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Abstract

Procedural generation in video games refers to the automatic creation of game
content, such as levels, environments, and characters, through algorithmic pro-
cesses rather than manual design. This approach enables developers to achieve
diverse video game scene patterns, enhancing player experiences. Multi-criteria
decision-making methods are employed in procedural generation to balance mul-
tiple objectives, such as gameplay variety, aesthetics, and a fluid combination of
abstract video game-level features. Neutrosophic sets, a mathematical framework
dealing with indeterminate and uncertain information, offer a way to handle am-
biguous elements in procedural generation, adding a unigue creative dimension to
the process.

The dissertation consists of an introduction, three main chapters, general con-
clusions, and a list of references. The first chapter performs a literature review on
creative procedural generation methods for video games and formulates the dis-
sertation’s objectives. The second chapter proposes a novel approach for proce-
dural video game scene generation, which uses genetic algorithms, employs
MCDM methods for fitness function, and models creativity-based criteria. Pro-
posed methods include WASPAS-SVNS and CoCoSo fitness functions for the
genetic algorithm, regional object morph algorithm and modelling of Gestalt de-
sign principles for the fitness functions.

The third chapter evaluates, explores and presents the generated result arte-
facts of the proposed creative procedural generation method. The case study re-
sults show how the algorithm can increase the creative value of the generated ar-
tefacts and reduce the time for manual decision-making of creative tasks. The
method reduces the number of repetitive game scene patterns and generates a sig-
nificant number of unique game object layout patterns. MCDM methods and neu-
trosophic sets ensure the combination of fluid-conflicting criteria. Generated ar-
tefact features are easy to distinguish and do not make generated iterations chaotic
by not employing every criterion identically in a single algorithm run. One gener-
ated game scene can employ more than one visual design pattern if there is a pos-
sibility in the initial genetic algorithm seed and random mutation direction. When
combined for different design rules, cellular automata-based rules with local
neighbourhood check agents can generate varied video game scene patterns rela-
tively quickly. The final algorithm employs an above-average ability to generate
creative value.



Reziumeé

Procedirinis generavimas zaidimuose apima automatinj zaidimo turinio, tokio
kaip lygiai, aplinkos ir veikéjai, kiirima algoritminiais procesais. Tokia strategija
leidzia zaidimy kiiré¢jams padidinti jvairove generuojant zaidimy turinj ir taip pa-
gerinti zaidéjy patirtj. Procedirinio generavimo metu gali buti taikomi daugiakri-
teriai sprendimy priémimo metodai, siekiant subalansuoti skirtingus tikslus, to-
kius kaip zaidimo jvairove, estetika ir abstrakéiy zaidimo lygio savybiy sklandus
sujungimas. Neutrosofinés aibés padeda apdoroti neapibrézta ir netikslig informa-
cijg procediirinio generavimo procese ir padeda lengviau apibrézti kiirybiskumo
elementus. Disertacija susideda i$ jvado, trijy pagrindiniy skyriy, apibendrina-
muyjy iSvady ir literatiiros Saltiniy sgraSo. Pirmajame skyriuje atliekama literattiros
apzvalga, kurioje aprasomas kiirybiniy procediirinio generavimo metody taiky-
mas zaidimuose, ir suformuluojami disertacijos tikslai. Antrajame skyriuje pasii-
lomas naujas procediirinio Zaidimo sceny generavimo biidas, pasitelkiant geneti-
nius algoritmus, daugiakriterius sprendimy priémimo metodus ir kiirybiskumu
grindziamy kriterijy modeliavima. Sitilomi metodai apima WASPAS-SVNS ir
CoCoSo funkcijas genetiniams algoritmams, regioniniy objekty morfavimo algo-
ritmus ir gestalto dizaino principy modeliavimg tikslo funkcijose.

Treciajame skyriuje jvertinami ir pristatomi sukurty rezultaty artefaktai, gau-
nami taikant pasitlyta kiirybinio procediirinio generavimo metodg. Atliktas tyri-
mas rodo, kaip algoritmas gali padidinti sukurty artefakty ktirybine verte ir suma-
zinti rankinio kirybiniy uzduoéiy sprendimo laika. Sis metodas sumaZina
pasikartojanciy zaidimo sceny skaiCiy ir generuoja didelj unikaliy Zaidimo ob-
jekty isdéstymo modeliy kiekj. Daugiakriteriai sprendimy priémimo metodai ir
neutrosofinés aibés uztikrina sklandy konfliktiniy kriterijy derinimg. Sukurti arte-
faktai buina lengvai atpazjstami ir nesukelia chaotisky algoritmo rezultaty. Krite-
rijy elementy balansas biina nevienodas keliy algoritmo aktyvavimy metu. Vie-
noje algoritmo iteracijoje galima pamatyti daugiau negu viena vizualaus dizaino
elementg, jei tai leidzia pirminiai atsitiktiniai genetinio algoritmo duomenys. Las-
telinio automato pagrindu paremtos taisyklés su lokaliy kaimyny patikros agen-
tais, kai derinamos skirtingos dizaino taisyklés, gali gana greitai generuoti skirtin-
gus zaidimo sceny modelius. Galutinis algoritmas pasizymi didesniu negu
vidutinis kiirybinés vertés generavimo gebéjimu.
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Notations

Symbols

m — aesthetic symmetry (liet. Estetiné simetrija);

x — grid length (liet. Tinklelio ilgis);

x; — grid x dimension element (liet. Tinklelio x dimensijos elementas);
y — grid height (liet. Tinklelio aukstis);

y; — grid y dimension element (liet. Tinklelio y dimensijos elementas);

s — binary value representing symmetric objects (liet. Binariné reiksmeé nurodanti
simetriskq elementq);

e — empty space ratio (liet. Tuscios erdvés santykis);

t — the sum of empty objects (liet. Tusciy objekty suma);

d — player-exit distance (liet. Atstumas tarp Zaidéjo ir iséjimo);

z — safe zone (liet. Saugi zona);

X — aset of objects (liet. Objekty rinkinys);

v — criteria value (liet. Kriterijaus reiksmé);

Umax — Nighest possible criteria value (liet. AukSc¢iausia jmanoma kriterijaus reiksme);

N — neutrosophic number (liet. Neutrosofinis skaicius);

S — crisp number (liet. Skaliarinis skaicius);

Q — criteria representation in the WASPAS algorithm (liet. Kriterijaus reprezentacija
WASPAS algoritme);

t— truth (liet. Tiesa);

i — intermediacy (liet. Neapibréztumas);
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f — falsehood (liet. Netiesa);
R — weighted comparability (liet. Svorio koeficientas);

P — power weight of the comparability sequences (liet. Laipsniu pakelto svorio
koeficiento seka)

L — weight constant (liet. Svorio konstanta);

k;, — arithmetic mean of the sums of WSM and WPM (liet. Aritmetinis WSM ir WPM
sumy vidurkis);

k;;, — the sum of the relative scores of WSM and WPM compared to the best (liet. Re-
liatyviy WSM ir WPM verciy suma lyginant su auksciausia verte);

k;. - balanced compromise of the WSM and WPM maodel scores (liet. WSM ir WPM
verciy subalansuotas rezultatas);

k; — ranking of alternatives (liet. Aiternatyvy rikiavimas);

I—  number of generations for the genetic algorithm (liet. Genetinio algoritmo genera-
cijy skaicius);

A — cellular automata agents vision centre (liet. Lgstelio automato agenty matymo cen-
tras);

B — cellular automata agents neighbour (liet. Lgstelinio automato agento kaimynas);

sm — general normalised Gestalt criteria (liet. Standartinis ir normalizuotas Gestalto
kriterijus);

r— agent neighbours (liet. Agento kaimynai)

t, - similarity (liet. Panasumas);

t, - proximity (liet. Artumas);

t; — continuity (liet. Testinumas);

t, — focal points (liet. Zidinio taskas);

ts — common regions (liet. Bendras regionas);

s; — focal aesthetic criteria value (liet. Lokalaus estetinio kriterijaus reiksSmé);

v; — global aesthetic criteria value (liet. Globalaus estetinio kriterijaus reiksme);

f1 - functional criteria value (liet. Funkcinio kriterijaus reik§mé);

¢, — binary functional criteria value (liet. Binarinio funkcinio kriterijaus reikSmé);

w — single criteria weight (liet. Vieno kriterijaus svoris);

R — random number (liet. Azsitiktinis skaicius);

N, - noise (liet. Triuksmas).

Abbreviations

2D — 2-dimensional (liet. 2 dimensijy);

3D — 3-dimensional (liet. 3 dimensijy);
CoCoSo — Combined Compromise Solution;
GHz - Gigahertz (liet. Gigahercas);

MCDM — Multi-Criteria Decision-Making (liet. Daugiakriteris sprendimy priéemimo
metodas);

CPU — Central Processing Unit (liet. Procesorius);
PCG — Procedural Generation (liet. Procediirinis generavimas);
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PCGML — Procedural Content Generation via Machine Learning (liet. Procediirinis tu-
rinioo generavimas pasitelkiant masinin mokymg);

SVNS - Single-Valued Neutrosophic Sets (liet. Vienos vertés neutrosofiné aibé);

WASPAS — Weighted Aggregated Sum Product Assessment method;

WASPAS-SVNS - the WASPAS method, modelled under the Single-Valued Neutro-
sophic Set environment;

WPM — Weighted Product Model (liet. Svertinis daugybos modelis);

WSM — Weighted Sum Model (liet. Svertinis sumos modelis).






Contents

INTRODUCTION ..ottt ettt ettt sttt s be et e s ts st s satesba et e esbesrbesraeas 1
Problem FOrmMUIBLION..........coociiii ettt 1
Relevance of the DISSErTatION ........c.ueieiiviie ettt e e e s eba e sarees 2
RESEAICN ODJECL.....c.eiiiiitiieci e reens 3
AIM OF the DISSEITALION .....eevvieieie ittt sr s et s s sressba s s sbaeebesaas 3
TaSKS Of the DISSEITALION .......cciveeieviiiceie ettt srae e sbe e s srbe e sbae e eees 3
Research MethOdolOgY .........ccoeeiiiiieiie e e 4
Scientific Novelty of the DISSErtation ...........ccoceovireiiieiiieieiese e 4
Practical Value of the Research Findings...........cccovvniiiinninensneeee e 4
DEfENAEd STALEIMENTS.......viieieeei ettt e e e st r e e s s sr b e e e s sabeeeesarees 4
Approval of the Research FiNdiNgs ..........cccoiiiiiiii e 5
The Structure of the DiISSErAtiON...........covviiiieieie e 5

1. OVERVIEW OF CREATIVE PROCEDURAL GENERATION METHODS

FOR VIDEO GAMES ..ottt sttt sttt na s e 7
1.1. Computational CreatiVILY ..........ccooireiieieiee e 8
1.1.1. Computational creativity in Video games ..........cccovvveveiieieeiieve e 9
1.2. Procedural generation in VIdE0 gamES........ccvcveierieieresesiesreseeseesieseesieseesreseens 11
1.2.1. Fitness criteria modelling in video games .........cccvcevvvenieieeveie e 13
1.3. Multi-criteria decision-making in the genetic algorithm context ....................... 15
1.4, FUZZY SEES tNEOTY ... e 16
1.5. Conclusions of the First Chapter and formulation of the dissertation tasks........ 17

Xi



2. GENETIC MULTI-CRITERIA DECISION-MAKING METHODS AND

CRITERIA MODELLING FOR VIDEO GAME SCENE GENERATION............... 19
2.1. Scene layout modelling and optimisation............ccoceveereniienenceseee e 20
2.1.1. Game scene encoding MOdelling.........cooeiieriininiiee e 21
2.1.2. Criteria modelling for the fitness fUNCLiON............ccoeoiineiiineee 22
2.1.3. GeStalt PriNCIPIES ......cuiiiiiieecce e 26
2.2. Genetic algorithm for procedural generation in video games.............ccoceerenene 30
2.3. Weighted aggregated sum product assessment algorithm extension
for genetic algorithm .......cooii i 31
2.3.1. Genetic weighted aggregated sum product assessment
QAME SCENE JENEIALON ...vvevieeieeeieeeieseesee e steeste e e e staesteete e teenaesreesreesreeseeeneas 33
2.4. Combined compromise solution Method............cccooereinennienencne e 33
2.4.1. Neutrosophic genetic combined compromise solution procedural game
SCENE JENEIATON ...veuvveiieeeieeete e tere e te et et r e este s e e eaere st sbe e seeseseseebe e seesesesseseneneenis 35
2.5. Modelling of Gestalt principles for the fitness function ............c.ccoceevvnenienen. 37
2.5.1. Game scene generation incorporating Gestalt principles............c.ccoceevennen. 42
2.6. Regional object transformation ..o 46
2.6. Conclusions of the Second Chapter ... 49
3. EXPERIMENTATION AND RESULTS OF THE PROPOSED PROCEDURAL
GENERATION METHODS.......c.ciiittiiieieisiee sttt 51
3.1. Procedural Video game scene generation by genetic and neutrosophic
multi-criteria decision-making algorithms............cccoceeiviviinincicieccc e 52
3.2. Generation of creative game scene patterns by the neutrosophic genetic
combined compromise solution Method ..o 57
3.3. Regionally morphing objects for the genetic game scene generation
AIGOTTENML L. 60
3.4. Gestalt principles governed fitness function for genetic Pythagorean
neutrosophic game SCene generation ..........c.ccoeoevereieneneeneree e 62
2.6. Conclusions of the Third Chapter.........c.ccoeiiiiiiiiincee e 68
GENERAL CONCLUSIONS. ..ottt ittt 71
REFERENCES ..ottt bbbttt 73
LIST OF SCIENTIFIC PUBLICATIONS BY THE AUTHOR ON THE TOPIC OF
THE DISSERTATION ...ttt e 81
SUMMARY IN LITHUANIAN ..ottt 83

Xii



Introduction

Problem Formulation

The popularity of creativity modelling is on the rise, with its application spreading
across various fields. Despite its popularity, there is a lack of a universal definition
of creativity, which varies among different fields. The abstract nature of creativity
further adds to the challenge of interpretation. Creativity generally encompasses
diverse creative intelligence abilities, making simulation a complex technical task
(Colton and Wiggins, 2012; Wiggins, 2006). It indicates that human creative abil-
ities are not easily understandable and replicable in a model. The perspective of
creativity modelling seeks to understand and extract creative traits from existing
knowledge, works, or the environment. Valuable information about creativity is
implicitly encoded in the surrounding world. Therefore, grasping how creativity
is defined is crucial for effectively generating creative systems.

Computational creativity is an area of artificial intelligence that explores the
development of computational systems capable of exhibiting creative behaviour.
One aspect of the creative process involves combining goals of varying natures.
In modern applications of computational creativity, generative art takes centre
stage. Generative art refers to artefacts created through algorithms which resemble
artistic motivations (Boden and Edmonds, 2009). The approach is primarily used
to produce various media forms. Examples of generated content include sound or
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2 INTRODUCTION

music, images derived from text or specialised pixel art sheets, and text genera-
tion. Generative art finds particular relevance in the digital world and game-level
design, where procedural generation is frequently employed.

Search-based procedural generation in video games involves using a fitness
function to evaluate and rate the generated assets or compositions. The evaluation
determines how well the generated artefacts perform based on the fitness function,
making the construction of the fitness function a crucial factor in the success of
the generator. The advantage of using a search algorithm lies in its ability to find
existing solutions consistently based on the fitness function. Two main types of
fitness criteria are used: aesthetic and functional. Aesthetic criteria focus on the
visual aspect, ensuring the generated level has a pleasing appearance. On the other
hand, functional criteria assess adherence to rules, such as the existence of key
object elements or the proper usability of the artefacts for their intended purpose.
One of the challenges faced in the process is the seamless integration of both cri-
teria types into the final result. Sometimes, the aesthetic and functional criteria
may conflict, making it difficult to strike the right balance (Han et al., 2021).

Another challenge in modelling creative elements arises from their abstract
nature, which makes it difficult to define them precisely for mathematical algo-
rithms. The research aims to address this issue by providing exact definitions for
algorithm elements. Additionally, to ensure that the generated artefacts possess
high creative value, methods must be devised to incorporate high-level aesthetic
concepts and introduce noticeable differences between iterations of the same al-
gorithm. Multi-criteria Decision Making (MCDM) is employed as one of the so-
lutions to effectively combine the criteria of the fitness function. MCDM helps
model strategies for selecting alternatives from a finite pool of possible solutions
(Zavadskas et al., 2014). Genetic algorithm operators can be optimised by apply-
ing these methods to the genetic algorithm’s fitness function. Non-determinism
can also increase in some variations of MCDM methods, such as using fuzzy sets
instead of crisp numbers. Overall, the primary objective of the dissertation is to
enhance the creativity aspect of game-level object layout procedural generation
using genetic algorithms.

Relevance of the Dissertation

Automation has significantly enhanced the efficiency and quality of people’s lives
(Filip, 2021). However, creativity and intelligent problem-solving have tradition-
ally been handled by humans. Researchers have recently devoted considerable at-
tention to mathematically modelling creativity problems. Using algorithmic solu-
tions for creative tasks is becoming more popular, with creativity traits typically
involving novelty and the value of the creations (Pichot et al., 2022). Multimedia
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creation is a resource-intensive process, often requiring substantial human effort.
Hence, the potential to automate more complex creative tasks could greatly accel-
erate digital content generation. As a diverse multimedia branch, video games
heavily rely on computer capabilities, resulting in a wide variety of creative con-
tent types. However, traditional procedural generation is often associated with
random approaches, leading to less diverse and authentic computer-generated
content. The precise definition of creativity and its evaluation remains unclear in
the branches of computer science. In parallel with assessing creative value, it is
essential to comprehend what constitutes creativity and how it can be effectively
modelled.

Research Object

The object of the dissertation involves employing multi-criteria decision-making
to create object layouts within genetic procedural game scenes, with a particular
emphasis on the fitness function.

Aim of the Dissertation

The main goal is to save game design development time by proposing creative
pattern generation for video game scenes by devising new methods to increase the
variance of game object pattern composition.

Tasks of the Dissertation

To achieve the objective, the following problems had to be solved:

1. To review common video game scenes or creative artefact procedural
generation methods.

2. To develop new methods for video game scene object layout procedural
generation by combining genetic algorithms with MCDM methods and
neutrosophic sets.

3. Todevelop afitness function and criteria for the genetic algorithm, which
is focused on the creative and game design value.

4. To develop an engine for game scene generation and experiment with
different sets of rules and procedural generator extensions to generate a
set of game scene layouts, which aims to increase automated creative and
game design value.
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Research Methodology

The dissertation applied literature analysis for the investigation of the existing
video game artefact generation with a high focus on game scene object layout
composition and problem formulation. Genetic algorithms, multi-criteria deci-
sion-making, fuzzy logic, and cellular automata methods were applied to develop
creative game scene generation strategies.

Scientific Novelty of the Dissertation

The dissertation introduces the following scientific novelty:

1. Adaptation of WASPAS-SVNS method and CoCoSo enhancement for
the genetic procedural game scene layout generation fitness function
was created, which allows for increased indeterminacy and criteria
combination effectiveness and, thus, increases the amount of distinct
generated artefacts.

2. Quantisation and fitness criteria were modelled with Gestalt principles
for the genetic procedural game scene layout generation to increase
the aesthetic value generation for the game scenes.

3. The WASPAS-SVNS-based procedural generator was extended with
locally morphing game objects to increase the variety and composition
of game object clusters.

Practical Value of the Research Findings

The research findings can be applied to generating video game-level environ-
ments, where the focus is on the aesthetic value of game object layouts. A practical
application of the proposed algorithms can be used to assist a game-level designer
with a system that automates a part of the low-level game object placement crea-
tive task.

Defended Statements

The following statements based on the results of the present investigation may
serve as the official hypotheses to be defended:
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1. WASPAS-SVNS and CoCoSo methods for the genetic procedural
game scene layout generation create a varied set of game scene lay-
outs. It successfully creates functional aesthetic patterns without spe-
cifically defining the shapes of the combination of game objects.

2. The modelling approach based on Gestalt principles applies abstract
rules discreetly, resulting in the creation of game scenes that exhibit
Gestalt principle-based arrangements of game objects.

3. Locally morphing game object clusters adds more visual object varia-
tions to a functional game object type by adding an array of possible
visual variations and, thus, increases the aesthetic value of the gener-
ated game scene.

Approval of the Research Findings

Research results on the dissertation topic were published in five scientific publi-
cations. Three were published in the reviewed scientific journals, which are in-
dexed in Web of Science databases (Petrovas and Bausys, 2022; Petrovas, Bausys,
Zavadskas and Smarandache, 2022; Petrovas, Bausys and Zavadskas, 2023); and
two were published in proceedings of international conferences (Petrovas and
Bausys, 2022; Petrovas and Bausys, 2019).

The author made three presentations at international scientific conferences:

— International Conference on Electrical, Computer and Energy Technolo-
gies (ICECET), Prague, Czech Republic, 2022.

— International Workshop Data Analysis Methods for Software Systems
(DAMSS), Druskininkai, Lithuania, 2019.

— Open Conference of Electrical, Electronic and Information Sciences
— (eStream), Vilnius, Lithuania, 2019.

The Structure of the Dissertation

The scope of the dissertation consists of an introduction, three chapters, general
conclusions, a list of references, and a list of publications by the author. The scope
of the dissertation is 93 pages, 44 equations, 54 figures and two tables. The dis-
sertation makes 101 related research references.






Overview of Creative Procedural
Generation Methods
for Video Games

The chapter reviews creative procedural generation methods and focus areas for
video games. It discusses common and emerging strategies for procedural game
scene generation and current problems that should be considered when building a
generation model. The proposed approach focuses on MCDM-based fitness func-
tions for genetic algorithms combined with an abstract criteria digitisation pro-
cess. Creativity, procedural generation, MCDM, and fuzzy set approaches are re-
viewed for the process of creating video game scenes.

The main research results of this chapter were published in five author’s sci-
entific publications (Petrovas and Bausys, 2022; Petrovas, Bausys, Zavadskas and
Smarandache, 2022; Petrovas, Bausys and Zavadskas, 2023; Petrovas and Bausys,
2022 July; Petrovas and Bausys, 2019), and findings of the research were pre-
sented at three international conferences (International Conference on Electrical,
Computer and Energy Technologies (ICECET), Prague, Czech Republic, 2022;
International Workshop Data Analysis Methods for Software Systems (DAMSS),
Druskininkai, Lithuania, 2019; Open Conference of Electrical, Electronic and In-
formation Sciences (eStream), Vilnius, Lithuania, 2019.



8 1. OVERVIEW OF CREATIVE PROCEDURAL GENERATION METHODS FOR VIDEO...

1.1. Computational creativity

In the field of artificial intelligence, researchers are constantly making discoveries
fuelled by advancements in computing power, storage, and data volumes (Dick,
2019). One emerging approach gaining momentum is Computational Creativity,
which involves solving creativity problems through computation-based systems
that attempt to simulate creative work. However, there is no widely agreed-upon
engineering-specific definition of creativity. Nevertheless, understanding the es-
sence of the concept is essential for effectively modelling a system based on cre-
ative principles. The definition of creativity can be broken down into several parts,
depending on how creative work is assessed or generated. Four types of creativity
modelling targets are typically considered: person, process, product, and press.
The most common targets in machine learning tasks are product and process
(Lamb et al., 2018). The product target evaluates completed works and aims to
replicate them by combining and expanding elements from previous works. The
process target simulates logical loops used in creative work generation. The per-
son target, which involves simulating creative agents or individuals, is used less
frequently. The press target is common in filtering creative and impactful work,
such as internet content scans. Among these targets, research focused on the pro-
cess-related target, which tends to generate more example-independent results, a
crucial aspect of computational creativity. It means that the generated work differs
more from the training data set, enabling more original and unique creations (Car-
ballal et al., 2019).

Research can break creativity down into various classifications to compre-
hend its structure, which is crucial for developing a model. Creative value can be
defined by the following key aspects: usefulness, aesthetics, originality, relevance
to the task, and surprise (Ventura, 2016). These aspects are often considered when
determining the value of a creative outcome. Creativity involves a blend of exper-
tise, chance, and intuition. Integrating these traits into a system generally enhances
the likelihood of producing results with greater creative value (Lamb et al., 2018).
Examples of cognitive creativity approaches include concept combination, con-
cept expansion, imagery, metaphor, and divergent thinking (Cook et al., 2013).
The cognitive approach is often likened to a heuristic search. Evaluating the out-
comes is a crucial task in defining creativity. Common evaluation methods include
Classification, Regression, Predictive Models, and Generative Models. However,
these methods typically focus on replicating creative content rather than exploring
new spaces. On the other hand, transformational creativity systems aim to auton-
omously determine what is creative using more abstract evaluation techniques.
The most effective evaluation often comes from external sources, such as feed-
back from other creative systems (Taivonen and Gross, 2015). Nonetheless, trans-
formational systems are not widely employed or fully realised at present. The
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challenges for evaluating creativity can be grouped into two categories: the gen-
eration of transformational creative content that adds new value to existing results
and the issue of generated results being too similar across multiple iterations of
the same model. Few models specifically designed for creativity exist currently.
Although creative models can generate artwork, they often lack contextual crea-
tive value (Franceschelli and Musolesi, 2021).

Creating algorithms for creativity presents a significant challenge due to the
complexities of constructing a mathematical model for this purpose. Traditional
algorithms are often ill-suited for handling creative tasks. Despite advancements
in computing power and novel approaches to address creativity, many new meth-
ods are emerging to tackle creative tasks. Nevertheless, in most cases, it remains
arduous to rival human creativity (Franceschelli and Musolesi, 2021).

One of the most prevalent perspectives on creativity modelling involves di-
viding it into four main categories. These categories are person (characteristics of
the creative agent and the model used), process (actions taken during the creative
process), product (the resulting creative artefacts), and press (meta-information
indirectly related to the work and the cultural context surrounding the outcome)
(Cook et al., 2019; Walia, 2019). The scientific community often employs reverse
engineering systems to lay the groundwork for creativity simulations, which align
with the product-oriented approach (Srinivasan and Uchino, 2021). A current
computational creativity challenge revolves around generating visually appealing
and functional creative outcomes. In the proposed research, the focus is on ana-
lysing and modelling the creative process. Usually, defining creativity entails the
creation of new concepts, which can be difficult to learn solely from existing data
(Srinivasan and Uchino, 2021). A creative layout is a design that uses visual ele-
ments to create an attractive and engaging presentation of information or content.

1.1.1. Computational creativity in video games

Automated game-level generation has become a topic of growing interest. While
machine learning algorithms excel at specific computational tasks, they still strug-
gle to replicate human creativity perfectly. The main objective of research in the
area is to identify measurements of creativity and apply them to automated content
generation. Currently, the results in this field are mainly exploratory and often
cannot fully replace creative work. However, they gradually assist creators by
handling simple creative tasks. One of the tools aiding in work generation is
PCGML, which involves four modelling steps: problem identification, solution,
results, and the application of the generated outcomes.

In game design, several research examples address the challenge of computer-
generated creativity. One such example involves generating physical puzzle game
levels, focusing on the feasibility and stability of objects (Pereiraet al., 2016). The
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final fitness of the levels is determined by an agent that plays the game. The ap-
proach reduces computational costs and emphasises new solutions to calculate
rewards for the genetic algorithm while minimising penalties. Another example is
a level generator for a game similar to Lode Runner. Playability and connectivity
are assessed using the “A * algorithm, and an autoencoder with a multi-channel
approach analyses 150 pre-made levels. Evolutionary algorithms are utilised to
encode the levels into multi-channel strings, adding an element of unpredictabil-
ity. Performance evaluation involves comparing the generated levels’ similarity
to the original game levels (Thakkar et al., 2019). A framework for generating
general 2D games, primarily top-down adventures, is also present (Zafar et al.,
2020). The framework evaluates levels of symmetry, balance, density, and reach-
ability, focusing on aesthetics and difficulty. It derives three different fitness val-
ues (Score Difference Fitness, Unique Rule Fitness, and Metric Based Fitness)
and calculates the average value for the final fitness. The research aims to apply
procedural video game generation to various games with differing rules. Another
notable example concentrates on creative patterns (Volz et al., 2020). It uses a
match-3-type game as the foundation for the generator, employing visual pattern
recognition and line symmetry for evaluation. Expert study analysis is used to
judge the results. The generator learns from existing content and employs pattern-
aware PCGML, random Markov fields with symmetric positional information,
and visual analysis to create larger structural patterns. In the case of a Pac-Man
arcade-type game (Safak et al., 2016), playability, object spread, and ratios are
evaluated, and levels evolve using a genetic algorithm. The objective is to gener-
ate unique levels with each iteration of the algorithm. Finally, another more gen-
eralised example involves generating verticality for primarily flat surfaces on
grid-based platforms (Petrovas and Bausys, 2019).

Most examples found in the literature involve experimentation in a 2D space
and focus on games from the 1980s or simple game levels designed specifically
for particular tasks. The typical objects used for creating game levels include
empty spaces, walls, players, goals, collectables, and hazards. Common evalua-
tion criteria include guidance, progression, aesthetics, safe zones, and pace-break-
ing. The current state of computational creativity in the field of video games is
relatively young and has not yet been extensively applied to large and complex
games. Additionally, it is challenging to develop systems that can fully replicate
the manual creative work of human designers. As the complexity of the resulting
game increases, it becomes easier to distinguish between synthetic and human-
generated creativity.

Obiject variety and the patterns in which they are combined are crucial factors
that define the value of game levels. Multiple-level design rules can be employed
to generate these patterns. The initial step in creating a layout involves establish-
ing relative patterns between objects and considering the function of each object
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type. The subsequent stage is to introduce variety by incorporating alternative
looks for specific game object types, thereby enhancing the aesthetic appeal of the
game level (Alvarez etal., 2018; Schrum etal., 2020; Atkinson and Parsayi,
2021). The proposed research is centred on the next layer of game scene genera-
tion, where the functional level is expanded through regionally morphed zones.
Within these zones, arrays of alternative visual objects are used to fulfil the spe-
cific functions of game objects.

1.2. Procedural generation in video games

Procedural game content generation using machine learning models on existing
content (PCGML) is a method employed to address content generation challenges
in the gaming domain (Summerville et al., 2018). The utilisation of procedural
content generation is on the rise in the game industry, and researchers are contin-
uously exploring innovative approaches to create high-quality content. Assistance
levels for content generation can be classified as partial, complete, autonomous,
interactive, and guided. Game content is categorised into functional and cosmetic
elements. However, the main challenges with the procedural generation machine
learning approach include training on limited datasets, the absence of suitable
data, parameter adjustment, and other related issues (Togelius et al., 2013). Pro-
cedural content generation methods (PCG) often lack comprehensive evaluation,
and the objectives are typically defined by designers. The use cases for PCGML
encompass autonomous generation, artificial intelligence-assisted design, repair,
analysis, and data compression. The proposed research mainly focuses on auton-
omous generation, creating game content without human interaction by combin-
ing algorithms with fitness functions. Video games, as a widely used form of mul-
timedia, require a broad scope of machine-learning approaches. Game design
inherently demands levels that are both playable and aesthetically pleasing (Risi
and Togelius, 2019). However, there is currently no standardised approach to da-
taset standardisation and performance evaluation for game design problems (Sum-
merville et al., 2018; Isaksen et al., 2015; Liapis et al., 2012). The objectives of
PCG in a game-level generation are to enhance replayability, reduce the demand
for creators’ time, save storage space, and enable specific aesthetics (Risi and To-
gelius, 2019).

Procedural Content Generation (PCG) is an algorithmic method used to gen-
erate assets or compositions of assets. The outcomes typically consist of com-
puter-generated content that can be utilised at various stages of the game devel-
opment process. This approach is frequently employed to produce creative results
and can modify diverse video game elements. One common element used in pro-
cedural game content generation is the arrangement of game objects. The primary
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motivations behind using PCG are personalisation, replayability, and cost-effec-
tiveness (Togelius et al., 2011). This research focuses on enhancing replayability
by creating unique and diverse game scenes using the same algorithm. Replaya-
bility implies novelty in the context of creativity. Consequently, the new outcomes
are sufficiently different to be considered interesting, even after multiple instances
of the same game level. Ensuring replayable content is crucial for video games
when using the same PCG algorithm for level generation.

Procedural generation has become a widely used tool in game development
for generating content in games efficiently. It enables the creation of multiple
game assets in a relatively short period, provided the generation tool is already set
up. In contrast, human-crafted game levels are often more unique but may lack
randomness or the natural patterns observed in nature. Procedurally generated lev-
els can incorporate reactivity to player actions and personalised game content
(Short and Adams, 2017). Procedural generation can be defined in various ways;
some authors describe it as automatically generated assets with limited input data
or amplification algorithms, while others define it as a fully automatic generation
algorithm with no input data. The primary focus for automatic generation is min-
imal input (Freiknecht and Effelsberg, 2017). The proposed research aims to min-
imise input data while generating unique layouts for game levels.

The popularity of research on autonomous game-level layout generation sys-
tems has been on the rise. Various methods are being proposed, often combined
with evolutionary algorithms, to incorporate creativity traits with minimal or no
pre-generated data (Thakkar et al., 2019; Zafar et al., 2020; Volz et al., 2020; Sa-
fak et al., 2016; Petrovas and Bausys, 2022). These methods typically operate by
combining game functionality requirements with the application of aesthetic rules
for generating levels. The game prototypes used in these algorithms are usually
minimalistic and employ one game object type for each game function. The pro-
posed algorithm is an extension of one of these algorithms, namely Genetic
WASPAS-SVNS (weighted aggregated sum product assessment in a single-val-
ued neutrosophic set environment), which is used for game layout generation (Pe-
trovas and Bausys, 2022). However, these types of algorithms are often con-
strained by the size of the criterion array. As the ratio between the game scene
grid size and the number of conflicting criteria increases, it becomes challenging
to distinguish the features of these criteria effectively.

This research aims to enhance the aesthetic quality of the generated levels by
incorporating an additional layer of algorithms that introduce regionally morphing
areas using an array of alternative visual objects. This algorithm represents a sig-
nificant advancement in automated game design, reducing the need for extensive
designer supervision while increasing the automated creative value. A distinguish-
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ing feature of these algorithms is the absence of a starting seed or pattern, a com-
mon practice in procedural generation for game-level design (Nenad, 2018; Kha-
lifa et al., 2019a; Khalifa et al., 2019b).

Procedural generation is a data creation technique that utilises algorithms and
automation to produce outcomes (Short and Adams, 2017). As a practical concept
in games, it has been in use for over three decades, with one of the first notable
games employing this approach being “Elite” (Braben and Bell, 1984). The notion
of generating distinct and non-repetitive visual results remains innovative even
today. There are various procedural generation techniques in games, including
search-based methods (often using genetic or fitness-based algorithms), solver-
based approaches, rule-based systems with strict control, and grammar-based al-
gorithms (originating from linguistics) (Liu et al., 2021; Nyholm and Nilsson,
2017). Some examples of procedural generation in games involve using genera-
tive adversarial networks (GANS) to train and generate new game levels (Torrado
et al., 2020; Giacomello et al., 2018). Others use cellular automata, with evalua-
tion agents iterating over batches of game elements (Earle et al., 2022). Certain
methods even analyse gameplay videos to train their models (Guzdial and Riedl,
2016). Additionally, some systems directly apply game design patterns to search-
based algorithms (Baldwin et al., 2017). These systems often analyse hand-crafted
or indexed creative artefacts to learn and generalise pattern generation. The appli-
cations and methods of procedural generation in games are diverse, but the com-
mon goal is to create results that are indistinguishable from or assist the creation
process compared to manually crafted artefacts. Examples in the literature usually
present abstract visual results.

1.2.1. Fitness criteria modelling in video games

The fitness function used in game design and computational creativity typically
comprises a subjective combination of criteria, and its quantification is still in the
early stages of research (Cook et al., 2019). No widespread consensus exists on
how results should be compared in these domains. Game design can be divided
into several parts, categorising games based on their objectives. The conversion
of fitness criteria varies depending on the game type. Patterns in game design are
elements that appear in levels across multiple games rather than being recurring
features within the same game title. These patterns are typically classified into
various types. “Guidance” patterns direct players in an intended direction, while
the “safe zone” pattern denotes an area where players are not exposed to negative
interactions. “Foreshadowing” patterns provide hints about events later in the
game. “Layering” patterns involve combining multiple objects to create a new
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experience. “Branching” patterns offer players multiple paths to achieve their ob-
jectives, and “pace-breaking” patterns involve altering elements of the game to
achieve a creative objective (Khalifa et al., 2019a).

Most automated game design approaches are based on reverse engineering
principles, often utilising datasets obtained by analysing existing games. With this
approach, there is no need to explicitly define fitness criteria for the generations
(Togelius and Schmidhuber, 2008). However, a significant drawback of this
method is the lack of novelty and new concepts in the generated content (Toivo-
nen and Gross, 2015). The ultimate goal is to establish objective formulas based
on game design principles to generate game levels. In the literature, game flow
strategy is proposed as a measure of game design. This concept combines various
criteria, including concentration, challenge, player skills, control, clear goals,
feedback, immersion, and social interaction (Sweetser and Wyeth, 2005). Some
authors attempt to assess game engagement by analysing difficulty and applying
constraints to ensure playable levels (Sorenson and Pasquier, 2010). The present
research strives to quantify abstract creativity criteria applicable to real-world dig-
ital applications.

Multiple methods are available for generating procedurally generated content.
To increase the diversity of levels, the model can employ genetic algorithms with
an abstract fitness function to enhance the unigueness of the generated game level
scenes (Herrmann, 1999; Pereira et al., 2016; Thakkar et al., 2019; Safak et al.,
2016; Beukman et al., 2022). Unique content contributes to replayability, as each
instance of the generated level varies sufficiently to remain interesting. The fitness
function plays a crucial role in genetically created levels as it guides the evolution
of our task. Our problem involves optimisation, aiming for non-deterministic re-
sults while ensuring functionality. The fitness function must be somewhat ambig-
uous to generate a broad range of satisfying results. At the same time, research
must define criteria for the generated level, typically categorised as functional and
aesthetic criteria. Functional criteria set the rules and constraints of game design,
which can be optimised, and limitations that must always hold. On the other hand,
aesthetic criteria determine the visual appeal of the generated levels or objects
(Statham et al., 2022). Combining all these criteria into a single fitness number
requires employing multi-criteria decision-making algorithms (MCDM)
(Zavadskas et al., 2014) in this mathematical model.

The original algorithm by Petrovas and Bausys (2022) employs a genetic al-
gorithm to generate game scene layouts. The fitness function incorporates a com-
bination of functional and aesthetic game design criteria, utilising a multi-criteria
decision-making algorithm with neutrosophic sets. The WASPAS algorithm is
utilised to reconcile conflicting criteria and introduce neutrosophic sets, enhanc-
ing the algorithm’s unpredictability and randomness. This base algorithm is com-
monly applied to various engineering and design problems, such as architectural,
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construction, environmental sustainability, image processing, or pathfinding tasks
(Lescauskiene et al., 2020; Morkunaite et al., 2019; Bausys et al., 2020a; Bausys
and Kazakeviciute-Januskeviciene 2021).

Functional criteria are relatively easier to incorporate compared to aesthetic
criteria because aesthetic criteria follow more abstract rules and are more chal-
lenging to integrate seamlessly. There are various approaches or rules to consider
for achieving aesthetic criteria results (Cook et al., 2019; Karth, 2019), such as
Apollonian order, Dionysian chaos, Gestalt, individual and repetition shape, style,
multiplicity, or cohesion variations. These methods can be utilised to establish
aesthetic criteria for procedural generation. However, one of the challenges asso-
ciated with this choice is to model their implementation, as they are often defined
in abstract terms, but for mathematical algorithms, precise definitions of algorithm
elements are required, which is the specific focus of this research. Simultaneously,
to ensure that the artefacts have a high creative value, methods must be devised to
apply high-level aesthetic concepts effectively.

This research introduces a game scene procedural generator that enhances the
aesthetic value of levels using low-abstraction level building blocks for high-level
aesthetic criteria.

1.3. Multi-criteria decision-making in the genetic
algorithm context

Fuzzy logic can be used to express lists of criteria (Lara-Cabrera et al., 2014).
Another emerging approach involves combining neutrosophic sets with multi-cri-
teria decision-making (MCDM), which has not been extensively explored in the
machine-learning field but holds the potential to enhance the creativity of such
models (Lescauskiene et al., 2020; Morkunaite et al., 2019; Bausys et al., 2020a;
Bausys and Kazakeviciute-Januskeviciene, 2021). Moreover, combining MCDM
algorithms with iterative optimisation algorithms is not commonly employed (Se-
menas et al., 2021; Bausys et al., 2020b). In some SVNS applications in the liter-
ature, there is a strong emphasis on addressing uncertainty (Ali et al., 2020). The
following paragraphs provide a more detailed explanation of related work, meth-
odology, the developed framework, obtained results, and concluding remarks.
Many contemporary MCDM algorithms leverage fuzzy sets, allowing for
non-deterministic outcomes that enhance the replayability of generated game lev-
els. There are numerous instances of fuzzy MCDM methods applied in research,
mostly in static environments and single iterations (Peng and Li, 2021; Peng and
Garg, 2021; Yazdani etal., 2021; Yousefi et al., 2021; Svadlenka et al., 2020;
Kieu etal., 2021; Zavadskas et al., 2021; Zhao et al., 2021; Wang et al., 2022;
Filip, 2022; Semenas et al., 2021). However, due to the genetic algorithm’s nature,
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achieving proper convergence often necessitates multiple subsequent iterations.
This research proposes a novel approach that enables MCDM for a series of sub-
sequent iterations. It explores the fuzzy limitations of MCDM and adapts general
algorithms to suit the creative PCG task. Non-deterministic creativity problems
can be effectively modelled using various versions of modern fuzzy sets.

Multi-criteria decision-making (MCDM) provides an effective approach to
integrating fitness function criteria. It offers strategies for selecting alternatives
from a finite pool of potential solutions (Zavadskas et al., 2014). These methods
can be employed in the fitness function of the genetic algorithm to enhance the
optimisation of genetic operators. By utilising fuzzy sets instead of crisp numbers,
certain variations of MCDM methods can introduce increased non-determinism.

The research proposes an innovative extension for the neutrosophic CoCoSo
method specifically designed for the genetic scene layout generator, where the
fitness function is computed using this approach. The research explored adapta-
tion aspects for the CoCoSo method to address the content generation problem.
Typically, normalisation is computed within the local Min-Max range, involving
a single algorithm iteration. The research updates the normalisation process with
global Min-Max values, encompassing all possible value ranges to enhance ap-
plicability (Choi and Moon, 2003). This allows each criterion to be normalised
within the appropriate value range. Another important consideration is the algo-
rithm’s speed. Since the genetic algorithm calculates fitness using the CoCoSo
method for each chromosome in every generation, it can be computationally in-
tensive for repeated calculations. Certain values with a limited impact on the result
can be replaced with constant values to optimise performance. Furthermore, a
conversion from linear, crisp numbers to neutrosophic sets is necessary. Even the
slightest non-proportional change in values can lead to unsuitable outcomes and
may exceed mutation differences, affecting evolution (Herrmann, 1999). Hence,
careful handling of the conversion is essential to ensure the effectiveness of the
genetic algorithm.

1.4. Fuzzy sets theory

Fuzzy set theory, established almost 60 years ago by Zadeh in 1965, has seen
successful applications emerging since the 1980s. This theory continuously
evolves, and researchers constantly find new ways to redefine and update it
(Kahraman et al., 2016; Wu et al., 2021). Examples of applications include soft-
ware selection problems, intuitionistic linguistic aggregation, human resources
management, smartphone selection, and more (Haque et al., 2020). Among the
various types of fuzzy sets, neutrosophic sets stand out as they can increase no-
determinism. Neutrosophic sets are defined by three numbers representing true,
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indeterminacy, and false values, each being independent (Broumi et al., 2018;
Smarandache, 1999). Neutrosophy deals with neutralities and their interaction
with ideational spectra. The research employed the neutrosophic set environment
in the CoCoSo method (Yazdani et al., 2018; Turskis et al., 2022) to calculate the
final fitness score for each chromosome in the genetic algorithm.

Zadeh introduced the concept of fuzzy sets in 1965(Zadeh, 1965), which al-
lows elements to have degrees of membership ranging from 0 to 1, depending on
how closely they match the set’s criteria. This novel idea, known as “fuzzy sets”,
paved the way for various applications in control theory, decision-making, and
pattern recognition, as outlined in Zadeh’s seminal paper from 1973 (Zadeh,
1973). In 1999, Florentin Smarandache extended fuzzy logic to introduce neutro-
sophic sets, which provide a mathematical framework for representing uncertain
or indeterminate information (Smarandache, 1999). One of the extensions of neu-
trosophic sets is Pythagorean neutrosophic sets, which offer a more flexible ap-
proach to representing uncertainty compared to regular neutrosophic sets (Wang
etal., 2010).

1.5. Conclusions of the First Chapter and formulation
of the dissertation tasks

The key observations and conclusions were formulated following the literature
review:

1. Different targets exist for computational creativity modelling, including
person, process, product, and press. These targets offer unique challenges
and opportunities for modelling creativity in various domains, such as art
and game design. Defining and measuring creativity in computational
systems is a challenge. The varying definitions of creativity and the lack
of widely agreed-upon engineering-specific definitions pose difficulties
in effectively modelling and evaluating creative work.

2. Fitness criteria are significant in procedural content generation for video
games. Incorporating high-level aesthetic concepts into procedural con-
tent generation remains a challenge. Abstract aesthetic criteria, such as
balance, harmony, and visual appeal, must be translated into precise math-
ematical algorithms for effective integration.

3. Evaluating creativity is complex, especially in procedural content gener-
ation. While various evaluation methods exist, assessing and comparing
creative outcomes objectively and comprehensively remains a challenge,
especially when dealing with multiple criteria. Using fuzzy sets and multi-
criteria decision-making methods, particularly neutrosophic sets, offers a
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way to handle uncertainty and introduce non-determinism in creative al-
gorithms. These approaches contribute to enhancing the diversity and
uniqueness of generated outcomes.

4. The challenge of balancing generating novel and unique content while
ensuring that the generated outcomes remain replicable and consistent.
Striking this balance is crucial for enhancing replayability and maintain-
ing player engagement in video games. A well-defined fitness function
that incorporates functional and aesthetic criteria is crucial to ensuring the
quality and creativity of generated content.

Based on the performed literature survey, the following tasks were formu-

lated to achieve the study aims:

1. To develop a framework for game scene generation.

2. To develop new methods for video game scene object layout procedural
generation by combining genetic algorithms with MCDM methods and
neutrosophic sets.

3. To develop a fitness function and criteria for the genetic algorithm, fo-
cused on the creative and game design value.

4. To experiment with different sets of rules and procedural generator ex-
tensions to generate a set of game scene layouts, aiming to increase au-
tomated creative and game design value.



Genetic Multi-Criteria
Decision-Making Methods and
Criteria Modelling for Video Game
Scene Generation

This chapter discusses and investigates genetic neutrosophic MCDM methods and
criteria modelling for video game scene generation. It defines the creativity prob-
lems in video game content generation and proposes a novel algorithm for game
scene generation with WASPAS-SVNS and CoCoSo-based fitness functions. It
also introduces the application of Gestalt design rules for fitness criteria using cel-
lular automata agents. Finally, it explains how game scene objects can be morphed
into new objects and offers conclusions for the final generation model.

The main research results of this chapter were published in four author’s sci-
entific publications (Petrovas and Bausys, 2022; Petrovas, Bausys, Zavadskas and
Smarandache, 2022; Petrovas, Bausys and Zavadskas, 2023; Petrovas and Bausys,
2022), and the research findings were presented at one international conference
(International Conference on Electrical, Computer and Energy Technologies
(ICECET), Prague, Czech Republic, 2022).
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2.1. Scene layout modelling and optimisation

The research proposes an automated framework for game scene layout generation
based on PCGML (Procedural Content Generation using Machine Learning). The
framework utilises a mathematical model that includes a fitness function em-
ployed by a genetic algorithm to assess the population. The research employs the
Multi-Criteria Decision Making (MCDM) utility function for the genetic algo-
rithm fitness function. Specific criteria parameters are fixed for difficulty, playa-
bility, and size adjustments. In each algorithm iteration, the game-level grid is
populated and subsequently evaluated. The evaluation process calculates the fit-
ness for each game-level grid, enabling the selection of the best-performing grids.
The approach generates diverse and unexpected results as the generation seed is
randomly chosen and further refined by the algorithm.

The research integrates various measurements for level design criteria into a
multi-criteria decision-making table to define the problem. The overall fitness of
the game scene is determined by aggregating the scores for each criterion. This
allows for evaluating different generated scenes by using alternative options on
one axis and their corresponding fitness scores on the other axis in the table. Based
on the table results, the algorithm can then select the most suitable alternatives as
a foundation for further scene generations. By calculating the fitness score for
each criterion and representing them as fuzzy sets, the research utilises the
Weighted Aggregated Sum Product Assessment with Single-Valued Neutro-
sophic Sets (WASPAS-SVNS) method to handle situations with conflicting crite-
ria (Lescauskiene etal., 2020; Morkunaite etal., 2019; Bausys etal., 2020a;
Bausys and Kazakeviciute-Januskeviciene, 2021; Semenas et al., 2021; Bausys
et al., 2020b). Fuzzy logic with neutrosophic sets is employed for the calculations
(Stanujkic, 2021).

From a computational creativity perspective, the proposed approach incor-
porates elements of the creative process, including considerations of usefulness,
aesthetics, and chance, which together form the constraints and criteria set for the
mathematical model. The framework is designed to generate video game-level
layouts by initially creating random levels, then refining them using a genetic al-
gorithm, and finally evaluating them with a weighted aggregated sum product as-
sessment to identify the most promising alternatives. Moreover, the framework is
flexible and can be expanded by adding additional requirements and fitness crite-
ria, and many parameters can be adjusted to meet specific needs. The detailed
explanation of the proposed approach is organised into four chapters: game scene
modelling methodology, game scene procedural generation criteria list, the pro-
posed extension of the genetic algorithm through WASPAS-SVNS, and the ap-
plication of the WASPAS-SVNS utility function to calculate the fitness function.
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2.1.1. Game scene encoding modelling

A standard set of game objects is employed, chosen based on the game-level de-
sign principles. These objects are represented by various numbers in the matrix,
where each number corresponds to a different object type. The game scene layout
is discretised into a grid, and each cell can accommodate only one object. A single
genetic algorithm chromosome corresponds to a single scene layout. The objects
and their respective numbers are as follows:

- Player (number 0) — signifies the starting position of the player, the char-

acter intended to play the game.

- Exit (number 1) — marks the location that the player must reach to com-

plete the game.

- Empty space (number 2) — represents traversable and unoccupied areas

through which the player can move.

- Wall (number 3) — refers to an object that obstructs the player’s move-

ment.

- Hazard or enemy (number 4) — represents a traversable object that poses

a danger to the player.

- Collectable (number 5) — denotes a desirable object that the player can

collect during gameplay.

- Ground — while not encoded in the chromosome matrix, the object is used

in the 3D projection visualisation step as the floor layer.

The information of a single chromosome is stored in a 2D numerical grid, as
shown in Figure 1.1 (Fig. 2.1). For experiments, the research utilises a matrix with
dimensions of ten units in width and ten units in length. Each object type is rep-
resented by a distinct number in the grid. To visualise the outcomes, research pro-
jects them into the 3D space by adding a ground layer below the grid and convert-
ing the numerical values into corresponding 3D objects on the main grid.

WW| W[ W W W W| W w|w
WININ NN NN ] W
W[N] W
W[N] W
W[N] W
W[ R[|N|N NN W
WININ NN NN ] W
W N[NNI NN W
WWI W[ W W W W|Wlw|Ww

W[N] W

Fig. 2.1. Single-chromosome data example
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2.1.2. Criteria modelling for the fitness function

Following discretisation, the research establishes a set of criteria that outline the
requirements for the game layout. The research proposes the utilisation of four
fitness criteria functions and three constraint functions. These functions employ
their respective results to calculate the overall fitness value for each iteration of
the genetic algorithm using the WASPAS-SVNS algorithm. Aesthetics are evalu-
ated through the symmetry and empty-space balance criteria, while usefulness is
assessed using the safe zone and player exit distance criteria. The selection of
these criteria is based on their recurrence in the literature (Pereira et al., 2016;
Thakkar et al., 2019; Zafar et al., 2020; Volz et al., 2020; Safak et al., 2016), their
alignment with game design principles, and their relation to creativity definitions
(Lamb et al., 2018; Ventura, 2016; Cook et al., 2013). If any of the constraint
functions fail to meet their conditions, the total fitness value is multiplied by zero.
The outcomes of the criteria are standardised to fall within the range of 0 to
1, providing a common reference point for various criteria metrics (Sorenson and
Pasquier, 2010). Here, 0 represents the poorest possible value, while 1 indicates
the optimal value. To avoid potential biases in the evaluation process using neu-
trosophic sets, the final values for each criterion are scaled by 0.9, preventing them
from getting too close to 1. Scalar values are transformed into single-valued neu-
trosophic sets during the evaluation. The fitness functions are as follows:

— Aesthetic symmetry is calculated to determine the level of symmetry in
the chromosome grid. The grid is divided into four smaller 5x5 grids by
crossing it with a horizontal and vertical slice. Each object in the 5x5 grid
is examined to see if it has an identical symmetrically matching object
both vertically and horizontally (Figs. 2.2 and 2.3). The final symmetry
score is computed by dividing the number of symmetrical matches by the
maximum number of possible matches, where each object can have two
matching objects in the adjacent 5x5 grids that share a boundary:

_ s
m = W (21)
The grid size is denoted by “x” and “y”, and “s” is a binary value repre-
senting symmetry. If an object does not have a matching pair, “s” is set to
0. Each object is assessed twice for both horizontal and vertical axes;

— The balance criteria used for aesthetic purposes measures the proximity
of the ratio between the count of empty game objects and the total count
of objects to 50% (Fig. 2.4);
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Fig. 2.2. Symmetry calculation

— Mathematically, it can be expressed in these steps:

||~r|m

e= (2.2)

N =

xy

— Inthis context, the variable e represents the total empty space ratio, which

is normalised to a range between 0 and 1. The variable t corresponds to
the sum of empty objects, and if this sum exceeds 50% of the grid size, its
value is reversed. The variables x and y indicate the grid size, and the
variable s takes a binary value of 1 if the object is empty. To calculate t,
all empty space objects are counted, and the value is reversed if it sur-
passes 50% of the grid size:

t= XicoSn
{t= lxy—t — Ly 23)

2 173%Y
The criterion evaluates the distance between the player and the exit game
objects. The variables x and y represent the coordinates of the player and
exit, respectively. The objective of the rule is to ensure that the player can
observe as much of the generated scene as possible while moving towards
the exit point:

d=J(x2—x1) * (x2 —x1) + (y2 — y1) = (y2 — y1). (2.9)
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float totalSymetry = 0

intx=0

x < (gridSizeX/2)

True

inty=0

y < (gridSizeY)

True False

objectGridDatall, x, y] == objectGridData[l, gridSizeX-x-1, y] X+t

totalSymetry += 1.0f / (gridSizeX gridSizeY)

/

y++

Fig. 2.3. Symmetry calculation for a single grid axis
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float emptySpaceCount =0

intx=0

X < (gridSizeX)

=
y < (gridSizeY)
False
objectGridData[populationindex, x, y] == 2

True

X+t

emptySpaceCount++

/

y++

Fig. 2.4. Empty-space balance

— The safe zone criteria assess the density of Hazzard-type objects within a
specified square area around the player. The result is obtained by dividing
the count of Hazzard-type objects within the square by the total area of
the square. The criterion aims to determine how safe the surrounding area
of the player is from potential dangers:

X1Y1
= =1 2.5
d X2Y2 ( )
Each member of the population (Fig. 2.5) has its criteria calculated, and
these criteria can be adjusted as needed. The calculations of these criteria
serve as the foundational elements of the fitness function.

The constraint functions involve the following checks on the chromosome

grid:

— Scanning to ensure the presence of the player object.
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— Scanning to ensure the presence of the exit object.

— Using a pathfinding algorithm to verify the existence of a passable route
between the player and exit.

i < populationSize

True

CalculateCriteriaOValidation(i)

v

CalculateCriteria3Symetry(i)

Y

CalculateCriteriadBalancedEmptySpace(i)

Y

CalculateCriteriaSPlayerExitDistance(i)

\

CalculateCriteria6SafeZone(i)

i++

Fig. 2.5. Initial criteria list

2.1.3. Gestalt principles

The aesthetic aspects of created products are often achieved by following visual
principles known as Gestalt principles (Wertheimer, 2012). These principles are
rules of element organisation and perception, guiding how game objects should
be arranged to achieve specific aesthetic effects. Gestalt principles are based on
optical perception, where the brain processes complex compositions of objects as
a hierarchy of visual elements defined by their size and scope. Deep neural net-
works and convolutional neural nets also exhibit similar hierarchical abstraction
behaviour (Todorovic, 2008; Serb and Prodromakis, 2019; Soleymani et al., 2018;
Yu etal., 2017). Compared to the training approach on existing information, the
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research focuses on new information generation. There are typically between five
and ten Gestalt principles, each offering abstract rules for visual input grouping
based on specific objectives. While originally not designed for automated tasks,
their low-level building strategy makes them valuable for achieving high-quality
aesthetic results. Applications of Gestalt principles include visual data represen-
tation, network data visualisation, computer interfaces, and image edge detection,
where visual grouping enhances information processing efficiency (Nesbitt and
Friedrich, 2002; Chang and Nesbitt, 2006; Cao, 2004). The Gestalt principles
(Table 2.1) offer a set of rules for visual grouping and abstraction in the context
of this research.

Table 2.1. Gestalt principles

Name of the principle Explanation

Similar-looking objects are visually grouped regardless

Similarity of their proximity to each other (Fig. 2.6).

Proximit When objects are close to each other, they are perceived
y as groups (Fig. 2.7).

Continuity Aligned and smoothest paths are integrated into percep-

tual wholes (Fig. 2.8).

Focal Point An object that is different compared to a whole will stand
ocal Fom out (Fig. 2.9).

When objects are within a closed region, they are per-
ceived as a group (Fig. 2.10).

Incomplete object patterns are perceived as complete
(Fig. 2.11).

Separation of objects between foreground and back-
ground based on their shape and associations (Fig. 2.12).

Common Region

Closure

Figure Ground

Obijects that point in the same direction are grouped
Common Fate together (Fig. 2.13).

Fig. 2.6. Similarity
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Fig. 2.7. Proximity

Fig. 2.8. Continuity

T

ig. 2.9. Focal Point

I
Q

. 2.10. Common Region
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Fig. 2.11. Closure

Fig. 2.12. Figure Ground
4//

)
///

Fig. 2.13. Common Fate

Aesthetic criteria can be classified based on their level of abstraction. High-
level criteria have abstract definitions, while low-level criteria are more concrete
and can be expressed through direct algorithms. The application of Gestalt prin-
ciples in-game scene generation represents a novel approach, especially consider-
ing their widespread use in interface design. High-level aesthetic criteria offer ad-
vantages for modern MCDM technologies, particularly when dealing with vague
initial information, which can be achieved through the application of neutrosophic
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sets. Neutrosophic sets enable the definition and processing of linguistic or ab-
stract value indeterminism. The next step involves presenting the fundamental
concepts of extending the genetic algorithm with MCDM, specifically using Py-
thagorean neutrosophic WASPAS.

2.2. Genetic algorithm for procedural generation in
video games

Genetic algorithms are employed to address optimisation problems by leveraging
natural selection principles (Whitley, 1994). The approach is advantageous for
research purposes as it can explore various local maximums due to its random
nature. The algorithm iteratively modifies a population of individual game-level
grids, selecting and modifying random grids at each generation. Over time, the
population evolves towards both aesthetic and functional solutions. The genetic
algorithm offers the advantage of finding good solutions without explicitly de-
signing them. It employs transformative operators on a small set of grid cells. The
main advantages of using genetic algorithms over other optimisation methods in-
clude non-linear convergence, the ability to evolve multiple solutions in parallel,
retention of the best solutions, non-deterministic behaviour due to the use of ran-
dom numbers, and the generation of different solutions in each run of the algo-
rithm. The fitness function is based on the WASPAS-SVNS algorithm and is used
to evaluate and select the best individuals based on multiple criteria. Each grid in
the population represents a single solution to the problem, and the size of the pop-
ulation determines the total concurrent grid pool. The best fitness value indicates
the most favourable grid designs in the current population. During the calcula-
tions, two concurrent snapshots are considered, namely the parent and child gen-
erations.

The game level layout is trained using the genetic algorithm (Fig. 2.14), and
the evaluation criteria for each iteration are combined using the WASPAS-SVNS
algorithm to calculate a single fitness value. The population size is set to 50, and
the algorithm is run for 2000 iterations. The initial population is generated ran-
domly, and convergence criteria is the best value of the WASPAS-SVNS evalu-
ated chromosome. The genetic algorithm utilises selection and mutation operators
to filter and repopulate the population. To initialise the data, research creates
empty chromosomes and fills them with random data, where each object is en-
coded with integer numbers from 2 to 6 (representing all possible objects except
the player (number 0) and exit (number 1)). Research then adds one player and
one exit object to each chromosome. In each iteration, research calculates the me-
dian fitness value for the entire population and splits the chromosomes into two
temporal arrays, one storing chromosomes below the median value and the other
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storing chromosomes above the median value. The chromosomes below the me-
dian value are replaced with chromosomes from the above-median array, and then
5% of the data in this new array is mutated by assigning new random values.

InitializeRandomPopulation:
DoFullEvolution:
for amountOfEvolutionCycles
CalculateAllCriteria:
for populationSize
Validation:
PlayerExists
ExitExists
PathBetweenPlayer—-ExitExists
Symetry
EmptySpaceBalance
Player-ExitDistance
SafeZone
end for
FindUnderperformersAndPerformers:
for populationSize
calculateFitness:
WASPAS-SVNS
end for
EvolveUnderperformersWithGeneticAlgorithm
end for
DrawGrid(best fitness)|

Fig. 2.14. Genetic algorithm

2.3. Weighted aggregated sum product assessment
algorithm extension for genetic algorithm

In the evaluation phase, the research employs the modified WASPAS-SVNS al-
gorithm (Lescauskiene et al., 2020) to combine the fitness results of the criteria
functions. Previous applications of the algorithm mainly involved single iterations
(Lesciauskiene et al., 2020; Morkunaite et al., 2019; Bausys et al., 2020b; Bausys
and Kazakeviciute-Januskeviciene, 2021). However, this research focuses on an
iterative approach using WASPAS-SVNS, which requires adjustments to make it
compatible with the genetic algorithm. The section outlines the primary steps of
the final evaluation and describes how research integrated it with our procedural
generator:
1. The criteria evaluation data is consolidated into a matrix X, where one
dimension represents the chromosome index, and the other dimension
represents the criteria index. Each element x;; represents a game scene:
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2.

o

X11 X120 Xin
X21 X2 v Xop

X = : : .. : (2.6)
Xm1i Xm2 *° Xmn

In the original algorithm, data normalisation is performed within the
WASPAS-SVNS algorithm. However, for the iterative process, this ap-
proach is not suitable because the local min-max and global min-max val-
ues differ. As a result, it becomes necessary to establish boundaries before
this normalisation step (Padhye and Deb, 2011). Instead, normalisation is
carried out in the criteria functions to ensure that the data falls within the
range of 0 to 1:
v
X — 2.7)
v represents the current criteria value and v,,,, is the highest possible
value for that criterion for the selected matrix size. X;;is a normalised in-
dex ij criteria value of matrix X;
Neutrosophication. In this phase, research transforms the outcomes ob-
tained from the normalised criteria functions into neutrosophic sets. A
neutrosophic set comprises three values: truth (t), intermediary (i), and
falsehood (f). To achieve this, research associates the criteria results with
neutrosophic numbers through a linear conversion. Research does this to
avoid any significant non-proportional shifts that could lead to substantial
errors during the evolutionary process. In this context, “N” represents a
neutrosophic number, and “S” denotes a scalar number:
S
N(t,i,f) = {1-S5. (2.8)
1-S

The sum of the overall relative importance of the alternative (represented
by a single evolutionary iteration chromosome);
The cumulative relative importance of the alternative product;
A combined and comprehensive criterion for ranking alternatives, incor-
porating both step 4 and step 5:

Q; =050 + 050 . (2.9)

Neutrosophic numbers (truth, intermediacy, and falsehood) are trans-
formed into scalar numbers using this formula and subsequently utilised
for chromosome evaluation in the genetic algorithm:

34t — 20— f;

s(Q) = 2 . (2.10)
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2.3.1. Genetic weighted aggregated sum product assessment
game scene generator

The foundation of the proposed algorithm is the WASPAS-SVNS game scene
layout generator. The original algorithm utilises seven types of game objects as
fundamental elements for creating layouts. These objects include the player, exit,
empty space, wall, hazard, collectable, and ground, each serving a distinct game
function. The initial criteria for the fitness function include symmetry, balance of
empty spaces, distance between objects, the presence of a safe zone, the existence
of the player and exit, and the presence of a path connecting the player and exit.
In this approach, research enhances the existing objects by introducing more vis-
ual variety and implementing an additional layer of post-processing algorithm on
the generated level.

The underlying algorithm begins by initialising a random population of gen-
erated level layouts and subsequently launches an evolutionary algorithm. In each
evolutionary cycle and for each chromosome, the WASPAS-SVNS iteration is
repeated. Individual criteria are computed, starting with the constraining ones that
adhere to game design rules and then incorporating the criteria that should be
maximised, related to aesthetic rules. Following this, the algorithm identifies the
top performers and underperformers within the population. The best chromo-
somes are further evolved. The ultimate phase of the algorithm involves the level
layout map decoder and visualiser (Petrovas and Bausys, 2022). Research en-
hances the decoder component by introducing regionally morphing visual objects.

2.4. Combined compromise solution method

The general CoCoSo method operates through the following steps. The alterna-
tives in this context represent the population of the genetic algorithm, and each
chromosome criterion aligns with the criterion of the CoCoSo method.

1. The criteria evaluation data is consolidated into a matrix X, where one
dimension represents the chromosome index, and the other represents the
criteria index. Each element x;; represents a game scene. The initial deci-
sion-making matrix is determined as follows, where | =1,2 ..., m; j = 1,2,

N
X11 X132 X1
X21 X220 Xop
Xij = : : . N (2.11)
Xm1 Xm2 " Xmn

2. The normalisation of the criteria values for the benefit and cost criterion:
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Xij - min x;j
_ i
rU - maxxij—minxij’ (212)
i i
maxxjj
i Xij
rij - max x;j—minx;; ’ (213)

i i

3. Next, the research calculates an alternative sum of the weighted compa-
rability and the amount of the power weight of the comparability se-
quences:

R;

z(wjri i) (2.14)
j=1

P = Z(rij)wj- (2.15)
=

4. Three appraisal score strategies are used to generate relative weights. kia
expresses the arithmetic mean of the sums of the WSM and WPM scores:

R, +P;

ﬁl(Ri + Pi) '
kin expresses the sum of the relative scores of WSM and WPM compared
to the best:

kio = (2.16)

R; P;
min R; + min P;’

i i
and kic releases the balanced compromise of the WSM and WPM model
scores:

kip = (2.17)

AR+ A=)
I ™ ( AmaxR;+(1-\)maxP;\ "
(™ )

(2.18)

A is a constant that is manually selected, should be between 0 and 1, and
defines the weight between R and P. The research defines A as 0.5 to have
a neutral impact on both components.

5. Finally, the ranking of alternatives is determined:
11
ki = (kigkipkic)3 + §(kia +kip + kic) (2.19)
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2.4.1. Neutrosophic genetically combined compromise
solution procedural game scene generator

CoCoSo is employed to compute the ultimate fitness score for each chromosome
in a genetic algorithm generation. The criteria associated with each chromosome
(Fig. 2.16) are utilised to form the decision matrix.

InitializeRandomPopulation:
DoFullEvolution:
for amountOfEvolutionCycles
CalculateAllCriteria
FindUnderperformersAndPerformers:
for populationSize
calculateFitness:
CoCoSo method
end for
EvolveUnderperformersWithGeneticAlgorithm
DrawGrid(best fitness)

Fig. 2.16. CoCoSo method integration

The central component of the procedural generator is a genetic algorithm. The
original MCDM alternative(i) and criteria(j) matrix are converted into a three-
dimensional grid. In the MCDM algorithm, the alternatives correspond to the pop-
ulation and chromosomes(i) in the genetic algorithm, while the third dimension
introduces generations(j) in the time layer (Fig. 2.17).

3 Population
"\‘T", \*’: — ~m— ~—. ~—
Xij =

)

NIX
HINX.

Alternatives

3

)

!
a 3
| 3
| .

|
M
Criteria \

Fig. 2.17. Grid transformation

L Generations
Criteria

After a fixed number of generations, the algorithm generates the layouts for
the game levels. It starts by initialising random-level layouts and then evolves
them through the genetic algorithm. Criteria scores are computed and normalised
to fit within the range of 0.1 to 0.9. The research avoids getting too close to 0 or
1 to ensure a more reliable outcome for the MCDM algorithm. The set of criteria
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comprises seven factors. The first part consists of validation criteria, which verify
the existence of the player, exit, and an available path between them. The second
part includes optimisable criteria, namely symmetry, empty space balance, player-
exit distance, and safe zone calculation. Subsequently, research calculates the fi-
nal fitness score using the CoCoSo method and applies genetic operators to the
population. For each generation, the fitness calculation process is repeated.

The research utilises linear conversion from crisp to neutrosophic humbers to
prevent non-linear differences from accumulating over subsequent generations:

t=2¢C
N=4{i=1-C, (2.20)
f=1-¢C
The outcome may become biased since the modification could exceed the evolved
difference within a single generation.

The normalisation process is adjusted to utilise the smallest criterion values
across all generations rather than relying solely on values generated within a sin-
gle generation. To achieve this, research manually normalises each criterion be-
forehand to fit within the 0-1 range. The approach is necessary because future
generation values cannot be predicted, and it ensures that normalisation is consist-
ently applied globally for each generation:

0 <Xy < 1. (2.21)

There is an option to avoid general normalisation by normalising each crite-
rion independently. This enhancement also enables the bypass of the need to store
separate data sets of neutrosophic sets in memory. Instead, research incrementally
adds and multiplies them to generate the Ri and Pi values without having to store
individual elements for each one:

nl
R; = Z(W;(Ni,-), (2.22)
j=1
nl
p = Z(NU)W", (2.23)
=1

where | is the number of generations for the genetic algorithm, and n is the popu-
lation size. Values rij are replaced by the values Nj; of the neutrosophic sets.

This improvement also permits us to derive an approximate constant “A” for
the divisor in the kia formula, eliminating the need to compute a sum for each
chromosome in the generation. As a result, the performance of the iterative algo-
rithm is significantly enhanced without any noticeable compromise in quality.

nl
i=1Xi

A= nl

) (2.24)
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d=nA, (2.25)
_ S(Ryp) + S(Pix)
ia = d . (2.26)

It uses global min (r1, r2) and max (p1, p2) values of Ri and P;, which are
calculated before revealing future values based on the normalisation of the criteria
formula:

r = (R, (2.27)
= (P, (2.28)
P1 = Teni(Ri), (2.29)
P2 = eni(PD), (2.30)

so it would be consistent in interactions between generations:
_ S(Ry) 4 S(Pix)

ki = (2.31)
Tl rz
_ AS(Ry) + (1 =S (Py.)
e = Ap; + (1 —Vp, (232)

Finally, research uses the original k; formula to calculate the final fitness for
a single chromosome.

2.5. Modelling of Gestalt principles for the fitness
function

The computational creativity framework comprises two steps: developing a math-
ematical model and applying a numerical algorithm. The primary focus in devel-
oping the mathematical model is to find a way to algorithmically incorporate ab-
stract visual aesthetic evaluations to automatically evolve functional game levels.
A specific set of Gestalt principles is selected to guide this process. However,
using too many rules in a confined area can lead to an overcrowded and less dis-
tinguishable result. Hence, the chosen principles are those that exhibit the highest
visibility and coherence within the context of the tools environment. Five Gestalt
principles — Similarity, Proximity, Continuity, Focal Points, and Common Re-
gion — are integrated into the model as fitness criteria functions. These principles
are applied to a rectangular matrix of symmetric game objects using focal func-
tions. Certain Gestalt principles are omitted from the model due to their complex-
ity and the requirement for more intricate object systems and assignable traits for
individual objects. Closure and Figure Ground criteria are skipped as they demand
identifiable structures, which can be disrupted by other criteria. The Closure cri-
terion relies on unfinished identifiable structures, which cannot be identified if



38 2. GENETIC MULTI-CRITERIA DECISION-MAKING METHODS AND CRITERIA ...

these structures are absent. The Figure Ground principle requires the separation
of foreground and background objects or the identification of larger wholes, which
may not be feasible with the abstract patterns generated by the algorithm. Another
criterion, Common Fate, necessitates objects with direction vectors, but the ob-
jects considered in this research are symmetrical and lack such directional prop-
erties. Five compatible Gestalt principles are implemented with the core genera-
tion algorithm and object structure to guide the automatic evolution of functional
game levels.

The mathematical model for each criterion involves iterating over the entire
grid, excluding the bounding rows and columns. Each criterion is represented as
a global function using raster algebra. This procedure is applied to all five Gestalt
principles. For each cell, research constructs a focal function with a square zone
(Fig. 2.18).

Fig. 2.18. Cell vision grid

The matrix cell values represent various situations: 0 denotes the player’s
starting spot, 1 indicates the exit that the player needs to reach to finish the level,
2 represents empty space, 3 stands for walls that block the player’s movement, 4
symbolises enemies or hazardous zones to avoid, and 5 signifies collectable zones
that are beneficial for the player to step into. The centre cell in the neighbourhood
is marked as “A”, while the surrounding cells are marked as “B”. The indexes “i”
and “j” indicate the location of the cell in the game’s scene matrix. The general
criteria normalisation formula is the same for all modelled Gestalt criteria and can
be expressed as a formula:

tm
THEN *Ny,

The research aims to ensure that the final value for each criterion remains
within the range of 0 to 1 without approaching the edges of the range. Research
stabilises the neutrosophic algebra by multiplying the value by 0.9.

The members of the formula are defined as follows: “s” represents the single-
criteria fitness score, “r” denotes the relevant neighbours (r = 8 for all criteria,

S = 0.9 (2.33)
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except the continuity criterion, where it is r = 1 due to a specific condition that
requires exactly two identical neighbours). “nx” and “ny” determine the size of
the matrix grid, “t” represents the total relevance of the criteria before normalisa-
tion, and “m” represents the index of the criterion from the Gestalt criteria list.
The mathematical models for each of the considered Gestalt principles are pre-
sented below:

When the object types in the neighbourhood of a cell are the same, the simi-
larity score for that particular cell is increased. Once the iteration over all cells is
finished, the number of similar object pairs is divided by the total number of pos-
sible pairs (the product of the total matrix cells and eight). This criterion aims to
identify clusters or chunks of similar object areas, as depicted below (Fig. 2.19).

B=A
. | A

Fig. 2.19. Similarity evaluation for a single cell

ng-1ny-1 g

_ L By=4y
b= Z Z Z{O, otherwise’ (234)
=2 j=2 k=1
The proximity criterion shares a similar algorithmic basis with the similarity
criterion, but in this case, one of the pair members can also be identified as an
empty space for the score value to increase (Fig. 2.20). This criterion is designed
to detect islands or clusters of similar objects in the area.

B=AV2

Fig. 2.20. Proximity evaluation for a single cell
(number 2 identifies empty space)
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CEE (1 By =42
_ ’ ijk — 4ij
2= Z Z Z{ 0, otherwise (2:35)
i=2 j=2 k=1
The continuity criterion involves two score values for each level of the cycle.
The calculation of the total continuity score follows a similar approach as the total
score value in other criteria. Focal continuity increases only if the cell, along with
its surrounding cells, meets the continuity requirement. For each cell, it is com-
pared to the adjacent horizontal and vertical cells. Corner cells are excluded from
consideration because, in a smaller grid matrix consisting of squares, diagonal
continuity might be less apparent as they only touch at a single point, potentially
breaking the illusion of continuity (Fig. 2.21).

B=A
A}

Fig. 2.21. Continuity evaluation for a single cell. Exactly two out of four
neighbouring cells must satisfy the B=A criteria

Each cell verifies the presence of exactly two touching similar object types.
If there are more or fewer similar touching objects, the cell is not considered con-
tinuous (Fig. 2.22).

! :
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Fig. 2.22. Possible Continuity connections. The lines in the centre cell show
which B=A patterns increase continuity



2. GENETIC MULTI-CRITERIA DECISION-MAKING METHODS AND CRITERIA ... 41

ny—1ny-1
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e L
=2 0, otherwise

The Focal Point criterion determines the overall extent of the focal point ef-
fect. This is accomplished by examining how much each cell is surrounded by the
continuity of a different object (where B#A). The algorithm assesses each object
and calculates the number of its repetitions in the surrounding eight cells. The
highest number of repetitions is then used as the score for the cell. This algorithm
seeks to identify recognisable points or focal points within the game-level pattern

(Fig. 2.23).
B

+ | A

Fig. 2.23. Focal point evaluation for a single cell. B£A
Ny—1Nny—1

t, = Z Z maxZ{ 1 (Bl.jlk :'tAl.]) A (Bl]lk - Bl]l) (2 37)
4 otherwise '

P

¢ defines the number of possible object types.

The last implemented criterion is Common Region, which operates algorith-
mically in a similar manner as Proximity, but it searches for boundaries defined
by walls instead of empty space (Fig. 2.24). This criterion aims to identify
bounded groups or clusters of similar objects within the area.

B=AV3

Fig. 2.24. Common region evaluation for a single cell (humber 3 identifies walls)
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Research can achieve aesthetically pleasing game scene designs by employ-
ing the proposed mathematical model based on Gestalt principles. In implement-
ing the computational creative genetic algorithm, research integrates these aes-
thetic criteria of Gestalt principles into the fitness function. This is done using the
Pythagorean neutrosophic WASPAS extension to evaluate the game scenes. The
calculated scores are then used to evolve the game scenes through a genetic algo-
rithm.

2.5.1. Game scene generation incorporating Gestalt principles

The game scene generation uses the proposed genetic Pythagorean neutrosophic
WASPAS approach. The mathematical model consists of multiple criteria catego-
rised into three types. The first group comprises aesthetic criteria consisting of
high-level criteria governed by Gestalt rule derivatives (s) and low-level criteria
(v), such as symmetry and empty space balance. The second group includes func-
tional criteria (f), which optimise the evaluations of the game design, such as the
distance between key objects and the safe zones around them. The last group com-
prises constraint criteria (c), which must always hold for the fitness to be non-
zero. These constraint criteria involve criteria related to the existence of essential
elements and the availability of a feasible path between the player and the exit.

When dealing with multiple criteria, developing a strategy for combining
them into a single fitness value becomes essential. Key considerations include
determining appropriate weights and choosing the appropriate algebraic method
to combine the different criteria. This process is an integral part of fitness function
modelling. While most literature examples focus on defining individual criteria,
there is untapped potential for improving algorithm effectiveness by exploring the
combination of criteria. The proposed modelling approach based on Gestalt prin-
ciples is integrated into the genetic algorithm. The fitness function incorporates
all the criteria from the mathematical model, employing Multiple Criteria Deci-
sion Making (MCDM) methods. These methods enable the effective use of nu-
merous criteria for fitness evaluation. To evaluate the generated game level, the
criteria and alternative matrix are assembled:

Su Sz Sim

521 522 SZn .

X = (2.39)

Smi Smz Smn
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Each alternative column Sj is generated using a genetic algorithm and represents
a chromosome in the genetically generated population. The complete set of Si for
each alternative encompasses 12 criteria (Table 2.2). In the evaluation process,
most criteria are normalised to fit within the range of 0 to 1, while constraint eval-
uations are binary. If the chromosome does not meet the required criteria, the final
result for that chromosome is multiplied by 0.

Table 2.2. Full criteria list

Criteria Type Value Range
S'm”?;'atz (51), Aesthetic value (focal function) 0-1
Promm:})(/ (s2), Aesthetic value (focal function) 0-1
Cont":#;;y (s3), Aesthetic value (focal function) 0-1
Focal rI:](;l)r:t (54), Aesthetic value (focal function) 0-1

CommonmRae;glon (5). Aesthetic value (focal function) 0-1
Symmrsgr))(/ (1), Aesthetic value (global function) 0-1
Empty space balance
(v,), Aesthetic value (global function) 0-1
max

Player-exit distance More area of the game scene is explored by

(fl)l 0'1
max the player
Safe space (f), Key areas do not have hazardous objects 0-1
max nearby
Player exists (c,) The level is playable Oorl
Boolean
Exit exists (c;) .
Boolean The level is playable Oorl
Player-exit path exists
(c3) The level is playable Oorl
Boolean

Each criterion value is transformed into a Pythagorean neutrosophic set,
which exhibits better correlation compared to a single-valued neutrosophic set
(Radha et al., 2021). A Pythagorean Neutrosophic Set combines the concepts of
Pythagorean fuzzy sets and neutrosophic sets. Pythagorean fuzzy sets generalise
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fuzzy sets and assign three values to each element: membership degree, nonmem-
bership degree, and hesitancy degree. On the other hand, neutrosophic sets gener-
alise fuzzy sets to handle uncertain, indeterminate, and inconsistent information.
In a Pythagorean neutrosophic set, each element is assigned three values: truth-
membership degree, indeterminacy degree, and falsity-membership degree. These
values represent the degrees of truth, indeterminacy, and falsity of the element,
respectively. The truth-membership degree and falsity-membership degree always
sum up to one, while the indeterminacy degree can take any value between 0 and
1. Pythagorean neutrosophic sets have found applications in decision-making
problems involving uncertain and inconsistent information, demonstrating prom-
ising results in handling such situations (Bausys et al., 2022). The addition of neu-
trosophic sets to the algorithm increases the nondeterminism of the criteria eval-
uation. They enable the expression of information about neutrality and generalise
fuzzy and intuitionistic fuzzy sets (Smarandache, 1999).

An entity represented as A, which is a Neutrosophic Pythagorean set on the
universe R, comprises interdependent Neutrosophic Pythagorean components T
and F, along with an independent component U:

A={<x,T,yUyF,>1€ER)}, (2.40)
(T + (F)? <1, (2.41)
(T2 + (UY?+ (F? < 2. (2.41)

Here, Ta(x) is the truth membership, Ua(x) is the indeterminacy membership, and
Fa(x) is the false membership.

Next, the neutrosophic sets are integrated using a multi-criteria weighted
aggregated sum product assessment method (WASPAS) (Petrovas and Bausys,
2022). This approach leads to the calculation of a joint generalised criterion:

0, = (0.5 - ZTU ‘W) © (05 nru o). (2.42)
j=1 j=1

Q is a combined neutrosophic number for one genetically generated alternative. n
is the number of criteria; X is a single-criterion fitness score expressed in a neu-
trosophic number, and w is a single-criterion weight. The Pythagorean neutro-
sophic number is converted to a crisp number by the score function:
3+ 382 — 292 —p?
S5(Q) = 6 .
&,3,n are intermediacy, truth, and falsity members of a neutrosophic number. The
final WASPAS result is then used as an evaluation score. The algebraic operations
are as follows:

1
T1 @D T = ((1 - (1 - 512)(1 - '522))21 191192' 711712>'

(2.43)
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L ® 15 = (616 (1— (1 - 02)(1 —92))2, (1 — (1 — 12)(1 — n2))2),
Aot = (1= (1— EYN2, 040D,

1 1
207 = ¢, A~ 1-99HH2, A~ 1 -n)HH?2).
The triplet z = {& 3,1} is called a Pythagorean neutrosophic number, and A is
a real number.

Calculate
fitness value Draw grid for
(Pythagorean the best
Neutrosophic chromosome
WASPAS)

Evaluate
individual
criteria: base
and Gestalt

Use genetic
operators on
the population

Initialize random
population

Fig. 2.25. Game scene generation by Gestalt criteria (made by the author)

Each execution of this algorithm typically results in a different pattern of
game object composition due to the various possible fitness points that can be
converged upon. This variability leads to creativity through diversity. Addition-
ally, the initial values influence the convergence points, as the answers depend on
the relative object positions determined by focal functions. The game scene’s in-
itial layouts are initialised with random values and then evolved using a genetic
algorithm (Fig. 2.25). The initial population for the genetic algorithm comprises
a set of randomly generated game scene levels. Genetic operators, such as selec-
tion or mutation, are employed to remove poorly performing levels and generate
new ones. The scoring for each population member is determined by the MCDM
algorithm using game design criteria. This research proposes novel evaluation cri-
teria based on Gestalt principles for aesthetic pattern evolution, resulting in dis-
tinct game object layout patterns. The genetic algorithm loop is repeated for a
fixed number of iterations (usually 500, and it rarely goes beyond 2000 with a
10x10 game scene resolution). The functional criteria and restrictions used in the
study were reused from previous research.
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2.6. Regional object transformation

The proposed algorithm introduces modifications to the “Draw” and “Decode”
components of the original algorithm and incorporates a regional morpher. It
iterates over the matrix of generated objects and assigns objects to spawn in
the game scene. Additionally, each chromosome is assigned a random corner
point in the matrix, from which changes radiate towards other areas of the level
(Fig. 2.26).

void DrawGrid(int populationindex, int offset)

GameObject objectToSpawn

v

intx=0

DrawFloor(offset)

True False

objectToSpawn = DecodeGameObject(objectGridData[populationindex, x, y]) X++

v

Instantiate(objectToSpawn, new Vector3(x + offset, 0, y), Quaternion.identity)

/

Fig. 2.26. Iteration over the game objects grid

y++
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In the subsequent modified part of the algorithm, a game object is chosen
from the grid, and a model is assigned to it based on the chromosome number
associated with each cell of the grid. Instead of visual object selection, an object
morph algorithm is utilised. In this experiment, the algorithm is tested using empty
space and wall objects (Fig. 2.27). Each identification number corresponds to a
specific object type. Arrays of objects in the visual array can be adjusted, and three
objects are used for each game object type during testing. Additionally, research
varied the resolution of the object grid to observe its impact on the outcome.

objectToSpawn = player

objectToSpawn = exit

objectToSpawn = empty

objectToSpawn

objectToSpawn = wall

objectToSpawn = enemy

objectToSpawn = collectible

Fig. 2.27. The inclusion of object morphed into a decoder

The morphing algorithm picks a visual object from the pool of available ob-
jects and determines its relative position concerning the chosen corner point. This
relative position is then multiplied by a pair of random numbers, one ranging from
0 to 1 and the other from 0.5 to 1, to introduce additional variability. For the neg-
ative axis sides of the grid, multipliers between 0 to 1 and 1 to 1.5 are used
(Fig. 2.28).
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int objectType = Random.Range(0, 2)

X < gridSizeX Random.Range{D.gﬁ 1.0f) Random.Range(0.5f, 1.0f) &&
y < gridSizeY Random.Range(0.0f, 1.0f) Random.Range(0.5f, 1.0f)

objectType == 0

Fig. 2.28. Visual object selection and noise function

The equation to decide if the object should morph consists of two lines for
each axis, which compares object coordinates with the grid length of one axis (AX,
Ay), random number ® and noise (N1). There are four checks with each possible
comparison (x1>x2, y1>y2; x1<x2, yl<y2, x1>x2, y1<y2, x1>x2, y1<y2? (x1,yl —
object coordinates; x2, y2 — randomness element)):

{Ax*R*N1

Ay«R+N.- (2.44)

By using this approach, research can maintain the integrity of all the original
algorithm rules while enhancing the visual diversity aspect. The same algorithm
is applied to each type of object, allowing us to expand the variety of visual rep-
resentations without compromising the underlying rules of the algorithm. The new
levels generated with the addition of this algorithm have increased variety due to
alternative visual models for the same functional objects.
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2.6. Conclusions of the Second Chapter

1.

The evaluation phase employs a modified WASPAS-SVNS algorithm,
adapting it for iterative use within the genetic algorithm-based frame-
work. The work introduces an iterative approach to enhance compatibil-
ity. By consolidating and normalising criteria evaluation data, followed
by the transformation into neutrosophic sets, the research establishes a
comprehensive method for assessing fitness across various dimensions.
This innovative process empowers the genetic algorithm to effectively
evaluate and evolve alternative solutions, culminating in the generation
of dynamic and engaging game scenes that align with predefined design
criteria.

The CoCoSo method presents a structured approach to compute fitness
scores within the genetic algorithm-based procedural game scene gener-
ator. By transforming the MCDM alternatives and criteria into a three-
dimensional grid, research establishes a dynamic framework for evolving
game-level layouts. Through the iterative application of these tech-
nigues, research achieves a refined and efficient generation process, re-
sulting in high-quality game scenes that adhere to defined design criteria.
This synergistic fusion of MCDM and genetic algorithms showcases the
potential for computational creativity in video game design.

The model’s core objective is to algorithmically integrate abstract visual
aesthetics into the evolution of functional game levels. Guided by select
Gestalt principles, this process emphasises visibility and coherence. Five
Gestalt principles are embedded as fitness criteria functions in a matrix
of symmetric game objects. A mathematical model spanning various cri-
teria is devised using raster algebra. Neutrosophic algebra stabilises the
model, ensuring criterion values within a specific range. The process cul-
minates in a genetic algorithm that generates game scenes, reflecting di-
verse aesthetic patterns and layouts.

The proposed algorithm introduces substantial enhancements incorporat-
ing a regional morpher for greater visual diversity. The process involves
matrix iteration for spawning game objects, with each chromosome as-
signed a corner point radiating changes across the level. A novel object
morphing algorithm replaces visual selection, varying object types using
multipliers and random numbers. The algorithm ensures the preservation
of original rules while significantly expanding the visual variety applica-
ble across different object types. This approach offers a promising ave-
nue for achieving aesthetic and functional complexity in-game scene
generation.






Experimentation and Results of the
Proposed Procedural Generation
Methods

This chapter presents an investigation and experimentation of the proposed ge-
netic neutrosophic MCDM methods with Gestalt criteria-modelled cellular au-
tomata agents introduced in the second chapter of this dissertation. Novel proce-
dural generation strategies were developed to address creativity problems:
Incorporation of high-level aesthetic concepts into precise mathematical algo-
rithms, scene object pattern diversity and uniqueness, and combination of con-
flicting aesthetic and functional criteria without breaking the final coherence of a
game scene. The research results obtained by assessing the proposed procedural
generation strategies are discussed in detail.

The main research results of this chapter were published in four author’s sci-
entific publications (Petrovas and Bausys, 2022; Petrovas, Bausys, Zavadskas and
Smarandache, 2022; Petrovas, Bausys and Zavadskas, 2023; Petrovas and Bausys,
2022), and findings of the research were presented at one international conference
(International Conference on Electrical, Computer and Energy Technologies
(ICECET), Prague, Czech Republic, 2022).

51
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3.1. Procedural video game scene generation by
genetic and neutrosophic multi-criteria
decision-making algorithms

This research developed a framework from scratch using the Unity game engine
and obtained visual game object assets from the Unity Asset Store. The results
were generated using a custom C# script. The tests were conducted on a computer
equipped with a 2.4 GHz 8-Core Intel Core i9 CPU. The procedural generator
with neutrosophic evaluation quickly generates rising scores for the first 100-200
generations under the current conditions compared to the summation of individual
criteria fitness scores. However, the generator often requires more time to create
symmetrical and visually balanced scene layouts while ensuring that game rules
are applied. The final fitness score typically settles around 0.75-0.85. Having
many local maxima for the game scene generation is crucial, as it ensures that the
results are unique and diverse from one another. Numerous possible solutions ex-
ist based on the random initial seed and mutations. Examples of fitness scores
with different seeds of random initial data and 500 generations are presented in
Figure 3.1. The choice of the number of generations was determined based on the
point at which the algorithm iterations become stagnant, resulting in either no up-
dates or only negligible updates to the results.

0.90

0.80 : —_—
0.70 e
0.60
0.50
0.40
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0.20
0.10

0.00
0 0.5 1 15 2 25 3 3.5 4

Time (s)

Fitness

Fig. 3.1. Fitness evolution examples, each curve represents a separate
execution of the algorithm
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Please note that achieving a fitness close to 1 is not possible since the criteria often
conflict with each other. Fitness scores typically start to converge after approxi-
mately 500 to 2000 generations. The average time taken to calculate one 10x10
grid level with 2000 generations is around 21 seconds. The initial population of
50 is relatively low compared to the total number of possible scene layouts
(77100), and mutations are set to 5%. The choice of a lower population size aims
to produce a broader range of possible solutions. There is a linear dependency of
execution time and population size (a population of size 50 executes around 3.5
seconds, and a population size of 100 executes around 7 seconds). The objective
is not to optimise the algorithm for a single solution but to generate a diverse set
of level layouts that satisfy both creativity and game design criteria.

Visual results demonstrate the generation of aesthetically appealing game
scenes with elements of symmetry and space balance. Examples include room-
like shapes without specific code defining what constitutes a room (Fig. 3.2). As
symmetry conflicts with other criteria and lacks a strict definition, semi-symmet-
ric shapes are also observed (Fig. 3.3). Additionally, the generator can create
scenes with a smaller room containing numerous coins or rewards (Fig. 3.4) and
game scenes without many walls (Fig. 3.5). These four examples do not use Ge-
stalt principles yet. The generator showcases the ability to produce a diverse array
of aesthetic shapes in the game scenes.

Fig. 3.2. Room-like generated scene
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Fig. 3.4. Small room inside the scene
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Fig. 3.5. Game scene with almost no walls

An illustration of intermediate evolution results (Fig. 3.6). The grid is dis-
played every 100 generations. It shows a chaotic layout and rapid progression in
the initial stages, followed by fine-tuning and refinement in the later generations.

Fig. 3.6. Intermediate evolution results (left to right)

Upon closer examination, the implementation of the aesthetic criterion can
be observed in the visual examples (Fig. 3.7), showcasing symmetry and balance
in the empty space. Simultaneously, the game design requirements, such as path-
finding, are effectively realised.

Fig. 3.7. Symmetry and empty space balance
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Each result represents a distinct local maximum among numerous possi-
ble outcomes. The algorithm’s randomness and the vast number of potential
solutions make it highly unlikely to generate an identical game level. An al-
ternative approach could involve creating a basic initial room and allowing the
algorithm to fine-tune it to meet aesthetic and playability criteria. The optimal
solution for this task is achieving complete satisfaction with the proposed cri-
terion under a given random initial seed. Compared to other similar research
in the field, the proposed framework generates more visually noticeable aes-
thetic traits on small object resolutions while maintaining an above-average
object pool. This procedural generation approach has the potential to expedite
and simplify creative work.

The main problem addressed by the proposed method is how to increase
the number of unique and non-repetitive game levels with multiple runs of the
same algorithm. The results presented in the study show that the generated
levels exhibit interesting game scene layouts that differ with each run. The
algorithm can create both aesthetic and functional level layouts simultane-
ously. Furthermore, developers have the flexibility to interchange visual rep-
resentations of game assets. The WASPAS-SVNS algorithm facilitates the
evaluation of conflicting criteria, enabling a comprehensive assessment of
game-level quality. The proposed approach breaks down design principles into
primary elements and defines them using the criteria list. The algorithm begins
with a random shape and then sculpts a functional and aesthetic game level
around that shape. The random nature of the genetic algorithm ensures surprise
elements in the levels. Finding a balance between the weights of different cri-
teria and the number of criteria defining a specific objective is crucial to gen-
erating a coherent final level. An excessive or insufficient number of features
may dull some of the game design elements. Creativity assistance algorithms
have the potential to save time for game designers and developers, although
currently, most commercial games utilise only light game design assistance
tools, such as procedurally generated or handcrafted levels. The proposed
work can be expanded by combining it with an algorithm that breaks down
design elements from handcrafted game levels and utilises them as a basis for
the criteria list. This could further enhance the creative possibilities and effi-
ciency of the procedural generation process.
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3.2. Generation of creative game scene patterns by
the neutrosophic genetic combined compromise
solution method

The algorithm was built upon the original WASPAS procedural scene generator
by Petrovas and Bausys (2022). The computations were performed on an 8-core
CPU with a speed of 2.4 GHz. The fitness scores start stabilising and converging
after approximately 80-120 generations, displaying quicker convergence com-
pared to the WASPAS implementation. However, direct comparison of fitness
scores is not feasible as the CoCoSo method produces values outside the 0-1
range. In our demo, the fitness values typically range between 4 and 8, exhibiting
a tighter relative value range. A comparison of the fitness curves over time be-
tween the CoCoSo and WASPAS methods is depicted in (Fig. 3.8).
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Fig. 3.8. Fitness curve comparison between WASPAS and CoCoSo methods

The execution of 2000 generations typically takes approximately 23 seconds.
However, it is usually sufficient to have satisfying results with the CoCoSo
method after around 350 generations, allowing for potential time savings with
fewer generations. If the number of objects is increased, calculation time increases
exponentially. Visual results generated by the algorithm were generated (Figs. 3.9,
3.10, 3.11, and 3.12). It is evident that the generated game scene-level layouts
successfully fulfil both aesthetic and functional criteria. Moreover, the patterns
for these two simultaneous results differ from each other.
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Fig. 3.11. CoCoSo generated example 3
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Fig. 3.12. CoCoSo generated example 4

The proposed algorithm can generate intriguing patterns faster than the orig-
inal algorithm. However, this comes at the expense of approximately 10% in-
creased calculation time for the same number of generations and population. No-
tably, even in the initial stages of the algorithm with a lower generation count, the
desired patterns begin to take shape, as depicted in Fig. 3.13. This algorithm also
allows dynamic layout regeneration. If a part of the level is removed, further gen-
erations will regenerate the removed part and adapt to the new environment.

Fig. 3.13. CoCoSo pattern progression over generations

By integrating the CoCoSo method into the genetic procedural scene layout
generator, research has extended the algorithm’s capabilities. The CoCoSo
method yields satisfying results with fewer generations and considers various as-
pects of the problem more comprehensively than the WASPAS method. The in-
corporation of neutrosophic sets enables the effective handling of uncertain infor-
mation by modelling truth, indeterminacy, and false membership functions. This
implementation of neutrosophic sets within the CoCoSo approach enhances the
diversity of generated levels. Within the framework of the genetic algorithm, the
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proposed neutrosophic CoCoSo method outperforms the original CoCoSo ap-
proach. Specifically, research improves the method by setting similar divisor val-
ues to constant values. The conversions between crisp and neutrosophic numbers
have been updated to align with iterative evolution. Additionally, the normalisa-
tion procedures have been adjusted to consider global minimum and maximum
values, adapting them to the set of generations where values depend on previous
generations. The generated patterns meet the replayability principle, satisfying
aesthetic and functional criteria. This indicates that the proposed approach creates
game levels that are visually appealing, engaging, and enjoyable for players to
explore repeatedly.

3.3. Regionally morphing objects for the genetic
game scene generation algorithm

The algorithm generates visual results that introduce diversity to the final layout
of the game scene by incorporating natural randomness into the visual aspect of
the level. Some iterations produce regional grassy fields, while others generate
aligned trees that serve as impassable walls without affecting the physical-level
boundaries and functionality. Several examples of the final results include a
grassy region in the corner with trees (Fig. 3.14), an example with increased res-
olution (Fig. 3.15), clustered trees (Fig. 3.16), and rocks instead of trees
(Fig. 3.17).

Fig. 3.14. Regional morph results

Increasing the algorithm’s grid size significantly increases the time required
to generate a game scene. The additional visual object types need to be logically
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aligned with their purpose for the algorithm to place them effectively. The final
algorithm takes around 6.3 seconds over 800 epochs to generate a level on a
2.4 GHz 8-Core Intel Core i9 CPU. It achieves a fitness value of approximately
0.7 after 100 epochs and reaches around 0.85 after 800 epochs. It should be noted
that the algorithm cannot approach a fitness value close to 1 due to the conflicting
nature of its criteria and the aim of generating varied results.

Fig. 3.16. Clusters of objects at the side of the level
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Fig. 3.17. Wall morphs into rocks instead of trees

A creative procedural generation without pre-made content snippets is an
emerging field within Computational Creativity. The research introduced and
tested an extension for the genetic WASPAS-SVNS game scene generation algo-
rithm by incorporating regionally morphing post-processing for the game objects.
This extension enhances the visual diversity of the game-level layout and in-
creases its creative value while ensuring that game design rules remain intact.
Each algorithm iteration can produce fresh patterns for the game level, seamlessly
integrated into the overall composition. The modular nature of the original proce-
dural generation engine allows for easy integration of new extensions, further en-
hancing the overall creative value of the generated levels. Each algorithm iteration
can produce fresh patterns for the game level, seamlessly integrated into the over-
all composition. The modular nature of the original procedural generation engine
allows for easy integration of new extensions, further enhancing the overall crea-
tive value of the generated levels.

3.4. Gestalt principles governed fitness function for
genetic Pythagorean neutrosophic game scene
generation

The Gestalt principle-based fitness function was integrated into the genetic
WASPAS game scene generator. The experiments involved adding a single Ge-
stalt principle to the base fitness function and then combining all Gestalt princi-
ples. For reference and comparison, research also provided the generated level
without any Gestalt principles (Fig. 3.18).
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Fig. 3.18. Base result without integration of the Gestalt principles

The common region criteria result in-game objects being enclosed by walls,
which creates narrow rooms or corridors in the generated levels. Increasing the
weight of this criterion can significantly reduce the amount of empty space in the
layout (Fig. 3.19).

Fig. 3.19. Common region result

The focal-point criteria aim to attract the player’s attention to specific points
that stand out in the environment. In the generated levels, it can be observed that
the exit (blue flag) and a few flame assets stand out prominently in the surrounding
environment (Fig. 3.20).

Fig. 3.20. Focal point result
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The continuity criterion aims to create continuous lines of objects in the gen-
erated levels. As a result, patterns can be observed, where the building blocks are
mostly arranged in combinations of lines across the level (Fig. 3.21).

Fig. 3.21. Continuity result

The proximity criteria create isolated islands of objects in the generated lev-
els. In the visual representation, two islands consisting of walls and coins can be
observed (Fig. 3.22).

Fig. 3.22. Proximity result

The similarity criteria group similar objects together in the generated levels.
In the example, the room is split into four regions, each containing different types
of objects (Fig. 3.23).

Fig. 3.23. Similarity result
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Upon examining how each criterion is integrated into the overall level gener-
ator, all the criteria were combined to form the fitness function. The results show
the patterns of individual Gestalt rules and the variations between three iterations
of the same algorithm. The first example displays an area with balanced empty
space, fewer walls, and no hazardous objects (Fig. 3.24). In the second example,
there are more walls arranged in an “8” pattern (Fig. 3.25). The third example
forms an enclosed space with a cluster of coins in the middle and a hidden exit
(Fig. 3.26).

Fig. 3.24. Result of the combined Gestalt principles 1

Fig. 3.26. Result of the combined Gestalt principles 3
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It was observed that Gestalt principles can create discernible patterns in the
standard 10x10 matrix. A higher resolution matrix of 20x20 was tested to inves-
tigate further. While pattern formation was still evident, the high-scale presence
was not as prominent as in the lower resolution, where the application was based
on a small 3x3 matrix focal function (Fig. 3.26).

Fig. 3.26. Combined Gestalt principles result in a 20x20 matrix

At the start of the fitness evaluation, there is a rapid increase, which then
gradually slows down as the algorithm fine-tunes itself. The initial jJump in fitness
occurs within approximately 0.5 seconds. The entire evolution process takes
around 10 seconds to reach a stagnant state, and the fitness value with the pro-
posed criteria reaches around 0.7 (Fig. 3.27).

0.8
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0.2

0
0 5 10 15
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Fig. 3.27. Example evolution curves with separate iterations of the algorithm, each curve
represents a separate execution of the algorithm

The fitness cannot reach 1 due to conflicting criteria. As a result of the in-
creased number of conflicting criteria, the final fitness is lower compared to pre-
vious experiments (0.85 > 0.7). However, the use of Gestalt principles results in
a higher visual value due to the enhanced presence of visual patterns. The model
is generative, so its size is only 40 kilobytes. The algorithm has a huge potential
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for parallelisation because each criterion and each chromosome can be calculated
independently. The engine was tested on an Intel i9-9980HK 2.4 GHz CPU.

The proposed fitness function based on Gestalt principles was successfully
integrated into the genetic Pythagorean neutrosophic WASPAS game scene gen-
erator. The results show that coherent and visually appealing patterns were incor-
porated into the final generated game scenes. Compared to the originally gener-
ated levels, the aesthetic evaluation significantly improves in the final scene
generations. Modelling abstract criteria into a mathematical model can be chal-
lenging while preserving all the information from the rules. In this case, the math-
ematical models of Gestalt principles were effectively applied using automated
cell neighbourhood algorithms. Both functional and aesthetic criteria were com-
bined into the final algorithm to maintain the original game design rules while
enhancing the game scene generation process. The generated result always ad-
heres to the functional criteria due to multiple binary evaluations of these criteria.
It means that it is very unlikely to generate impassable levels. Further experimen-
tation with other aesthetic modelling methods may improve the results, but the
number of rules and the size of the generated matrix can influence the presence
and impact of each integrated rule. If there are too many rules in a small scene
matrix, it can lead to chaotic and less desirable results. A higher mutation ratio
reduces the game scene fine-tuning ratio but can have a faster initial fitness break-
through. Results were analysed with 500 engine executions.

An expert survey was conducted to obtain opinions on user interface and
user experience from game design experts from the scientific community and
the video game industry. The experts were asked to evaluate two generated
examples (Figs. 3.25 and 3.26). The first question focused on the actual visi-
bility of Gestalt principles, while the second addressed the aesthetic quality
compared to other examples in the literature. S1-S5 correspond to the visibil-
ity of Gestalt principles (Similarity, Continuity, Common Region, Proximity,
Focal Point), and Q1-Q3 correspond to the subjective creative value compared
to the closest examples in the literature (Safak et al., 2016; Zafar et al., 2020;
Thakkar et al., 2019). Some experts noted that judging abstract value is not a
suitable approach due to different generative goals and other aesthetic qualities
like colour and line shapes that cannot be quantified. One expert refused to
compare quality for this reason (Table 3.1).

Table 3.1. Quality survey

Sample | S1|S2|S3|S4|S5 Q1 Q2 Q3
3.25 + + | + + +
+ + + +
+ + Refused Refused Refused
+ + + + + + +
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End of Table 3.1

Sample S1|S2|S3|S4|Sh Q1 Q2 Q3
+ |+ | + + + +
3.26 + | + +
+ | + +
+ + | + Refused Refused Refused
+ + + + +
+ |+ + + +

The results showed that Similarity received positive feedback in 80% of the
responses, Continuity in 60%, Common Region in 50%, Proximity in 70%, and
Focal Point in 90%. Aesthetic quality was rated higher in 87.5%, 100%, and 50%
of the responses compared to other examples in the literature.

3.5. Conclusions of the Third Chapter

1.

The research focused on developing a procedural scene generation
framework using the Unity game engine and a custom C# script. The
neutrosophic evaluation approach, when applied to the generator,
showed improved efficiency in quickly generating rising scores during
the initial generations, especially compared to individual criterion fitness
scores. However, the process exhibited longer times for creating bal-
anced and symmetrical layouts that adhered to game rules. The approach
resulted in fitness scores ranging from 0.75 to 0.85. The algorithm’s gen-
eration process was diverse due to numerous local maxima driven by
random seed variation and mutations. The research demonstrated the po-
tential of combining genetic and neutrosophic algorithms to generate
unique and aesthetically pleasing game scenes while respecting game de-
sign rules.

Building on the original WASPAS generator, the research introduced the
CoCoSo method for generating creative game scene patterns. The Co-
CoSo method exhibited quicker convergence and enhanced calculation
efficiency than WASPAS. Implementing neutrosophic sets added diver-
sity to generated levels and facilitated handling uncertain information.
The CoCoSo method effectively balanced aesthetic and functional crite-
ria, creating visually appealing and engaging game scenes. The research
demonstrated that this method could expedite the creative process and
produce satisfying results in fewer generations.
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3. This research extended the genetic WASPAS-SVNS game scene gener-
ator by incorporating regionally morphing post-processing for game ob-
jects. The algorithm introduced diversity to final layouts through natural
randomness. The resulting game scenes exhibited varied elements, such
as grassy fields, trees, and rocks, contributing to enhanced visual diver-
sity without compromising game design rules. The extension demon-
strated the feasibility of integrating regionally morphing objects into pro-
cedural generation engines, facilitating creative and dynamic game-level
design.

4. The research integrated Gestalt principles into the genetic Pythagorean
neutrosophic WASPAS game scene generator, aiming to enhance the
aesthetic and visual aspects of generated levels. By applying different
Gestalt principles individually and then combining them, the study show-
cased the impact of these principles on layout patterns. The incorporation
of Gestalt principles led to improved visual aesthetics in the generated
levels. However, due to the conflicting nature of the criteria, achieving a
fitness score close to 1 was not possible. Nevertheless, the research high-
lighted the potential of using Gestalt principles to create visually appeal-
ing game scenes.

5. The expert survey showed that Similarity received positive feedback in
80% of the responses, Continuity in 60%, Common Region in 50%,
Proximity in 70%, and Focal Point in 90%. Aesthetic quality was rated
higher in 87.5%, 100%, and 50% of the responses than other examples
in the literature.






General Conclusions

1. The CoCoSo method, an enhancement to the WASPAS generator, ena-
bled quicker convergence (~80% faster initial bump in convergence) and
efficient calculation. Incorporating neutrosophic sets improved diversity
(~35% more unique artefact generation) and balanced aesthetic and func-
tional criteria. The approach accelerated creativity within a reduced num-
ber of generations.

2. The addition of regionally morphing objects diversified game-level layouts
by introducing natural randomness. Grass, trees, and rocks varied final
scenes while preserving design rules (~25% of the scenes used a number of
possible variations that were 100% times higher). This extension show-
cased the feasibility of dynamic and creative game-level design.

3. Gestalt principles were integrated into the genetic Pythagorean neutro-
sophic WASPAS game scene generator. While enhancing visual aesthet-
ics, challenges persisted due to conflicting criteria. Despite this, using Ge-
stalt principles demonstrated potential for creating visually appealing
game scenes (250% more automatic aesthetic analysis criterion). The ex-
pert survey showed that Similarity received positive feedback in 80% of
the responses, Continuity in 60%, Common Region in 50%, Proximity in
70%, and Focal Point in 90%. Aesthetic quality was rated higher in
87.5%, 100%, and 50% of the responses compared to other examples in
the literature.
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Summary in Lithuanian

Jvadas

Problemos formulavimas

Siuo metu kiirybiskumo modeliavimo populiarumas sparéiai auga, o jo taikymas plinta
jvairiose srityse. Nepaisant $io populiarumo, néra universalaus karybiskumo apibrézimo
ir apibréZimas varijuoja tarp skirtingy mokslo sri¢iy. Abstrakti karybiskumo prigimtis le-
simuliacija yra sudétinga techniné uzduotis (Colton & Wiggins, 2012; Wiggins, 2006).
Tai rodo, kad Zzmonés kiirybai naudoja gebéjimus, kurie néra lengvai suprantami ir todél
juos sunku atkartoti dirbtinio kiirybiskumo modelyje. Kiirybiskumo modeliavimo uzduo-
timi siekiama suprasti ir i$skirti klirybines savybes i§ esamy ziniy, kiiriniy ir kiiriniy ap-
linkos. Vertinga informacija apie kiiryba yra netiesiogiai uzkoduota mus supancioje ap-
linkoje, todél svarbu suvokti, kaip apibréziamas kurybiSkumas, siekiant efektyviai
generuoti dirbtines karybiskas sistemas.

Skaitmeninis kiirybiSkumas yra dirbtinio intelekto sritis, tyriné¢janti skaitmeniniy Sis-
temy, kurios geba parodyti kiarybiskumo savybes, kirima. Vienas pagrindiniy kiirybis-
kumo aspekty yra skirtingy prigim¢iy tiksly derinimas. Taikant Siuolaikinius skaitmeninio
kirybiskumo metodus daZniausiai naudojamas generatyvinis menas. Generatyvinis menas
apibrézia algoritmiskai sukurtus artefaktus, kurie rodo meninius motyvus (Boden & Ed-
monds, 2009). Sie metodai dazniausiai taikomi kuriant jvairias medijos formas. Generuoto
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turinio pavyzdziai yra garsas, muzika, vaizdai ar tekstas. Generatyvinis menas yra nau-
dinga sritis kuriant skaitmeninius zaidimy pasaulius ir projektuojant zaidimy lygius, kur
yra daznai pagalbai pasitelkiama procediiriné generacija.

Paieskos metodus taikanti procediiriné generacija vaizdo Zaidimams jtraukia sugene-
ruoty zaidimo objekty ar jy kompozicijy vertinimg pasitelkdama tikslo funkcija. Toks au-
tomatizuotas vertinimo btidas padeda nuspresti, kaip gerai sugeneruoti artefaktai yra rei-
tinguojami pagal tikslo funkcija. Todél yra labai svarbu sukurti gera tikslo funkcija, kuri
nulems, kaip gerai procediirinis generatorius atliks savo uzduotj. Pagrindinis paieskos al-
goritmy privalumas yra galimybé reguliariai surasti naujus sprendimus pagal tikslo funk-
cijos reikalavimus. Taikomi du pagrindiniai tinkamumo kriterijy tipai: estetiniai ir funk-
ciniai. Taikant estetinius kriterijus vertinami rezultatai vizualiniu aspektu, uztikrinant, kad
sukurtas lygis atrodyty patraukliai. Taikant funkcinius Kriterijus vertinama rezultato ati-
tiktis funkcinéms taisykléms, kurios skirtos teisingam vaizdo zaidimo veikimui. Funkci-
niy kriterijy pavyzdziai gali biti svarbiy zaidimo objekty egzistavimas ar galimybé juos
naudoti pagal paskirtj sugeneruotoje zaidimo scenoje. Vienas pagrindiniy i$stkiy Siame
procese yra geras funkciniy ir estetiniy kriterijy sujungimas. Kartais estetiniai ir funkciniai
kriterijai gali biiti prieStaringi vienas kitam, todél gali biiti sunku pasiekti tinkama jy pu-
siausvyra (Han et al., 2021).
to yra sunku tiksliai apibrézti juos matematiniais algoritmais. Siuo tyrimu siekiama spresti
Sig problema pateikiant tikslias algoritmo elementy apibréztis. Be to, norint uztikrinti, kad
sukurti artefaktai turéty kiirybing verte, reikia sukurti metodus, kurie galéty jtraukti auksto
lygio estetinius elementus ir sukurti pastebimus skirtumus tarp keliy to paties algoritmo
iteracijy. Siekiant efektyviai sujungti tikslo funkcijos kriterijus, vienas i$ sprendimy yra
daugiakriteriy sprendimy priémimo metodai (MCDM). MCDM padeda ie$koti sprendinio
renkantis alternatyvas i$ riboto galimy sprendimy rinkinio (Zavadskas et al., 2014). Tai-
kant $iuos metodus genetinio algoritmo tikslo funkcijai, galima optimizuoti genetinio al-
goritmo operatorius. Kai kurios neapibréztus skai¢ius naudojan¢ios MCDM metody va-
riacijos gali padidinti rezultato neapibréztuma. Apibendrinant, pagrindinis $io disertacijos
tyrimo tikslas yra pagerinti zaidimy lygio objekty iSdéstymo procediirinés generacijos kii-
rybinj aspekta pasitelkiant genetinius algoritmus.

Darbo aktualumas

Automatizavimas gali zymiai pagerinti Siandieninj zmoniy gyvenimo produktyvuma ir
kokybe (Filip, 2021). Taciau viena sritis, kurig jprastai tvarko Zzmonés, yra kiirybisSkumas
ir problemy sprendimas. Pastaraisiais metais mokslininkai daug démesio skiria kiirybis-
kumo problemy matematiniam modeliavimui. Algoritminiy sprendimy taikymas kirybi-
néms uzduotims tampa vis populiaresnis, o kiirybiskumo bruozai paprastai yra susij¢ Su
naujumu ir kiiriniy verte (Pichot et al., 2022). Multimedijos kiirimas yra daug istekliy rei-
kalaujantis procesas, daznai reikalaujantis dideliy zmogaus pastangy. Taigi galimybé au-
tomatizuoti sudétingesnes kiirybines uzduotis gali labai paspartinti skaitmeninio turinio
generavima. Vaizdo Zaidimai yra viena daugiausia skirtingy medijy sujungianti multime-
dijos Saka, kuri priklauso nuo kompiuterinio galimybiy atkurti skirtingas medijos formas,
todél generuojant jy turinj galima pasiekti jvairy kiirybinj turinj. Taciau tradicinis pro-
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cedurinis generavimas daznai siejamas su atsitiktinumu ir chaosu, todél kompiuteriu su-
kuriamas turinys yra ne toks jvairus ir autentiskas. Informatikos mokslo Sakose tikslus
kiirybiskumo apibrézimas ir jo vertinimas yra neapibréztas. Kartu svarbu yra ne tik jver-
tinti kiirybine vertg, bet ir sukurti efektyvy kiirybinés vertés modeliavima.

Tyrimo objektas
Sio tyrimo objektas yra procediirinis objekty isdéstymas zaidimo scenose pasitelkiant dau-
giakriterius sprendimy metodus modeliuojant genetinio algoritmo tikslo funkcija.

Darbo tikslas

Pagrindinis $io darbo tikslas yra sutrumpinti zaidimy dizaino kiréjo darbo laika sukuriant
kiirybiska objekty iSdéstymo generacijos algoritma vaizdo Zzaidimams, padidinant objekty
i8déstymo struktiiros jvairove.

Darbo uzdaviniai

Darbo tikslui pasiekti buvo sprendziami Sie uzdaviniai:

1. Atlikti vaizdo zaidimy sceny ir kiirybisky artefakty procedarinio generavimo sri-
ties literatiiros analizg.

2. Sukurti naujus metodus, skirtus Zaidimo sceny objekty idéstymo procediiriniam
generavimui sujungiant genetinius algoritmus, daugiakritierius metodus ir neut-
rosofinius skaicius.

3. Genetiniam algoritmui sukurti tikslo funkcija ir kriterijus, kurie yra sufokusuoti
didinti kiirybiSka zaidimy dizaino verte.

4. Sukurti zaidimy sceny generavimo variklj ir eksperimentuoti su skirtingais tai-
sykliy junginiais ir procediirinio generavimo patobulinimais siekiant sugeneruoti
zaidimy scenas, kurios padidina automatizuotai sugeneruoto rezultato kiirybine
ir zaidimy dizaino vertg.

Tyrimy metodika

Sioje disertacijoje iSanalizuotas esamy vaizdo Zaidimy artefakty generavimas susifoku-
suojant j zaidimy scenos objekty i§déstymo kompozicijg ir problemos formulavima. Ku-
riant karybiskas zaidimo sceny generavimo strategijas, buvo pasitelkti genetiniai algorit-
mai, daugiakriteriai sprendimy metodai, abstrakéiy skai¢iy logika ir 1asteliniai automatai.

Darbo mokslinis naujumas
1. Pritaikytas WASPAS-SVNS metodas ir CoCoSo patobulinimas procedirinei ge-
netinei zaidimo sceny strukttiros generavimo tikslo funkcijai, todél padidinamas
neapibréztumas, kriterijy sujungimo efektyvumas ir sugeneruoty artefakty jvai-
rumas.
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2. Kvantifikuoti ir sumodeliuoti tikslo funkcijos kriterijai pasitelkiant gestalto prin-
cipus zaidimo sceny struktiiros genetinio procediirinio generavimo tikslo funkci-
jai siekiant padidinti esteting scenos struktiiros verte.

3. I3pléstas WASPAS-SVNS procedirinis generatorius su lokaliai morfuojanéiais
zaidimo objektais siekiant padidinti objekty tipy ir jy klasteriy jvairove.

Darbo rezultaty praktiné reikSmé
Tyrimo rezultatai gali buti taikomi Zaidimy lygio aplinkoms generuoti, kai démesys ski-
riamas Zaidimo objekty i§déstymo estetinei vertei. Pasitilyto algoritmo praktinis pritaiky-
mas gali bati naudojamas padéti Zaidimy dizaineriui atliekant Zemo lygio kiirybines Zai-
dimo objekty i§déstymo uzduotis.
Ginamieji teiginiai
1. WASPAS-SVNS ir CoCoSo metodai, pritaikyti genetiniame proceduriniame Zzai-
dimo sceny struktiiros generavimo procese, sukuria kardinaliai skirtingy struk-
tary aibe. Jie sékmingai sukuria funkcionuojancias ir estetiskai jvairias Zaidimo
scenas neapibrézdami sugeneruoty formy algoritmo viduje.

2. Abstrak¢iais gestalto principais sumodeliuota matematiné tikslo funkcija padeda
sugeneruoti siuos principus atitinkané¢ias Zaidimo objekty struktiiras.

3. Lokaliai morfuojantys zaidimo objekty klasteriai padidina zaidimo sceny jvai-
rove padidindami galimy vizualiy variacijy skaiéiy.

Darbo rezultaty aprobavimas

Tyrimy rezultatai disertacijos tematika buvo isspausdinti penkiose publikacijose. Trys
straipsniai iSspausdinti recenzuojamuose moksliniuose Zurnaluose, indeksuotuose WoS
duomeny bazése (Petrovas & Bausys, 2022; Petrovas, Bausys, Zavadskas & Smaranda-
che, 2022; Petrovas, Bausys & Zavadskas 2023); ir dviejose publikacijose, isspausdintose
remiantis prane$imo medziaga (Petrovas & Bausys, 2022 July; Petrovas & Bausys, 2019).
Tyrimy rezultatai buvo pristatyti trijose tarptautinése konferencijose:

— Tarptautiné elektros, kompiuteriy ir energijos technologijy konferencija (Inter-
national Conference on Electrical, Computer and Energy Technologies
(ICECET)), Cekijos Respublika, 2022 m.

— Tarptautinés duomeny analitikos metody ir programy sistemy dirbtuvés (Inter-
national Workshop Data Analysis Methods for Software Systems) (DAMSS),
Lietuva, 2019 m.

— Atvira elektros, elektronikos ir informatikos moksly konferencija (Open Confer-
ence of Electrical, Electronic and Information Sciences (eStream)), Lietuva,
2019 m.

Disertacijos struktura

Darbg sudaro jvadas, trys pagrindiniai skyriai, bendrosios i$vados, literatiiros sgrasas ir
autoriaus publikacijy disertacijos tema saraSas. Darbo apimtis — 97 puslapiai, tekste yra
44 formulés, 54 paveikslai ir 2 lentelés. Rasant disertacijg buvo pacituotas 101 literatiiros
Saltinis.
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1. Procedurinio generavimo metody vaizdo zaidimams
apzvalga

Siame skyriuje apzvelgiami kiirybisko procediirinio generavimo vaizdo Zaidimams meto-
dai ir pateikiama juos veikianc¢iy sri¢iy apzvalga. Jame apraSomos jprastos ir populiarée-
jancios strategijos, skirtos procediiriniam zaidimo sceny generavimui. Taip pat apraSomos
dabartinés problemos, j kurias svarbu atkreipti démesj kuriant generacinj modelj. Sitilo-
mas algoritmas fokusuojasi ties MCDM pagrindu sukurta genetinio algoritmo tikslo funk-
cija, kurios abstraktiis kriterijai yra skaitmenizuojami. Apzvelgtas kiirybiskumas, MCDM
metodai, neapibréztumo aibés zaidimo sceny kiirimo procese.

Keturi pagrindiniai skaitmeninio kiirybiskumo tyrimo objektai yra asmuo, procesas,
jant kairybiskuma skirtingose srityse, tokiose Kaip menai ar zaidimy dizainas. Pamatuoti ir
apibrézti kirybiskuma yra sudétinga skaiiuojamosiomis sistemomis. Didelé kiirybis-
kumo apibrézimy jvairové ir inzineriniy apibréZimy nebuvimas sukuria sunkumus siekiant
efektyviai modeliuoti ir vertinti kiirybiska rezultatg. Procedirinio generavimo vaizdo zai-
dimams metu yra svarbu gerai sumodeliuoti tikslo funkcija. Auksto lygio estetiniy krite-
rijy inkorporavimas procediriniam turiniui generuoti yra sudétingas procesas. Abstraktas
estetiniai kriterijai, tokie kaip balansas, harmonija, vizualus patrauklumas, turi bati pa-
versti tiksliais matematiniais algoritmais siekiant juos integruoti j efektyvy generavimo
procesa. Nors ir abstraktiis vertinimo kriterijai egzistuoja, objektyvus jy vertinimas, ypac
taikant daugiau negu vieng kriterijy, yra sudétingas. Abstrakéiy neutrosofiniy aibiy ir dau-
giakriteriy sprendimy metody taikymas suteikia galimybe valdyti abstraktuma kiirybis-
kuose algoritmuose. Sie metodai padeda sustiprinti sugeneruoty rezultaty jvairove ir uni-
kalumg. Taip pat yra sudétinga surasti balansg tarp sugeneruoto turinio unikalumo ir
sugeneruoto turinio funkcionalumo. Rasti §j balansg yra svarbu, nes sugeneruotos scenos
turi biiti unikalios, kad islaikyty Zaidéjo susidoméjima zaidimo metu. Tikslo funkcija turi
inkorporuoti ir estetinius, ir funkcinius zaidimy dizaino kriterijus tam, kad i$laikyty suge-
neruoto turinio kokybe.

Atsizvelgiant ] literattiros analiz¢ sudaryti uzdaviniai: sukurti Zaidimy sceny genera-
vimo karkasa, kuris leisty inkorporuoti kiirybiniy sprendimy metodus; Sukurti naujus zai-
dimo sceny objekty iSdéstymo algoritmus pasitelkiant genetinius algoritmus, MCDM me-
todus ir neutrosofines aibes; sukurti tikslo funkcija ir kriterijus genetiniam algoritmui,
kurie yra sufokusuoti j kiirybing ir zaidimy dizaino vertg; optimizuojant generavimo tai-
sykles ir sukurto algoritmo papildinius sugeneruoti Zaidimy scenas, kuriomis bandoma
pasiekti auksta kirybiSkumo ir zaidimy dizaino verte.

2. Genetiniai daugiakriteriy sprendimy priémimo metodai ir
kriterijy modeliavimas vaizdo zaidimy scenoms generuoti

Antrajame skyriuje aprasomi ir tiriami genetiniai neutrosofiniai MCDM metodai ir jy kri-
terijy modeliavimas zaidimo scenoms generuoti (S2.1. pav.). Jame apraSomos kurybis-
kumo problemos zaidimy turinio generavimo procese ir pasitlomi nauji algoritmai Zai-
dimy scenoms generuoti pasitelkiant WASPAS-SVNS ir CoCoSo pagrindu sukurtas tikslo
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funkcijas. Taip pat pristatomas gestalto dizaino taisykliy pritaikymas tikslo funkcijai pa-
sitelkiant Igstelinio automato agentus. Galiausiai apra§omas biidas, kaip morfuoti zaidimo
objektus, ir apraSomos i§vados galutiniam generavimo modeliui.

o Paskaifiuoti -
bonuse | B |
gestalto UG]S chgrurrk)sml“lnq

S pajégumg - .
kriterijus {waspas) tinklelius

Sukurti Panaudoti
atsitiktine genetinius

populiacijg operatorius

S2.1 pav. Zaidimo sceny generavimas

Tyrime sitloma automatizuota zaidimo scenos i§déstymo generavimo sistema, pag-
rista PCGML (procediirinio turinio generavimas naudojant masSininj mokymasi). Misy
sistemoje naudojamas matematinis modelis, apimantis tikslo funkcija, kuria taiko geneti-
nis algoritmas populiacijai jvertinti. Genetinio algoritmo tikslo funkcijai taikoma daugiak-
riteré sprendimy priémimo (MCDM) naudingumo funkcija. Nustatomi konkretdis sudétin-
gumo, zaismingumo ir tinklelio dydzio koregavimo kriterijy parametrai. Kiekvienoje
algoritmo iteracijoje zaidimo lygio tinklelis uZpildomas ir véliau jvertinamas. Taikant ver-
tinimo procesa apskai¢iuojamas tinkamumas kiekvienam zaidimo lygio tinkleliui, kad
biity galima pasirinkti nasiausius tinklelius. Sis metodas generuoja jvairius ir netikétus
rezultatus, nes pirminiai generacijos duomenys yra atsitiktinai parinkti ir toliau tobulinami
algoritmu.

Naudojamas standartinis zaidimo objekty rinkinys, parinktas pagal zaidimo lygio
projektavimo principus. Siuos objektus vaizduoja jvairiis skai¢iai matricoje, kur kiekvie-
nas skai¢ius atitinka skirtingg objekto tipa. Zaidimo scenos i¥déstymas yra diskretizuotas
1 tinklelj, o kiekviename langelyje gali tilpti tik vienas objektas. Viena genetinio algoritmo
chromosoma atitinka vienos scenos i§déstyma. Objektai ir atitinkami jy numeriai yra
tokie:

— Zaidéjas (skaiGius 0) — nurodo Zaidéjo prading padétj, veikéja, skirta Zaisti Zai-

dima.

— I8¢jimas (skaiCius 1) — pazymi vieta, kurig Zaid¢€jas turi pasiekti, kad uzbaigty

zaidima.

— Tus¢ia vieta (skaiius 2) —reiskia neuzimtas vietas, per kurias zaidéjas gali judéti.

— -Siena (skai¢ius 3) — reiskia objekta, kuris trukdo Zaidéjo judéjimui.

— Pavojus arba prieSininkas (skaiCius 4) — reiskia objekta, kuris kelia pavojy zaidé-

jui.
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— Surenkama esybé (skaiCius 5) — zymi pageidaujamg objekta, kurj zaidéjas gali

rinktis zaidimo metu.

— PavirSius — nors ir néra uzkoduotas chromosomy matricoje, Sis objektas naudo-

jamas 3D projekcijos vizualizacijos etape kaip grindy sluoksnis.

Vienos chromosomos informacija saugoma 2D skaitmeniniame tinklelyje, kaip pa-
rodyta S2.2 pav. Savo eksperimentams naudojame matricg, kurios matmenys yra 10 vie-
nety plocio ir 10 vienety ilgio. Kiekviena objekto tipa vaizduoja atskiras skaiCius tinkle-
lyje. Norédami vizualizuoti galutinius rezultatus, projektuojame juos i 3D erdve,
pridédami zemés sluoksnj po tinkleliu ir konvertuodami skaitines reik§mes j atitinkamus
3D objektus pagrindiniame tinklelyje.

WW| W[ W WW|[W]WwW| W
NN N[O W
NN W
NI NN W
NI W
WW| W[ W WW|[W]WwW| W

W[N] W
W[N] W
W[N] W
W= W

w
(93]
(93]
(98]
(98]
(U]

S2.2 pav. Vienos chromosomos duomeny pavyzdys

Zaidimo lygio i3déstymas treniruojamas naudojant genetinj algoritma
(S2.3 pav.), o kiekvienos iteracijos vertinimo Kriterijai sujungiami naudojant WASPAS-
SVNS algoritma vienai tinkamumo vertei apskai¢iuoti. Aibés dydis nustatomas j 50, o
algoritmas vykdomas 2000 iteracijy. Genetinis algoritmas naudoja atrankos ir mutacijy
operatorius, kad filtruoty ir i§ naujo apgyvendinty populiacija. Norédami inicijuoti duo-
menis, sukuriame tus¢ias chromosomas ir uzpildome jas atsitiktiniais duomenimis, kur
kiekvienas objektas yra uzkoduotas sveikaisiais skai¢iais nuo 2 iki 6 (atstovaujantis vi-
siems galimiems objektams, iSskyrus zaidéja (skaicius 0) ir i$é¢jima (skaicius 1)). Tada prie
kiekvienos chromosomos pridedame vieng Zaidéja ir vieng i$éjimo objekta. Kiekvienoje
iteracijoje apskaic¢iuojame visos populiacijos tinkamumo mediang ir padalijame chromo-
somas j dvi laikingsias matricas, kuriy viena saugo chromosomas zemiau vidutinés vertés,
o kita saugo chromosomas vir$ vidutinés vertés. Chromosomos, esancios Zemiau vidutinés
vertés, pakei¢iamos chromosomomis i§ aukS§¢iau esancios medianinés matricos, o tada 5
% §io naujo masyvo duomeny mutuoja priskiriant naujas atsitiktines reik§mes.



90 SUMMARY IN LITHUANIAN

InitializeRandomPopulation:
DoFullEvolution:
for amountOfEvolutionCycles
CalculateAllCriteria:
for populationSize
Validation:
PlayerExists
ExitExists
PathBetweenPlayer-ExitExists
Symetry
EmptySpaceBalance
Player-ExitDistance
SafeZone
end for
FindUnderperformersAndPerformers:
for populationSize
calculateFitness:
WASPAS-SVNS
end for
EvolveUnderperformersWithGeneticAlgorithm
end for
DrawGrid(best fitness)|

S2.3 pav. Genetinis algoritmas

Zaidimo scenos generavimas atlickamas taikant siiloma genetinj Pitagoro neutroso-
finjf WASPAS metoda. Naudojamas matematinis modelis susideda i§ keliy kriterijy, sus-
kirstyty | tris tipus. Pirmaja grupe sudaro estetiniai kriterijai, susidedantys i$ auksto lygio
kriterijy, kuriuos reglamentuoja gestalto taisyklés dariniai (s), ir zemo lygio Kriterijy (v),
tokiy kaip simetrija ir tus¢ios erdvés balansas. Antroji grupé apima funkcinius kriterijus
(f), kurie optimizuoja zaidimo dizaino vertinimus, tokius kaip atstumas tarp pagrindiniy
objekty ir saugios zonos aplink juos. Paskutiné grupé yra apribojimy kriterijy (c), kurie
visada turi biti teisingi, kad tinkamumas biity ne nulis. Sie apribojimo kriterijai apima
kriterijus, susijusius su esminiy elementy egzistavimu ir jmanomo kelio tarp zaidéjo ir
i§¢jimo buvimu (S2.1 lentelé).

S2.1 lentelé. Visas kriterijy sarasas

Kriterijus Tipas Verciy réziai
Pana$umas (s;), Estetiné verté (lokali funkcija) 0-1
Artumas (s,), Estetiné verté (lokali funkcija) 0-1
Testinumas (s3), Estetiné verté (lokali funkcija) 0-1
Centriniai tagkai (s,), Estetine verté (lokali funkcija) 0-1
Bendras regionas (ss) Estetiné verté (lokali funkcija) 0-1
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S2.1 lentelés pabaiga

Kriterijus Tipas Verciy réziai
Simetrija (v,), Estetiné verté (lokali funkcija) 0-1
Tuscios erdvés balansas (v;) Estetiné verté (lokali funkcija) 0-1
Atstumas tarp Zaidéjo ir i§¢jimo (f;) Tyrin¢jimas 0-1
Saugi erdve (f) Saugumas 0-1
Zaidéjo egzistavimas (c;) Lygis pereinamas Oarbal
18¢jimo egzistavimas (c,) Lygis pereinamas Oarbal
18¢jimo kelio egzistavimas (c3) Lygis pereinamas Oarbal

3. Pasiulyto procedirinio generavimo metodo
eksperimentavimas ir rezultatai

Treciajame skyriuje pristatomi pasiiilyty genetiniy neutrosofiniy MCDM metody ir ges-
talto principy pagrindu sumodeliuotos lasteliio automato agenty tyrimai ir eksperimenta-
vimy rezultatai. Sukurtos naujos procediirinio generavimo strategijos siekiant i§spresti kii-
rybiskumo problemas, tokias Kaip: auksto lygio estetiniy kriterijy inkorporavimas j tikslias
matematines funkcijas, automatinis objekty struktiiros diversifikavimas ir unikalumas,
konfliktuojanciy estetiniy ir funkciniy kriterijy Sujungimas nesugadinant galutinés scenos
darnos. Skyriuje detaliai aprasomi sugeneruoti rezultatai.

Siam tyrimui sukurta nauja sistema, naudojant Unity zaidimo variklj ir panaudojant
vaizdiniy zaidimy objektus i§ Unity Asset Store. Bandymai buvo atlikti kompiuteryje, ku-
riame yra 2, 4 GHz 8 branduoliy Intel Core i9 procesorius. Procediirinis generatorius su
neutrosofinio vertinimo funkcija greitai generuoja didéjancius rezultatus pirmiesiems
100-200 karty. Taciau generatoriui daznai reikia daugiau laiko, kad bty galima sukurti
simetri§kus ir vizualiai subalansuotus sceny iSdéstymus, Kartu uztikrinant, kad bity pritai-
komos Zaidimo taisyklés. Galutiné rezultato reik§mé paprastai nusistovi tarp 0,75 ir 0,85.
Labai svarbu turéti daug lokaliy maksimumy Zaidimo scenai generuoti, nes tai uZtikrina,
kad rezultatai biity unikalis ir skirtingi. Egzistuoja daugybé galimy sprendimy, pagrjsty
atsitiktiniais pradiniais duomenimis ir juos sekan¢iomis mutacijomis. Tikslo funkcijos
reik§mé su skirtingomis atsitiktiniy pradiniy duomeny ir 500 genetinio algoritmo karty
variacijomis pateikti S3.1 paveiksle. Karty skai¢iaus pasirinkimas buvo nustatytas atsiz-
velgiant | momenta, kuriuo algoritmo iteracijos stagnuojasi, tod¢l rezultatai néra atnauji-
nami arba atnaujinami tik nezymiai.

Estetiniy kriterijy jgyvendinimg galima pastebéti vaizdiniuose pavyzdziuose
(S3.2 pav.): simetrijg ir pusiausvyra tus¢ioje erdvéje. Tuo paciu metu efektyviai jgyven-
dinami zaidimo dizaino reikalavimai, tokie kaip kelio paieska ar svarbiy objekty egzista-
vimas.
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S3.1 pav. Tikslo funkcijos pavyzdziai, kiekviena kreivé reprezentuoja atskirg algoritmo iteracija

S3.2 pav. Simetrija ir tus¢ia erdve

Tikslo funkcijos reik§mé pradeda stabilizuotis ir sulététi mazdaug po 80-120 karty,
o tai rodo greitesn¢ konvergencija, palyginti su WASPAS jgyvendinimu. Taciau tiesiogi-
nis vertés palyginimas nejmanomas, nes taikant CoCoSo metodg gaunamos vertés, nepa-
tenkancios j 0—1 diapazong. Miisy demonstracingje versijoje tikslo funkcijos vertés pap-
rastai svyruoja nuo 4 iki 8. Tikslo funkcijos kreiviy palyginimas laikui bégant tarp
CoCoSo ir WASPAS metody pavaizduotas S3.3 pav.
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S3.3 pav. Tikslo funkcijy kreiviy palyginimas tarp WASPAS ir CoCoSo metody

I$nagrinéjus, kokig jtakg kiekvienas kriterijus turi bendrame lygiy generatoriuje, Visi
kriterijai buvo sujungti, kad biity suformuota tikslo funkcija. Rezultatuose galime stebéti
atskiry gestalto taisykliy modelius ir pastebéti skirtumus tarp atskiry to paties algoritmo
iteracijy. Pirmajame pavyzdyje galima pastebéti sienas, iSdéstytas ,,8“ skaiCiaus forma
(S3.4 pav.). Antrasis pavyzdys sudaro uzdarg erdve su monety grupe viduryje ir pasléptu
i$&jimu (S3.5 pav.).

S3.1 lentelé. Experty apklausa

Sample | S1 | S2 | S3 | S4 | S5 Q1 Q2 Q3
3.25 + + + + +
+ + + +
+ + |+ Atsisaké Atsisakeé Atsisake
+ |+ |+ + + + +
+ + |+ | 4+ + + +
3.26 + + |+ + +
+ |+ +
+ |+ Atsisaké Atsisaké Atsisaké
+ + + + + +
+ |+ |+ |+ ]+ + + +

Apklausa buvo atlikta siekiant suzinoti eksperty nuomones, jskaitant vartotojo sgsaja,
vartotojo patirtj ir Zaidimy dizaino ekspertus i§ mokslo bendruomenés ir vaizdo zaidimy
pramonés. Eksperty buvo papraSyta jvertinti du sugeneruotus pavyzdzius (S3.4 ir
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3.5 pav.). Pirmasis klausimas buvo skirtas faktiniam gestalto principy matomumui, o ant-
rasis — estetinei kokybei palyginti su kitais literatiros pavyzdziais. S1-S5 atitinka gestalto
principy matomuma (panasSumas, testinumas, bendras regionas, artumas, zidinio taskas),
0 Q1-Q3 atitinka subjektyvia kiirybine verteg, sulygintg su artimiausiais literatliros pavyz-
dziais (Safak et al., 2016; Zafar et al., 2020; Thakkar et al., 2019). Kai kurie ekspertai
pabrezé, kad abstrakcios vertés vertinimas néra tinkamas dél skirtingy generatyviniy tiksly
ir kity estetiniy savybiy, tokiy kaip spalvy ir linijy formos, kuriy negalima kiekybiskai
jvertinti. D¢l Sios priezasties vienas ekspertas atsisaké palyginti kokybe (zr. S3.1 lentelg).
Rezultatai parode¢, kad panaSumas buvo matomas 80 % atsakymy, testinumas — 60 %,
bendras regionas — 50 %, artumas — 70 %, o zidinio taskas — 90 %. Estetiné kokybé buvo
jvertinta 87,5 %, 100 % ir 50 % atsakymuy, lyginant su kitais literattiros pavyzdziais.

S3.4 pav. Galutinio algoritmo rezultatas sujungiant gestalto principus 1

S3.5 pav. Galutinio algoritmo rezultatas sujungiant Gestalto principus 2
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Bendrosios iSvados

1.

WASPAS generatoriaus patobulinimas CoCoSo metodu pagerino tikslo funkci-
jos didziausiaja verte ir skaiGiavimo greitj (~80 % greitesnis konvergacijos Suo-
lis). Neutrosofiniy aibiy inkorporavimas padidino sugeneruoty artefakty jvairove
(~35 % daZnesni sugeneruoti unikal@s artefaktai) ir subalansavo estetinius ir
funkcinius kriterijus. Kirybisky sprendimy jzvelgimas padidéjo ankstyvose al-
goritmo generacijose.

Lokaliai morfuojanciy objekty algoritmo inkorporavimas padidino zaidimo
sceny jvairove pasitelkiant natiiraly atsitiktinumg. Galutinés scenos pridéjo naujy
objekty variacijas, tokias kaip zolé, medziai ir akmenys, sugeneruotoms scenoms
iSlaikant visas Zaidimo dizaino taisykles (~25 % scenos sugeneruoja 100 % di-
desnj objekty variacijy skai¢iy). Sis algoritmo papildymas parodé¢ jo galimybe
padidinti Zaidimo sceny kiirybiskumg ir dinamiskuma.

Gestalto principai buvo integruoti j pitagorinj neutorosofini WASPAS zaidimo
sceny generatoriy. Sis sprendimas padidina vizualing sugeneruoty sceny verte,
taciau konfliktuojantys kriterijai gali iSblukinti kai kuriy estetiniy kriterijy verte.
Gestalto principy integravimas parodo potencialg vizualiai gery zaidimo sceny
generavimo procese (250 % didesnis automatinés estetinés analizés kriterijy skai-
¢ius). Eksperty apklausa parodé, kad panasumas buvo matomas 80 % atsakymy,
testinumas — 60 %, bendras regionas — 50 %, artumas — 70 %, o zidinio taskas —
90 %. Estetiné kokybé buvo jvertinta kaip geresné 87,5 %, 100 % ir 50 % atsa-
kymuy, lyginant su kitais literatiiros pavyzdziais.
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