ap-
proach. It should be noted that this approach is relatively rarely applied. 

In the effective area approach, the influence of tension-stiffening is limited 
to a volume of concrete in relatively close proximity to the bar (tension-
stiffening zone in Fig. 1.13a). In Model Code 90 (CEB-FIP 1991) tension-
stiffening zone was limited to concrete area within 7,5 bar diameters from the 
reinforcement (Fig. 1.13a). Outside this zone, the second mechanism of post-
cracking prevails, that of tension-softening (Vecchio & Collins 1986, Stramand-
inoli & Rovere 2008). 

Most of the continuum-based FE methods incorporate tension-stiffening by 
the constitutive law of tensile concrete (Suidan & Schnobrich 1973, Lin & Scor-
delis 1975, Prakhya & Morley 1990, Barros et al. 2001, Ebead & Marzouk 2005, 
Gribniak & Kondratenko 2005*, Gribniak & Girdžius 2005*, Gribniak et al. 
2005*, 2006*, 2007b*, 2007d*, Kaklauskas et al. 2007a* and Bacinskas et al. 
2007*). In present research, behaviour of RC member is modelled assuming a 
uniform tension-stiffening relationship over the whole tension area of concrete. 
Stress in the concrete is taken as the combined stress due to tension-stiffening 
and tension-softening, collectively called the tension-stiffening. Based on the 
above approach, a number of stress-strain constitutive relationships for cracked 
tensile concrete have been proposed. Kaklauskas (2001) and Bischoff (2001) 
have carried out a comprehensive review of the relationships. In the analysis of 
tension members, Bischoff (2001) has introduced bond factor β  representing the 
ratio of average tensile stress in concrete and the cracking stress. Figure 1.14a 
shows a number of tension-stiffening relationships expressed in terms of β . 

Figure 1.14b illustrates how the axial load in a cracked tension member is 
shared between the reinforcement and the concrete. At the cracked section of the 
member, all tension is carried by reinforcement. However, the concrete contin-
ues to carry tensile stresses between the cracks because of bond action. Tension-
stiffening represents the tensile forces carried by concrete between cracks. Al-
though crack spacing and crack widths depend on the bond quality, Bischoff 
(2001) stated that tension-stiffening is independent from bond parameters. 
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Fig. 1.13. Layered RC element with tension-stiffening zone (CEB-FIP 1991) 
(a); model of tensile RC element (Feenstra & Borst de 1995) (b) 

 

Fig. 1.14. Tension member (Fields & Bischoff 2004): expressions for the 
tension-stiffening bond factor (a); distribution of axial forces (b) and strains (c) 

Most tension-stiffening relationships were derived using experimental data 
of tension (Bischoff 2001, Fields & Bischoff 2004) or shear (Vecchio & Collins 
1986, Sato et al. 2004, Bentz 2005, Debernardi & Taliano 2006) RC members. 
These constitutive laws were applied for modelling flexural members, although 
their behaviour differs from tension or shear members. 
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The supervisor of the dissertation in co-authorship (Kaklauskas & Ghabous-
si 2001) has proposed an alternative approach for deriving tension-stiffening 
relationships from test moment-curvature diagrams of RC members. Based on 
inverse technique, tension-stiffening relationships were computed from the equi-
librium equations for incrementally increasing bending moment assuming por-
tions of the relationships obtained from the previous increments. Due to stochas-
tic distribution of test data, a probabilistic approach, based on Monte Carlo 
technique (Mosegaard & Tarantola 1995, Tarantola 2005, Kaklauskas et al. 
2007b∗), can be assumed in the inverse problem. 

In most cases, tension-stiffening relationships were derived using test data 
of RC members exposed to shrinkage. Therefore, the derived constitutive rela-
tionships in an integrated manner have included the effects of tension-softening, 
tension-stiffening and shrinkage. 

1.2.5. Shrinkage Influence on Stress-Strain Behaviour of RC 
Members 
The crack classification proposed by Leonhardt (1977) and presented in Section 
1.2.3, cover an ideal case when RC member subjected to external loading or so-
me internal processes separately. However, a real structure always has been un-
der complex action of above factors (Vítek et al. 2004, Lopes et al. 2008*). 

The necessity to assess shrinkage influence on deformation behaviour of 
cracked RC members has been recognised in the beginning of the 2nd half of XX 
century by Lash (1953), L’Hermite (1955), Figarovskij (1962), Nemirovski & 
Kochetkov (1969) and by Gilbert & Warner (1978). Recently Gilbert (1999, 
2001), Bischoff (2001), Fields & Bischoff (2004), Kaklauskas & Gribniak 
(2005b)*, Tanimura et al. (2005), Sato et al. (2007), Bischoff & Johnson (2007), 
Scanlon & Bischoff (2008) and Kaklauskas et al. (2009) who have reported ex-
perimental and theoretical results of shrinkage influence on tension-stiffening. It 
has been shown that the local bond stress is not only dependent of the local slip, 
but also on the stress-strain behaviour of the reinforcing steel, the duration of the 
applied load and the level of shrinkage. Early shrinkage causes a reduction in the 
cracking load and, under sustained service loads; shrinkage initiates the forma-
tion of additional primary cracks with time and causes a time-dependent degra-
dation of the steel-concrete bond (Wu & Gilbert 2008). Different investigators 
reported that shrinkage might significantly affect cracking resistance and defor-
mations of RC members’ subjected to short-term loading (Bischoff 1983, Foster 
et al. 1996, Gilbert 1999, 2001, Bischoff 2001, Fields & Bischoff 2004, Kak-
lauskas & Gribniak 2005b*, Girdžius & Gribniak 2005*, Bischoff & Johnson 
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2007, Scanlon & Bischoff 2008, Kaklauskas et al. 2006a∗, 2006b*, 2008a*, 
2008c*, Gribniak et al. 2008* and 2009*). 

Present research aims at shrinkage influence on deformational behaviour of 
RC members subjected to short-term loading. Figure 1.15 presents deforma-
tional behaviour of plain and RC members, assuming the uniform distribution of 
shrinkage strain across the section. As shown in Figs. 1.15a and 1.15c, shrinkage 
of an isolated plain concrete member would merely shorten it without causing 
camber. Reinforcement embedded in a concrete member provides restraint to 
shrinkage leading to compressive stresses in reinforcement and tensile stresses in 
concrete (see Figs. 1.15b and 1.15d). If the reinforcement asymmetrically placed 
in a section, shrinkage causes non-uniform stress-strain distribution within the 
height of the section (see Figs. 1.15e–1.15g). The maximal tensile stresses ap-
pear on the extreme concrete fibre, close to larger concentration of reinforce-
ment. These effects will be comprehensively discussed in Chapter 2. 

 

Fig. 1.15. Deformations of concrete and RC members due to shrinkage: plain 
concrete section (a); symmetrical RC section (b); free shrinkage deformation 

(c); shrinkage-induced deformations in a symmetrically reinforced element (d); 
asymmetrical RC net section (e); asymmetrical RC section (f) and 

deformations in an asymmetrically reinforced element (g) 

1.2.6. Review on Experimental Investigations 
Lightly reinforced members are a particular case of deformation analysis as the 
stress-strain state of such elements is significantly affected by cracked tensile 
concrete. Due to this, deformation prediction for lightly reinforced members is 
far less accurate in comparison to the beams with moderate and large reinforce-
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ment ratios. Therefore, experimental investigation of RC members with small 
amounts of reinforcement is to be of higher preference in present study. 

Lash (1953) in his investigations of ultimate strength and cracking resis-
tance of lightly reinforced beams has tested twelve beams with reinforcement 
ratio ranging from 0,18%  to 1,15% . Figarovski (1962) has carried out a broad 
experimental programme on investigation of deformations of lightly reinforced 
members. In these tests, 24 beams (out of the total number of 34) had reinforce-
ment ratio p below 0,70% . Gushcha (1967) has performed tests on four 
( 0,28 0,80%p = … ) and Nemirovski & Kochetkov (1969) on thirteen 
( 0,20 1,50%p = … ) beams. Experimental programme of Clark & Speirs (1978) 
was devoted to investigation of the tension-stiffening effect in flexural members. 
Fourteen beams and nine slabs with various depths, bar diameter and reinforce-
ment ratios ( 0,44 1,99%− ) were tested. Fantilli et al. (2005) have performed 
experimental investigations on five beams having different bar diameter 
( 0,20%p = ). Gilbert (2006, 2007) has reported test data of eleven one-way re-
inforced slabs with reinforcement ratio ranging from 0,18%  to 0,84% . It 
should be noted that in most of the above tests measurements on concrete 
shrinkage were not performed, with the exception of Figarovski (1962) who has 
simultaneously performed tests on concrete shrinkage and creep. 

Japanese researchers (Hashida & Yamazaki 2002, Tanimura et al. 2002, 
2005, 2007, and Sato et al. 2007) have carried out a comprehensive experimen-
tal and theoretical investigation on shrinkage effect on different types of RC 
members. Recently Bischoff (2001), Fields & Bischoff (2004), Bischoff & Mac 
Laggan (2006) and Bischoff & Johnson (2007) have reported on experimental 
and theoretical investigations of shrinkage influence on tension-stiffening. They 
have performed tests on tensile RC members being imposed to different levels of 
shrinkage strain. By means of a numerical procedure, the effect of shrinkage has 
been excluded from the tension-stiffening relationships. A similar analysis for 
flexural members has been carried out in (Bischoff & Johnson 2007). 

Bischoff & Paixao (2004) has performed investigations on tensile concrete 
members reinforced with non-metallic reinforcement, i.e. GFRP bars. They have 
shown that due to low modulus of elasticity of GFRP bars, tension-stiffening has 
a more pronounced effect on deformations of such members in respect to ordi-
nary RC elements. Besides, as the serviceability requirements in most cases of 
design of GFRP members is the critical condition, adequate assessment of ten-
sion-stiffening effect is of prime significance (Bischoff & Paixao 2004). 

Scott & Beeby (2005) were among the first who performed investigations on 
decay of tension-stiffening in the case of long-term loading. On a basis of these 
tests, they have shown that tension-stiffening was decreasing in time at a higher 
rate than it was previously thought. According to their results, the concrete force 
representing the tension-stiffening effect has lost half of its value within 20 days. 
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Persson (2001) carried out a comprehensive test programme on factors af-
fecting shrinkage of normal and HPC. Branch et al. (2002) conducted research 
on the factors affecting plastic shrinkage for HPC. Lee et al. (2003) studied the 
stresses created due to autogenous shrinkage of high-performance concrete 
(HPC). It was found that the shrinkage of concrete developed at a much higher 
rate than the tensile strength of concrete. Dias (2003) studied the effect of mix 
constituents, retarding and air entraining admixtures, additives, and environ-
mental factors on plastic shrinkage of concrete. Dulinskas et al. (2007∗, 2008*) 
investigated influence of curing condition on creep of compressive concrete. 
Sakata et al. (2009) have collected comprehensive database of creep and shrink-
age tests performed in Japan. 

Bosnjak & Kanstad (1997) demonstrated the use of advanced numerical 
techniques for the deformation problem. They calculated the deflections in 
Mjøsund Bridge in Norway, which has a main span length of 185 m. Deflections 
in the early part of the construction were observed within ±10% of the computed 
values when the MC 90 creep and shrinkage model was used. Griffin et al. 
(2004) tested at deck contraction induced deflection in a HPC bridge. The pur-
pose of the study was to calculate HPC highway bridge deflections due to shrin-
kage and temperature changes in the deck and to compare with the analytical 
results obtained from the finite element model of the bridge. 

1.2.7. Numerical Techniques Employed in the Analysis 
1.2.7.1. Layer Section Model 
Layer section model (Kaklauskas 2001) employed in present research is based 
on plane section hypothesis and use of material laws. The non-linear stress-strain 
relationship recommended by Eurocode 2 is adopted for idealisation of behav-
iour of compressive concrete. It should be noted that no significant difference is 
observed when different relationships are used in numerical procedures for de-
formational analysis of cracked RC beams (Stramandinoli & Rovere 2008). 

Concrete cracking, tension-softening and tension-stiffening in an integrated 
manner was modelled by a linear tension-stiffening relationship shown in Fig. 
2.3a. Recent investigations (Kaklauskas & Gribniak 2005b*, Gribniak et al. 
2008*, Bacinskas et al. 2008*, Kaklauskas et al. 2008a*, 2008c* and 2009*) have 
shown that application of such a simple law, simultaneously taking into account 
shrinkage effect, secures reasonable accuracy of deflection predictions of RC 
members. Tensile strength of concrete ctf  and the ultimate strain crβ ε⋅  are con-
sidered as the most important parameters of the relationship. The supervisor of 
this dissertation, based on the result of inverse analysis, has derived an equation 
for calculation of factor β  (Kaklauskas & Ghaboussi 2001): 
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Here p  is the tensile reinforcement ratio. For members reinforced with plain 
bars, factor β  is reduced by 20% (Kaklauskas 2001). 

To avoid excessive stiffness of RC members due to assumption of the sim-
plified tension-stiffening law, tensile strength ctf , calculated by Eurocode 2, is 
reduced by 20% (Kaklauskas et al. 2008a∗, 2008c* and 2009*). A more sophisti-
cated tension-stiffening law is under development in a parallel PhD project car-
ried out in the research group. The numerical implementation of the Layer pro-
cedure is comprehensively discussed in Section 2.5. 

1.2.7.2. Finite Element Code ATENA 
In recent years, the use of finite element (FE) analysis has increased due to pro-
gressing knowledge and capabilities of computer software and hardware. Nu-
merical techniques have been rapidly progressing for decades and commercial 
FE packages (ABAQUS, DIANA, ATENA, etc) now offer very powerful and gen-
eral analytical tool for analysis of RC structures (Peiretti et al. 1991, Argyris & 
Kacianauskas 1996, Kaklauskas et al. 2004*). In FE approach, tension-stiffening 
effect and consequently deflection can be predicted rationally (Gribniak et al. 
2004*, 2007d*). Present research employed FE code ATENA considered to be as 
one of the most successful software dedicated to analysis of RC structures. 

Concrete models in ATENA software (Cervenka 1985, Cervenka et al. 2002) 
are based on smeared crack concept and damage approach. Concrete without 
cracks is considered as an isotropic material and concrete with cracks as an or-
thotropic material. In present study the fixed crack model was used, see Fig. 1.16a. 

 

 

Fig. 1.16. The fixed crack model (a); uniaxial stress-strain law for concrete (b) 
and biaxial failure function for concrete (c) 
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In the fixed crack model crack direction and material axes are defined by the 
principal stress direction at the onset of cracking when the principal stress ex-
ceeds the tensile strength. In further analysis, this direction is fixed and cannot 
be changed though direction of principal strains may vary. A rotation of princi-
pal strain axes generates a shear stress on the crack plane. Consequently, the 
model of shear in cracked concrete becomes important. In the model a variable 
shear retention factor according to Kolmar (1986) is used, in which the shear 
modulus on the crack plane reduces with the crack opening. 

The stress response is defined by means of the equivalent uniaxial stress-
strain law as shown in Fig. 1.16b. This law illustrated by Fig. 1.16c describes the 
development of material state variables c1σ  and c2σ , and covers the complete 
material behaviour under monotonically increasing load including pre- and post-
peak softening in compression and tension. In case of a uniaxial stress state, it 
reflects experimentally observed behaviour. In a bi-axial state, the equivalent 
strain is defined as 

 eq eq
c c cε σ E′= . (1.6) 

Here cE ′  is the secant modulus of concrete; eq
cσ  is the principal stress in con-

crete. This operation eliminates the Poisson’s effect. In uncracked concrete, the 
material is considered as isotropic and the secant modulus describes its damage. 
In cracked concrete, two elastic modules are defined for tensile and compressive 
material axes, respectively. The effect of a stress state on strength is considered 
by modifying eq

cσ  using the failure functions shown in Fig. 1.16c. As can be 
expected, an increase of strength due to confinement in compression (based on 
Kupfer’s experiments) is relatively small in plane stress state. 

The above-described relation is applicable for the pre-peak response and, 
unfortunately, cannot be simply extended into the post-peak range. It is known 
from material research that post-peak softening is structure-dependent and a 
strain-based model may not objective. This concerns the material states 2 and 4 
in Fig. 1.16b. Therefore, a fracture mechanics approach is employed in ATENA 
for softening behaviour and is based on the crack band model (Bažant & Oh 
1983). Such a model substantially reduces mesh sensitivity (Cervenka & Pukl 
1995). In this model, discrete cracks and compression failure zones representing 
discontinuities are modelled by means of strain localization within bands in FE 
displacement fields. The model is based on the assumption of equal energy dis-
sipation. A unified approach is used for tensile and compressive softening. 

It should be noted that the tension-stiffening effect is not explicitly included 
as a constitutive law in the above model. However, the fracture mechanics-based 
model reaches almost the same effect, where distinct cracks formed and a con-
tribution of concrete between cracks generates a tension-stiffening effect, as was 
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shown by Cervenka (2002). Of course, this model has its limits bound to nu-
merical discretization and is objective only for sufficiently fine mesh sizes. 

1.3. Deflection Calculation Methods by Design Codes 

This Section presents deflection calculation techniques from most widely used 
design codes: Eurocode 2, ACI 318 and the Russian Code (SP 52-101). In these 
techniques, the beam theory (with plane section) is assumed and the stiffness of 
cracked cross section is based on tension-stiffening models derived from ex-
periments. It is understood that, in open cracks, the action of concrete is reduced 
and the action of reinforcement is dominant, while concrete between cracks con-
tributes to the stiffness significantly. The simple design models describe the 
global behaviour and serve everyday engineering design well. However, it can 
be observed that different formulas are used in different codes, which raises a 
question of their objectivity. Based on large amount of data, complex material 
effects are taken into account by means of empirical factors and expressions, 
which often lack physical interpretation. They are not able to account for an ac-
tual stress state and reinforcement detailing and are limited to simple cases of 
structural form and loading. It is common for all approximate methods based on 
the beam model to calculate the mid-span deflection from the formula represent-
ing an approximate integration of curvature: 

 2
0δ κs l= . (1.7) 

Here s is the factor depending on a loading case covering the shape of moment 
distribution; κ  is the curvature corresponding to the maximum moment; and l0 
is the beam span. Curvature is determined by the well-known expression 
κ M EI=  where M is the bending moment and EI is the flexural stiffness. 

1.3.1. Eurocode 2 
In the Eurocode 2 model (CEN 2004), a reinforced concrete member is divided 
into two regions: region I, uncracked, and region II, fully cracked. In region I, 
both the concrete and steel behave elastically, while in region II the reinforcing 
steel carries all the tensile force on the member after cracking. The average cur-
vature is expressed as 

 ( ) 1 2κ 1 ζ κ ζκ= − + . (1.8) 

Here 1κ  and 2κ  correspond to the curvatures in regions I, and II, respectively. 
A coefficient ζ  indicates how close the stress-strain state is to the condition 
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causing cracking. It takes a value of zero at the cracking moment and approaches 
unity as the loading increases above the cracking moment: 

 ( )2
crζ 1 β M M= − . (1.9) 

Here β  is a factor taken as 1,0 for the case of short-term loading; crM  and M  
are the cracking and the applied bending moments, respectively. 

1.3.2. ACI 318: Branson’s Effective Moment of Inertia 
Branson (1963, 1977) has proposed to calculate the effective moment of inertia 

eI  of the cracked section as follows: 

 ( ) ( )m m
e cr g cr cr1I M M I M M I⎡ ⎤= + −

⎣ ⎦
. (1.10) 

In this Ig represents the moment of inertia for uncracked concrete section ignor-
ing reinforcement and Icr is calculated for the fully cracked section at the yield-
ing of reinforcement; M is the applied moment; cr r g tM f I y=  is the cracking 
moment; r c0,623λf f ′=  [MPa] is the modulus of rupture; yt is the distance 
from the centre to the extreme tension fibre; f'c is the specified compressive con-
crete cylinder strength (see Section 1.1.2); factor λ  for normal-weight concrete 
assumed equal to 1. 

Above equation was derived empirically by applying a Newmark numerical 
procedure to the test of 58 laboratory beams (Branson 1963). Branson initially 
expected a squared term in the expression, but found that the power m needed to 
be increased from 2 up to 3 for average member behaviour or 4 for section be-
haviour. The value of 3 was originally applied to a simply supported beam sub-
jected to a uniformly distributed load and the value of 4 applied to a beam with 
central point load (Gohnert & Xue 2000). This equation represents a weighted 
average of uncracked ( c gE I ) and cracked ( c crE I ) member stiffness, and a higher 
power was required because the computed response tends to be pulled toward 
the stiffer uncracked rigidity (especially for lightly reinforced members). How-
ever, the computed member response is much too stiff for members with an 

g cr 15I I ≈  (Bischoff 2008). 
The ACI adopted m = 3 in Equation (1.10) without specifying any applica-

tion restrictions concerning the type of loading or boundary conditions. Such 
equation has been recommended by ACI Committee 435 since 1966 and has be-
en used in ACI 318 since 1971. Accuracy of deflection prediction using both 
approaches (i.e. the power m = 3 and 4) has been investigated in Section 4.2. 
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1.3.3. Russian Code (SP 52-101) 
1.3.3.1. Analytical Approach 
Curvature of uncracked and cracked member is expressed as following: 

 
cr cr cp

c el

ct,n el
crcr

tcr red

2000, ; ;
0,85 3

κ where
., ,

M M M E f
E I

f IM MM M
yE I

⎧ ≤ =⎪⎪= ⎨
⎪ =>
⎪⎩
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In this equation, Iel represents the moment of inertia for the uncracked section; 
Ired is the reduced moment of inertia of fully cracked section; cE  is the tangent 
modulus of elasticity (see Table 1.1); fcp and fct,n are the compressive prism and 
characteristic tensile strength of concrete, respectively. The latter strengths are 
listed in Table 1.4. 

The reduced moment of inertia takes into consideration tension-stiffening 
effect attributed to the tensile reinforcement using factor sψ , which modified 
deformation modulus of tensile reinforcement s1E : 

 s1,cr s1 s s sm s,cr crψ ; ψ ε ε 1 0,8E E M M= = = − ⋅ . (1.12) 

Here smε  is the mean strain in tensile reinforcement; s,crε  is the steel strain in 
the cracked section. 

1.3.3.2. Numerical Approach 
A simple iterative numerical procedure proposed in the Russian Code employs a 
concept of secant deformation modulus (analogous to the technique discussed in 
Section 1.2.7.1). An elastic-plastic diagram has been adopted for idealisation of 
reinforcement behaviour. Tension-stiffening is modelled in a similar way as in 
the analytical technique [see Equation (1.12)] using factor s,iψ  that modifies 
deformation modulus of the i-th layer of tensile reinforcement s,iE ′ : 

 
1cr

s,i s,i s,i
s,i s,i

s,i s,i

ε ε
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ψ ε
E

−
⎛ ⎞′

= = +⎜ ⎟
⎜ ⎟
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. (1.13) 

Here s,iε  and cr
s,iε  are the strains of the i-th layer of steel at loading and just after 

cracking, respectively. 
Three-linear stress-strain diagram shown in Fig. 1.17 has been introduced 

for idealisation of concrete behaviour, both in compression and tension. In this 
figure cE  is the tangent modulus of elasticity (see Table 1.1); fcp and fct are the 
compressive prism and tensile strength of concrete, respectively. These parame-
ters are given in Table 1.4. 



1. LITERATURE SURVEY ON DEFORMATION MODELS OF RC MEMBERS 49 

 

 

Fig. 1.17. The stress-strain diagram of concrete (NIIZhB 2006) 

Table 1.4. Strength of concrete (NIIZhB 2006) 

Normative strength (Class) of concrete B, MPa 
Strength 

10 15 20 25 30 35 40 45 50 55 60 
fcp 6,0 8,5 11,5 14,5 17,0 19,5 22,0 25,0 27,5 30,0 33,0 
fct 0,56 0,75 0,9 1,05 1,15 1,3 1,4 1,5 1,6 1,7 1,8 
fct,n 0,85 1,1 1,35 1,55 1,75 1,95 2,1 2,25 2,45 2,6 2,75 

1.4. Concluding Remarks of Chapter 1 

While being confident about sufficient accuracy of deflection analysis of struc-
tures with moderate or large amounts of reinforcement, investigators often raise 
concerns about the validity of chosen tension-stiffening parameters for lightly 
reinforced members. Complexity of the issue is indicated by the wide-spread use 
of different code techniques and disparity of their prediction results. To check 
the accuracy of the predictive models, very few reports on accurately performed 
tests of lightly reinforced flexural members are available. 

Cracking and tension-stiffening parameters probably have the most signifi-
cant effect on numerical results of concrete members subjected to short-term 
loading. Tension-stiffening effects usually need to be included in an analysis that 
uses averaged stresses and strains to predict member behaviour. Such analysis 
can be performed using smeared FE, Layer section approach or truss modelling 
which incorporates compatibility of overall averaged strains. These techniques 
require a suitable material model for cracked concrete, and tension-stiffening 
results can be used to obtain the post-cracking stress-strain response of concrete. 
Two main deficiencies can be noted concerning most known tension-stiffening 
relationships: 

• Tension-stiffening relationships were derived using test data of tension or 
shear RC members. Subsequently, these constitutive laws were applied 
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for modelling bending elements which behaviour differs from tension or 
shear members. 

• The RC members employed for deriving the constitutive laws were ex-
posed to shrinkage. Therefore, tension-stiffening was coupled with 
shrinkage effect. 

Effects of shrinkage and accompanying creep of concrete along with crack-
ing provide the major concern to the structural designer because of the inaccura-
cies and unknowns that surround them. In general, these effects are taken into 
account of long-term deformation and pre-stress loss analysis of reinforced con-
crete structures. Though considered as long-term effects, shrinkage and creep 
also have influence on crack resistance and deformations of RC members sub-
jected to short-term loading. Future tests should carry out shrinkage recordings 
for subsequent elimination of this effect. 

Present research is dedicated to developing a technique for deriving free-of-
shrinkage tension stiffening relationships using test data of shrunk bending RC 
members. It is intended to develop an inverse technique that uses moment-
curvature diagrams of shrunk RC members. 

Test results on shrinkage and in some cases on deformations of RC mem-
bers are marked with large scatter. Due to stochastic distribution of test the data, 
a probabilistic point of view, based on Monte Carlo technique, can be assumed 
in the inverse problem. Accuracy of the predictions often varies within ranges of 
various parameters. Therefore, the author is aiming to develop a statistical pro-
cedure for assessing accuracy of the predictions in regard to test data taking into 
account inconsistency of the data. 

Based on the literature survey performed, following basic issues should be 
raised: 

1. Developing a Layer section model for short-term deformation analysis of 
cracked reinforced concrete members subjected to short-term loading tak-
ing into account shrinkage and accompanying creep effects. 

2. Investigating experimentally Concrete shrinkage effect on short-term de-
formations of lightly reinforced beams. 

3. Developing a numerical procedure for deriving free-of-shrinkage tension-
stiffening relationships using test data of shrunk flexural members. 

4. Developing a statistical procedure for assessing accuracy of deflection 
predictions of reinforced concrete members, taking into account inconsis-
tency of the test data. 

5. Test data on free shrinkage of plain concrete specimens and deflec-
tions/curvatures of reinforced concrete bending members should be col-
lected to perform comparative statistical analysis of various calculation 
methods. 
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2 
Short-Term Deformational Analysis 

of Shrunk RC Members 

This Chapter investigates shrinkage influence on tension-stiffening and stress-
strain state of RC members subjected to short-term loading. A simple transfor-
mation formula has been proposed for eliminating shrinkage from tension-
stiffening relationships of symmetrically reinforced members. An innovative 
numerical procedure has been developed for deriving free-of-shrinkage tension-
stiffening relationships using test data of bending RC members. The procedure 
combines direct and inverse techniques of analysis of RC members. To eliminate 
shrinkage effect, a reverse shrinkage (expansion) strain was taken in the direct 
technique. This Chapter also deals with the computational aspects of convergence 
of the inverse procedure in order to provide a reliable and simple technique. 

2.1. Strain in Concrete due to Shrinkage and 
Associated Creep 

Most known tension-stiffening relationships have been derived using test data of 
shrunk RC members. Therefore, tension-stiffening was coupled with shrinkage 
effect. As shown in Section 1.2.5 shrinkage of an isolated plain concrete mem-
ber would merely shorten. Reinforcement embedded in a concrete member pro-
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vides restraint to shrinkage leading to compressive stresses in reinforcement and 
tensile stresses in concrete (see Figs. 1.15b and 1.15d). If the reinforcement 
asymmetrically placed on a section, shrinkage causes a non-uniform stress-strain 
distribution within the height of the section. The maximal tensile stresses appear 
on the extreme concrete fibre, close to larger concentration of reinforcement. As 
shrinkage is a long-term effect, creep always relieves shrinkage-induced stres-
ses. Since concrete is an ageing material, its strength and modulus of elasticity 
increase with time as well as does shrinkage strain. Analysis is also complicated 
by interdependence between stress history and creep strain. Trost-Bažant me-
thod, called the age adjusted modulus method (Bažant 1972), gives a simple 
procedure for computing a strain under a varying stress. The method introduces 
the ageing coefficient ( )χ , τt  that assesses that the stress ( )cΔσ , τt  gradually 
applied from time τ  to t will cause smaller strain than the stress ( )cΔσ , τt  in-
stantly applied at time τ  and kept constant until time t . For the shrinkage analy-
sis of a non-cracked member assuming zero initial stress at time τ , strain in 
concrete can be expressed as follows (Gilbert 1988): 
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Here ( )ca , τE t  is the age-adjusted effective modulus of concrete; ( )c τE  is the 
modulus of elasticity of concrete at time τ ; ( )φ , τt  is the creep factor and 

( )csε , τt  is the mean free shrinkage strain of concrete taken negative. If creep 
factor is related to elastic deformation of concrete at 28 days, the age-adjusted 
effective modulus has the following form (CEB-FIP 1997): 
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. (2.2) 

The above formulas were derived for compressive concrete assuming the 
linear creep law. The non-linear creep effect arising at advanced stress levels 
may also be taken into account (CEB-FIP 1991). Few investigations have been 
carried out concerning tensile creep (Gilbert 1988). In most practical cases, 
Equations (2.1) and (2.2) are used to assess creep in tension members. 

Stresses due to shrinkage in a RC member can be derived based on equilib-
rium and compatibility of strains under the condition of perfect bond. For n lay-
ers of steel, a set of n equations with n unknowns has to be solved. In an alterna-
tive approach, shrinkage effect is modelled by equivalent fictitious actions (axial 
force and bending moment) (Gilbert 1988). 
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2.2. Approaches and Assumptions 

Present investigation is aimed at developing non-linear stress-strain calculation 
techniques of shrunk RC members subjected to short-term external load. The 
techniques are based on the following approaches and assumptions: 1) smeared 
crack approach; 2) linear strain distribution within the depth of the section im-
plying perfect bond between concrete and reinforcement; 3) uniform shrinkage 
within the section; 4) shrinkage-induced stresses do not exceed tensile strength 
of concrete fct; 5) all concrete fibres in the tension zone follow a uniform stress-
strain tension-stiffening law. 

It has been assumed that members at time τ  started shrinking and at time t  
were exposed to external loading. Two stages of stress-strain behaviour have 
been considered: 1) pre-loading stage assessing long-term effects of shrinkage 
and accompanying creep, and 2) loading stage dealing with short-term action of 
the external load. Figure 2.1 illustrates stress-strain behaviour of tensile concrete 
assumed for these two stages. At the pre-loading stage (see Fig. 2.1a), stresses 
are modelled using the age-adjusted effective modulus of elasticity ( )ca , τE t . At 
the loading stage (see Fig. 2.1b), stresses prior to cracking are governed by the 
modulus of elasticity ( ) ( )c ca , τE t E t> . Behaviour of cracked tensile concrete 
was modelled using linear tension stiffening relationship shown in Fig. 2.1b. 

 

 

Fig. 2.1. Models of non-cracked (a) and cracked (b) tensile concrete 

2.3. Analysis of Tension Members 

2.3.1. Shrinkage-Induced Stresses at Pre-Loading Stage 
Although there are known analytical solutions for shrunk tensile members (Bis-
choff 2001), it was intended on the example of this simple element to illustrate 
the proposed technique. As shown in Fig. 2.2c, shrinkage is modelled by ficti-
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tious axial force ( )cs , τN t  having adequate effect on the stress-strain state of the 
member. To derive ( )cs , τN t , consider a plain concrete member (see Figs. 2.2a 
and 2.2c) having section area cA  and deformation modulus ( )ca , τE t  [see Equa-
tion (2.1)]. To impose axial strain ( )csε , τt , the member has to be subjected to 
such compressive force (see Figs. 2.2c and 2.2d): 

 ( ) ( ) ( )cs cs ca c, , ,N t t E t Aτ = ε τ τ . (2.3) 

Here cA  is the area of concrete net section. Force ( )cs , τN t  is applied at the cen-
troid of RC section. For a symmetrical section, member strain is calculated by 
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Here sA  and sE  are the area and the elastic modulus of reinforcement, respec-
tively. Shrinkage-induced internal forces acting in the steel and concrete are 
equal, but have opposite signs. Based on this equilibrium condition, stress in 
concrete can be expressed as 

 ( ) ( )
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s ca

,
,

1 ,
t E p

t
E p E t
ε τ

σ τ = −
+ τ

. (2.5) 

Here s cp A A=  is the reinforcement ratio. 

 

Fig. 2.2. Deformations of symmetrically reinforced concrete member due to 
shrinkage: plain concrete section (a); reinforced section (b); modelling of free 

shrinkage deformation (c); deformations due to restrained shrinkage neglecting 
and taking into consideration creep effect (d) and (e), respectively 

2.3.2. Stress-Strain Analysis of Shrunk Members Subjected to 
Short-Term Loading 
Consider a case when a shrunk member is subjected to a short-term axial load P. 
For a non-cracked member, strain in reinforcement at time t can be calculated 
using the principle of superposition: 
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If the member cracks, the non-linear analysis is performed using a tension 
stiffening relationship (see, for instance, one shown in Fig. 2.1b). It should be 
noted that Equation (2.6) needed for the calculation has two different moduli of 
elasticity of concrete, i.e. ( )cE t  and ( )ca , τE t  or alternatively, ( )c τE , see 
Equation (2.1) and Fig. 2.1a. Therefore, in a given form Equation (2.6) cannot 
be used for the non-linear analysis. Taking ( )cE t  as a reference modulus of 
elasticity, the first member of Equation (2.6) is rearranged in the following way: 

 ( ) ( ) ( ) ( ) ( )s,cs s,cs cs c c c c s s,t t t E t A E t A E Aε τ = ε = ε ⎡ + ⎤⎣ ⎦ . (2.7) 

Here ( )s,csε t  is the steel strain due to shrinkage assumed a short-term action. In 
the Equation (2.7), effective shrinkage strain ( )csε t  has been introduced. Effec-
tive shrinkage strain is calculated from the condition of equality of the steel 
strains defined by Equations (2.4) and (2.7): 
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The non-linear analysis based on the secant deformation modulus concep-
tion takes into account varying material properties. It is performed using the fol-
lowing equation (see Fig. 2.2e): 

 ( ) ( ) ( )
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s c cs cs c,sec c
c,sec c s,sec s
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N t P

t t N t t E t A
E t A E A

+
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Here ( )c,secE t  and s,secE  are the secant deformation moduli of concrete (see Fig. 
2.1b) and steel, respectively. Strain in concrete due to acting stress 

 ( ) ( ) ( )c,σ c cst t tε = ε − ε . (2.10) 

The non-linear analysis is performed iteratively through the following steps: 
 Effective shrinkage strain ( )csε t  is calculated by the Equation (2.8). 
1. Elastic properties of concrete and steel are assumed in the first iteration. 
2. Strain in reinforcement ( )sε t  and strain in concrete ( )c,σε t  are calculated 

by Equations (2.9) and (2.10), respectively. 
3. For the assumed constitutive laws, mean stresses and corresponding secant 

deformation moduli, ( ) ( ) ( )c,sec c,m c,σσ εE t t t=  and s,sec s,m sσ εE = , are 
calculated for concrete and steel, respectively. 
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4. The above secant deformation moduli are compared with the ones initially 
assumed or computed in the previous iteration. If the agreement is not 
within the assumed precision, a new iteration is started from step 3 using 
new values of secant deformation modulus. 
The above analysis based on effective shrinkage strain ( )csε t , gives ade-

quate stress and strain in steel as well as stress and total strain in concrete. Total 
strain in concrete, being equal to steel strain [see Equation (2.9)], can be split 
into these components: 

 ( ) ( ) ( ) ( ) ( )c cs creep el pl, , ,t t t t tε τ = ε τ + ε τ + ε + ε . (2.11) 

Here ( )elε t  and ( )plε t  are the mean elastic and plastic strains, respectively, due 
to the contemporary effect of shrinkage and external loading; ( )creepε , τt  is the 
shrinkage-induced creep strain which occurred at the pre-loading stage. Elastic 
and plastic strains due to stress ( )c,mσ t  can be assessed from Fig. 2.1b. Creep 
strain is calculated at stress ( )c,csσ , τt  using the Equations (2.1) and (2.5). 

2.3.3. Numerical Investigation of Tension-Stiffening 
Shrinkage effect on tension-stiffening has been investigated numerically. The 
investigation procedure is described as follows. 
1. Consider a fully defined symmetrically reinforced member subjected to ax-
ial tension. The linear constitutive relationship shown in Fig. 2.3a was used to 
model tension stiffening whereas behaviour of reinforcement was assumed lin-
ear elastic. Basic geometrical and material parameters used in this numerical 
investigation are presented in Table 2.1 (Member-1) and Fig. 2.3b. 
2. Three analyses assuming different values of free concrete shrinkage strain, 

csε , i.e. 0, –200 and –400 micro-strain, have been carried out using the technique 
described above. The calculated load-deformation diagrams are shown in Figs. 
2.3c and 2.3d. The initial shortenings of the member due to shrinkage are shown 
in Fig. 2.3c. As in general testing practice these initial deformations are ignored, 
the load-deformation diagrams were moved to zero point (see Fig. 2.3d). Based 
on this figure, it can be concluded that tensile stresses in concrete induced by 
shrinkage significantly reduced cracking resistance and stiffness of the member. 
3. Based on the load-sharing concept (Bischoff 2001), tension-stiffening rela-
tionships were derived from the load-deformation diagrams shown in Fig. 2.3d. 
The calculated relationships for different values of shrinkage are presented in 
Fig. 2.3e. As expected, the relationship derived for the non-shrunk member 
( csε 0= ) was the same as the originally assumed (see Fig. 2.3b). Although the 
maximal stresses in the remaining two curves were well below the tension 
strength, their descending branches were identical to the original relationship. As 
shown in Fig. 2.3e, negative stress portions were present in the curves resulting 
in reduction of factor β  (see Fig. 2.3a). 
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Fig. 2.3. Numerical modelling of tension RC member: linear tension-stiffening 
relationship (a); the relationship used in numerical analysis (b); shrinkage 

effect on load-deformation behaviour of modelled member (c); load-
deformation diagram neglecting pre-loading displacements due to shrinkage 

(d); tension-stiffening relationships derived from the load-deformation 
diagrams (e) and transformation of tension-stiffening relationship (f) 

Based on the above numerical results, it has been perceived that summation 
of the maximal stress of the curves shown in Fig. 2.3e and the stress induced by 
shrinkage [see Equation (2.5)] results in tension strength of concrete. Then the 
modified tension strength of concrete of a shrunk member can be expressed as 

 ct,cs ct c,csf f= −σ . (2.12) 



58 2. SHORT-TERM DEFORMATIONAL ANALYSIS OF SHRUNK RC MEMBERS 

 

Graphically it is shown in Fig. 2.3f. With the introduction of a new coordi-
nate system, it can be written in the following way: 

 { }ct ct c,cs ct ct c,cs;∗ ∗ε = ε − ε σ = σ −σ . (2.13) 

The above transformation formulae can be used for deriving a free-of-
shrinkage tension-stiffening relationship from tests of shrunk members. Equa-
tions (2.13) imply that the stress-strain analysis of shrunk tension members can 
be performed by two approaches. In the first approach, shrinkage is assessed in 
the analysis (see Section 1.2.7.1) employing a free-of-shrinkage tension-
stiffening relationship. In the second approach, shrinkage effect is taken into 
account by modifying the tension-stiffening relationship using Equations (2.13). 

Table 2.1. Basic parameters of RC members 

h d b As1 As2 f'c Es p εcs,obs No. Element 
mm mm2 MPa GPa % μm/m 

1. Member-1 200 – 200 800 – – 200 2,0 – 
2. NS:15M (Fields & Bischoff 2004) 250 – 250 400 400 41,21 190 1,3 –232 
3. HS:15M (Fields & Bischoff 2004) 250 – 250 400 400 81,0 190 1,3 –337 
4. NS:20M (Fields & Bischoff 2004) 250 – 250 600 600 54,91 198 1,9 –261 
5. HS:20M (Fields & Bischoff 2004) 250 – 250 600 600 81,01 200 1,9 –337 
6. Member-2 250 225 180 284 284 25,4 200 0,72 – 
7. V-01-13WB (Sato et al. 2007) 200 160 150 253 – 30,61 193 1,12 –263 
8. V-01-13DB (Sato et al. 2007) 200 160 150 253 – 32,51 193 1,12 –5,6 
9. Z1 (Gilbert 2007) 100 82 850 141 – 38,4 200 0,22 – 
10. Z2 (Gilbert 2007) 100 81 850 227 – 38,4 200 0,32 – 
11. Z3 (Gilbert 2007) 100 80 850 354 – 38,4 200 0,52 – 
12. Z4 (Gilbert 2007) 100 79 850 565 – 48,4 200 0,82 – 

2.3.4. Application to Test Data 
Transformation Equations (2.13) were applied to test data reported by Fields & 
Bischoff (2004). Four 3,5 m long symmetrically reinforced members of square 
section were tested under axial tension. Main geometrical and material proper-
ties of the members are listed in Table 2.1 (elements No. 2–5). 

First, tension-stiffening relationships were calculated from experimental lo-
ad-strain diagrams using the load-sharing concept (Bischoff 2001). The obtained 

                                                 
1Cylinder strength from 100 200∅ ×  mm specimens. 
2Reinforcement ratio ( )s1 100%p A b d= ⋅ × . 
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relationships are shown in Fig. 2.4a. The stresses were normalised based on ten-
sion strength ct.EC2f  calculated by Eurocode 2. Based on Fig. 2.4a, two points 
can be noted: 1) maximal stresses were well below (40 to 57%) the tension 
strength of concrete; 2) as shrinkage was not assessed in the analysis, significant 
portions of negative stresses were present. 

Second, Equations (2.13) were applied to eliminate shrinkage effect from 
the tension-stiffening relationships. The resulting curves are shown in Fig. 2.4b. 
The maximal stresses have increased, both having reached about 80% of the ten-
sion strength. This has resulted in reduction of negative stress intervals. 

2.4. Analysis of Flexural Members 

2.4.1. Stress-Strain Analysis of Shrunk Loaded Beams 
As shown in Fig. 2.5, fictitious shrinkage force ( )cs , τN t  in a non-symmetrical 
section acts with eccentricity exerting bending upon the member: 

 ( ) ( ) ( )cs cs c RC, , ,M t N t y y tτ = τ ⎡ − τ ⎤⎣ ⎦ . (2.14) 

Curvature and strain at any fibre i of a non-cracked member (see Fig. 2.5e) 
due to shrinkage can be calculated by the formulae: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
cs cs ca tr

i,cs cs i RC cs ca tr
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, , , , , , .

t M t E t I t

t t y y t N t E t A t

κ τ = τ ⎡ τ τ ⎤⎣ ⎦
ε τ = κ τ ⎡ − τ ⎤ + τ ⎡ τ τ ⎤⎣ ⎦ ⎣ ⎦

 (2.15) 

Here ( )tr , τA t  and ( )tr , τI t  are the area and the second moment of area of the 
transformed section, respectively. 

 

 

Fig. 2.4. Tension-stiffening diagrams derived from Fields & Bischoff (2004) 
test data: ignoring (a) and taking into consideration (b) shrinkage effect 
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Fig. 2.5. Shrinkage effect in asymmetrically reinforced section: plain concrete 
net section (a); RC section (b); equivalent system of fictitious shrinkage force 
and bending moment (c); Layer section model (d) and distribution of stresses 

in concrete across the section (e) 

Consider a case when a shrunk member is exposed to external short-term 
bending. If the member is not cracked, components of strains (curvatures) and 
shrinkage-induced stresses and external bending moment M can be calculated 
based on superposition principle. For the analysis of cracked members, the non-
linear procedure described in (Kaklauskas 2004) can be used. It is based on the 
Layer section model and varying material properties assessed in terms of secant 
deformation modulus. Using the above approach, curvature and strain at any 
layer i (see Fig. 2.5e) can be calculated by the formulae: 
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 (2.16) 

Here n is the total number of layers; bi and ti are the width and thickness of the i-
th layer; yi is the distance of the i-th layer from the top edge of the section; 

( )i,secE t  is the secant deformation modulus of i-th layer. ( )RCy t  and ( )cy t are 
the coordinates of centroids of RC and plain concrete section, respectively, (see 
Fig. 2.5d) calculated as follows: 
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. (2.17) 

Here li is the factor taken 1 for concrete and 0 for reinforcement layers. Due to 
changing material properties of different layers, coordinates of centroids ( )RCy t  
and ( )cy t , vary with increasing load, and are different from those used in Equa-
tion (2.14). 
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In analogy with tension members, the concept of effective shrinkage strain, 
( )csε t  has been applied. Due to complex ( )csε t  analytical expression for 

asymmetrical sections, it is recommended to be defined numerically: 

 ( ) ( ) ( ) ( )cs cs s,cs s,cs, ,t t t t′ ′ε = ε τ ε τ ε . (2.18) 

Here ( )s,csε , τt′  and ( )s,csε t′  are the strains in the reinforcement layer with the 
largest area, including and excluding creep effect, respectively. 

2.4.2. Free-of-shrinkage Tension-Stiffening Relationships 
The proposed method for eliminating shrinkage from tension-stiffening relation-
ships based on Layer approach combines direct and inverse techniques of analy-
sis of RC members. In the direct technique, moment-curvature diagrams are cal-
culated for assumed material stress-strain relationships. The inverse technique 
aims at determining tension-stiffening relationships for cracked tensile concrete 
from flexural tests of RC members. For given moment-curvature curves, the ma-
terial stress-strain relation (including the descending branch) is computed from 
the equilibrium equations for incrementally increasing moment assuming por-
tions of the relations obtained from the previous increments (see Section 2.5). 

This Section presents an improved technique for deriving free-of-shrinkage 
tension-stiffening relations from test data of shrunk flexural members. The ana-
lysis is performed in the following steps sketched in Fig. 2.6. 
Step 1. Using the test moment-curvature diagram shown in Fig. 2.6a, a ten-
sion-stiffening relationship is derived (see Fig. 2.6b) by the inverse technique. 
Step 2. The tension-stiffening relationship obtained in Step 1 (shown also in 
Fig. 2.6c) is applied in the direct analysis assuming reverse (expanding) shrink-
age strain expn csε ε= −  [see Equation (2.18)]. The calculated free-of-shrinkage 
moment-curvature diagram is shown in Fig. 2.6d along with the experimental 
curve. It should be noted that due to the expansion of concrete, initial negative 
curvature was obtained. In absolute value, it is equal to the initial curvature (the 
positive one) due to shrinkage. 
Step 3. As unloaded non-shrunk beam has no curvature, the free-of-shrinkage 
moment-curvature diagram obtained in Step 2, is shifted to zero point as shown 
in Fig. 2.6e. Using this diagram, a free-of-shrinkage tension-stiffening relation is 
obtained by the inverse analysis. This relationship is shown in Fig. 2.6f along 
with the one obtained from the test of shrunk member (see Fig. 2.6b). 

2.4.3. Numerical Investigation of Tension-Stiffening 
This Section numerically investigates shrinkage influence on cracking resis-
tance, deformations and tension-stiffening of bending members. To begin with, 
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analysis was performed to investigate whether the stress-strain transformation 
technique described in Section 2.3.3 is applicable to bending members. Trans-
formation Equations (2.13) require knowledge of shrinkage-induced stress c,csσ . 
However, shrinkage in asymmetrically reinforced sections induces a non-
uniform stress state (see Fig. 2.5e). Therefore, a symmetrically reinforced sec-
tion was used in the analysis assuming stress c,csσ  from the Equation (2.5). Ba-
sic geometrical and material characteristics are given in Table 2.1 (see Member-
2). Stress-strain relationship recommended by Eurocode 2 (CEN 2004) was as-
sumed for the compressive concrete, whereas the behaviour of cracked tensile 
concrete was modelled by the diagram shown in Fig. 2.3b. 

 

 

Fig. 2.6. Technique for deriving free-of-shrinkage tension-stiffening 
relationships from RC beam tests: deriving tension-stiffening relationship from 

test results (a) and (b); calculating free-of-shrinkage moment-curvature 
diagrams (c) and (d); deriving free-of-shrinkage tension-stiffening 

relationships (e) and (f) 
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Based on the numerical procedure, described in Section 2.4.1, the analysis 
was performed using three csε  values: 0; –200 and –400 micro-strain. Figure 
2.7a presents the calculated moment-curvature diagrams. Although shrinkage 
had relatively little effect on initial curvatures (no external bending), it has sig-
nificantly reduced cracking resistance and stiffness of cracked members. 

Next analysis has assumed modified tension-stiffening relationships [see 
Equations (2.13)] and csε 0= . Figure 2.7b shows the resulting moment-
curvature diagrams by dotted lines. As the diagrams calculated by the two ap-
proaches coincided, it can be concluded that the stress-strain transformation 
technique is applicable to symmetrically reinforced bending members. 

For asymmetrical sections, a more sophisticated procedure described in Sec-
tion 2.4.2 was applied for deriving free-of-shrinkage tension-stiffening relation-
ships. Based on this technique, the relationships were derived from test data of 
bending RC members reported by Sato et al. (2007) and Gilbert (2007). 

Sato et al. have performed four point bending tests on singly reinforced be-
ams. The tests have included shrinkage and creep recordings. Basic parameters 
of two beams (V-01-13WB and V-01-13DB) employed in the analysis are given 
in Table 2.1. Most of the characteristics, excepting curing conditions, were very 
similar for both beams. Beam V-01-13WB was prevented from shrinking (wet 
curing), whereas beam V-01-13DB was exposed to drying condition. This re-
sulted in different shrinkage strains (see Table 2.1). 

A bilinear stress-strain relationship has been adopted for reinforcement ma-
terial idealization. The Eurocode 2 stress-strain relationship was assumed for the 
compressive concrete. Figure 2.8 illustrates the steps of the proposed technique 
for deriving free-of-shrinkage tension-stiffening relationship for the beams. 

First, tension-stiffening relationships were obtained from moment-curvature 
diagrams of two experimental beams (see Fig. 2.8a). The relationship derived 
from data of the beam V-01-13DB contains a portion of negative stress. Second, 
using the obtained tension-stiffening relationships, free-of-shrinkage moment-
curvature diagrams were calculated (see Fig. 2.8b). It should be pointed out that 
due to similar beam parameters, the calculated diagrams were very close to each 
other. Third, free-of-shrinkage tension-stiffening relationships were derived us-
ing the inverse technique (see Fig. 2.8c). The calculated relationships were also 
similar and the portions of negative stresses practically disappeared. 

Similar analysis has been carried out for the test data of singly reinforced 
slabs reported by Gilbert (2007). Basic parameters of the slabs Z1-Z4 with rein-
forcement ratio 0,20 0,84%…  are given in Table 2.1. Due to missing data in the 
original paper, a typical free shrinkage strain 200 μm m−  for concrete at 28 
days (see Chapter 4), has been assumed in this analysis. The calculated tension-
stiffening relationships with normalised stresses (concerning tension strength 

ct.EC2f  assessed by Eurocode 2) are shown in Fig. 2.9. Tension-stiffening rela-
tionships calculated neglecting shrinkage effect are shown in Fig. 2.9a. 
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Fig. 2.7. Calculated moment-curvature diagrams taking into consideration 
shrinkage effect 

 

Fig. 2.8. Deriving tension-stiffening relationships free-of-shrinkage from data 
reported by Sato et al. (2007) 
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For slabs with higher reinforcement ratios (Z3 and Z4), the relationships had 
smaller maximal stresses and less expressed tension-stiffening effect. In the ana-
lysis when shrinkage was eliminated, the calculated tension-stiffening relation-
ships have approached each other (see Fig. 2.9b). The change in stresses due to 
elimination of shrinkage was more evident for the members with higher rein-
forcement ratios. It should be noted that the oscillations in the stress-strain curves 
shown in Figs. 2.8 and 2.9 were due to numerical peculiarities of inverse proce-
dure (discussed in Section 2.5) reflecting the phenomenon of discrete cracking. 

 

 

Fig. 2.9. Tension-stiffening relationships derived from Gilbert test data (2007) 
ignoring (a) and taking into consideration (b) shrinkage effect 

2.5. Computational Aspects of Inverse Problem of RC 
Flexural Members 

In usual structural analysis problems, called the simulation or the forward ones, 
strength and strains (curvature) have to be defined when material properties are 
given. Unfortunately, assumed material stress-strain relationships often are too 
simplified, do not reflect a complex multi-factor nature of the material and there-
fore are inaccurate. Due to bond with steel, tensile concrete in cracked RC struc-
tures has different properties from those that are obtained from tests of plain con-
crete specimens. It must be noted that concrete stress-strain curves obtained from 
tension tests of RC members do not necessarily assure accurate results for calcula-
tion of bending elements. Therefore, quite naturally a researcher is challenged by 
the idea to solve an inverse problem of bending analysis: to derive concrete mate-
rial stress-strain relationships for given test moment-strain (curvature) diagrams. 

The supervisor of this dissertation in co-authorship has proposed a method 
for deriving constitutive relationships from test data of flexural composite ele-
ments (Kaklauskas & Ghaboussi 2001). The proposed technique has been exten-
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sively used in solving inverse problems of RC beams (Gribniak et al. 2007c∗ and 
Kaklauskas et al. 2007b*, 2008b*, 2008c*, 2009*). For numerical purposes, the 
test moment-curvature diagram has to be smoothed. This results in derivations 
from the original and consequently inaccurate constitutive law shape. In some 
cases, the constitutive relationships cannot to be obtained at all. This Section 
deals with computational improvement of the above method with the objective 
of providing a reliable and simple technique for reduction of prediction errors. 

2.5.1. Direct Analysis Using Layer Section Model 
As noted, the inverse procedure uses a simple iterative technique of deforma-
tional analysis of composite members based on Layer section model (Kak-
lauskas 2004). The calculation is based on formulae of strength of materials ex-
tended to application of Layer section model and material diagrams. The 
following assumptions have been adopted: 1) average strain, also called as 
smeared crack, concept; 2) linear strain distribution within the depth of the sec-
tion; 3) perfect bond between layers. This Section describes direct technique. 

Consider a doubly reinforced concrete member subjected to pure bending. A 
cross-section for such member is presented in Fig. 2.10a. The member’s cross-
section is divided into horizontal layers corresponding to either concrete or rein-
forcement (see Fig. 2.10b). Thickness of the reinforcement layer is taken from 
the condition of the equivalent area. The analysis needs to assume material laws 
for reinforcement and compressive and tensile concrete schematically shown in 
Figs. 2.10f and 2.10g. 

Curvature and strain at any layer i [see Fig. 2.10d and Equation (2.16)] can 
be calculated by the formulae: 
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Here Mext is the external bending moment; AE, SE and IE are the area, the first 
and the second moments of the area multiplied by secant modulus. 

For the given strains and constitutive laws (see Figs. 2.10d and 2.10c), 
stresses and corresponding secant modulus are calculated. The analysis is per-
formed iteratively until convergence of secant modulus at each layer is reached. 
Figures 2.10d and 2.10e illustrate strain and stress distributions within the Layer 
section model. Annex B.1 presents implementation of the direct procedure using 
MATLAB software. 

                                                 
∗The reference is given in the list of publications by the author on the topic of the dissertation 
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Fig. 2.10. Layer section model of RC section (a)–(e) and a constitutive 
relationships for reinforcement steel (f) and concrete (g) 

2.5.2. Numerical Procedure for Solving Inverse Problem 
2.5.2.1. Formulation 
The proposed method aims at deriving average stress-average strain relation-
ships of cracked tensile concrete using test data of flexural RC members. The 
experimental data can be as follows: a) moment-average strain at any layer or b) 
moment-curvature relationship. Using material test data, constitutive relation-
ships for steel and compressive concrete should be defined. The inverse method 
also employs constitutive laws for steel and compressive concrete assumed ei-
ther from tests or analytically. The technique is based on the direct method dis-
cussed in Section 2.5.1 and uses one additional assumption: 4) all fibres in the 
tensile concrete zone follow the same stress-strain law. Figure 2.11 presents a 
flow-chart of the inverse procedure. Based on geometrical parameters of the 
cross-section, Layer section model has to be composed. 

Present analysis is based on use of a moment-curvature relationship. Com-
putations are performed iteratively for incrementally increasing bending mo-
ment. For given load increment, initial value of secant deformation modulus of 
tensile concrete is assumed. Based on direct analysis, curvature is calculated. If 
it differs from the experimental value more than the assumed tolerance Δ , the 
analysis is proceeded using the hybrid Newton-Raphson & Bisection procedure 
(Verzhbitsky 2005). A secant deformation modulus of tensile concrete calcu-
lated for the extreme tensile fibre of the section is defined at each of iterations. 
The root locating procedure is started using the Newton-Raphson method. For 
moment increment i, secant deformation modulus i,kE  at iteration k is defined: 
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Here i,k 1E −  and ( )i,k 1δ E −  are, respectively, the secant deformation modulus and 
the prediction error obtained in the previous iteration; th,iκ  and obs,iκ  are, re-
spectively, the calculated and experimental curvatures at load increment i; 
( )i,k-1δ E′  is the first derivation of the error obtained numerically by this central-

difference equation: 
 

 

Fig. 2.11. Flow chart of the procedure for solving inverse problem 
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Here h is the difference grid size in this analysis assumed to be 0,1. For simplic-
ity, indexes of deformation modulus E in the above equation are missing. 

Using the above method, only one initial approximation (Ei) is required for 
solving the inverse problem. However, it requires five evaluations of the func-
tion ( )δ E  per iteration [see Equations (2.20) and (2.21)], i.e. the direct algo-
rithm should be run five times. The Newton-Raphson procedure is applied until 
the solution is found, root interval is determined or the limit iteration number N 
is reached (see Fig. 2.11). If the solution is found, i.e. Condition (2) is satisfied, 
the obtained value of Ei.k is fixed (used for further analysis steps) and the analy-
sis is moved to the next load increment. When the limit iteration number is ex-
ceeded, the defined Ei.k is rejected and the analysis moves to the next load step. 

Although the Newton-Raphson method is fast, in some cases it may not 
found a solution. Therefore, in case when the root is localised (Condition (3) is 
satisfied), the analysis is proceeded using the Bisection method. The latter tech-
nique, though slower, always gives the solution, if it exists. Using the bisection 
method, the ends of the interval in a systematic way are moved closer and closer 
to each other until the localisation interval is small enough. The number N of 
repeated bisections needed to guarantee that the Nth iteration is an approximation 
to a root has an error less than the pre-assigned value Δ  is estimated as follow-
ing (Verzhbitsky 2005): 
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Here the brackets x⎡ ⎤⎢ ⎥  mean the ceiling (rounding toward infinity) of argument 

x; ( ) ( )1 2
k k;E E⎡ ⎤

⎢ ⎥⎣ ⎦
 is the root localisation interval at iteration k. 

This method will require only one evaluation of the function Eδ  per itera-
tion. Secant modulus is defined by the equation: 
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2.5.2.2. Numerical Implementation Using Test Data 
Numerical implementation of the proposed method has been illustrated using 
data of two RC beams (S-1 and S-4) tested by the author (see Chapter 3). The 
constitutive laws assumed in this analysis are shown in Fig. 2.12. Experimen-
tally obtained and the idealised stress-strain relationships for steel are shown in 
Fig. 2.12a. The constitutive law presented in Eurocode 2 has been accepted for 
compressive concrete (Fig. 2.12b). 

Present analysis was based on use of test moment-curvature relationships as 
shown in Fig. 2.12c. As noted, the inverse analysis is performed incrementally, 
using the constitutive law for tensile concrete obtained at previous loading sta-
ges. This means that errors made at a given moment increment will have influ-
ence on the shape of the constitutive law under derivation. Therefore, a particu-
lar care of avoiding errors should be taken at the early stages of the analysis 
associated to small curvatures. Though similar in absolute terms at all loading 
stages, errors of curvature measurements at early stages have much higher rela-
tive effect on the derived constitutive law. Therefore, as concrete in tension prior 
to cracking essentially behaves elastically, a limitation on curvature value used 
in the analysis has been introduced. The curvature should not be less than the 
calculated one by Equation (2.19) using elastic material parameters. If this limi-
tation is not satisfied, it is recommended to replace the test curvature by the cal-
culated one. 

To illustrate the proposed technique, a detailed step-by-step numerical ana-
lysis has been performed for beam S-1. Consider load increment No. 20 marked 
in the moment-curvature diagram (see Fig. 2.12c). The constitutive stress-strain 
relationship under construction is shown in Fig. 2.12d. Stress-strain points and 
corresponding secant modulus derived at load stages No. 1–19 are also presented 
in the figure. The analysis was performed according to the flow-chart described 
in Section 2.5.2.1. At this load increment, convergence was reached after eight 
iterations (3 + 5 iterations of Newton-Raphson and Bisection procedures, respec-
tively). Initial value of secant deformational modulus was assumed equal to 
zero. Intermediate solution points along with the initial point corresponding to 

20,0 0E =  and the derived portion of stress-strain diagram at load increment 
No. 20 are also shown in Fig. 2.12d. 

Convergence rate, an important aspect of the proposed procedure, has been 
also investigated. Analysis has shown that for this particular case, such factors as 
a number of layers, initial value of secant modulus i,0E  and assumed tolerance 
Δ  had significant influence on convergence rate. Results of convergence inves-
tigation for beam S-1 are presented in Fig. 2.13. The analysis included all 39 
experimental points shown in Fig. 2.13a. Convergence rates for varying number 
of layers, initial value of secant modulus and assumed tolerance are given in Fig. 
2.13b. The convergence rate is presented in relative terms, as a reference assum-
ing the minimal computation time. 



2. SHORT-TERM DEFORMATIONAL ANALYSIS OF SHRUNK RC MEMBERS 71 

 

 

Fig. 2.12. Constitutive relationships assumed in the analysis for reinforcement 
steel (a) and compressive concrete (b); solution of inverse problem at fixed 

load increment (c) and (d) 

 

Fig. 2.13. Analysis of convergence speed in respect to number of layers and 
the tolerance 
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Number of layers and the tolerance were ranging from 50 to 300 and from 
10–4 to 10–6, respectively. The latter values were assumed for convergence of 
both curvatures and deformation modulus. Mixed tolerance concept was also 
investigated assuming 10–4 and 10–5 for curvatures and deformation modulus Ei.k, 
respectively. 

Two cases of initial value of deformation modulus were investigated: i,0 0E =  
and i,0 i 1E E −=  (assuming the converged value from the previous load increment). 
The corresponding resulting lines are shown in Fig. 2.13b in grey and black, re-
spectively. Analysis has shown that a number of layers has the most significant 
influence on computation time. For instance, with increase of number of layers 
from 100 to 300, the computation time approximately trebles. The tolerance has 
lesser effect: if it is reduced from 10–4 to 10–6, the computation time increases 
less than twice. Mixed technique has proved to be among the most effective. 

Initial value of deformation modulus has also quite significant influence on 
computation rate. It should be noted that the assumption i,0 0E =  always leads to 
longer computation. However, it has advantages regarding the convergence pro-
cess itself. The convergence process is illustrated graphically in Fig. 2.13c were 
different grey colour intensities represent varying layer numbers. Non-
converged load increments are indicated by void areas. As clearly seen from Fig. 
2.13c, the computation procedure under assumption i,0 0E =  has reached con-
vergence at almost all load increments. The computation assuming i,0 i 1E E −=  
was not as stable as the previous one and in some cases, a single non-converged 
point triggered convergence failure in the remaining load steps. 

For cases when lager numbers of layers were assumed (200 and 300), such a 
point was load increment No. 33. This could be explained by unstable processes 
due to sudden changes in curvature increment rates at loads preceding the criti-
cal point. Such critical load points for beams S-1 and S-4 are indicated in Fig. 
2.14a with corresponding curvature increment rates shown in Fig. 2.14b. Sensi-
tivity analysis has shown that such input parameters as layer number 100n = , 

i,0 0E =  and mixed tolerance conception allowed reaching optimal convergence. 
The above set of parameters was used in further analysis. Computer code im-
plementation using MATLAB software is given in Annex B.2. 

Tension-stiffening relationships derived using the proposed technique are 
shown in Figs. 2.15a and 2.15b. Fragments of the relationships in more details 
are shown in Figs. 2.15c and 2.15d. The figures also illustrate convergence proc-
ess with indicated intermediate solution points. The derived relationships have 
significant oscillations. This was due to changes in curvature increment rate cau-
sed by discrete cracking nature of reinforced concrete. The oscillations were mo-
re clearly expressed in beam S-4 designed for given tensile reinforcement area to 
have smaller number of bars of larger diameter (see Section 3.1.1). It is well es-
tablished that reduction in diameter leads to smaller crack width and spacing in 
the ideal case approaching to smeared cracking. 
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Fig. 2.14. Analysis of convergence speed in respect to number of layers and 
the tolerance 

 

Fig. 2.15. Derived tension-stiffening relationships with iterations 
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It should be noted that the initial oscillations, mainly caused by discrete 
cracking, further on might become dramatic due to accumulative nature of the 
inverse procedure (Kondratenko & Gribniak 2004∗, Kaklauskas et al. 2007b* and 
2008c*). Following the assumption of uniform constitutive law for all tensile lay-
ers, each inadequate stress increment should be compensated by respective stress 
change of opposite sign. In such a way, as shown in Figs. 2.15a and 2.15b, the 
oscillations may obtain dramatic character. Naturally, such relationships cannot 
be straightforwardly assumed as constitutive laws. To eliminate the oscillations, 
a smoothing procedure has been proposed and is described in the next Section. 

2.5.3. Technique for Smoothing Oscillations of the Solution 
The procedure proposed for solving the inverse problem is strongly affected by 
the composition of initial data set (i.e. the points of moment-curvature diagram). 
To reduce sudden changes in curvature increment rates at load increments, two 
data sets were constructed from the experimental data. Figure 2.16 shows ten-
sion-stiffening relationships derived using even and odd test points (1st and 2nd 
sets, respectively) of moment-curvature diagram. Only the first and the last po-
ints were used in both sets. The differences in the derived tension-stiffening rela-
tionships are obvious (see Figs. 2.15a and 2.15b) referring to stochastic nature of 
given test data. It should be noted that dividing initial data into sub-sets is 
strongly recommended, if the number of data points exceeds 80. In general, such 
division may be considered as an additional tool for smoothing. 

As noted, the oscillations are triggered by sudden changes in curvature in-
crement rate. In previous investigations (Kaklauskas 2001, 2004, Kaklauskas & 
Gribniak 2005a*, 2005b*), to avoid the oscillations, moment-curvature diagrams 
were numerically smoothed, most often simply rejecting some test points. The 
smoothing technique was based on trial-and-error approach and involved some 
subjective judgement having influence on the resulting stress-strain relationship. 
In other words, the result (deformation modulus of the extreme tensile fibre) de-
rived at each step is dependent on the results obtained at all previous steps. 

In order to avoid subjective judgement in the smoothing procedure, in pre-
sent research smoothing was performed on the resulting (tension-stiffening) rela-
tionship. For this, the modified running-average (MRA) method based on Har-
dy’s formula (Pollard 1979) has been applied. Potential of MRA method can be 
exploited more extensively, if large amount of input points is used. In general, 
moment-curvature diagram possesses about 20–30 test points only, which would 
restrict application of MRA method. To increase the amount of input data, extra 
pseudo-experimental data sets were generated. Assuming that the initial data set 

                                                 
∗The reference is given in the list of publications by the author on the topic of the dissertation 
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generally has a stochastic nature, the Monte Carlo method could be applied for 
construction of pseudo-experimental data sets (Mikūta & Gribniak 2006)∗. 

Multiple analyses were performed for several sets of moment-curvature dia-
grams with randomly selected test points. Thus, no modifications were made in 
the moment-curvature diagrams and, in fact, practically all test points were used 
in the analysis. The proposed smoothing procedure is based on the following 
hints: 1) adjacent test points were moved into separate sets, thus reducing sud-
den changes in curvature increment rate; 2) to suppress oscillations of numerical 
origin, extra pseudo-experimental data points were randomly introduced by 
means of linear interpolation; 3) the resulting stress-strain relationships obtained 
from different simulations were averaged. 

In general, the effectiveness of the smoothing procedure will favour of the 
larger number of sets. Various cases of composition of test data were analysed. 
For illustration, one of such cases is discussed below. 

As shown in Fig. 2.17a, three data sets of moment-curvature diagrams were 
generated. Sets No. 1 and 2 were made using odd and even experimental points, 
respectively, with random introduction of extra-points. Set No. 3 differs from set 
No. 2 by a number of extra-points. Stress-strain relationships derived from the 
above test data are shown in Fig. 2.17b. As noted, averaging the resulting curves 
is based on the modified running-average method (Pollard 1979): 
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Here i,averf  is the average value of i-th point; 1w− , 0w  and 1w  are the sum of 
preceding, central and succeeding n ordinates; kf  is the value of k-th point. 

The tension-stiffening relationships were derived using the procedures de-
scribed in Sections 2.5.1 and 2.5.2. The resulting free-of-shrinkage tension-
stiffening relationships obtained for test beams S-1 and S-2 are presented in Fig. 
2.18. The specific strain energy dD  (see Figs. 1.4b and 1.4c) may serve as a charac-
teristics of tension-stiffening. This energy corresponds to the area under the free-of-
shrinkage tension-stiffening curve and can be calculated using the trapezoidal rule: 

 ( )( )maxε m 1
i 1 i i 1 i m maxi 10

d 0,5 , ε εdD −
+ +=

= σ ε = ⋅ σ + σ ε − ε =∑∫ . (2.25) 

Here maxε  is the maximal strain; iσ  and iε  are the averaged stress and corre-
sponding strain, respectively. By this, energy dD  was found to be equal to 
2,249 and 1,632 kJ/m3 for beams S-1 and S-4, respectively. 

                                                 
∗The reference is given in the list of publications by the author on the topic of the dissertation 
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Along with the derived relationships, a simple linear tension-stiffening rela-
tion is shown in Fig. 2.18 by grey line. In present study, the latter was intro-
duced in the Layer section model (see Section 1.2.7.1) further applied in the nu-
merical analysis (see Section 4.2). The strain energy (area of the triangle limited 
by the grey lines) is equal to 1,630 and 2,158 kJ/m3 for beams S-1 and S-4, respec-
tively. Comparison of the strain energy obtained for the numerically derived and 
the simplified relationships has shown satisfactory agreement. It allows conclud-
ing that application of linear tension-stiffening relationships is objective enough. 
 

 

Fig. 2.16. Tension-stiffening relationships derived using different data sets 

 

Fig. 2.17. Generation of extra-points using Monte-Carlo technique and derived 
constitutive relationships from extended data sets 
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Fig. 2.18. Comparison of the linear and free-of-shrinkage tension-stiffening 
relationships derived from experimental data 

2.6. Concluding Remarks of Chapter 2 

This Chapter presents investigation results of shrinkage influence on deforma-
tions and tension-stiffening effect in tension and bending concrete members sub-
jected to short-term loading. Two numerical techniques, the direct and the in-
verse, have been proposed. In the direct technique, moment-curvature diagrams 
are calculated for the assumed material stress-strain relationships. The inverse 
technique aims at determining tension-stiffening relationships for cracked tensile 
concrete from flexural tests of RC members. The techniques are based on the 
following approaches and assumptions: 
• smeared crack approach; 
• Layer section model; 
• linear strain distribution within the depth of the section implying perfect 

bond between reinforcement and concrete; 
• all concrete fibres in the tension zone follow a uniform stress-strain tension-

stiffening law. 
Based on numerical experiments of tension members, a simple transforma-

tion formula has been proposed for eliminating shrinkage from tension-
stiffening relationships. The formula has appeared to be applicable to symmetri-
cally reinforced bending members. These transformation formulae can be used 
for deriving a free-of-shrinkage tension-stiffening relationship from tests of 
shrunk members. 

An innovative numerical procedure has been proposed for deriving free-of-
shrinkage tension-stiffening relationships using test data (moment-curvature re-
lationships) of bending reinforced concrete members. The procedure combines 
the direct and the inverse techniques. To eliminate shrinkage effect, a reverse 
shrinkage (expansion) strain was assumed in the direct technique. 
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Numerical implementation of the inverse procedure was discussed and the 
issue of convergence was investigated. Optimal convergence was achieved in 
the inverse problems when such input parameters were assumed: 
• layer number n = 100; 
• initial value of deformation modulus i,0 0E = ; 
• mixed tolerance conception (assuming tolerance 10–4 for curvatures and 10–5 

for deformation modulus). 
Mainly due to discrete cracking phenomenon, experimental moment-

curvature relationships usually have some oscillations. After the inverse tech-
nique is applied, the resulting tension-stiffening relationships also have oscilla-
tions that may become dramatic due to accumulative nature of the proposed pro-
cedure. Naturally, such relationships cannot be assumed as constitutive laws. In 
order to assess the stochastic nature of test data and to reduce influence of ex-
treme measurement points on the results, a smoothing procedure based on the 
Monte-Carlo simulation and the modified running-average method has been 
proposed. Division of the initial data set into sub-sets has been incorporated as 
an additional tool into the smoothing procedure proposed. 

Shrinkage influence on stress-strain state of reinforced concrete members 
has been investigated using the test data reported by the author and other re-
searchers. It was shown that shrinkage might significantly reduce cracking resis-
tance and stiffness of the members. Based on the proposed techniques, free-of-
shrinkage tension-stiffening relationships were derived for the experimental re-
inforced concrete members. 

To compare quantitatively the derived tension-stiffening relationships, a 
concept of specific strain energy (energy dissipated per unit of volume) has been 
introduced. The energy corresponds to the area under a free-of-shrinkage ten-
sion-stiffening curve. It has been shown that application of linear tension-
stiffening relationship (used in the Layer section model) is objective enough. 
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3 
Experimental Investigation of 

Reinforced Concrete Beams 

This Chapter presents an experimental investigation of shrinkage effect on crac-
king, tension-stiffening and short-term deformations of lightly reinforced mem-
bers. Experimental results on tests of eight RC beams (four couples of twin 
specimens) having constant reinforcement ratio about 0,40%, but different bar 
diameter are reported. Prior to the tests, measurements on concrete shrinkage 
and creep were performed (Gribniak et al. 2007c)∗. Based on numerical proce-
dure discussed in Chapter 2, free-of-shrinkage tension-stiffening relationships 
were derived from the moment-curvature diagrams of the beam specimens. 

3.1. Experimental Investigation 

The tests were performed in the laboratory of Civil Engineering Faculty of Vil-
nius Gediminas Technical University in 2005. The following objectives of the 
experimental program have been pursued: 1) investigating concrete shrinkage 
effect on cracking, tension stiffening and deformations of lightly reinforced 
members; 2) exploring whether bar diameter has influence on deformations of 
flexural members. 
                                                 
∗The reference is given in the list of publications by the author on the topic of the dissertation 
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3.1.1. Description of Beam Specimens 
The beams were tested under a four-point loading scheme. All the specimens 
were of rectangular section, with nominal length 3280 mm (span 3000 mm), 
depth 300 mm and width 280 mm. Longitudinal and cross sectional reinforce-
ment of beam specimens is shown in Figs. 3.1a and 3.1b. The experimental pro-
gramme has comprised of two series of beams. In the beams of the first series 
(S-1 and S-2), the tensile reinforcement consisted of four ∅10 mm bars, whereas 
the beams of the second series (S-3 and S-4) had two ∅14 mm bars. Reinforce-
ment ratio for the beams of both series was practically the same, i.e. about 
0,40%. Main other parameters of the experimental beams are listed in Table 3.1. 
For each beam, a twin specimen designated with extra ‘R’ was produced from 
the same batch. As it is seen in Fig. 3.1, the specimens ‘R’ had heavy top rein-
forcement of three ∅18 mm bars (instead of two ∅6 mm bars). This was done in 
order to eliminate shrinkage effects on cracking resistance. Figure 3.2 illustrates 
that the stresses in the extreme bottom fibre of specimens ‘R’ induced by shrink-
age are expected to be around zero. 

 

 

Fig. 3.1. Longitudinal (a) and cross-sectional (b) reinforcement of the beam 
specimens; notation of cross-section (c) 

 

Fig. 3.2. The distribution of shrinkage strains and stresses across the section of 
the beam specimens 
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Table 3.1. Main characteristics of the beam specimens (see notations in Fig. 3.1c) 

h b d a2 As1 As2 Date of casting Age fcu Series Beam 
mm mm2 yyyy.mm.dd days GPa 

S-1 300 280 276 23 309 56,6 2005.09.30 48 47,3 
S-1R 299 281 276 28 309 749 2005.09.30 47 47,3 
S-2 300 280 282 25 309 56,6 2005.10.24 28 48,7 

I 

S-2R 300 282 279 31 309 749 2005.10.24 29 48,2 
S-3 300 277 277 26 303 56,6 2005.10.14 31 41,1 
S-3R 299 281 278 28 303 749 2005.10.14 32 41,2 
S-4 300 277 274 26 303 56,6 2005.10.07 32 54,2 

II 

S-4R 301 283 281 29 303 749 2005.10.07 34 54,2 

3.1.2. Production of the Beams and Material Properties 
Each couple of twin beams were cast from one batch into steel formwork (see 
Fig. 3.3). The concrete was placed in the forms in three lifts. Between each lift 
the concrete was tamped. The specimens were vibrated for approximately 20 s 
and struck off using a steel trowel. Concrete test specimens such as 100 and 150 
mm concrete cubes and 100×100×400 mm and 280×300×350 mm prisms were 
produced. The latter specimens were cast in the moulds of the beam specimens 
and were used for shrinkage measurements. The beams were demoulded in 
about 3–4 days after casting. 

The experimental beams and concrete specimens were cured under the labo-
ratory conditions at average relative humidity (RHm) 64,7% and average tem-
perature 13,1 °C. Variation of humidity and temperature within curing period is 
shown in Fig. 3.4. The dates of casting and age of the beams at testing (ranging 
from 28 and 48 days) is given in Table 3.1. 

 

 

Fig. 3.3. Casting the beams and test specimens 
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Concrete. Concrete mix proportion taken to be uniform for all experimental 
specimens is given in Table 3.2. The ordinary Portland cement and crushed 
granite aggregate (16 mm maximum nominal size) were used. Water/cement and 
aggregate/cement ratio by weight were taken as 0,42 and 2,97, respectively. 

In order to determine material properties of concrete, twelve 100 mm and 
three 150 mm cubes and fifteen 100×100×400 mm prisms were cast with each 
couple of twin beam specimens. The latter specimens were cast in the moulds of 
the beam specimens and were used for shrinkage measurements. Compressive 
strength and deformation tests were performed at test day and at three time 
points prior to the tests, approximately in 1, 2 and 4 weeks after casting. Three 
100 mm cubes and three 100×100×400 mm prisms were tested at each age for 
each mixture. The latter specimens were also used for deriving the stress and 
strain relationship. At test day, three 150 mm cubes were tested; variation of 
cube compressive strength in time is given in Table 3.3. 

Reinforcement. ∅10 and ∅14 mm deformed bars of mild steel were used 
for the main reinforcement. Three samples of each diameter were tested and se-
veral lengths were weighed to check the nominal size. The stresses and modulus 
of elasticity are based on nominal diameters. Yield strength of ∅10 mm and 
∅14 bars was 566 and 542 MPa, respectively. Elastic modules of reinforcing 
bars were obtained to be 212 GPa. 

Table 3.2. Mix proportion of the experimental specimens [kg/m3] 

Material Amount 
Sand 0/4 mm 905 ± 2% 
Crushed aggregate 5/8 mm 388 ± 1% 
Crushed aggregate 11/16 mm 548 ± 1% 
Cement CEM I 42,5 N 400 ± 0,5% 
Water 123,8 ± 5% 
Concrete plasticizer Muraplast FK 63.30 2 ± 2% 

 

 

Fig. 3.4. Variation of the temperature (a) and relative humidity (b) 
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Table 3.3. 150 mm cube strengths [MPa] 

Beam Parameter 1 2 3 4 
fcu 36,9 40,9 ─ 47,3 S-1, S-1R 
Age 7 14 ─ 47 
fcu 45,4 47,7 55,5 52,9 S-2, S-2R 
Age 7 13 31 35 
fcu 32,4 37,7 41,2 41,6 S-3, S-3R 
Age 6 15 31 32 
fcu 34,4 39,9 48,7 48,2 S-4, S-4R 
Age 5 11 28 29 

3.1.3. Investigations of Concrete Shrinkage and Creep 
Free shrinkage measurements were performed on prisms of 100×100×400 mm 
and 280×300×350 mm in size. As noted, the latter specimens were the fragments 
of the beams. After demolding, their ends were isolated with polyester film. The 
specimens and instrumentation for measurement of shrinkage deformations are 
shown in Fig. 3.5. Steel gauge studs, with the base 200 mm, were either glued on 
the concrete surface (see Figs. 3.5a and 3.5b) or embedded in fresh concrete (see 
Fig. 3.5c). In the latter case, free shrinkage measurements were initiated in 24 h 
after casting whereas measurements on other prisms were started in 3–4 days. 

Shrinkage deformation variation in time is shown in Fig. 3.6a. It is clearly 
seen the difference between the deformations measured on 280×300×350 mm 
and 100×100×400 mm prisms. The latter effect is caused by the only factor, i.e. 
the difference in cross section. 

The size conversion factors obtained from the tests and predicted by the 
ACI 209 (2008) and Eurocode 2 (CEN 2004) design code formulas are given in 
Table 3.4. It is seen that the Eurocode 2 predictions were adequate whereas the 
ACI 209 technique has significantly overestimated the factor. 

 

 

Fig. 3.5. Specimens for measurement of shrinkage deformations 
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Figure 3.6b plots experimental points obtained for both types of prisms using 
experimental size correction factor (see Table 3.4). Predicted shrinkage variation 
curves using the ACI 209 and Eurocode 2 methods for 280×300×350 mm prisms, 
based on averaged parameters of test specimens are also shown in Fig. 3.6b. The 
experimental free shrinkage strains against the predicted ones by the ACI 209 
and Eurocode 2 methods are compared in Table 3.5. It can be noted that the lat-
ter method has predicted the experimental shrinkage strains more accurately. 

Table 3.4. Size factor (converting shrinkage strain from 100×100×400 mm prisms to 
280×300×350 mm prisms) 

Beams ACI 209 Eurocode 2 Derived experimentally 
S-1, S-1R 0,679 0,491 0,45 
S-2, S-2R 0,649 0,465 0,45 
S-3, S-3R 0,657 0,453 0,50 
S-4, S-4R 0,657 0,490 0,45 

Table 3.5. Shrinkage deformations of 280×300×350 mm prisms at test 

Predicted by Beam t0 ACI 209 Eurocode 2 
Experimental 

S-1 4 days −2,265×10–4 −1,970×10–4 −1,946×10–4 
S-1R 4 days −2,240×10–4 −2,196×10–4 −1,882×10–4 
S-2 3 days −1,806×10–4 −1,587×10–4 −1,526×10–4 
S-2R 3 days −1,856×10–4 −1,620×10–4 −1,557×10–4 
S-3 4 days −1,705×10–4 −1,629×10–4 −1,370×10–4 
S-3R 4 days −1,736×10–4 −1,657×10–4 −1,396×10–4 
S-4 4 days −1,752×10–4 −1,727×10–4 −1,720×10–4 
S-4R 4 days −1,789×10–4 −1,778×10–4 −1,770×10–4 

 

 

Fig. 3.6. Free shrinkage deformations measured on different size prisms (a) 
and reduced to size of beam specimens (b) 



3. EXPERIMENTAL INVESTIGATION OF REINFORCED CONCRETE BEAMS 85 

 

Creep strains were measured by compressive tests on 100×100×400 mm 
prisms at the stress level corresponding to 40% of the measured prism strength. 
Creep strain was deduced from the total strain of a loaded specimen reduced by 
the shrinkage strain measured on unloaded prisms. Test set-up and results on 
variation of creep factor in time are given in Fig. 3.7. 

 

 

Fig. 3.7. Set-up of creep test and variation of creep factor with time 

3.1.4. Instrumentation of the Beams 
The loading scheme and the gauge positioning are shown in Fig. 3.8. The beams 
were loaded with a 100 kN hydraulic jack in a stiff testing frame. The test was 
performed with small increments (2 kN) and paused for short periods (about 2 
minutes) to take readings of gauges and to measure crack development. On av-
erage, it took 80 load increments with total test duration of 3 hours. The testing 
equipment acting on the beam weighed 232 kg. The latter summed up with the 
beam’s own weight has in the mid-span induced a 3,5 kNm bending moment. 

 

 

Fig. 3.8. Experimental set-up of the beam 
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3.2. Analysis of Experimental Results 

Concrete surface strains were measured throughout the length of the pure bend-
ing zone on a 200 mm gauge length, using 0,001 mm mechanical gauges. As 
shown in Fig. 3.9 (view ‘A’), four continuous gauge lines were located at differ-
ent depths. The two extreme gauge lines were placed along the top and the bot-
tom reinforcement. Measured strains were averaged along each gauge line. The 
averaged strains were employed for the assessment of curvature increment: 

 ( ) ( )k m k,mk mΔκ Δ Δ 6 , 1; 2; 3D D h k
<

= − ⋅ =∑ . (3.1) 

Here kΔD  and mΔD  are the increments of the averaged strains along k and m 
lines, respectively; hk,m is the distance between these lines. 

Deflections of each of the beam were also measured using linear variable 
differential transducers (L 1–L 8, see Fig. 3.9) placed beneath the soffit of the 
beam at the load position. Increment in average curvature over the constant mo-
ment zone was defined from the deflection gauge readings by the formula: 

 ( ) ( ) ( )2 2Δκ 2 Δδ 0,5 Δδ , 1,0 ma a⎡ ⎤= ⋅ + =⎣ ⎦ . (3.2) 

Here Δδ  is the increment of the deflection over the pure bending zone; a is the 
length of constant bending zone. 

Measured surface strains and deflections are presented in Annex C. Mo-
ment-curvature diagrams are shown in Fig. 3.10 for each of the beams. This fig-
ure includes curvatures obtained both from average surface strains and from de-
flections over the pure bending zone. Good agreement of these diagrams can be 
stated. Further analysis will be based on data derived from the average strains. 
Diagrams of surface strains of concrete at different levels within the pure bend-
ing zone of the beams (see Fig. 3.9) are shown in Fig. 3.11. Cracking moments 
estimated on a basis of these diagrams are indicated in Figs. 3.10 and 3.11 with 
the numerical values given in Table 3.6. In this table, Δ  indicates the difference 
between cracking moments (either calculated or measured) of twin specimens. 

As seen in Figs. 3.10 and 3.11, the beams of Series I had higher cracking re-
sistance than the beams of Series II. As diameter of tensile reinforcement was 
the only different parameter between the series, it is to be responsible for the 
difference. The ratio of reinforcement perimeter and area, characterising bond 
between reinforcement and concrete, was quite different, i.e. 403 and 288 mm–1 
for the beams of the first and second series, respectively. 

Beams S-*R with heavy top reinforcement possessed higher cracking resis-
tance in regard to beams S-*. This could be due to: 1) difference in tensile stress 
in the extreme bottom fibre induced by shrinkage; 2) increase in section modulus 
due to heavy top reinforcement. 
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Table 3.6. Theoretical and experimental values of cracking moment Mcr 

Calculated 
Ignoring shrinkage Including shrinkage 

Measured 
Beam 

Mcr, kNm Δ , kNm Mcr, kNm Δ , kNm Mcr, kNm Δ , kNm 
S-1 13,3 11,5 16,8 
S-1R 13,9 

0,6 
13,5 

2,0 
19,8 

3,0 

S-2 13,7 12,2 15,9 
S-2R 14,2 

0,5 
13,8 

1,6 
17,9 

2,0 

S-3 12,0 10,7 15,8 
S-3R 12,8 

0,8 
12,5 

1,8 
– 

– 

S-4 14,6 13,0 13,9 
S-4R 15,4 

0,8 
15,1 

2,1 
16,0 

2,1 

 

 

Fig. 3.9. Structural system and arrangement of the measurements 
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The estimated concrete stress distribution within section depth at cracking 
load is shown for beams S-1 and S-1R in Fig. 3.12a. The figure includes three 
stress diagrams due to: 1) restrained shrinkage, 2) external load, and 3) collec-
tive action of the shrinkage and external load. 

 

 

Fig. 3.10. Curvatures of the beams given from surface strains and deflections 

 

Fig. 3.11. Measured surface strains of the beams 
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Moment-curvature diagrams often are depicted in terms of effective mo-
ment of inertia versus bending moment (I-M). Such diagrams for the beam 
specimens are shown in Fig. 3.12b in relative terms, i.e. el,EC2I I  and 

cr,EC2M M  were Mcr,EC2 is the theoretical cracking moment and Iel,EC2 is moment 
of inertia, both based on elastic material properties. Tensile strength and elastic 
modulus of concrete were calculated by Eurocode 2 using experimental cube 
strength (see Table 3.3). Although being equal at the stages of non-cracked and 
fully cracked behaviour, the stiffness was different at the stage when the tension-
stiffening effect was present. Figure 3.12b shows that tension-stiffening was far 
more pronounced for the beams of Series I in respect to the beams of Series II. 

 

 

Fig. 3.12. Distribution of stress in concrete across section of the beam 
specimens (a), and relative diagram of effective moment of inertia of the 

beams versus bending moment with 90% prediction intervals (b) 

3.3. Deriving Tension-Stiffening Relationships from 
Beam Tests 

In this Section, tension-stiffening relationships were derived from the above test 
data using inverse procedure discussed in Chapter 2. The proposed method has 
been applied to present test data and free-of-shrinkage tension-stiffening rela-
tionships were derived for each beam. The relative stress ( ct ctm,EC2σ f ) and 
strain (in term of coefficient ct cr,EC2β ε ε= ) diagrams are shown in Fig. 3.13 
where ctm,EC2f  and cr,EC2ε  are the tension strength and cracking strain, respec-
tively, calculated according to Eurocode 2. It can be concluded that the relation-
ships obtained for each series were in good agreement. However, the differences 
between the series were quite significant. The average curves representing each 
series have indicated that the beams of Series I have possessed higher tension 
stiffening than the beams of Series II. As noted earlier, that this was due to dif-
ferent reinforcement diameter used in the series. 
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Fig. 3.13. Normalised tension-stiffening diagrams derived from the test data 
directly (left) and eliminating shrinkage effect (right) 

3.4. Concluding Remarks of Chapter 3 

Present experimental research has been pursuing the following objectives: 1) 
investigating concrete shrinkage effect on cracking, tension stiffening and short-
term deformations of lightly reinforced members; 2) exploring whether bar di-
ameter has influence on deformations of flexural members. 

Conclusions are based on experimental study conducted on eight lightly re-
inforced concrete beams (four couples of twin specimens) having constant rein-
forcement ratio ( 0,40%≈ ), but different bar diameter. In the beams of the first 
series, the tensile reinforcement consisted of four ∅10 mm bars, whereas the 
beams of the second series had two ∅14 mm bars. Prior to the tests of the 
beams, measurements on concrete shrinkage and creep were performed. In order 
to exclude shrinkage influence on cracking resistance of the beams, large 
amounts of top reinforcement were assumed in half of the specimens. 

The proposed numerical procedure has been applied to the test data for de-
riving free-of-shrinkage tension-stiffening relationships. The relationships ob-
tained for each series were in good agreement. However, the relationships were 
different for the both series. The following conclusions can be drawn: 

1. The beams having heavy top reinforcement possessed slightly higher 
cracking resistance. This was mainly due to difference in tensile stress in 
the extreme bottom fibre induced by shrinkage. 

2. Tension-stiffening was far more pronounced for the beams of Series I 
having a larger number of bars of tensile reinforcement. These beams at 
the load corresponding to 50% of the ultimate bending moment o had n 
average 33% smaller curvatures than the beams of Series II. 

3. The average stresses in the derived tension stiffening relationships for the 
beams of Series I were about 1,35  times higher than the stresses of the 
beams of Series II. 
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4 
Comparative Statistical Analysis 

This Chapter consists of two parts. The first part discusses accuracy of free 
shrinkage predictions made by various methods reviewed in Section 1.1.2. Pre-
sent study was aiming at free shrinkage strains occurring at relatively early age 
of concrete (up to 150 days). The comparative statistical analysis was carried out 
for experimental data reported by the author and other researchers. 

The second part presents investigation on short-term deflections of RC ben-
ding members. The analysis has employed data of seven experimental programs, 
one of which was reported by the author. The comparative study was based on 
the predictions made by design codes (Eurocode 2, ACI 318 and SP 52-101) and 
numerical techniques (FE package ATENA and Layer section model). 

4.1. Accuracy Analysis of Shrinkage Predictions 

Effect of shrinkage of concrete along with cracking provides the major concern 
to the structural designer because of the inaccuracies and unknowns that sur-
round it. In general, shrinkage effect is taken into account of long-term deforma-
tion of reinforced and pre-stressed concrete structures (Ghali & El-Badry 1987, 
Peiretti et al. 1991, El-Badry & Ghali 2001, Vítek et al. 2004, Robert-Nicoud et 
al. 2005, etc). Though considered as a long-term effect, shrinkage also has influ-



92 4. COMPARATIVE STATISTICAL ANALYSIS 

 

ence on crack resistance and deformations of RC members subjected to short-
term loading. In the code methods based on experimental data, shrinkage effect 
on deformations of such members is assessed indirectly. In the numerical ap-
proaches, shrinkage should be taken into account as a separate factor (Kak-
lauskas & Gribniak 2005b∗, Kaklauskas et al. 2006b*, 2008b*, 2008c*, and 
2009*). As in the proposed strain/deflection calculation technique, shrinkage is 
taken into account, it seems appropriate to perform comparison of free shrinkage 
strain predictions by different methods. The analysis is limited to relatively short 
duration (up to 150 days), characteristic to the age of a structure first loaded. 

4.1.1. Experimental Data for the Analysis 
Present analysis was based on experimental data of free shrinkage strain re-
ported by the author and other researchers. The data set consists of 23 experi-
mental programs, 351 specimens and 7391 measurements. Only specimens with 
consistently distributed test points were included in the data set. The test speci-
mens had different geometry, curing durations, and strength of concrete. Main 
characteristics of the specimens are given in Table 4.1 where k is the number of 
test specimens in each program; n' and n are the number of test measurements in 
the program before and after sliced data transformation (see Section 4.1.3), re-
spectively; C is the class of concrete [see comment for Equation (A.3)]; cst  is 
the period when shrinkage deformations were measured; S is the shape of cross-
section (1, 2 and 3 represent slab, cylinder and square prism, respectively) and 

0h  is the average thickness [see Equation (A.8)]. 

4.1.2. Calculation Techniques Employed for the Analysis 
The comparative analysis of free shrinkage predictions was based on these tech-
niques: Eurocode 2 (CEN 2004) (see Annex A.1.1); ACI 209 (ACI Committee 
209 2008) (see Annex A.2.1); Russian Institute of Civil Engineering (CNIIS 
1983) (see Annex A.3.1); Bažant & Baweja (1995a, 1995b) B3 model (see An-
nex A.4.1); Gardner & Lockman (2001) GL 2000 model (see Annex A.5.1). 

4.1.3. Sliced Data Transformation 
The experimental programs employed in the analysis were pursuing different 
objectives and were covering different time intervals with different measurement 
intensities. To assure even contribution of each experimental specimen and con-
sistency of the statistical analysis, a procedure called the sliced data transforma-
tion has been developed. It based on following steps: 
                                                 
∗The reference is given in the list of publications by the author on the topic of the dissertation 
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Step 1. Free shrinkage strains were calculated at all time points of each test 
specimen using all the techniques. 
Step 2. Ten fixed time levels T were introduced: 

 { } [ ]7;14; 21; 28; 35; 42; 60; 90;120;150 daysT = . (4.1) 

Step 3. As shown in Fig. 4.1, the experimental and calculated shrinkage strain 
versus time diagrams were sliced at the above time levels. The target points were 
derived by means of linear interpolation. 

Table 4.1. Main characteristics of shrinkage test data 

k n' n fcm,28 RH ts tcs h0 Author 
Number MPa % 

C 
Days 

S 
mm 

1. Tritsch et al. (2005) 35 2593 342 26–59 51 N 3–14 4–356 3 38 
2. Kaklauskas et al. (2008) 29 1418 196 43–50 76 N 1–4 2–89 2/3 50–145 
3. Mokarem (2002) 140 934 1400 36–51 50 S/N 1 7–180 3 38 
4. Persson (2001) 52 813 514 18–107 60 N 1 2–2631 2 28–50 
5. Townsend (2003) 20 392 148 86–92 50 N 1–7 2–105 2/3 25–38 
6. Gribniak et al. (2009)∗ 11 336 54 33–43 65 N 1–4 2–55 3 50–145 
7. Takemura et al. (1987) 8 130 48 32–69 60 N/R 28 29–178 3 50 
8. Furushima et al. (1993) 3 121 30 29–34 82 N 5 6–189 3 50 
9. Kawasumi et al. (1973) 6 112 56 44 50 N 2 5–592 2 75 
10. Kawahara et al. (1964) 12 102 120 15–27 50 N 2–6 9–736 3 38 
11. Ulickij et al. (1960) 6 72 48 16 88 N 7 10–127 3 36–51 
12. Tongaroonsri & 
Tangtermsirikul (2009) 6 69 17 20–55 75 N 7–14 8–28 3 38 

13. Umezu et al. (2003) 2 52 18 34–49 60 N 7 12–175 2 50 
14. Tomita (1994) 3 38 24 26–31 60 N 7 8–135 3 50 
15. Persson (1998) 3 37 30 55–68 55 N 6 7–1230 2 28 
16. Umezu et al. (2001) 3 36 27 33–36 60 N 7 14–189 2 80 
17. Asanuma et al. (1995) 2 36 18 30 66 N 7 17–187 3 80 
18. Ozaki et al. (2001) 3 27 30 69–72 60 N 1 2–366 2 100 
19. Takafumi et al. (2003) 1 18 7 31 60 N 7 12–97 3 50 
20. Kim & Lee (1998) 2 16 8 28–44 68 N 7 8–37 1 300 
21. Nakato et al. (2000) 2 16 14 14–32 60 N 7 10–98 3 50 
22. Liu et al. (2001) 1 14 5 28 60 N 7 10–49 3 50 
23. Murao (1997) 1 9 9 44 60 N 7 8–189 3 50 

                                                 
∗The reference is given in the list of publications by the author on the topic of the dissertation 
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Step 4. Accuracy of the predictions has been estimated by means of a relative 
error taken as 

 i,k cs,calc cs,obsΔ , 1; 2; 3; 9;10, 351i k= ε ε = =… . (4.2) 

Here cs,calcε  and cs,obsε  are the shrinkage strains linearly interpolated at the level 
T using calculated and original test data, respectively (see zoomed selection in 
Fig. 4.1 with target points shown by void circles); k is the total number of spe-
cimens. In the ideal case, the relative error Δ  should be equal to unity. 
 

 

Fig. 4.1. Illustration of sliced transformation of shrinkage-time diagrams 
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Application of the proposed technique has resulted in reduction of experi-
mental measurements from 7391 input points n' to 3163 output points n (see Ta-
ble 4.1). It should be noted that not every test specimen after sliced transforma-
tion contained output points at all time levels indicated in Equation (4.1). If a 
specimen was missing consistent experimental points needed for interpolation, it 
had a lesser number of output points (see Fig. 4.1). 

4.1.4. Statistical Background 
In present research, the error Δ  is considered as a random variable; therefore, 
errors of prediction techniques can be assessed using statistical methods. Statis-
tics estimating the central tendency and variability serve to measure precision of 
the predictions. The central tendency can be regarded as a consistency parameter 
of a calculation method. The postulate of minimum variance was used to evalu-
ate accuracy of a model (Soong 2004). It should be noted that the type of distri-
bution of the random variable plays a very important role making conclusions of 
the statistical analysis (Gribniak & Kaklauskas 2004∗, Bacinskas et al. 2009*). 

If the distribution is symmetrical, the mean and the median will coincide. If 
not, the median as a measure of central tendency is preferred to the mean, par-
ticularly for the distribution characterised by a small number of extreme values 
(Soong 2004). If the distribution of probability of the variable under investiga-
tion (i.e. the relative error Δ ) is normal, the central tendency and the variability 
are reflected by the expectation Δμ  and the variance 2

Δσ , which measures the 
dispersion or spread of random variable about Δμ . These parameters can be es-
timated by the statistics: 

 ( )n n 22
Δ i Δ i Δi 1 i 1

1 1Δ ; Δ , 3163
1

m s m n
n n= =

= = − =
−∑ ∑ . (4.3) 

Here Δm  is the mean of a sample (data set); 2
Δs  is the variance of a sample and n 

is the size of a data set. 
The confidence intervals for the expectation Δμ  and the variance 2

Δσ  can be 
also constructed using the sample mean Δm and the standard deviation Δs . The 
latter is the square root of the variance of a sample. The 1 α−  confidence inter-
val for the expectation can be determined by 

 ( ) ( )Δ Δ
Δ Δ Δ1 12 2

1 ; 1s sm t n m t n
n nα α− −

⎡ ⎤
μ ∈ − − × + − ×⎢ ⎥

⎣ ⎦
. (4.4) 

Here ( )1t n −  is the t-statistics (Student’s) having (n – 1) degrees of freedom and 
significance level α 2 ; 1 α−  is the confidence coefficient. 
                                                 
∗The reference is given in the list of publications by the author on the topic of the dissertation 
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If the distribution of probability of Δ  is not normal, the central tendency 
and the variability can be measured using the median Δ,1 2ξ  and the inter-
quartile distance Δ,3 4 Δ,1 4ξ ξ− , respectively (David & Nagaraja 2003). The lat-
ter parameter can be estimated by 1 α−  confidence interval: 

 ( ) ( )Δ,1 4 Δ,3 4 r s; ;x x⎡ ⎤⎡ ⎤ξ ξ ∈⎣ ⎦ ⎣ ⎦ . (4.5) 

Here (r)x  and (s)x  are the r-th and s-th elements of the data set sorted out in the 
ascending order. The problem of construction of above interval can be solved nu-
merically. For symmetrical interval (s = n – r + 1), the number r can be selected 
using the trial-and-error procedure from the condition (David & Nagaraja 2003): 

 
( ) ( ) ( )

( ) ( )

0,251 n rr 1
0,25 0

1 n rr 1
0

1 2 ; 1 ; 1 1 ,

; 1 1 .

I r n r B r n r t t dt

B r n r t t dt

− −−

−−

− α ≤ − + = ⎡ − + ⎤ −⎣ ⎦

− + = −

∫

∫
 (4.6) 

Here ( )0,25 ; 1I r n r− +  is the incomplete beta function; ( ); 1B r n r− +  is the 
beta function. The inter-quartile interval contains 50 % of the mass of the distri-
bution (the central part of distribution). 

The median Δ,1 2ξ  is the point that divides the mass of the distribution into 
two equal parts. The median can be estimated by the sample median Δ,1 2X : 

 
( )

( ) ( )

n 2 1

Δ,1 2
n 2 n 2 1

, is odd ,

0, 5 , is even .

x n
X

x x n

+

+

⎧⎪= ⎨ ⎡ ⎤⋅ +⎪ ⎣ ⎦⎩
 (4.7) 

Here (i)x  is the i-th member of the ordered data set. The confidence interval of 
median can be obtained by counting off α 2 2u n  observations to the left and 
the right of the sample median and rounding out to the next integer (i.e. the 
lower bound is rounded down and the upper up), where α 2u  is the α 2  signifi-
cance point of a standard normal inverse cumulative distribution function (David 
& Nagaraja 2003). 

In order to investigate the normality of the probability distribution, good-
ness tests of fit statistics to the set of experimental data should be performed. 
The common approaches to test goodness of fit statistics are the χ -square and 
Kolmogorov-Smirnov criteria. Main disadvantage of these approaches is that the 
ability to reject a false null hypothesis (termed the power) is low (Cohen et al. 
1974). The power can be increased significantly by using a simple data trans-
formation procedure proposed by Durbin (1961). The Durbin’s method is de-
scribed below: 

First, a cumulative probability was calculated for each point jΔ  [see Equa-
tion (4.2)] assumed to be a part of normally distributed parent population charac-
terised by the parameters Δμ m=  and Δσ s= : 
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 ( ) [ ]jΔ
Δ

j j Δ Δ 2
Δ Δ

1Δ , exp , 1, 2
2 2

t m
p F m s dt j n

s s−∞

⎛ ⎞−
= = − =⎜ ⎟⎜ ⎟⋅ π ⋅⎝ ⎠

∫ … . (4.8) 

Second, the calculated probabilities jp  are sorted in the ascending order 
( j)p  and a new data set is created using the subtraction procedure: 

 ( ) ( ) ( ) ( )1 j n 11 j j 1 n; ; 1C p C p p C p+−= = − = − . (4.9) 

Here n is the size of the initial data set. 
Third, in a similar way after sorting in the ascending order the above data, 

the resulting data set jw  is constructed using the formula: 

 
( ) ( ) ( ) ( ) ( )1 j1 j j 1

1 1 j j j 1

1 ; 2 , 2; 3; 1;

; , 2; 3; 1.

g n C g n j C C j n

w g w g g j n
−

−

⎡ ⎤= + = + − − = +⎣ ⎦
= = + = +

…

…
 (4.10) 

In conclusion, it is assumed that the random variable Δ  is distributed nor-
mally, if two conditions are satisfied (Durbin 1961): 

 
( ) ( )

( ) ( )

0,5
t nt 1 n 1

n 1 2
t 1 αt 1

max 0,275 0,04 1,518 ;

2 ln 2 .

t w n n Dn
w n

−

= +
+

−=

⎡ ⎤− × + − ⋅ ≤ =⎣ ⎦
− ⋅ ≤ χ ⋅∏

…
�

 (4.11) 

Here nD�  is the modified two-sided Kolmogorov-Smirnov statistics tabulated in 
(Stephens 1974); ( )2 2 nχ ⋅  is the χ -square statistics having 2·n degrees of free-
dom and significance level α  (in this study 0,05α =  was assumed). 

4.1.5. Results of the Analysis 
Analysis has shown that probability distribution of the error Δ  was not normal 
in neither of time levels of each method. Therefore, accuracy of shrinkage pre-
diction methods was assessed using these two statistical parameters: the median 
characterising the consistency and the inter-quartile distance reflecting variation 
of the predictions. The ideal model is characterised by the median approaching 
unity and minimal variation. Figure 4.2 presents 95% confidence intervals of 
above parameters for all shrinkage prediction methods. The results are also listed 
in Tables 4.2 and 4.3 and are discussed below: 

Variation. It is hardly can be considered as a quantitative characteristic and 
could be used for qualitative comparison of different techniques. As can be seen 
in Fig. 4.2 and Table 4.2, the smallest and the largest variation was characteristic 
to the ACI 209 and GL 2000 techniques, respectively, whereas other three meth-
ods have demonstrated quite similar variation. It can be pointed out that the 
variation was quite constant throughout the time, excepting the initial intervals. 
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Median (the central tendency). This statistical parameter is discussed sepa-
rately for each of the method. 

Eurocode 2. The median was very close to unity for all time levels. In fact, 
the deviation was not reaching 2% within T = 14–90 days. Above this interval, 
the predicted shrinkage strains were slightly underestimated. 

ACI 209. The predictions were time dependent: at the early age, the calculated 
shrinkage strains were significantly underestimated (up to 50%) With increasing 
time, the predictions were constantly improving being accurate at T = 90 days. 

CNIIS. Excepting the initial stage (T < 28 days), very consistent results 
were achieved with median close to unity. The median was asymmetrically posi-
tioned within the inter-quartile interval at all time levels. 

Bažant & Baweja (B3). The median, which is slightly underestimated at the 
early age (8%), is gradually increasing with 11% overestimation at T = 150 days. 
The asymmetry of probability distribution of predictions is very similar to that 
obtained by the CNIIS technique. 

Gardner & Lockman (GL 2000). Although time independent, the prediction 
are overestimated by 11–15%. 

Further investigation aimed at comparative predictions analysis of short-term 
deflection calculation methods uses free shrinkage strain occurring at pre-loading 
stage. In this study, age of the specimens employed in the deflection analysis was 
varying from 21 to 63 days. In the author’s view, the B3 and Eurocode 2 methods 
gave the most accurate predictions for this time interval. The latter method, as the 
normative document accepted in the EU, was chosen for further analysis. 

 

 

Fig. 4.2. Variation of the sample median of relative error Δ  with time and 
95% confidence intervals of the median and inter-quartile distance 
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Table 4.2. Variation of the sample median Δ,1 2X  with time 

Age, days n Eurocode 2 ACI 209 CNIIS B3 GL 2000 
7 287 1,064 0,478 0,791 0,920 1,232 
14 336 1,021 0,637 0,870 0,920 1,131 
21 344 1,014 0,719 0,915 0,928 1,127 
28 349 1,017 0,775 0,957 0,924 1,111 
35 346 0,992 0,777 0,958 0,954 1,117 
42 337 0,986 0,809 0,957 0,962 1,123 
60 323 0,979 0,866 0,995 1,010 1,131 
90 302 0,986 0,937 1,029 1,102 1,149 
120 277 0,954 0,956 1,024 1,110 1,147 
150 262 0,944 0,967 1,013 1,118 1,147 

Table 4.3. 95% confidence intervals of the inter-quartile distance 1 43 4X X+ −−  

Age, days Eurocode 2 ACI 209 CNIIS B3 GL 2000 
7 0,527 0,238 0,439 0,450 0,772 
14 0,626 0,284 0,529 0,550 0,773 
21 0,657 0,342 0,569 0,594 0,878 
28 0,683 0,383 0,668 0,680 0,869 
35 0,627 0,371 0,625 0,657 0,833 
42 0,618 0,382 0,623 0,629 0,812 
60 0,553 0,352 0,565 0,568 0,772 
90 0,543 0,423 0,476 0,507 0,746 
120 0,517 0,418 0,464 0,542 0,748 
150 0,454 0,357 0,435 0,519 0,683 

4.2. Accuracy Analysis of Deflection Predictions 

This Section investigates accuracy of short-term deflection predictions made by 
the methods described in Sections 1.2.7 and 1.3. Although numerical techniques 
such as finite element (FE) codes or Layer section analysis are extensively used 
in design, structural engineers are not yet well aware of accuracy of the numeri-
cal predictions with respect to design codes. Therefore, in research presented 
herein, an effort has been made to investigate statistically accuracy predictions 
made by the FE package ATENA and Layer section model on one hand, and the 
Eurocode 2, ACI 318 and SP 52-101 design code methods on the other. 
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4.2.1. Experimental Data for the Analysis 
Present study was based on experimental data of mid-span deflec-
tions/curvatures reported by the author and other researchers. The data set con-
sists of 7 experimental programs, 57 specimens and 1468 measurements. All the 
specimens were tested under a four-point bending scheme. Main parameters lis-
ted in Table 4.4 are span l0, shear span a, cross-section dimensions (notation see 
in Fig. 3.1c), tension reinforcement ratio p, compressive 150 mm cube strength 
fcu and age at testing. 

Most of the beams had rectangular cross section, but eight of them had an 
inverted T-section with flanges in tensile zone (Figarovskij 1962). Three beams 
were reinforced with plain bars (Figarovskij 1962) whereas the remaining spe-
cimens had deformed bars. 

Table 4.4. Main characteristic of test members employed in the analysis 

l0 a b h p fcu Age Author 
mm % MPa days 

1–8. Gribniak (Chapter 3) 3000 1000 277–283 299–301 0,4 41,1–54,2 28–48 
9–14. Ashour (2000) 3080 1290 200 250 1,2–2,4 60,8–98,11 29 
15–31. Clark & Speirs (1978) 3200 1000 202–902 201–513 0,4–2,0 23,0–39,6 21–41 
32–47. Figarovskij (1962) 3000 1000 179–181 249–254 0,2–0,9 22,7–37,12 29 
48–50. Gilbert (2007) 2000 667 850 100 0,3–0,8 48,0–60,51 283 
51–54. Gushcha (1967) 3600 1300 152–162 306–312 0,3–0,8 30,9–42,02 27–37 
55–57. Nejadi (2005) 3500 1167 250–400 161–348 0,5–0,7 45,5–48,61 42–63 

4.2.2. Calculation Techniques Employed for the Analysis 
The comparative analysis employed these empirical/analytical and numerical 
deflection calculation techniques: Eurocode 2 (CEN 2004) (see Section 1.3.1); 
ACI 318 (ACI Committee 318 2008) (see Section 1.3.2); Branson’s (1963, 1977) 
method (see Section 1.3.2); Russian code SP 53-101 (analytical approach, see 
Section 1.3.3.1, numerical approach, see Section 1.3.3.2); Layer section model 
(Kaklauskas 2001) (see Section 1.2.7.1); FE software ATENA (Cervenka et al. 
2002) (see Section 1.2.7.2). 

The characteristics of concrete (modulus of elasticity, tensile strength and 
fracture energy) needed for the deflection analyses were calculated using meas-
ured compressive strength based on the provisions of each technique. 
                                                 
1Strength was calculated from 150 300∅ ×  mm cylinder test data using factor 1,25 
2Strength was calculated from 200 mm cube test data using factor 1,05 
3Age data was missing in the paper 
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All the calculation methods have been reviewed in Sections 1.2.7 and 2.5.1. 
Below some details are discussed regarding numerical simulation by Layer sec-
tion model and FE software ATENA. 

4.2.2.1. Layer Section Model 
For reinforcement material idealisation, an elastic-plastic stress-strain relation-
ship was adopted. Characteristics of concrete, including the stress-strain rela-
tionship for compressive concrete (see Fig. 2.12b), were based on the Euro-
code 2 provisions. For simplicity, the behaviour of cracked tensile concrete was 
modelled using a linear tension-stiffening relationship shown in Fig. 2.3a. Factor 
β , controlling tension-stiffening, was defined from Equation (1.5). As a simpli-
fied tension-stiffening relationship instead of realistic one (for instance, expo-
nential) was assumed, to avoid excessive stiffness of the model, reduced tensile 
strength ct ctm0,8f f=  was introduced. 

4.2.2.2. Finite Element Modelling by Software ATENA 
FE model of the specimen was considered in a plane stress state with non-linear 
constitutive laws for concrete and reinforcement. Such approach simplifies the 
three-dimension action of real structures on one hand, but enables a refinement 
with respect to the model based on the plane section hypothesis on the other. For 
concrete, the model SBETA offered by ATENA was utilized, which is based on 
the concept of smeared cracks and damage. Concrete without cracks is consid-
ered as isotropic and concrete with cracks as orthotropic. In this study, the fixed 
crack model was used: crack direction and material axes are defined by the prin-
cipal stress direction at the onset of cracking when the principal stress exceeds 
the tensile strength. In further analysis, this direction is fixed and cannot be 
changed. A rotation of principal strain axes generates shear stresses on the crack 
plane. Consequently, the model of shear in cracked concrete becomes important. 
For this, a variable shear retention factor is used, in which the shear modulus on 
the crack plane reduces with the crack opening (Cervenka et al. 2002). 

As was mentioned, the tension-stiffening effect included into FE model in-
directly using principles of fracture mechanics. Investigation of FE mesh de-
pendence on modelling of flexural members showed that such approach is rela-
tively independent from the finite element size in regard to the approach when 
tension-stiffening relationships (Gribniak et al. 2007d∗, 2009*). It was also found 
that models of RC beams having 6–8 finite elements per height demonstrate best 
accuracy. The finite element model used for the beams is shown in Fig. 4.3. Due 
to symmetry conditions, only half of the beam has been modelled. Isoparametric 
quadrilateral finite elements with 8 degrees of freedom and four integration 
points were used for all the beams. The element size was about 30 mm. Bar rein-
forcement was modelled by truss elements embedded in concrete elements. 
                                                 
∗The reference is given in the list of publications by the author on the topic of the dissertation 
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Two FE analyses, i.e. excluding and including shrinkage (ATENA and 
ATENAcs, respetively) at the pre-loading stage, have been performed. Example 
of the analysis of beam S-1 tested by the author (see Section 3.1.1) is shown in 
Fig. 4.4 and illustrates deformations, cracks and principal stresses in concrete. 
Moment-curvature response of this beam comparing various methods and ex-
periment is shown in Fig. 4.5. Curvature was calculated by Equation (3.2) where 
the length of constant moment zone a is taken from Table 4.4. 

 

 

Fig. 4.3. Finite element meshing of a beam using in the analysis 

 

Fig. 4.4. FE simulation of beam S-1 by ATENA: deformations, crack pattern 
and principal stresses at the level of loading M' = 0,25 [see Equation (4.12)] 

4.2.3. Sliced Data Transformation 
The experimental mid-span deflections/curvatures were compared with those 
predicted by the techniques described above. Sliced transformation (as described 
in Section 4.1.3) has been performed with the experimental measurements. The 
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transformation was based on introducing eleven levels of loading intensity M ′  
taken in relative terms between the cracking and ultimate bending moment: 

 ( ) ( ) { }*
cr ult cr ; 0; 0,1; 0,2; 0,9;1M M M M M M′ ′= − − = … . (4.12) 

Here *
ultM  is the pseudo-ultimate bending moment calculated for each member 

under assumption of yielding strength of tensile reinforcement 400 MPa; crM  is 
the cracking moment (CEB-FIP 1991): 

 23
cr el ct t ct c c cu; 0,3 ; 1,25M I f y f f f f′ ′= = = . (4.13) 

Here cuf  is the compressive 150 mm cube strength of concrete (see Table 4.4). 
Thus, 0M ′ =  and 1M ′ =  corresponds to cracking and pseudo-failure of the RC 
element, respectively. 

Accuracy of the predictions was estimated by means of a relative error i,kΔ  
calculated at each level M ′  for each of 57 experimental members: 

 i,k calc obsΔ , 1; 2; 3; 10;11, 57x x i k′ ′= = =… . (4.14) 

Here calcx′  and obsx′  are the mid-point deflections/curvatures interpolated at the 
level M ′  from calculated and original test data, respectively. It should be noted 
that not all specimens contained eleven output points as their testing was termi-
nated before reinforcement reached 400 MPa. The transformation resulted in 
532 output points covering post-cracking stage (compare to 1468 measured po-
ints). Figure 4.5 illustrates such data transformation. 

4.2.4. Statistical Analysis of Deflection Predictions 
The relative error Δ  is considered as a random variable; therefore, the statistical 
methods described in Section 4.1.4 can be also used for assessing accuracy of 
deflection prediction techniques. To begin with, testing for normality of prob-
ability distribution of Δ  at each load level M ′  has been carried out using the 
errors jΔ , 1j n= …  [see Equation (4.14)]. For this, the Durbin’s method, de-
scribed in Section 4.1.4, was applied. As expected, distribution of the test data 
was not normal. 

The normality condition can be violated when the test data have more than 
one group of local concentration (David & Nagaraja 2003). Previous investiga-
tions by the author and his associates have shown that accuracy of deflection 
predictions is mainly affected by such a parameter as reinforcement ratio, p 
(Gribniak et al. 2004∗, 2007d*, and 2009*). Therefore, it was decided to split the 
experimental data into a number of groups, each with normal probability distri-
bution. For this purpose, the following procedure has been proposed. 
                                                 
∗The reference is given in the list of publications by the author on the topic of the dissertation 
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Step 1. Based on reinforcement ratio criteria, all the test members are sorted in 
the ascending order. 
Step 2. First three members are taken and normality test is performed for test 
data at each load level M ′ . If the normality test is satisfied, test data of next 
member is added. 

 

 

Fig. 4.5. Sliced transformation of moment-deflection/curvature diagrams 
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Step 3. The normality is checked adding the data of each next member until 
the test is violated. If so, the last member is excluded from the current data set. 
Step 4. Next three members including the discarded one, start a new data set. 
Analysis is proceeded starting from Step 2. 

In practical application of the procedure, it was intended at each normalised 
load level to define reinforcement ratio intervals with normal probability distri-
bution of relative error Δ  valid for all the methods under consideration. Analy-
sis performed has resulted in three such intervals: 

 0,4%; 0,4 0,8%; 0,8%p p p≤ < ≤ >: : :1 2 3 . (4.15) 

Under the assumption of the above intervals, Δm  and Δs  were calculated at 
each normalised load level. The statistics for each of the deflection calculation 
method are presented in Tables 4.5 and 4.6. It can be seen that Δm  and Δs  of 
some adjacent load levels were of similar value. To obtain more reliable results 
(to increase the number of data points within the intervals and reduce the varia-
tion of jΔ ), the adjacent load intervals having homogeneous variances and 
means can be joined into common intervals. Testing equality of several means 
can be performed using the technique called the analysis of variance (ANOVA). 
It compares the variance among groups to the variances within groups (Raudys 
& Young 2004). Two cases are encountered in ANOVA: 1) two independent 
samples are analysed and 2) more than two samples are analysed. Below these 
two cases are discussed. 

Analysis of two samples allows applying a relatively simple comparison 
procedure based on F-test proposed by Fisher (1925) and modified by Mardia & 
Zemroch (1978). Let two samples, { }1 nX x x= …  and { }1 rY y y= … , be inde-
pendent normally distributed random variables with unknown expectations and 
variances xμ , yμ  and 2

xσ , 2
yσ , respectively. Let xm , ym  and 2

xs , 2
ys  be the 

sample means and empirical variances, respectively. Then the hypothesis on 
homogeneity of variances 2

xσ  and 2
yσ  is assumed acceptable, if following condi-

tion is satisfied (Fisher 1925): 

 ( ) ( )2 2
α 2 1 2 x y 1 α 2 1 2, ,F f f s s F f f−≤ ≤ . (4.16) 

Here ( )1 2,F f f  is the Fisher’s statistics having f1 and f2 degrees of freedom. 
The latter can be determined as following (Mardia & Zemroch 1978): 
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Table 4.5. Basic statistics (mean and standard deviation) for analytical deflection 
calculation techniques grouped by reinforcement ratio 

n Eurocode 2 ACI 318 Branson SP 52-101 
M' 

Pts. Δm  Δs  Δm  Δs  Δm  Δs  Δm  Δs  
1: 0, 4%≤p  
0 23 2,004 0,714 0,945 0,337 0,949 0,336 2,429 0,750 
0,1 23 1,963 0,731 0,830 0,309 0,867 0,330 2,143 0,797 
0,2 23 1,688 0,741 0,778 0,325 0,863 0,370 1,764 0,806 
0,3 23 1,461 0,577 0,750 0,293 0,864 0,346 1,488 0,634 
0,4 23 1,298 0,452 0,730 0,254 0,858 0,302 1,301 0,500 
0,5 21 1,179 0,339 0,693 0,204 0,824 0,241 1,168 0,387 
0,6 20 1,104 0,294 0,690 0,189 0,822 0,215 1,088 0,335 
0,7 18 1,059 0,269 0,699 0,187 0,835 0,213 1,037 0,305 
0,8 16 1,031 0,250 0,699 0,192 0,832 0,213 1,001 0,277 
0,9 16 1,011 0,218 0,714 0,188 0,844 0,204 0,978 0,237 
1,0 15 1,012 0,185 0,734 0,190 0,862 0,200 0,973 0,201 
2: 0, 4 0,8%< ≤p  
0 17 1,385 0.421 0.858 0.275 0,863 0,276 1,664 0,441 
0,1 17 1,366 0,380 0,856 0,279 0,936 0,310 1,446 0,373 
0,2 16 1,213 0,296 0,867 0,254 0,980 0,288 1,242 0,295 
0,3 16 1,089 0,156 0,856 0,190 0,967 0,197 1,100 0,151 
0,4 16 1,039 0,116 0,869 0,159 0,974 0,148 1,046 0,105 
0,5 15 1,029 0,094 0,891 0,140 0,992 0,117 1,034 0,085 
0,6 13 1,030 0,080 0,912 0,130 1,010 0,100 1,035 0,070 
0,7 13 1,002 0,078 0,911 0,103 1,000 0,075 1,009 0,061 
0,8 12 0,986 0,087 0,914 0,085 0,994 0,069 0,999 0,059 
0,9 12 0,970 0,092 0,914 0,073 0,987 0,073 0,984 0,061 
1,0 9 0,969 0,116 0,901 0,078 0,981 0,099 0,970 0,076 
3: 0,8%>p  
0 17 1,022 0,211 0,921 0,172 0,948 0,170 1,139 0,256 
0,1 17 1,091 0,177 1,022 0,137 1,109 0,143 1,104 0,202 
0,2 17 1,000 0,100 0,990 0,088 1,057 0,094 1,002 0,121 
0,3 17 0,958 0,077 0,973 0,072 1,020 0,079 0,966 0,100 
0,4 16 0,942 0,078 0,967 0,067 1,000 0,081 0,956 0,094 
0,5 15 0,929 0,070 0,959 0,062 0,982 0,075 0,949 0,089 
0,6 15 0,907 0,072 0,937 0,065 0,955 0,076 0,932 0,084 
0,7 13 0,904 0,079 0,933 0,074 0,948 0,084 0,925 0,094 
0,8 12 0,898 0,073 0,926 0,068 0,938 0,077 0,918 0,087 
0,9 9 0,896 0,052 0,917 0,046 0,928 0,057 0,894 0,075 
1,0 7 0,881 0,066 0,896 0,057 0,906 0,068 0,862 0,066 
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Table 4.6. Basic statistics (mean and standard deviation) for numerical deflection 
calculation techniques grouped by reinforcement ratio 

n SP 52-101num Layer ATENA ATENAcs M' 
Pts. Δm  Δs  Δm  Δs  Δm  Δs  Δm  Δs  

1: 0, 4%≤p  
0 23 0,834 0,304 1,180 0,636 0,680 0,237 0,820 0,441 
0,1 23 0,952 0,517 1,157 0,583 0,574 0,210 1,057 0,736 
0,2 23 1,943 1,058 1,085 0,536 0,613 0,318 1,261 0,637 
0,3 23 1,847 0,880 1,064 0,502 0,910 0,432 1,359 0,666 
0,4 23 1,623 0,835 1,015 0,413 0,990 0,394 1,269 0,459 
0,5 21 1,446 0,641 0,955 0,340 0,930 0,293 1,164 0,282 
0,6 20 1,324 0,552 0,939 0,264 0,945 0,203 1,105 0,237 
0,7 18 1,255 0,493 0,933 0,190 0,918 0,200 1,055 0,226 
0,8 16 1,219 0,439 0,951 0,155 0,909 0,200 1,025 0,218 
0,9 16 1,186 0,371 1,038 0,228 0,915 0,198 1,017 0,187 
1,0 15 1,181 0,316 1,089 0,261 0,922 0,192 1,021 0,158 
2: 0, 4 0,8%< ≤p  
0 17 0,669 0,187 0,974 0,324 0,610 0,185 0,773 0,360 
0,1 17 1,078 0,383 0,971 0,305 0,611 0,307 1,047 0,462 
0,2 16 1,439 0,417 0,975 0,283 0,760 0,281 1,092 0,398 
0,3 16 1,233 0,263 0,992 0,183 0,840 0,272 1,021 0,273 
0,4 16 1,134 0,208 1,036 0,128 0,856 0,238 1,003 0,200 
0,5 15 1,103 0,171 1,069 0,114 0,887 0,206 1,002 0,172 
0,6 13 1,093 0,145 1,087 0,105 0,907 0,190 1,020 0,125 
0,7 13 1,056 0,131 1,065 0,104 0,911 0,138 1,004 0,096 
0,8 12 1,047 0,123 1,062 0,104 0,919 0,119 0,993 0,091 
0,9 12 1,046 0,105 1,062 0,097 0,916 0,101 0,983 0,083 
1,0 9 1,043 0,112 1,071 0,103 0,908 0,115 0,987 0,099 
3: 0,8%>p  
0 17 0,763 0,267 0,995 0,134 0,586 0,108 0,754 0,162 
0,1 17 1,144 0,218 1,108 0,158 0,655 0,135 1,060 0,158 
0,2 17 1,026 0,145 1,051 0,102 0,813 0,088 1,038 0,082 
0,3 17 0,962 0,108 1,010 0,087 0,856 0,069 1,001 0,066 
0,4 16 0,936 0,103 0,991 0,090 0,888 0,068 0,992 0,073 
0,5 15 0,923 0,070 0,976 0,079 0,902 0,060 0,984 0,063 
0,6 15 0,910 0,077 0,953 0,077 0,897 0,061 0,966 0,067 
0,7 13 0,917 0,079 0,952 0,083 0,901 0,071 0,963 0,076 
0,8 12 0,928 0,071 0,953 0,075 0,902 0,067 0,964 0,071 
0,9 9 0,940 0,069 0,960 0,063 0,914 0,042 0,964 0,053 
1,0 7 0,929 0,089 0,942 0,073 0,908 0,054 0,955 0,063 
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Comparative analysis of two expectations xμ  and yμ  can be performed us-
ing the t-test. Hypothesis about equality of xμ  and yμ  can be accepted, if fol-
lowing condition is satisfied: 

 
( )

( ) ( )
( )x y

α2 2 1 2x y

2
, 2

1 1

m m n r n r t f f n r
n rn s r s −

− + − +
≤ = + −

⋅− + −
. (4.18) 

Here ( )t f  is the Student’s statistics having f degree of freedom and significance 
level 2 0,025α = . 

Now consider a case when comparative analysis is performed for more than 
two data samples. The statistical problem that arises from the use of multiple 
comparisons tests is that any subsequent test of hypotheses will be performed on 
the outcome with the same data on which the global test was performed. This 
can result in an uncontrolled type I error rate (the rate of rejecting the null hy-
pothesis when it should not be rejected). Multiple comparison methods have 
been developed to avoid this problem. In present research, ANOVA is based on 
the method proposed by Samiuddin & Atiqullah (1976) and Samiuddin et al. 
(1978). Let k samples of size ni be independent normally distributed random 
variables with unknown expectations and variances iμ  and 2

iσ , respectively. Let 
im  and 2

is  be the sample means and empirical variances, respectively. The hy-
pothesis about homogeneity of variances 2

i , 1i kσ = …  is assumed acceptable, if 
following condition is satisfied (Samiuddin et al. 1978): 
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Here ( )2 1kχ −  is the χ -square statistics having k – 1 degrees of freedom and 
significance level 0,05α = , other parameters are calculated by the formulas: 
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Chew (1976) has performed investigation on various multi-comparison pro-
cedures and came to conclusion that the test developed by Scheffé (1959) was 
most suitable for comparative analysis. Based on this procedure, the sample 
means im  are sorted in the ascending order ( )im . The hypothesis of equality of 

i , 1i kμ = …  can be accepted, if following condition is satisfied: 
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In Equation (4.21), ( )1,F k n k− −  is the Fisher’s statistics having (k – 1) 
and (n – k) degrees of freedom and significance level α 0,05= ; xij is the i-th 
element of j-th sample and nj is the size of j-th sample. 

The above comparison techniques have been used for joining the adjacent 
load intervals. Each deflection analysis method was treated separately within the 
designated reinforcement ratio intervals [see Equation (4.15)]. The procedure 
proposed has similarities to that used for defining reinforcement ratio intervals. 
Step 1. Two-sample ANOVA is performed for data points corresponding to 
the first two normalised load levels. The load levels can be joined, if variances 
are recognised to be homogeneous [see Equation (4.16)] and the hypothesis of 
equality of the expectations is valid [see Equation (4.18)]. If any of the condi-
tions is not satisfied, the data of the first load level is rejected. Step 1 is repeated 
for the data corresponding to the remaining and next load levels. 
Step 2. If the analysis performed in Step 1 results in joining two load intervals, 
data of next load interval is added. Then multiple-comparison ANOVA is per-
formed. The load levels can be joined, if variances are recognised to be homo-
geneous [see Equation (4.19)] and the hypothesis of equality of the expectations 
is valid [see Equation (4.21)]. Step 2 is repeated adding data of next load inter-
vals until the above conditions are not satisfied. In that case, the data, which rep-
resent the last load interval, is excluded from the current data set. 
Step 3. A new data, representing the discarded and next successive load levels, 
is formed. The analysis is proceeded starting from Step 1. 

It should be pointed out that the number of reinforcement ratio intervals was 
defined from the condition of normal distribution of relative error valid for all 
the methods under consideration. However, this number can be reduced, if indi-
vidual methods are treated separately. The above procedure with slight modifi-
cation has been applied to investigate whether the number of reinforcement ratio 
intervals can be decreased. Analysis has shown that intervals 1 and 2 can be joi-
ned for the deflection analysis results obtained by ATENA. 

4.2.5. Results of the Analysis 
Analysis results are summarised in Tables 4.7 and 4.8 and Figure 4.6. Tables 4.7 
and 4.8 present numerical values of means and standard deviations after data 
grouping was performed. It can be seen from the tables that different number of 
load intervals was obtained for the methods. For the first two reinforcement ratio 
intervals, this number was approximately constant varying from four to six. Ob-
viously, this number has reduced for the beams with the largest reinforcement 
ratio reaching three intervals for all the methods. This number indicates depend-
ence of loading level on accuracy of deflection calculation techniques. The mi-
nimal number of intervals shows little dependence. As it was pointed out, join-
ing data intervals contributes to more reliable results due to increase of number 
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of data points. Such increase results in reduction of variance of data in joined 
intervals. This can be seen from comparing standard deviations presented in Ta-
bles 4.5 and 4.6 on one hand and Tables 4.7 and 4.8 on the other. 

Graphical illustration of the analysis results is presented in Figure 4.6 with 
shown 95% confidence intervals of expectation Δμ  for the grouped data. Width 
of the confidence intervals characterises variation of the relative error of predic-
tions [see Equation (4.4)]. It is clearly seen that the variations were different not 
only for different deflection/curvature prediction methods, but also for different 
reinforcement ratios and load intensities. Strikingly different results were ob-
tained for the members with minimal reinforcement ratios. Another point of 
sharp contrast was significantly larger data scatter at early cracking stages. The 
latter effect is particularly clear for the members with small amounts of rein-
forcement due to increased share of concrete in resisting tension forces acting in 
the section. Interpretation of the results presented in Fig. 4.6 will facilitate Fig. 
4.7 indicating location of the service load within the normalised load level as-
sumption [see Equation (4.12)]. Thus, for small amounts of reinforcement, ser-
vice load approaches cracking moment. 

Numerical values of mean and standard deviation of Δ  calculated at service 
load are given in Table 4.9. The results, also including confidence intervals of 
the expectation, are presented for the three intervals of reinforcement ratio. As 
noted before, consistency of a method is characterised by the central tendency. 
For normally distributed probability of error Δ , the central tendency is charac-
terised by the expectation. A technique will be considered as a consistent, if its 
confidence interval covers unity. If the confidence intervals do not cover unity, 
in the author’s view, the overestimated deflections/curvatures are more prefer-
able than the underestimated one. The latter results in Table 4.9 are presented in 
grey filled cells. It should be pointed out that the ACI 318 method underesti-
mated deflections/curvatures, particularly for the members with relatively low 
reinforcement ratio ( 0,8%p ≤ ). For the members with moderate amounts of 
reinforcement, only ATENA (taking into account shrinkage effect) demonstrated 
consistency, whereas all other methods underestimated deflections/curvatures. 

Reasonable results in terms of consistency and variation have been demon-
strated using the Layer section model. Future investigations are needed to pro-
pose a more advanced free-of-shrinkage tension-stiffening relationship. 

Further, the t-tests [see Equation (4.18)] were carried out to check whether 
the consistency characteristics presented in Table 4.9 were significantly different 
(5% significance level). Three main conclusions can be made: 
• Consistency differences in predictions due to very high variation were not 

significant for the members with minimal reinforcement ratio ( 0, 4%p ≤ ). 
Statistically significant differences can be obtained, if the number of test 
members is increased. Therefore, experimental investigation of lightly rein-
forced members is of higher priority. 
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• Consistency of predictions made by the ACI 318 method for the second re-
inforcement ratio interval ( 0,4 0,8%p< ≤ ) were significantly different 
concerning other code techniques. 

• Difference in consistency of two predictions made by ATENA (when 
shrinkage was ignored and taken into account) was statistically significant. 
If shrinkage is not assessed, deflections might be underestimated. Therefore, 
shrinkage effect should be taken into account in the FE analysis of RC 
structures subjected to short-term load, what is not a common practice. 
 

 

Fig. 4.6. 95% confidence intervals of the expectation for different 
reinforcement ratio intervals and load levels 
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Table 4.7. Basic statistics (mean and standard deviation) for analytical deflection 
calculation techniques after grouping in reinforcement ratio and load level intervals 
(grouped intervals are shown in grey) 

n Eurocode 2 ACI 318 Branson SP 52-101 M' 
Pts. Δm  Δs  Δm  Δs  Δm  Δs  Δm  Δs  

1: p ≤ 0,4% 
0 23 
0,1 23 
0,2 23 
0,3 23 
0,4 23 

1,683 0,699 1,825 0,810 

0,5 21 1,179 0,339 1,168 0,387 
0,6 20 1,104 0,294 

0,776 0,288 

1,088 0,335 
0,7 18 1,059 0,269 0,699 0,187 

0,862 0,300 

1,037 0,305 
0,8 16 1,031 0,250 0,699 0,192 0,832 0,213 1,001 0,277 
0,9 16 0,844 0,204 
1,0 15 

1,012 0,200 0,724 0,186 
0,862 0,200 

0,976 0,217 

2: 0,4 < p ≤ 0,8% 
0 17 
0,1 17 
0,2 16 

1,323 0,371 1,454 0,407 

0,3 16 1,089 0,156 

0,935 0,269 

1,100 0,151 
0,4 16 1,039 0,116 

0,861 0,232 

0,974 0,148 1,046 0,105 
0,5 15 0,891 0,140 0,992 0,117 1,034 0,085 
0,6 13 

1,029 0,086 
0,912 0,130 1,010 0,100 

0,7 13 1,000 0,075 
0,8 12 

0,912 0,093 

0,9 12 0,914 0,073 
1,0 9 

0,983 0,090 

0,901 0,078 

0,988 0,077 

1,002 0,066 

3: p > 0,8% 
0 17 
0,1 17 

1,057 0,195 0,971 0,162 1,121 0,228 

0,2 17 1,000 0,100 0,990 0,088 

1,038 0,152 

1,002 0,121 
0,3 17 1,020 0,079 
0,4 16 
0,5 15 
0,6 15 
0,7 13 
0,8 12 
0,9 9 
1,0 7 

0,920 0,074 0,944 0,068 
0,958 0,078 

0,933 0,091 
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Table 4.8. Basic statistics (mean and standard deviation) for numerical deflection 
calculation techniques after grouping in reinforcement ratio and load level intervals 
(grouped intervals are shown in grey) 

n SP 52-101num Layer ATENA ATENAcs M' 
Pts. Δm  Δs  Δm  Δs  Δm  Δs  Δm  Δs  

1: p ≤ 0,4% 
0 23 
0,1 23 

0,893 0,423 

0,2 23 1,943 1,058 

0,638 0,262 

0,3 23 
0,4 23 

1,153 0,620 

0,5 21 

1,644 0,801 

1,076 0,510 

0,909 0,327 

1,164 0,282 
0,6 20 1,324 0,552 0,939 0,264 0,945 0,203 1,105 0,237 
0,7 18 1,255 0,493 0,933 0,190 0,918 0,200 1,055 0,226 
0,8 16 0,951 0,155 0,909 0,200 1,025 0,218 
0,9 16 1,038 0,228 0,915 0,198 
1,0 15 

1,195 0,372 

1,089 0,261 0,922 0,192 
1,019 0,171 

2: 0,4 < p ≤ 0,8% 
0 17 0,669 0,187 
0,1 17 
0,2 16 
0,3 16 

1,247 0,384 
0,978 0,274 0,981 0,393 

0,4 16 1,134 0,208 1,036 0,128 1,003 0,200 
0,5 15 1,069 0,114 1,002 0,172 
0,6 13 1,020 0,125 
0,7 13 

1,085 0,149 

1,004 0,096 
0,8 12 0,993 0,091 
0,9 12 
1,0 9 

1,045 0,110 

1,069 0,100 

p ≤ 0,8% 

0,985 0,087 

3: p > 0,8% 
0 17 
0,1 17 

0,907 0,221 

0,2 17 

0,978 0,265 

1,038 0,082 
0,3 17 0,962 0,108 

0,728 0,150 

0,4 16 

1,031 0,123 

0,888 0,068 
0,5 15 0,976 0,079 
0,6 15 
0,7 13 
0,8 12 
0,9 9 
1,0 7 

0,925 0,082 

0,953 0,073 
0,977 0,067 

0,977 0,067 
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Table 4.9. Basic statistics defined at service loading after grouping data according to 
reinforcement ratio 

Statistics 95 % confidence limits of the expectation 
Method 

Δm  Δs  Δ
−m  Δ

+m  
1: 0,4%≤p , n = 23 pts. 

Eurocode 2 1,401 0,636 1,252 1,549 
ACI 318 0,782 0,316 0,708 0,856 
Branson 0,890 0,371 0,803 0,977 
SP 52-101 1,547 0,737 1,370 1,719 
SP 52-101num 1,710 1,010 1,474 1,946 
Layer 1,045 0,514 0,924 1,165 
ATENA 0,842 0,309 0,785 0,898 
ATENAcs 1,288 0,755 1,112 1,465 
2: 0,4 0,8%< ≤p , n = 15 pts. 

Eurocode 2 1,043 0,112 1,010 1,075 
ACI 318 0,864 0,177 0,813 0,915 
Branson 0,959 0,167 0,911 1,007 
SP 52-101 1,058 0,115 1,025 1,091 
SP 52-101num 1,159 0,255 1,085 1,233 
Layer 1,000 0,156 0,955 1,045 
ATENA1 – – – – 
ATENAcs 0,984 0,222 0,920 1,048 
3: 0,8%>p , n = 15 pts. 

Eurocode 2 0,922 0,078 0,900 0,945 
ACI 318 0,950 0,066 0,931 0,969 
Branson 0,973 0,081 0,950 0,997 
SP 52-101 0,944 0,089 0,919 0,970 
SP 52-101num 0,923 0,095 0,895 0,950 
Layer 0,971 0,088 0,945 0,996 
ATENA 0,899 0,063 0,881 0,918 
ATENAcs 0,979 0,072 0,958 1,000 

                                                 
1Reinforcement ratio intervals 1 and 2 were joined for the prediction results obtained by ATENA: 
the number of data points has increased up to 38 (n = 23 + 15) 
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Fig. 4.7. Distribution of service load interval in respect to reinforcement ratio 

4.3. Concluding Remarks of Chapter 4 

This Chapter presents a transparent statistical procedure developed for analysis 
of experimental data. It introduces a relative error of predictions calc obsx xΔ = , 
were calcx  and obsx  are, respectively, the values calculated and observed ex-
perimentally. The proposed procedure allows checking hypotheses on accuracy 
of predictions of a calculation technique by analysis of the relative errors. To 
assure even contribution of each test specimen and consistency of the statistical 
analysis, a procedure called the sliced data transformation has been proposed. 
The data transformation for each test specimen introduces a fixed number of ob-
servation levels further to be used in the analysis. 

The statistical investigation consists of two parts: free shrinkage strain and 
short-term deflection/curvatures prediction accuracy analyses. The first part in-
vestigates accuracy of free shrinkage predictions made by various methods re-
viewed in Section 1.1.2. Though considered as a long-term effect, shrinkage also 
has influence on crack resistance and deformations of reinforced concrete mem-
bers subjected to short-term load. In the code methods based on experimental 
data, shrinkage effect on deformations is assessed indirectly. In the numerical 
approaches, shrinkage should be taken into account as an independent factor. As 
shrinkage is taken into account in the proposed strain/deflection calculation 
technique it seems appropriate to perform comparison of predictions of free 
shrinkage strain by different methods. The analysis is limited to relatively short 
duration (up to 150 days), characteristic to the age of a structure first loaded. The 
comparative statistical analysis was carried out for the experimental data re-
ported by the author and other researchers. The data set consisted of 23 experi-
mental programs, 351 specimens and 7391 measurement points. 
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Shrinkage analysis has indicted that the Bažant & Baweja (B3) and the Eu-
rocode 2 methods gave the most accurate predictions for the time interval from 
21 to 63 days. This time interval covers the test data employed for the deflection 
analysis. The Eurocode 2 method, as the normative document accepted in the 
European Union, was chosen for further analysis. 

The second part of the analysis was concerned with short-term deflections 
of reinforced concrete bending members. This investigation has employed data 
of seven experimental programs, one of which was reported by the author. The 
data set consisted of 57 specimens and 1468 measurement points. The compara-
tive study was based on the predictions made by design codes (Eurocode 2, ACI 
318 and SP 52-101) and numerical techniques (ATENA and Layer section model). 

Accuracy of the deflection/curvature predictions varied significantly with 
change of load intensity and reinforcement ratio, i.e. was increasing with grow-
ing of latter parameters. Strikingly different results were obtained for the mem-
bers with minimal reinforcement ratios. Another point of sharp contrast was sig-
nificantly larger data scatter at early cracking stages. The latter effect is 
particularly clear for the members with small amounts of reinforcement due to 
increased share of concrete in resisting tension forces acting in the section. 

It should be pointed out that the ACI 318 method significantly underesti-
mated deflections/curvatures for members with relatively low reinforcement ra-
tio (p ≤ 0,8%). For the members with moderate amounts of reinforcement 
(p > 0,8%), only ATENA (taking into account shrinkage effect) demonstrated 
consistency, whereas all other methods underestimated deflections. 

Reasonable results in terms of consistency and variation were demonstrated 
using the Layer section model. Future investigations are needed for proposing a 
more advanced free-of-shrinkage tension-stiffening relationship. 

Three main conclusions can be made: 
1. Consistency differences in predictions by different methods due to very 

high variation were not significant for the members with minimal rein-
forcement ratio (p ≤ 0,4%). Statistically significant results can be ob-
tained, if the number of test members is increased. Therefore, experimen-
tal investigation of lightly reinforced members is of priority. 

2. Predictions made by the ACI 318 method for reinforcement ratio interval 
0,4 < p ≤ 0,8% were significantly (5% significance level) different con-
cerning other code techniques. 

3. Difference in consistency of two deflection predictions by ATENA (when 
shrinkage was ignored and taken into account) was statistically signifi-
cant. When shrinkage was not assessed, deflections were substantially 
underestimated. Therefore, shrinkage effect should be taken into account 
in the numerical analysis of reinforced concrete structures subjected to 
short-term load (what is not a common practice). 
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General Conclusions 

Summary and Conclusions 

Present study aims at contributing to a better understanding of the shrinkage in-
fluence on cracking resistance and deformation behaviour of reinforced concrete 
(RC) flexural members subjected to short-term loading. Based on the literature 
review, the following conclusions can be drawn: 

1. Most known tension-stiffening relationships were derived from test data 
of reinforced concrete members exposed to shrinkage. Therefore, the ten-
sion-stiffening was coupled with shrinkage and accompanying creep ef-
fect. 

2. While being confident about sufficient accuracy of deflection analysis of 
structures with moderate amounts of reinforcement, investigators and de-
signers often raise concerns about the validity of the chosen tension-
stiffening parameters for lightly reinforced members. Complexity of the 
issue is indicated by the wide-spread use of different code techniques 
(Eurocode 2, ACI, Russian code, etc) and disparity of their prediction re-
sults. For checking the accuracy of the predictive models, very few re-
ports on tests of lightly reinforced flexural members are available. 
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An innovative numerical procedure has been proposed for deriving free-of-
shrinkage tension-stiffening relationships using test data (moment-curvature re-
lationships) of bending RC members. The procedure combines the direct and the 
inverse techniques. In the direct technique, moment-curvature diagrams are cal-
culated using the assumed material stress-strain relationships. The inverse tech-
nique aims at determining tension-stiffening relationships for cracked tensile 
concrete from flexural tests of RC members. To eliminate shrinkage effect, a 
reverse shrinkage (expansion) strain is assumed in the direct technique. 

New experimental data was obtained on crack resistance and deformation 
behaviour of lightly reinforced concrete beams subjected to short-term loading. 
Prior to the tests of the beams, measurements on concrete shrinkage and creep 
were performed. Based on the proposed procedure, free-of-shrinkage tension-
stiffening relationships were derived for the beams. It was shown that: 

3. For beams of same reinforcement ratio, tension-stiffening was more pro-
nounced in those with a larger number of tensile reinforcing bars. 

4. Shrinkage greatly affects tension-stiffening and might several times re-
duce the cracking resistance of the members. Although, in absolute terms, 
this was more clearly expressed in the members with higher reinforce-
ment ratio, relative shrinkage influence on deflections was more profound 
for the members with small amounts of reinforcement. 

A statistical procedure for assessing accuracy of deflection predictions of 
reinforced concrete members taking into account inconsistency of the test data 
has been developed. The proposed procedure based on grouping of statistical 
data allows obtaining results that are more reliable. The procedure introduces a 
relative error of predictions calc obsx xΔ =  (xcalc and xobs are, respectively, the 
values calculated and observed experimentally) considered as a random variable. 
Statistics estimating the central tendency and variability serve to measure preci-
sion of the predictions. The central tendency was regarded as a consistency pa-
rameter of a calculation method. In the case of symmetrical probability distribu-
tion of error Δ , the central tendency can be estimated by the sample mean mΔ , 
otherwise by the sample median ,1 2Δξ . The postulate of minimum variance was 
used to evaluate accuracy of a model. 

Using the proposed statistical procedure, a comparative analysis has been 
carried out to assess accuracy of predictions of free shrinkage strains occurring 
at relatively early age of concrete, characteristic to the age at first loading. 

5. Shrinkage analysis has indicated that for the time interval from 21 to 63 
days the Eurocode 2 and the Bažant & Baweja (B3) methods gave the 
most accurate predictions ( ,1 2 0,98 1,01Δξ = …  and 0,93 1,01… , respec-
tively). 
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Similar statistical analysis has been performed for assessing accuracy of de-
flection/curvature predictions made by different calculation methods. It was 
shown that: 

6. Accuracy of the predictions varied significantly within different ranges of 
load intensity and reinforcement ratio, i.e. was increasing with growing of 
latter parameters. 

7. Strikingly different results were obtained for the members with minimal 
reinforcement ratios. Another point of sharp contrast was significantly 
larger data scatter at early cracking stages. Particularly inaccurate results 
were obtained when these two parameters (small reinforcement ratio and 
load just above the cracking point) were combined ( 0,78 1,83mΔ = …  
varied from 0,78 to 1,83). 

8. The ACI 318 method significantly underestimated deflections 
( 0,70 0,90mΔ = … ) for the members with relatively low reinforcement 
ratio (p ≤ 0,8%). The predictions for reinforcement ratio interval 
0,4 < p ≤ 0,8% were significantly (at 5% significance level) different in 
regard to other code techniques (compare 0,86 0,91mΔ = …  for ACI and 

0,94 1,45mΔ = …  for other techniques). 

9. Difference in consistency of two deflection predictions by finite element 
software ATENA (when shrinkage was ignored and taken into account) 
was statistically significant. When shrinkage was ignored, deflections 
were substantially underestimated ( 0,64 0,97mΔ = … ). Accuracy of the 
predictions has increased when shrinkage was assessed 
( 0,91 1,16mΔ = … ). Therefore, shrinkage effect should be taken into ac-
count in the numerical analysis of reinforced concrete structures subjected 
to short-term load (what is not a common practice). 

10. Reasonable results in terms of consistency and variation were demon-
strated using the Layer section model with linear tension-stiffening rela-
tionship and taking into account shrinkage and accompanying creep ef-
fects. The extreme values of mΔ  ranged from 0,93 to 1,08 for all intervals 
of loading and reinforcement ratios. 

Suggestions for Further Research 

The serviceability techniques used in the design codes of different countries are 
based on different assumptions and approaches leading to different predictions. 
Future development of the serviceability models should be aimed at harmonising 
assumptions and approaches for crack width and deflection analysis of both ana-
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lytical-empirical and numerical techniques. In the short-term prospective, re-
garding the author‘s investigations of serviceability problems, the following is-
sues are to be dealt: 

1. Developing alternative approaches in tension-stiffening (steel-related, ef-
fective area, stress transfer) may give new insights in the investigation of 
the phenomena. 

2. Assessing influence of various geometrical parameters (cover, section 
height, reinforcement ratio, bar diameter and surface characteristics) on 
tension-stiffening for developing a more advanced free-of-shrinkage con-
stitutive relationship. 

3. Investigating the effective area of tension-stiffening concerning both 
crack width and deformation problems. 

4. Investigating long-term tension-stiffening effect. 

5. Investigating tension-stiffening in composite structures reinforced with 
non-metallic reinforcement. 

6. Relating deformation and crack width analysis problems based on the uni-
fied approach. 

7. Improving the developed inverse techniques regarding the aspects of con-
vergence and versatility. 

8. If not eliminated in the tests, shrinkage and associated creep recordings 
should be performed for subsequent numerical elimination of these ef-
fects. 
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Annex A. Shrinkage and Creep Prediction 
Techniques 

A.1. Eurocode 2 
Main equations presented here were published in the final draft of the MC 90 
(CEB-FIP 1991) and modified in the fib Bulletin (FIB 1999). The model is valid 
for normal density concrete exposed to a mean relative humidity in the range of 
40 to 100% (CEN 2004). 

A.1.1. Shrinkage 
The shrinkage model represents a major change in respect to MC 90. The total 
shrinkage is subdivided into the autogenous shrinkage component ( )caε t  and 
the drying shrinkage component ( )cdε t . With this approach, it was possible to 
formulate a model that is valid for both normal strength concrete and high per-
formance concrete having compressive cylinder strength up to 90 MPa. The total 
shrinkage strain at time t is calculated as 

 ( ) ( )cs ca cdε ε εt t= +  (A.1) 

with 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

6 0,2
ca ca as ck

1
3

cd cd,0 h ds s cd,0 h s s 0

ε ε β 2,5 10 10 1 ;

ε ε β , ε 0,04 .

tt t f e

t k t t k t t t t h

− −

−

⎡ ⎤⎡ ⎤= ∞ = − ⋅ − ⋅ −⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤= = − − +⎢ ⎥⎣ ⎦

 (A.2) 

Here ck cm 8f f= −  is the characteristic compressive cylinder strength of con-
crete [MPa]; t  is the age of the concrete [days]; st  is the age of the concrete at 
the beginning of drying shrinkage (normally, the end of curing) [days]; hk  is a 
coefficient depending on the notional size 0h  in mm according to Table A.1; 

cd,0ε  is the basic drying shrinkage strain calculated from 

 
( ) ( )

( )

6
cd,0 ds1 ds2 cm RH

3
RH

ε 0,85 10 220 110α exp 0,1α β ;

β 1,55 1 100 .

f

RH

−= − ⋅ ⎡ + ⋅ − ⎤⎣ ⎦
⎡ ⎤= −⎣ ⎦

 (A.3) 

Here ds1α  and ds2α  are the coefficients which depend on the cement type. Coef-
ficient ds1α  is assumed equal to 3 for slowly hardening cement (Class S), 4 for 
normal and rapidly hardening cement (Class N) and 6 for rapidly hardening high 
strength cement (Class R). Coefficient ds2α  is assumed equal to 0,13 for cement 
Class S, 0,12 for cement Class N and 0,11 for cement Class R. Alternatively, the 
value of the basic drying shrinkage strain cd,0ε  may be taken from Table A.2. 
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Table A.1. Correction factor hk  

h0, mm 100 200 300 ≥ 500  

hk  1,00 0,85 0,75 0,70 

Table A.2. Basic drying shrinkage strain of concrete 4
cd,0ε 10−×  

RH, % 
ck ck,cubef f , MPa 

20 40 60 80 90 100 
20/25 –6,2 –5,8 –4,9 –3,0 –1,7 0,0 
40/50 –4,8 –4,6 –3,8 –2,4 –1,3 0,0 
60/75 –3,8 –3,6 –3,0 –1,9 –1,0 0,0 
80/95 –3,0 –2,8 –2,4 –1,5 –0,8 0,0 
90/105 –2,7 –2,5 –2,1 –1,3 –0,7 0,0 

A.1.2. Creep 
The updated creep model was in fact first published in Eurocode 2 in 2001. It is 
closely related to the model in the MC 90, but three strength dependent coeffi-
cients were introduced into the original model. The extended model is valid for 
both normal strength concrete and high performance concrete up to cylinder 
strength of 120 MPa. Three coefficients were introduced into the MC 90 model: 

 
0,7 0,2 0,5

1 2 3
cm cm cm

35 35 35α ; α ; α
f f f

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. (A.4) 

The relationship between the total stress-dependent strain and the stress de-
scribed with the compliance function: 

 ( ) ( )
( )0

0
c 0 c

φ ,1,
t t

J t t
E t E

= + , (A.5) 

where t0 is the age of concrete at loading [days]; c cm1,05E E= ⋅  is the tangent 
modulus at the age of 28 days [MPa]; ( )c 0E t  is the tangent modulus at the age 
of loading t0 [MPa] ( )0φ ,t t ; is the creep coefficient estimated from 

 ( ) ( )0 0 c 0φ , φ β ,t t t t= . (A.6) 

Here ( )c 0β ,t t  is the coefficient describing the development of creep with time; 
0φ  is the notional creep coefficient derived from 

 ( ) ( )0 RH cm 0φ φ β βf t= . (A.7) 
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Here RHφ , ( )cmβ f  and ( )0β t  are the factors to allow for the effect of relative 
humidity, concrete strength and concrete age at loading on the notional creep 
coefficient, respectively. Above factors can be found using following equations: 

 

( ) ( )

cm3
0

RH

1 2 cm3
0

10,20
0 c cm cm 0 0

10 101 ; for 35 MPa

φ
10 101 α α ; for 35 MPa

2 ; β 16,8 ; β 0,1 .

RH f
h

RH f
h

h A u f f t t
−

−⎧ + ≤⎪
⎪= ⎨⎡ ⎤−⎪ + >⎢ ⎥⎪⎣ ⎦⎩

⎡ ⎤= = = +⎣ ⎦

 (A.8) 

Here RH is the relative humidity of the ambient environment [%]; cmf  is the 
mean compressive cylinder strength of concrete in MPa at the age of 28 days; 

cA  is the cross-sectional area [mm2]; u  is the perimeter of the member in con-
tact with the atmosphere [mm]. 

Coefficient ( )c 0β ,t t  in Equation (A.6) may be estimated using the follow-
ing expression: 

 ( )
0,3

0
c 0

H 0
β ,

β
t tt t

t t
⎛ ⎞−

= ⎜ ⎟+ −⎝ ⎠
, (A.9) 

where t  is the age of concrete in days at the moment considered; 0t  is the age of 
concrete at loading in days; Hβ  is a coefficient depending on the relative humid-
ity (RH in %) and the notional member size ( 0h  in mm). It may be estimated 
from 

 

18

0 cm

H
18

0 3 3 cm

1,21,5 1 250 1500; 35 MPa,
100

β
1,21,5 1 250α 1500α ; 35 MPa.

100

RH h f

RH h f

⎧ ⎡ ⎤⎛ ⎞⎪ + + ≤ ≤⎢ ⎥⎜ ⎟
⎝ ⎠⎪ ⎢ ⎥⎪ ⎣ ⎦= ⎨

⎡ ⎤⎪ ⎛ ⎞+ + ≤ >⎢ ⎥⎪ ⎜ ⎟
⎝ ⎠⎢ ⎥⎪ ⎣ ⎦⎩

 (A.10) 

When the compressive stress of concrete at an age t0 exceeds the value 
( )ck 00,45 f t  then creep non-linearity should be considered. In such cases, the 

non-linear notional creep coefficient should be obtained as follows: 

 ( ) ( ) ( )nl 0 0 σφ , φ , exp 1,5 0,45t t k∞ = ∞ ⎡ − ⎤⎣ ⎦ . (A.11) 

Here ( )0φ , t∞  is the final creep coefficient; ( )σ c ck 0σk f t=  is the stress-
strength ratio, where cσ  is the compressive stress and ( )ck 0f t  is the characteris-
tic concrete compressive strength at the time of loading. 
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A.2. ACI 209 
ACI Committee 209 (2008) reported the equations presented here. 

A.2.1. Shrinkage 
The shrinkage strain at time t measured from the start of drying is calculated by 
following equation: 

 ( )cs u
35; for moist cured,

ε ε ,
55; for steam cured.

tt k
k t

⎧
= = ⎨

+ ⎩
 (A.12) 

Here uε  is the ultimate shrinkage strain at time infinity. The shape and size ef-
fect can be considered on the shrinkage development by replacing in above 
equation coefficient k : 

 c226,0exp 1,42 10 Ak
u

−⎛ ⎞= ×⎜ ⎟
⎝ ⎠

. (A.13) 

Here cA  is the cross-sectional area [mm2]; u  is the perimeter of the member in 
contact with the atmosphere [mm]. Ultimate shrinkage strain represents the 
product of the applicable correction factors cs,iγ : 

 
7

4
u cs,i

i 1
ε 7,8 10 γ−

=

= − × ∏ . (A.14) 

Coefficient cs,1γ  includes the effect of initial moist curing period, ct  [days]: 

 ( )10 c
cs,1

1,202 0,2337 log ; for moist cured,
γ

1; for steam cured.
t⎧ −

= ⎨
⎩

 (A.15) 

Coefficient cs,2γ  includes the effect of variations in the ambient relative 
humidity, RH [%]: 

 cs,2
1,40 0,0102 ; for 10 80%,

γ
3,00 0,030 ; for 80 100%.

RH RH
RH RH

− ≤ ≤⎧
= ⎨ − < ≤⎩

 (A.16) 

Coefficient cs,3γ  accounts the size and shape of the member. Two alterna-
tive methods as in creep analysis are given for the estimation of cs,3γ . Herein 
presented technique is based on the average thickness d  (see Table A.3). For 
average thickness of member, less than 152 mm factor cs,3γ  given in Table A.3 
can be used. For average thickness of members greater than 152 mm and up to 
381 mm, cs,3γ  is calculated using following equation 
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 cs,3
1,23 0,0015 ; for 1 year,

γ
1,17 0,00114 ; for 1 year.

d t
d t

− ≤⎧
= ⎨ − >⎩

 (A.17) 

Here t  is the time measured from the start of drying. 
Coefficients cs,4 cs,7γ γ…  depend on the composition of the concrete: 
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 (A.18) 

where s  is the slump of the fresh concrete [mm]; ψ  is the ratio of the fine ag-
gregate to total aggregate by weight [%]; α  is the air content [%] and c  is ce-
ment content in concrete [kg/m3]. These coefficients in undefined intervals are 
assumed equal to 1,0. 

A.2.2. Creep 
The compliance function ( )0,J t t  that represents the total stress-dependent 
strain by unit stress is given by 

 ( ) ( )
( )

0
0

cm 0

1 φ ,
,

t t
J t t

E t
+

= . (A.19) 

Here ( )cm 0E t  is the secant modulus of elasticity at the time of loading [MPa]; 
( )0φ ,t t  is the creep coefficient (defined as the ratio of creep strain to initial 

strain). Secant modulus of elasticity of concrete can be obtained from Table 1.1. 
The creep model proposed by ACI has two components that determine the 

asymptotic value and the time development of creep. The predicted parameter is 
not creep strain, but creep coefficient ( )0φ ,t t . The model uses a hyperbolic 
function to represent the creep-time relationship: 

 ( ) ( )
( )

0,6 0,6
0

0 u u0,6 0,6
0

Δφ , φ φ
10 Δ10

t t tt t
tt t

−
= =

++ −
. (A.20a) 

Here t  is the age of concrete (days); 0t  is the time of load applying (days); φu  
is the ultimate creep coefficient. Above equation may be rearranged to assess 
shape and size effects as following 
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 ( ) c2
0 u

Δφ , φ ; 26,0exp 1,42 10
Δ
t At t k

k t u
−⎛ ⎞= = ×⎜ ⎟+ ⎝ ⎠

. (A.20b) 

Here k  is the coefficient calculated by Equation (A.13). Ultimate creep coeffi-
cient is expressed as product of the applicable correction factors c,iγ : 

 
6

u c,i
i 1

φ 2,35 γ
=

= ∏ . (A.21) 

Coefficient c,1γ  accounts the age of concrete at the time of first loading, t0: 

 
-0,118

00
c,1 -0,094

00

1,25 , 7 days; for moist curing,
γ

1,13 , 1 3 days; for steam curing.

t t

t t

⎧ ⋅ >⎪= ⎨
⋅ > −⎪⎩

 (A.22) 

Coefficient c,2γ  includes the effect of variations in the ambient relative hu-
midity, RH [%]: 

 3
c,2γ 1,27 6,7 10 , 40%RH RH−= − × > . (A.23) 

Coefficient c,3γ  accounts the size and shape of the member. Two alternative 
methods are given for the estimation of c,3γ . Here presented technique is based 
on the average thickness 02d h=  [see Equation (A.8)] and recommended for 
average thicknesses up to 381 mm. For average thickness d less than 152 mm, 

c,3γ  is obtained from Table A.3. For average thickness of members greater than 
152 mm and up to 381 mm, c,3γ  is calculated using following equation 

 
4

c,3 4

1,14 9,2 10 ; for Δ 1 year,
γ

1,10 6,7 10 ; for Δ 1 year.

d t

d t

−

−

⎧ − × ≤⎪= ⎨
− × >⎪⎩

 (A.24) 

Coefficients c,4 c,6γ γ…  depend on the composition of the concrete 

 

3
c,4

3
c,5

c,6

γ 0,82 2,64 10 ; for 130 mm;

γ 0,88 2,4 10 ψ; for ψ 40% or ψ 60%;
γ 0,46 0,09α 1; for α 8%.

s s−

−

= + × >

= + × < >
= + ≥ >

 (A.25) 

Table A.3. Correction factors to account size and shape of the member for creep c,3γ  
and shrinkage cs,3γ  

d, mm 51 76 102 127 152 
c,3γ  1,30 1,17 1,11 1,04 1,00 

cs,3γ  1,35 1,25 1,17 1,08 1,00 
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In Equation (A. 25), s , ψ  and α  are the parameters similar to those from 
Equation (A.18), the coefficients in undefined intervals are assumed equal to 1,0. 

A.3. Central Institute of Research and Investigation in Civil 
Engineering (CNIIS) 
Central Institute of Research and Investigation in Civil Engineering (CNIIS 
1983) has proposed a method for calculation of creep and shrinkage deforma-
tions. The equations are presented here published in Milovanov & Kambarov 
(1994). 

A.3.1. Shrinkage 
The shrinkage strain at time t measured from the start of drying is calculated by 
following equation: 

 ( ) ( )cs cs,u csε ε Δ Δt t a t= + . (A.26) 

Here csa  is the rate of shrinking obtained from Table A.4; cs,uε  is the ultimate 
shrinkage at time infinity and represents the product of correction factors: 

 6 3
cs,u cs h w h wε ε φ φ 0,125 10 φ φ W−= = − ⋅ . (A.27) 

Here csε  is the shrinkage strain of concrete; W is the water content [kg/m3]; hφ  
accounts for average thickness of the member and the environment conditions 
(see Table A.4), and wφ  takes into account the effect of variations in the ambi-
ent relative humidity RH presented in Table A.5. 

Table A.4. Rate of shrinking csa  / factor hφ  / rate of creep na  

Average thickness h0, cm Environment 
conditions1 Parameters 

3,5≤  5,0 10,0 20,0 30,0 40,0 ≥ 50,0  

Warm 
cs

h

n

φ
a

a
 

15
1,80
25

 
20
1,50
35

 
40
1,05
50

 
80
0,85
90

 
120
0, 75
120

 
160
0,75
160

 
200
0,75
200

 

Cold 
cs

h

n

φ
a

a
 

40
0,90
40

 
60
0,80
60

 
120
0,70
90

 
240
0,65
150

 
360
0, 60
210

 
480
0,60
270

 
600
0,60
330

 

                                                 
1Averaged values (between warm and cold) should be used for members cured under normal con-
ditions 
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If composition of concrete is not known, the shrinkage strain in above equa-
tion defined from Table A.6. Ultimate shrinkage strain of the element non-
protected from direct solar radiation can be also obtained from Table A.7. 
Shrinkage strains given in Table A.7 should be multiplied by 0,85 for elements 
produced from weak concrete ( 25 MPaB < ) or protected from solar radiation. 

Table A.5. Correction factor wφ  

RH, % ≤20 40 50 70 80 90 

wφ  1,5 1,3 1,2 1,0 0,9 0,8 

Table A.6. Shrinkage strain of concrete 4
csε 10−×  

Normative strength (Class) of concrete B, MPa 
Slump, cm 

12,5–15 25–65 
0–1 –2,30 –2,70 
2–3 –2,90 –3,30 
5–7 –3,50 –4,00 
9–12 –3,80 –4,30 

Table A.7. Ultimate shrinkage strain of concrete 4
cs,uε 10−×  

Average thickness h0, cm 
RH, % 

3,5 5,0 10,0 20,0 30,0 50,0 ≥ 100,0  

0 –8,00 –7,20 –6,30 –5,85 –5,70 –5,60 –5,50 
20 –7,10 –6,30 –5,40 –4,90 –4,75 –4,60 –4,45 
40 –6,15 –5,40 –4,50 –4,00 –3,80 –3,65 –3,40 
60 –5,30 –4,50 –3,60 –3,10 –2,90 –2,70 –2,40 
75 –4,60 –3,80 –2,90 –2,40 –2,20 –2,00 –1,60 
90 –3,90 –3,10 –2,20 –1,70 –1,60 –1,55 –1,50 

A.3.2. Plastic Shrinkage 
Plastic shrinkage strains, given Table A.8, may be taken into consideration for 
cast-in-situ constructions produced in warm environment. Plastic shrinkage 
strain depends on relative humidity solar exposure conditions and average thick-
ness of the element h0 [see Equation (A.8)]. 
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Table A.8. Plastic shrinkage strain 4
cpε 10−×  

Element exposed to 
direct solar radiation 

Element protected from 
direct solar radiation Relative 

humidity RH 
0 10h ≤  0 10>h  0 10≤h  0 10>h  

20%RH ≤  –3,50 –2,50 –2,00 –1,50 
20% 60%RH< <  –2,50 –1,50 –1,50 –0,50 

60%RH ≥  –1,50 – – – 

A.3.3. Creep 
Creep factor ( )0φ ,t t  is given by 

 ( ) ( ) ( )0 0 c 0φ , ,t t C t t E t= ⋅ . (A.28) 

The creep parameter at time 0Δt t t= −  is calculated by following equation: 

 ( )0 u
n

Δ,
Δ

tC t t C
a t

=
+

. (A.29) 

Here na  is the rate of creep obtained from Table A.4; uC  is the ultimate creep 
parameter at time infinity [MPa–1] and representing the product of the correction 
factors: 

 6
u t h w t h wφ φ φ 12,5 10 φ φ φ WC C

B
−= = ⋅ . (A.30) 

Here C is the normative specific linear creep parameter [MPa–1]; W is the water 
content [kg/m3]; B is the class of concrete, cube,m cm0,778 0,973B f f≈ ⋅ ≈ ⋅  
[MPa]; tφ , hφ , wφ  are the correction factors given in Tables A.9, A.4 and A.5, 
respectively. Factors hφ  and wφ  are the same as in Equation (A.27); factor tφ  
depends on relative compressive strength of concrete c cmf f  and the age at 
loading t  [days]. The normative specific linear creep parameter can also be ob-
tained from Table A.10. 

Table A.9. Correction factor tφ  

c cmf f  0,6 0,7 0,8 0,9 1,0 1,0>  

t , days 28<  28 45 60 90 180 360≥  

tφ  1,50 1,40 1,25 1,15 1,00 0,90 0,85 0,75 0,65 0,60 
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Table A.10. Normative specific linear creep parameter 610C −× , [MPa–1] 

Normative strength (Class) of concrete B, MPa 
Slump, cm 

12,5 15 25 30 40 45 55 65 
0–1 140 108 77 62 52 45 40 36 
2–3 162 124 89 72 60 53 47 42 
5–7 182 140 101 81 68 59 52 46 
9–12 192 148 107 85 72 62 55 50 

A.4. Bažant & Baweja B3 Model 
The Bažant & Baweja (1995a, 1995b) B3 model is the latest variant in a number 
of shrinkage and creep prediction methods developed by Bažant and his co-
workers. According to Bažant & Baweja (2000), the B3 model is simpler and is 
better theoretically justified than the previous models. 

A.4.1. Shrinkage 
The mean shrinkage strain ( )cs sε ,t t  at age of concrete t  [days], measured from 
the start of drying at st  [days], is calculated by following equation: 

 ( ) ( )( )cs s u RH s csε , ε tanh τt t k t t= − . (A.31) 

Here RHk  is the humidity dependence factor; csτ  is the shrinkage half-time; 
cs,uε  is the ultimate shrinkage strain: 

 
( )

( )
2,1s cs 6

u 1 2 0,28
s cs cm

607 4 0,85 τ 0,019ε α α 270 10
520 τ

t W
t f

−⎡ + + ⎤ ⎛ ⎞⎣ ⎦= − + ×⎜ ⎟⎜ ⎟+ ⎝ ⎠
. (A.32) 

Here W  is the water content [kg/m3]. Coefficient 1α  is assumed equal to 0,85 
for slowly hardening cement (Class S / Type II), 1,00 for normal and rapidly 
hardening cement (Class N / Type I) and 1,10 for rapidly hardening high 
strength cement (Class R / Type III). Coefficient 2α  is assumed equal to 0,75 for 
steam cured concrete, 1,00 for concrete cured in water or at 100% relative hu-
midity and 1,20 for concrete sealed during curing or normal curing in air with 
initial protection against drying. 

The humidity dependence factor RHk  is defined as following 

 
( )3

RH

1 /100 ; for 98%,
12,74 0,1296 ; for 98 100%,

0,2; for 100%.

RH RH
k RH RH

RH

⎧ − ≤
⎪⎪= − < <⎨
⎪− =⎪⎩

 (A.33) 
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The shrinkage half-time csτ  is calculated by following equation: 

 ( )2 0,08 0,25
cs s 0 s cmτ 0,085 k h t f− −= . (A.34) 

Here 0h  is the average thickness [see Equation (A.8)]; sk  is the cross-section 
shape-correction factor that equal to 1,00 for infinite slab, 1,15 for infinite cylin-
der, 1,25 for infinite square prism, 1,30 for sphere and 1,55 for cube. 

A.4.2. Creep 
An important feature of the B3 creep model is that the compliance function is 
decomposed into the instantaneous response, the compliance function for basic 
creep and the additional compliance function for drying creep. The creep com-
pliance is written as 

 ( ) ( ) ( )0 0 0 d 0 s
0

1, , , ,J t t C t t C t t t
E

= + + , (A.35) 

where 0E  is the so-called asymptotic modulus (see Table 1.1) where 
cm c 8,3f f ′= +  [MPa]; ( )0 0,C t t  and ( )d 0 s, ,C t t t  are the compliance function 

for basic and drying creep, respectively; t , st  and 0t  are the age of concrete, the 
age drying began or end of moist curing, and age of loading [days]. 

According to this model, the basic creep is composed of three terms: an ag-
ing viscoelastic term, a non-aging viscoelastic term, and an aging flow term 

 

( ) ( ) ( )

( ) ( )

( )
( )

( ) ( )0 0

0,1
0 0 1 0 2 0 3

0

0
0 1

0

0

, , ln 1 ln ;

, ,

1
,

f

r t r t
f

tC t t q Q t t q t t q
t

Q t
Q t t

Q t
Z t t

⎛ ⎞⎡ ⎤= + + − + ⎜ ⎟⎣ ⎦ ⎝ ⎠

=
⎧ ⎫⎡ ⎤⎪ ⎪+⎨ ⎬⎢ ⎥

⎣ ⎦⎪ ⎪⎩ ⎭

 (A.36) 

where 

 ( )
( )

( )
( ) ( )

( ) ( )

( ) ( )

0 2 9 4 94 0,9 0 01 cm

4 0,10,5
2 1 0 00

0,74 0,123 0 0

1 ;
0,086 1,211,854 10 ;

0,29 ; , ln 1 ;

0,203 10 ; 1,7 8.

fQ t
t tq f C

q q W C Z t t t t t

q A C r t t

− −

−

−−

=
+= ×

⎡ ⎤= = + −⎣ ⎦
= × = +

 (A.37) 

Here C  is the cement content [kg/m3]; W C  and A C  are the water-cement 
and the aggregate-cement ratios (by weight), respectively. 
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The compliance function for drying creep is defined by following equation: 

 ( ) ( ) ( ) ( )0 0,68 8 1 6
d 0 s 4 4 cm u, , ; 0,757 ε 10H t H tC t t t q e e q f

−− −= − = ⋅ × . (A.38) 

Here uε  is the ultimate shrinkage strain as given below in Equation (A.32); 
( )H t  and ( )0H t  are spatial averages of pore relative humidity: 

 ( ) ( ) ( )s cs 01 1 100 tanh τ , orH X RH X t X t t⎡ ⎤= − − − =⎣ ⎦ . (A.39) 

Here csτ  is the shrinkage half-time as given below in Equation (A.34). 

A.5. Gardner & Lockman GL 2000 Model 
The model presented herein corresponds to the last version of the model (Gard-
ner 2004), including minor modifications of the original model (Gardner & 
Lockman 2001). It presents a design procedure for calculating the creep and 
shrinkage of normal strength concretes, defined as concretes with mean com-
pressive strengths less than 82 MPa. 

A.5.1. Shrinkage 
The shrinkage strain ( )cs sε ,t t  at age of concrete t  [days], measured from the 
start of drying at st  [days], is calculated using following relationship: 

 
( ) ( ) ( )

( ) ( )

cs s u s

4
s

s 2
s 0

ε , ε β β ,

β 1 1,18 ; β .
100 0,03

t t RH t t

RH t tRH t t
t t h

= −

−⎛ ⎞= − − =⎜ ⎟ − +⎝ ⎠

 (A.40) 

Here ( )β RH  is the humidity dependence factor; ( )sβ t t−  is the correction term 
for the effect of time of drying; cs,uε  is the ultimate shrinkage strain: 

 4
u cmε 9 10 30k f−= − × . (A.41) 

Here cmf  is the concrete mean compressive strength at 28 days [MPa]; k  is the 
shrinkage constant that depends on the cement type. It assumed equal to 1,0 for 
normal and rapidly hardening cement (Class N / Type I), 0,75 for slowly harden-
ing cement (Class S / Type II), and 1,15 for rapidly hardening high strength ce-
ment (Class R / Type III). 

A.5.2. Creep 
The compliance is composed of the elastic and the creep strains. The elastic 
strain is the reciprocal of the modulus of elasticity at the age of loading 

( )cm 0E t . Creep strain represents the 28-day creep coefficient ( )28 0φ ,t t  divided 
by the modulus of elasticity at 28 days cmE : 
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 ( ) ( )
( )28 0

0
cm 0 cm

φ ,1,
t t

J t t
E t E

= + . (A.42) 

The modules of elasticity in above relationship derived using Equation (1.1) 
and Table 1.1. The 28-day creep coefficient ( )28 0φ ,t t  is calculated as follows 

 

( ) ( )

( )

28 0 s φ

2

0,3

φ 0,3 20 0

φ , Φ ,

2,5 1 1,086
1002Δ 7Δ .

Δ 7Δ 14
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Δ

t t t k
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t

=

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦= + +

++
+

 (A.43) 

Here 0h  is the average thickness see [Equation (A.8)]; 0Δt t t= −  is the age of 
loading [days]; ( )sΦ t  is the correction term for the effect of drying before load-
ing: 

 ( )
0 s

s
0 s2

0

1; for ,

Φ Δ1 ; for .
Δ 0,03

t t

t t t t
t h

=⎧
⎪⎪= ⎨ − >⎪ +⎪⎩

 (A.44) 
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Annex B. Computer Code for Derivation of Free-of-
Shrinkage Tension-Stiffening Relationships using 
MATLAB 

B.1. MATLAB Function for the Direct Analysis 
This Section presents the implementation of the direct deformation analysis us-
ing MATLAB software. Three extra Excel-files named ‘Crossection’, ‘Moment-
Curvature’, and ‘SigmaEpsilon’ should be saved in the working directory. Struc-
ture of these files is shown if Fig. B.1. 
 

 

Fig. B.1. Structure of Excel-files required for performing the direct and inverse 
procedures 

The listing presented below should be saved in the working directory as m-
file named ‘Direct’: 
 
function MC = Direct(name1, name2, name3, No, Colour) 
Crossection = xlsread(name1); 
MomentCurvature = xlsread(name2); 
SigmaEpsilon = xlsread(name3); 
DataLength = size(MomentCurvature); 
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M = MomentCurvature(:, 1); 
Curvature = zeros(1, DataLength(1)); 
[Numbers, Geometry] = layers(name1, No); 
A = Geometry(1, :); 
y = Geometry(2, :); 
AY = Geometry(3, :); 
AI = Geometry(4, :); 
EcUpper = 1.05 * Crossection(11); 
EpsilonShrinkage = zeros(size(Numbers(1))); 
Layer = zeros(size(Numbers(1))); 
Fi = zeros(size(Numbers(1))); 
Ec = zeros(size(Numbers(1))); 
fs = zeros(size(Numbers(1))); 
sigma = zeros(size(Numbers(1))); 
error = zeros(size(Numbers(1))); 
for N = 1:1:Numbers(1) 
    if N == Numbers(2) 
        Ec(N) = Crossection(9); 
        fs(N) = Crossection(10); 
    elseif N == Numbers(3) 
        Ec(N) = Crossection(7); 
        fs(N) = Crossection(8); 
    else 
        Ec(N) = EcUpper; 
        fs(N) = Crossection(12); 
        EpsilonShrinkage(N) = - Crossection(13); 
        Layer(N) = 1; 
        Fi(N) = Crossection(14); 
    end 
end 
Geometry = cat(1, Geometry, fs, Ec); 
AE = A * Ec'; 
AEcon = A .* Layer * Ec'; 
SE = AY * Ec'; 
SEcon = AY .* Layer * Ec'; 
Yc = SE / AE; 
Yccon = SEcon / AEcon; 
IE = (AI + A .* (y - Yc) .^ 2) * Ec'; 
Shr = Creep(Geometry, EpsilonShrinkage, Fi, Layer, No); 
NShr = Shr .* A * Ec'; 
MShr = NShr * (Yccon - Yc); 
Ind = DataLength(1); 
for i = 1:1:DataLength(1) 
    Parametr = true; 
    ER = 1; 
    Sk = 0; 
    while ER > 1e-7 && Sk < 500 
        EcCalc = Ec; 
        Sk = Sk + 1; 
        eps = (M(i) + MShr) / IE * (y - Yc) + NShr / AE - Shr; 
        for N = 1:1:Numbers(1) 
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            if N == Numbers(2) || N == Numbers(3) 
                sigma(N) = Steel(eps(N), fs(N), Ec(N)); 
            elseif eps(N) < 0 
                sigma(N) = Compressive(eps(N), fs(N), EcUpper); 
            elseif eps(N) > 0 
                if eps(N) > max(SigmaEpsilon(:,2)) 
                    Parametr = false; 
                    Ind = i - 1; 
                    break 
                end 
                sigma(N) = Tensile(eps(N), SigmaEpsilon); 
            else 
                sigma(N) = 0; 
            end 
            if eps(N) ~= 0 
                Ec(N) = sigma(N) / eps(N); 
            end 
            if EcCalc(N) == 0 
                error(N) = Ec(N); 
            else 
                error(N) = (EcCalc(N) - Ec(N)) / abs(EcCalc(N)); 
            end 
        end 
        if Parametr == false 
            break 
        end 
        ER = max(abs(max(error)), abs(min(error))); 
        AE = A * Ec'; 
        AEcon = A .* Layer * Ec'; 
        SE = AY * Ec'; 
        SEcon = AY .* Layer * Ec'; 
        Yc = SE / AE; 
        if AEcon == 0 
            Yccon = Yc; 
        else 
            Yccon = SEcon / AEcon; 
        end 
        IE = (AI + A .* (y - Yc) .^ 2) * Ec'; 
        NShr = Shr .* A * Ec'; 
        MShr = NShr * (Yccon - Yc); 
        if i == 1 
            MShr0 = MShr; 
            IE0 = IE; 
        end 
        Curvature(i) = (M(i) + MShr) / IE - MShr0 / IE0; 
    end 
    if Parametr == false 
        disp('GetCurvature stoped') 
        break 
    else 
        disp([i, M(i) / M(DataLength(1)) * 100]) 
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    end 
end 
MomentC = zeros(1, Ind); 
CurvatureC = zeros(1, Ind); 
for i = 1:1:Ind 
    MomentC(i) = M(i); 
    CurvatureC(i) = Curvature(i); 
end 
MC = cat(2, MomentC', CurvatureC'); 
if i > 1 
    plot(MomentCurvature(:, 2), M, 'k.'); grid on; hold on 
    plot(CurvatureC, MomentC, Colour); grid on; hold on 
end 
 
function [Numbers, Geometry] = layers(name, LayersN) 
Crossection = xlsread(name); 
b = Crossection(2); 
nR = zeros(1, 3); 
hR = zeros(1, 3); 
yR = zeros(1, 3); 
AR = zeros(1, 3); 
lR = zeros(1, 3); 
if Crossection(6) == 0 && Crossection(5) == 0 
    Num = 1; 
elseif Crossection(6) == 0 || Crossection(5) == 0 
    Num = 2; 
    if Crossection(6) < Crossection(5) 
        nR(1) = round(0.85 * LayersN); 
        hR(1) = Crossection(5) / b; 
        yR(1) = Crossection(3); 
        AR(1) = Crossection(5); 
        lR(1) = 1; 
    else 
        nR(1) = round(0.15 * LayersN); 
        hR(1) = Crossection(6) / b; 
        yR(1) = Crossection(4); 
        AR(1) = Crossection(6); 
        lR(1) = 1; 
    end 
else 
    Num = 3; 
    nR(2) = round (0.15 * LayersN); 
    hR(2) = Crossection(6) / b; 
    yR(2) = Crossection(4); 
    AR(2) = Crossection(6); 
    lR(2) = 1; 
    nR(1) = round (0.85 * LayersN); 
    hR(1) = Crossection(5) / b; 
    yR(1) = Crossection(3); 
    AR(1) = Crossection(5); 
    lR(1) = 1; 



164 ANNEXES 

 

end 
N = LayersN; 
Lay = Crossection(1); 
LayNo = LayersN; 
h = zeros(1, N); 
A = zeros(1, N); 
y = zeros(1, N); 
y2 = zeros(1, N); 
AY = zeros(1, N); 
AI = zeros(1, N); 
for i = 1:1:Num 
    while N > nR(i) 
        h(N) = (Lay - yR(i) - hR(i) / 2) / (LayNo - nR(i)); 
        A(N) = h(N) * b; 
        if N == LayersN 
            y(N) = Crossection(1) - h(N) / 2; 
        else 
            y(N) = y(N + 1) - (h(N + 1) + h(N)) / 2; 
        end 
        N = N - 1; 
    end 
    if N > 1 
        h(N) = hR(i); 
        A(N) = AR(i); 
        y(N) = yR(i); 
        N = N - 1; 
    end 
    Lay = yR(i) - hR(i) / 2; 
    LayNo = nR(i) - lR(i); 
end 
for G = 1:1:LayersN 
    if G == 1 
        y2(G) = h(G) / 2; 
    elseif G == nR(2) 
        y2(G) = Crossection(4); 
    elseif G == nR(1) 
        y2(G) = Crossection(3); 
    else 
        y2(G) = y2(G - 1) + h(G - 1) / 2 + h(G) / 2; 
    end 
    y(G) = (y(G) + y2(G)) / 2; 
    AY(G) = y(G) * A(G); 
    AI(G) = b * h(G) ^ 3 / 12; 
end 
Numbers = [LayersN nR(2) nR(1)]; 
Geometry = cat(1, A, y, AY, AI); 
 
function Shrinkage = Creep(Geometry, eps, Fi, Layer, No) 
A = Geometry(1, :); 
y = Geometry(2, :); 
AY = Geometry(3, :); 
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AI = Geometry(4, :); 
Ec = Geometry(6, :); 
AE = zeros(2, 1); 
Yc = zeros(2, 1); 
Yccon = zeros(2, 1); 
IE = zeros(2, 1); 
sigma = zeros(2, 1); 
R = zeros(3, No); 
E = ones(size(Fi)); 
for i = 1:1:2 
    if i == 1 
        F = zeros(size(Fi)); 
    else 
        F = Fi; 
    end 
    AE(i) = A * (Ec ./ (E + F))'; 
    AEcon = A .* Layer * (Ec ./ (E + F))'; 
    SE = AY * (Ec ./ (E + F))'; 
    SEcon = AY .* Layer * (Ec ./ (E + F))'; 
    Yc(i) = SE / AE(i); 
    Yccon(i) = SEcon / AEcon; 
    IE(i) = (AI + A .* (y - Yc(i)) .^ 2) * (Ec ./ (E + F))'; 
    N = eps .* A * (Ec ./ (E + F))'; 
    M = N * (Yccon(i) - Yc(i)); 
    sigma1=(M/IE(i)*(y(1)-Yc(i))+N/AE(i)-eps(1))*(Ec(1)/(1+F(1))); 
    sigmaN=(M/IE(i)*(y(No)-Yc(i))+N/AE(i)-eps(No))*(Ec(No)/(1+F(No))); 
    if abs(sigma1) > abs(sigmaN) 
        sigma(i) = sigma1; 
        L = 1; 
    else 
        sigma(i) = sigmaN; 
        L = No; 
    end 
    R(i, :) = eps ./ (E + F); 
end 
E1 = sigma(1) - sigma(2); 
E2=(R(2, :).*A*Ec'*(Yccon(1)-Yc(1))'/IE(1)*(y(L)-
Yc(1))+R(2,:).*A*Ec'/AE(1)-R(2, L))*Ec(L)-sigma(2); 
while abs(E1) > 1e-10 * abs(sigma(2)) && E1 ~= E2 
    R(3, :) = R(1, :) - E1 * (R(1, :) - R(2, :)) / (E1 - E2); 
    R(2, :) = R(1, :); 
    R(1, :) = R(3, :); 
    E2 = E1; 
    E1=(R(1,:).*A*Ec'*(Yccon(1)-Yc(1))'/IE(1)*(y(L)-
Yc(1))+R(1,:).*A *Ec'/AE(1)-R(1,L))*Ec(L)-sigma(2); 
end 
Shrinkage = R(1, :); 
 
function sigma = Steel(eps, fs, Es) 
sigma = eps * Es; 
if abs (eps) > abs (fs / Es) 
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    sigma = fs * sign (eps); 
end 
 
function sigma = Compressive(eps, fcm, Ec) 
fck = fcm - 8; 
if fck < 50 
    eps_cu1 = -3.5e-3; 
else 
    eps_cu1 = -2.8e-3 - 27e-3 * ((98 - fcm) / 100) ^ 4; 
end 
if abs(eps) > abs(eps_cu1) 
    sigma = 0; 
else 
    eps_c1 = -0.7e-3 * fcm ^ 0.31; 
    eta = eps / eps_c1; 
    k = Ec * abs(eps_c1) / fcm; 
    sigma=sign(eps)*fcm*(k*eta-eta^2)/(1+(k-2)*eta); 
end 
 
function sigma = Tensile(eps, SE) 
n = size(SE); 
i = 1; 
while eps > SE(i, 2) 
    i = i + 1; 
    if i > n(1) 
        i = n(1); 
        break 
    end 
end 
sigma=(SE(i,1)*(eps-SE(i-1,2))+SE(i-1,1)*(SE(i,2)-eps))/(SE(i,2)-SE(i-1,2)); 
 

To start the direct analysis using MATLAB, the following text should be 
written in the command line: 
MomentCurvature = Direct('Crossection', 'MomentCurvature', 
'SigmaEpsilon', 100, 'g-'); 

Here 100 defines the number of layers in the Layer section model (recommended 
to be not less than 50); 'g-' is the parameter that defines colour and type of the re-
sulting moment-curvature diagram (results in creating a green solid line). 

B.2. MATLAB Function for the Inverse Analysis 
This Section presents the implementation of the inverse analysis using MATLAB 
software. Two additional Excel-files named ‘Crossection’ and ‘MomentCurva-
ture’ should be saved in the working directory. These files are similar to those 
shown in Fig. B.1 with the exception that last two positions in file ‘Crossection’ 
are not necessary. The listing presented below should be saved in the working 
directory as m-file named ‘Inverse’: 
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function [SEAver, SE] = Inverse(nm1, nm2, N1, N2, Dt, St) 
rand('state',sum(100*clock)); 
P = round(70 + 50 * rand(1, N2)); 
for N = 1:1:N2 
    SEn = GetDiagram(nm1, nm2, N1, P(N), N, Dt, St); 
    if N == 1 
        SE = SEn; 
    else 
        SE = sortrows(cat(1, SE, SEn), 2); 
    end 
end 
plot(SE(:, 2), SE(:, 1), 'k.'); grid on; hold on 
try 
    SEAver = Hardy(SE, N2); 
    plot (SEAver(:, 2), SEAver(:, 1), 'r-'); grid on; hold on 
catch 
    SEAver = 0; 
end 
 
function SEn = GetDiagram(nm1, nm2, N1, APts, N2, Dt, P) 
Crossection = xlsread(nm1); 
MC0 = xlsread(nm2); 
DataLength = size(MC0); 
rand('state',sum(100 * clock)); 
RRR = ceil(P * rand); 
set(1, :) = MC0(1, :); 
x = 1; 
for u = RRR + 1:P:(DataLength(1) - 1) 
    x = x + 1; 
    set(x, :) = MC0(u, :); 
end 
set(x + 1, :) = MC0(DataLength(1), :); 
clear global MC0; 
MC0 = set; 
DataLength = size(MC0); 
[Nrs, Ge] = layers(nm1, N1); 
EcU = 1.05 * Crossection(11); 
Ec = ones(1, Nrs(1)) * EcU; 
fs = ones(1, Nrs(1)) * Crossection(12); 
if Nrs(2) ~= 0 
    Ec(Nrs(2)) = Crossection(9); 
    fs(Nrs(2)) = Crossection(10); 
end 
if Nrs(3) ~= 0 
    Ec(Nrs(3)) = Crossection(7); 
    fs(Nrs(3)) = Crossection(8); 
end 
Yc = (Ge(3, :) * Ec') / (Ge(1, :) * Ec'); 
EIel = (Ge(4, :) + Ge(1, :) .* (Ge(2, :) - Yc) .^ 2) * Ec'; 
g = 1; 
f = 1; 
CurvatureCorrect(1) = MC0(1, 2); 
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MC(1, 1) = MC0(1, 1); 
MC(2, 1) = CurvatureCorrect(1); 
MC(3, 1) = 0; 
SEn(2, 1) = MC(2, 1) * (Ge(2, Nrs(1)) - Yc); 
SEn(1, 1) = SEn(2, 1) * EcU; 
a1 = MC0(DataLength(1), 1); 
a = MC0(DataLength(1), 2); 
CurvatureCorrect = zeros(1, DataLength(1)); 
Ge = cat(1, Ge, fs, Ec); 
for i = 2:1:DataLength 
    if MC0(i, 2) <= MC0(i, 1) / EIel 
        CurvatureCorrect(i) = MC0(i, 1) / EIel; 
    else 
        CurvatureCorrect(i) = MC0(i, 2); 
    end 
    c1 = MC0(i, 1); 
    c = CurvatureCorrect(i); 
    b1 = MC0(i - 1, 1); 
    b = CurvatureCorrect(i - 1); 
    exPts1 = round(APts * (c - b) / a); 
    exPts2 = round(0.5 * APts * (c1 - b1) / a1); 
    exPts = max([1 exPts1 exPts2]); 
    for m = 1:1:exPts 
        g = g + 1; 
        f = f + 1; 
        MC(1,g)=MC0(i-1,1)+(MC0(i,1)-MC0(i-1,1))*m/exPts; 
        MC(2, g) = b + (c - b)* m / exPts; 
        MC(3, g) = 0; 
        try 
            [MC(:,g),Prm,SENew,Ge]=A2(Nrs,Ge,Dt,MC(:,g),EcU,SEn); 
            if Prm(1) == true && Prm(3) == true 
                SEn = SENew; 
                disp([N2, f, MC(2, g) / a * 100]) 
            else 
                g = g - 1; 
            end 
        catch 
            g = g - 1; 
        end 
    end 
end 
SEn = SEn'; 
 
function [Nrs, Ge] = layers(name, LayersN) 
Crossection = xlsread(name); 
b = Crossection(2); 
nR = zeros(1, 3); 
hR = zeros(1, 3); 
yR = zeros(1, 3); 
AR = zeros(1, 3); 
lR = zeros(1, 3); 
if Crossection(6) == 0 && Crossection(5) == 0 
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    Num = 1; 
elseif Crossection(6) == 0 || Crossection(5) == 0 
    Num = 2; 
    if Crossection(6) < Crossection(5) 
        nR(1) = round(0.85 * LayersN); 
        hR(1) = Crossection(5) / b; 
        yR(1) = Crossection(3); 
        AR(1) = Crossection(5); 
        lR(1) = 1; 
    else 
        nR(1) = round(0.15 * LayersN); 
        hR(1) = Crossection(6) / b; 
        yR(1) = Crossection(4); 
        AR(1) = Crossection(6); 
        lR(1) = 1; 
    end 
else 
    Num = 3; 
    nR(2) = round (0.15 * LayersN); 
    hR(2) = Crossection(6) / b; 
    yR(2) = Crossection(4); 
    AR(2) = Crossection(6); 
    lR(2) = 1; 
    nR(1) = round (0.85 * LayersN); 
    hR(1) = Crossection(5) / b; 
    yR(1) = Crossection(3); 
    AR(1) = Crossection(5); 
    lR(1) = 1; 
end 
N = LayersN; 
Lay = Crossection(1); 
LayNo = LayersN; 
h = zeros(1, N); 
A = zeros(1, N); 
y = zeros(1, N); 
y2 = zeros(1, N); 
AY = zeros(1, N); 
AI = zeros(1, N); 
for i = 1:1:Num 
    while N > nR(i) 
        h(N) = (Lay - yR(i) - hR(i) / 2) / (LayNo - nR(i)); 
        A(N) = h(N) * b; 
        if N == LayersN 
            y(N) = Crossection(1) - h(N) / 2; 
        else 
            y(N) = y(N + 1) - (h(N + 1) + h(N)) / 2; 
        end 
        N = N - 1; 
    end 
    if N > 1 
        h(N) = hR(i); 
        A(N) = AR(i); 
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        y(N) = yR(i); 
        N = N - 1; 
    end 
    Lay = yR(i) - hR(i) / 2; 
    LayNo = nR(i) - lR(i); 
end 
for G = 1:1:LayersN 
    if G == 1 
        y2(G) = h(G) / 2; 
    elseif G == nR(2) 
        y2(G) = Crossection(4); 
    elseif G == nR(1) 
        y2(G) = Crossection(3); 
    else 
        y2(G) = y2(G - 1) + h(G - 1) / 2 + h(G) / 2; 
    end 
    y(G) = (y(G) + y2(G)) / 2; 
    AY(G) = y(G) * A(G); 
    AI(G) = b * h(G) ^ 3 / 12; 
end 
Nrs = [LayersN nR(2) nR(1)]; 
Ge = cat(1, A, y, AY, AI); 
 
function [MC, Prm, SEn, Ge] = A2(Nrs, Ge, Dt, MC, EcU, SEn) 
Prm = [true false false]; 
root = 0; 
Count = 0; 
while isequal(Prm, [1 0 0]) && Count < 30 
    Count = Count + 1; 
    [Der, RE, Prm] = Derive(Nrs, Ge, Dt, MC, EcU, SEn, root); 
    if Prm(3) == true 
        if abs(RE(2)) < abs(RE(4)) 
            root = RE(1); 
        else 
            root = RE(3); 
        end 
        [MC(3),Prm(1),SEn,Ge(6,:)]=A1(Nrs,Ge,MC(1),EcU,SEn,root); 
    end 
    if isequal(Prm, [1 0 0]) 
        if Der == 0 
            [MC(3),Prm(1),SEn,Ge(6,:)]=A1(Nrs,Ge,MC(1),EcU,SEn, root); 
            Prm(3) = true; 
        else 
            if abs(RE(2)) < abs(RE(4)) 
                root = RE(1) - RE(2) / Der; 
                root1 = RE(1); 
                EE1 = RE(2); 
            else 
                root = RE(3) - RE(4) / Der; 
                root1 = RE(3); 
                EE1 = RE(4); 
            end 
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        end 
        if isequal(Prm, [1 0 0]) 
            try 
                [MC(3),Prm(1),SENew,EcNew]=A1(Nrs,Ge,MC(1),EcU, SEn,root); 
                [Prm(3), error] = RootF(MC, Dt); 
                if Prm(3) == true 
                    Ge(6, :) = EcNew; 
                    SEn = SENew; 
                elseif error * EE1 < 0 
                    RE = [root1 EE1 root error]; 
                    Prm(2) = true; 
                end 
            catch 
                root = (root + root1) / 2; 
            end 
        end 
    end 
end 
if Prm(1) == true && Prm(3) == false 
    if Prm(2) == false 
        Prm(1) = false; 
    else 
        st = 0; 
        Steps=ceil(log2((max(RE(1),RE(3))-min(RE(1),RE(3)))/Dt)); 
        while abs(error) > Dt && st < Steps 
            root = (RE(1) + RE(3)) / 2; 
            try 
                [MC(3),Prm(1),SENew,EcNew]=A1(Nrs,Ge,MC(1),EcU, SEn,root); 
                [Prm(3), error] = RootF(MC, Dt); 
                st = st + 1; 
                if Prm(3) == true 
                    Ge(6, :) = EcNew; 
                    SEn = SENew; 
                elseif RE(2) * error > 0 
                    RE(1) = root; 
                    RE(2) = error; 
                else 
                    RE(3) = root; 
                    RE(4) = error; 
                end 
            catch 
                if abs(RE(2)) <= abs(RE(4)) 
                    root = RE(1); 
                else 
                    root = RE(3); 
                end 
                [MC(3),Prm(1),SENew,EcNew]=A1(Nrs,Ge,MC(1),EcU, SEn,root); 
                Prm(3) = RootF(MC, Dt); 
                break 
            end 
        end 
        if Prm(1) == true && Prm(3) == false 
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            Prm(1) = false; 
        end 
    end 
    Ge(6, :) = EcNew; 
    SEn = SENew; 
end 
 
function [Der, RE, Prm] = Derive(Nrs, Ge, Dt, MC, EcU, SEn, root) 
Prm = [true false false]; 
Step = 0.1; 
D0 = zeros(1, 5); 
D = zeros(1, 5); 
RE = zeros(1, 4); 
for ind = 1:1:5 
    if isequal(Prm, [1 0 0]) 
        D0(ind) = root + Step * (ind - 3); 
        try 
            [MC(3),Prm(1)]=A1(Nrs,Ge,MC(1),EcU,SEn,D0(ind)); 
            [Prm(3), D(ind)] = RootF(MC, Dt); 
            if Prm(3) == true 
                RE = [D0(ind) D(ind) D0(ind) D(ind)]; 
            elseif ind > 1 
                if D(ind) * D(ind - 1) < 0 
                    Prm(2) = true; 
                    RE = [D0(ind - 1) D(ind - 1) D0(ind) D(ind)]; 
                end 
            end 
        catch 
            Prm(1) = false; 
        end 
    end 
end 
if isequal(Prm, [1 0 0]) 
    Der = (- D(5) + 8 * D(4) - 8 * D(2) + D(1)) / (12 * Step); 
    RE = [D0(1) D(1) D0(5) D(5)]; 
else 
    Der = 0; 
end 
 
function [CNew, Prm, SEn, Ec1]=A1(Nrs, Ge, MOM, EcU, SEn, EcLower) 
g = size(SEn); 
Precision = 1e-3; 
Count = 0; 
A = Ge(1, :); 
y = Ge(2, :); 
AY = Ge(3, :); 
AI = Ge(4, :); 
fs = Ge(5, :); 
Ec = Ge(6, :); 
Ec(Nrs(1)) = EcLower; 
if A * Ec' == 0 
    Yc = 0; 
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else 
    Yc = (AY * Ec') / (A * Ec'); 
end 
EI = (AI + A .* (y - Yc) .^ 2) * Ec'; 
error = 1; 
Ec1 = Ec; 
eps = zeros(1, Nrs(1)); 
sigma = zeros(1, Nrs(1)); 
Err = zeros(1, Nrs(1)); 
while abs(error) > Precision && Count < 1000 
    Count = Count + 1; 
    SEn(2, g(2) + 1) = MOM / EI * (y(Nrs(1)) - Yc); 
    SEn(1, g(2) + 1) = SEn(2, g(2) + 1) * EcLower; 
    for N = 1:1:Nrs(1) 
        eps(N) = MOM / EI * (y(N) - Yc); 
        if N == Nrs(2) || N == Nrs(3) 
            sigma(N) = Steel(eps(N), fs(N), Ec(N)); 
        elseif N == Nrs(1) 
            sigma(N) = SEn(1, g(2) + 1); 
        elseif y(N) <= Yc 
            sigma(N) = Compressive(eps(N), fs(N), EcU); 
        elseif y(N) > Yc 
            sigma(N) = Tensile(eps(N), SEn'); 
        else 
            sigma(N) = 0; 
        end 
        if N == Nrs(1) 
            Ec1(N) = EcLower; 
        elseif eps(N) == 0 
            Ec1(N) = Ec(N); 
        else 
            Ec1(N) = sigma(N) / eps(N); 
        end 
        if Ec1(N) == 0 
            Err(N) = Ec(N); 
        else 
            Err(N) = (Ec1(N) - Ec(N)) / abs(Ec1(N)); 
        end 
    end 
    error = max(abs(max(Err)), abs(min(Err))); 
    Ec = Ec1; 
    if A * Ec1' == 0 
        Yc = 0; 
    else 
        Yc = (AY * Ec1') / (A * Ec1'); 
    end 
    EI = (AI + A .* (y - Yc) .^ 2) * Ec1'; 
end 
if abs(error) > Precision 
    Prm = false; 
else 
    Prm = true; 
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end 
CNew = MOM / EI; 
 
function sigma = Compressive(eps, fcm, Ec) 
fck = fcm - 8; 
if fck < 50 
    eps_cu1 = -3.5e-3; 
else 
    eps_cu1 = -2.8e-3 - 27e-3 * ((98 - fcm) / 100) ^ 4; 
end 
if abs(eps) > abs(eps_cu1) 
    sigma = 0; 
else 
    eps_c1 = -0.7e-3 * fcm ^ 0.31; 
    eta = eps / eps_c1; 
    k = Ec * abs(eps_c1) / fcm; 
    sigma=sign(eps)*fcm*(k*eta-eta^2)/(1+(k-2)*eta); 
end 
 
function sigma = Steel(eps, fs, Es) 
sigma = eps * Es; 
if abs (eps) > abs (fs / Es) 
    sigma = fs * sign (eps); 
end 
 
function sigma = Tensile(eps, SE) 
n = size(SE); 
i = 1; 
while eps > SE(i, 2) 
    i = i + 1; 
    if i > n(1) 
        i = n(1); 
        break 
    end 
end 
sigma=(SE(i,1)*(eps-SE(i-1,2))+SE(i-1,1)*(SE(i,2)-eps))/(SE(i,2)-SE(i-1,2)); 
 
function [R, Error] = RootF(MC, Dt) 
if MC(2) == 0 
    Error = MC(3); 
else 
    Error = (MC(2) - MC(3)) / abs(MC(2)); 
end 
if abs(Error) > Dt 
    R = false; 
else 
    R = true; 
end 
 
function SEAver = Hardy(SE, N2) 
ind = 1; 
N2 = N2 * 5; 
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if rem(N2, 2) == 0 
    Pts = N2 + 1; 
else 
    Pts = N2; 
end 
Length = size(SE); 
NPts = 3 * Pts; 
SEAver = zeros(Length(1) - NPts + 1, 2); 
for X = 1:1:(Length(1) - NPts) 
    ind = ind + 1; 
    sum = zeros(3, 2); 
    for XX = 1:1:Pts 
        sum=sum+cat(1,SE(X+XX,:),SE(X+XX+Pts,:),SE(X+XX+2*Pts,:)); 
    end 
    SEAver(ind,:)=(sum(2,:)-(sum(3,:)-2*sum(2,:)+sum(1,:))*(Ptŝ 2-1)/(24*Ptŝ 2))/Pts; 
end 
 

To start inverse procedure using MATLAB, the following text should be 
written in the command line: 
SigmaEpsilonAverage = Inverse('Crossection', 'MomentCurvature', 
100, 5, 0.00001, 1); 

Here 100 indicates the number of layers in the Layer section model (recom-
mended to be not less than 50); 5 defines the number of Monte-Carlo genera-
tions (should be taken as odd number, see Section 2.5.3); 0,00001 is the toler-
ance; 1 is the number of generated sets. It is assumed from the condition: 

tot setn N N≈  were Ntot is the total number of test points, Nset is the number of 
test points in each set recommended to by taken between 20 and 30. 
 
Annex C. Measurements of Curvature and Deflection 
of the Beam Specimens 

As mentioned, the beams were tested under a four-point loading. The loading 
scheme and the gauge positioning are shown in Fig. 3.9. The testing equipment 
acting on the beam weighed 232 kg. The latter summed up with the beam’s own 
weight has in the mid-span induced a 3,5 kNm bending moment. 

Section C.1 presents concrete surface strains measured at test. The strains 
were measured throughout the length of the pure bending zone on a 200 mm 
gauge length, using 0,001 mm mechanical gauges. As shown in Fig. 3.9 (view 
‘A’), four continuous gauge lines were located at different depths. The two ex-
treme gauge lines were placed along the top and the bottom reinforcement. 
Measured strains were averaged along each gauge line. 

Section C.2 presents deflections of the beams measured at test. To measure 
deflections, linear variable differential transducers (L 1-L 8, see Fig. 3.9) were 
placed beneath the soffit of each of the beam at the load position. Deflections 
were recorded automatically. 
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C.1. Curvatures of the Beams 

 

Fig. C.1. Surface deformations of beam S-1 measured at the test 



ANNEXES 177 

 

 

Fig. C.2. Surface deformations of beam S-1R measured at the test 
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Fig. C.3. Surface deformations of beam S-2 measured at the test 
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Fig. C.4. Surface deformations of beam S-2R measured at the test 
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Fig. C.5. Surface deformations of beam S-3 measured at the test 
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Fig. C.6. Surface deformations of beam S-3R measured at the test 
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Fig. C.7. Surface deformations of beam S-4 measured at the test 
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Fig. C.8. Surface deformations of beam S-4R measured at the test 
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C.2. Deflections of the Beams 

 

Fig. C.9. Deflections of beam S-1 measured at the test 
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Fig. C.10. Deflections of beam S-1R measured at the test 
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Fig. C.11. Deflections of beam S-2 measured at the test 
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Fig. C.12. Deflections of beam S-2R measured at the test 
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Fig. C.13. Deflections of beam S-3 measured at the test 
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Fig. C.14. Deflections of beam S-3R measured at the test 
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Fig. C.15. Deflections of beam S-4 measured at the test 



ANNEXES 191 

 

 

Fig. C.16. Deflections of beam S-4R measured at the test 
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