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INTRODUCTION

Moderation is an issue that grows proportionally to the amount of content produced. Modern 

social media platforms now operate at volumes far greater than their predecessors. They must bend 

to immense government and societal pressure to moderate and review content at rates far beyond 

reasonable human capacity  (Gorwa et al.,  2020). Major platforms (Twitter, YouTube, Meta) and 

consumers of data (Google) all perform some level of automated content filtering (decidedly ethical 

or not (Llansó, 2020)) in order to meet the demands required from these aforementioned pressures 

of these various entities (Gorwa et al., 2020). In order to be competitive in this ecosystem it would 

appear that many social platforms would be interested in performing a similar level of automation. 

Telegram, as an exception to this rule, opts for a more lax (and somewhat ambiguous) moderation 

strategy that  awaits  human or  government  request  before content  is  manually reviewed  (Badiei, 

2020; Telegram FAQ, n.d.). This is unusual because Telegram channels (holding as many as 200,000 

simultaneous  members  (Telegram  FAQ,  n.d.))  have  at  times  become  host  to  illegal  content, 

extremism, and violent ideology  (Baumgartner et al., 2020). Telegram’s competitors of similar or 

larger scale report high use of AI to detect and remove content. Meta, for instance, in their Q2 2022 

enforcement report revealed that AI allowed them to take action on 19.3 million instances of content 

violation (Bickert, 2022). YouTube, as well, claimed in 2019 that 98% of of the videos removed for 

violent  extremism were  flagged  by  machine  learning  algorithms  (GIFCT,  2019).  In  contrast  to 

industry numbers, research has shown that methods like Natural Language Processing (NLP) have 

success in classifying distinctions in big data from platforms like Telegram (Jarynowski et al., 2021; 

Shah et al., 2020). To add fuel to this growing understanding, large scope datasets of more than 300 

million  messages  make  analyzing  the  platform’s  content  with  AI  techniques  even  more  viable 

(Baumgartner et al., 2020).  

Telegram has the handy capability of creating bots for achieving a variety of tasks on the 

platform from payment  processing  to  automated  news  (Telegram APIs,  n.d.).  Many  users  have 

independently used this bot platform to create their own automated moderation solutions (but not 

always with open access to their inner workings in mind) (Larsen, 2017/2022; Miss Rose, n.d.). It 

stands  to  reason  that  the  efficacy  of  some  of  these  content  identification  methods  could  be 

extrapolated and automated by a bot as well. This paper aims to explore the viability of applying 

some of these content recognition techniques, independent or commercial,  using Telegram’s bot 

platform.
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Investigation object
Automated Telegram / social media content detection methods and implementations of those 

methods.

Aim and tasks
To create a solution for hate speech recognition in the Telegram social network.

1.)  To  perform  analysis  on  hate  speech  recognition  methods,  datasets  designed  for  this  task, 

implementations in Telegram and other social media.

2.) To design a bot for hate speech recognition in Telegram.

3.) To train a ML/DL method (or use the pre-trained method) on hate speech recognition and to 

integrate into the Telegram bot.

4.) To perform bot and method metric evaluation.

Novelty of the topic
Current popular (non-academic) Telegram moderation bots are either closed-source  (Miss 

Rose, n.d.) so that the methods that they use to perform content filtering are completely unknown, or 

the methods that they use are more primitive than artificial intelligence (like blacklisting certain 

words or users  (Larsen, 2017/2022) , which is limited to the creativity of the administrator of the 

bot).  Much of existing research in this space appears to primarily focus on the ability to detect 

certain content based on predefined parameters. (with some non-telegram native tools/libraries like 

Python (Jarynowski et al., 2021; Korotaeva et al., 2018; Shah et al., 2020)). Existing methods are not 

mainly  focused  on  purpose-built  application  to  something  like  a  bot.  Thus,  building  upon  the 

foundation of existing methods for content detection, an autonomous AI moderation bot, particularly 

on Telegram, would be a unique application and field test of these technologies. The other novel 

activity that is not frequently performed is the testing of machine learning models against data upon 

which they were not originally trained. Testing the performance of these models along with the 

application via a bot should provide a unique take on this space, and demonstrate the flexibility (or 

lack thereof) of models to adapt to new use cases.

Relevance of the topic
The  number  of  consistent  user-controlled  moderation  solutions  available  for  Telegram 

channels is genuinely quite small. Many implementations dedicated to moderation are personal one-
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off projects that reuse the same code as more popular bots (Larsen, 2017/2022). To add to this, the 

number of daily telegram users is growing rapidly. It is one of the top 5 most downloaded apps in 

the world and has over 700 million monthly active users (Telegram Press Info, n.d.). This large user 

base  has  a  generally  unmet  need  for  better  prohibited  content  detection  strategy,  due  to  the 

increasing prevalence of prohibited content in general on the platform (Shah et al., 2020) Telegram 

itself relies largely on user self-reporting of content violations (Telegram FAQ, n.d.) and it has been 

recognized that moderation is generally one of Telegram’s platform governance weak points (Badiei, 

2020). Given these factors, automated (particularly platform native and hands-free) moderation is of 

increasing relevance.

Research Methodology
For the portion of this research that covers machine learning model performance testing and 

dataset analysis, quantitative methodologies are used for assessment. For the implementation of the 

Telegram Bot, a practical implementation of the quantitative methodologies is produced and the 

implementation is discussed with some qualitative properties in mind.

Scientific Value of the Thesis
Not only is there a need for better content moderation on the Telegram platform  (Badiei, 

2020), but there don’t appear to be many openly reviewable purpose-built bots for such tasks. Bots 

that do exist  appear to focus mainly on being moderation assistant chatbots rather than as stand-in 

replacements for human moderators of content in channels (Combot, n.d.; Miss Rose, n.d.; Telegram 

Bot  Daysandbox Bot,  n.d.).  There  is,  of  course,  the  possibility  a  bot  that  uses  more  advanced 

techniques like AI to detect prohibited content already exists (whether its source is open or not is 

another matter). However, the lack of an aggregate source of “best-fit” bots for tasks, reveals a gap in 

public and scholarly understanding of  how they operate behind the scenes.  An open academic-

format  review of  the  creation  of  an  automated  content  detection  bot  should  provide  a  unique 

perspective for both the platform’s governance and viability of applied research on the topic.
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1. LITERATURE ANALYSIS

The purpose of the literature analysis is to perform a review of the existing technologies and 

issues  surrounding  the  field  of  content  detection  on  social  media  platforms,  with  a  focus  on 

Telegram. It is also intended shed some light on effective methods both for testing performance and 

for implementation design.

1.1 Prohibited Content Issues in Social Networks
This section aims to look at some of the more apparent issues that seem to face large scale 

social networks when it comes to the topic of handling prohibited content, with a focus on hate 

speech in particular.

1.1.1 Platform Governance and Automation Issues on Large Social Networks

It is clear to the layperson on the modern internet that large social media platforms perform 

some degree of automated content moderation. In 2020, YouTube reported that 98% of the videos 

removed from their platform for violent extremism were being flagged through machine learning 

algorithms (Gorwa et al., 2020).  Since it is apparent that platforms use ML (machine learning), a 

form of AI (artificial intelligence), to moderate their content, the logical next step is to deconstruct 

their rationale for doing so. It is no secret that social media platforms contend with dubious content 

on a daily basis. Contrary to the notion of good will, there is a large amount of of government 

pressure  on  major  technology  companies  to  comply  with  country-by-country  legal  regulations 

(Gorwa  et  al.,  2020).  Encrypted  chat  platforms  are  an  exception  to  this  compliance  push  and 

Telegram, in particular, has no transparent process through which it acknowledges its compliance 

with government requests  (Badiei, 2020). The reason that much of the platform falls outside of 

government pressure is due to the fact that Telegram has a heavy focus on private and encrypted 

communication  (Telegram  FAQ,  n.d.).  For  platforms  that  have  a  public  facing  component  (as 

Telegram does) many organizations have opted for automation to deal with the sheer scale of such 

content. Maintaining compliance is often beyond the healthy scope of manual intervention (Gorwa 

et  al.,  2020).  Perhaps  automated  or  “reactive”  content  moderation  has  not  yet  been  applied  to 

Telegram due to philosophical concepts of prior-restraint on free speech  (Llansó, 2020), but it is 

unknowable exactly whether or not this is the case. Telegram does moderate the content on publicly 

viewable materials  (Badiei, 2020),  but the growing scope of the platform suggests that having an 

automated strategy (similar to what their competitors use and some research has suggested) would 
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enhance their ability to align with legal compliance and content moderation pressures. Exploring the 

adaptation of these automated content detection methods to Telegram is what is of interest here.

1.1.2 Social Media Platform Prohibited Content Definitions and Hate Speech

Different platforms have distinct definitions of what they consider to be content against their 

terms of service.  For the purpose of analysis,  what exactly counts as prohibited content is  less 

significant than the ability to automatically detect content based on predefined criteria. Other works 

seem to focus primarily on detection or categorization for a given scenario like specific indicators of  

prohibited activity based on language characteristics (Shah et al., 2020). Nonetheless, a good starting 

point for deciding what to look for can be found by observing what social media platforms already 

define as prohibited. For instance, in the case of Facebook, prohibited content is heavily defined in 

their  ‘Community Standards’  (Gorwa et  al.,  2020) and other  platforms have similar  guidelines. 

Telegram has a published “Terms of Service” that includes only the following that users must agree 

not to do (Terms of Service, n.d.):

• Use our service to send spam or scam users.

• Promote violence on publicly viewable Telegram channels, bots, etc.

• Post illegal pornographic content on publicly viewable Telegram channels, bots, etc.

As part of Telegram’s general stance on avoiding moderation of private groups and chats  (Badiei, 

2020), it is important to note that their terms of service mentions that only “publicly viewable” 

Telegram content is considered within the realm of the company’s moderation responsibility. Thus, 

for conducting prohibited content detection research, it  seems like other works have focused on 

analyzing datasets collected from publicly available Telegram channels in particular (Baumgartner et 

al., 2020) (Jarynowski et al., 2021), which aligns with the relative ease of collection.

In  contrast  to  the  Telegram  terms  of  service,  the  guidelines  for  prohibited  content  on 

platforms  with  more  robust  governance  systems  in  place  are  much  clearer.  For  instance,  Meta 

(Facebook) community guidelines indicate that they will remove any content that is categorized as 

“hate speech”. This, according to their definition includes “direct attacks against people — rather 

than concepts or institutions— on the basis of what [they] call protected characteristics (PCs)”, after  

which listing many “protected characteristics” of race, sexual orientation, et cetera (Hate Speech | 

Meta  Transparency  Center,  2024).  So,  it  stands  to  reason  that  if  Telegram were  interested  in 

platform oversight with the fidelity of its peers, it too would have guidelines such as these which are 

surprisingly absent. Regardless of whether or not hate speech is inherently illegal is less significant 
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than the implication that it can be an indicator for other illegal or prohibited actions, such as threats 

or acts of violence offline (Davidson et al., 2017). Thus, it is possible to extrapolate that detecting 

hate speech aids in the ability to detect these looser prohibited content forms. It will be clearer as to 

why  this  is  significant  in section  1.4.  Because  some  of  the  promising  research  and  datasets 

associated with this specific form of prohibited content,  it  is the kind that has been chosen for 

detection in this research.

1.2 Strategies for Detecting Prohibited Content on Social Networks
In order to detect prohibited content, it’s important to both analyze the potential issues with 

that and the different strategies that are currently employed for detection.

1.2.1 Issues Associated With Automating Large Scale Prohibited Content 

Analysis

An important challenge for creating a system that  detects prohibited content is  deciding, 

legally, what data to use for analysis. Large organizations that detect prohibited content on their 

platforms are often comparing text or images against private and government hash databases of 

illicit or illegal content as incidents occur (Gorwa et al., 2020). Two such examples are the National 

Center for Missing and Exploited Children’s (United States) hash database of child abuse imagery 

and and the GIFCTs SIHD of  terrorist  content  (each public  and private  databases  respectively) 

(Gorwa et al., 2020). Large social networks identify, rehash, and take down this content in real time 

(such that copies of the prohibited content are not physically stored). Research, unfortunately, has a 

fundamentally different level of access to such content than the networks actively removing it. Thus, 

due to the potentially sensitive nature of the content being analyzed, care must be taken to observe it 

through either a proxy or to collect it in a way that is acceptable for research. One example of this,  

published in IJCSM (Iraqi Journal for Computer Science and Mathematics), is the scripted crawling 

of the data of publicly available Telegram channels. Statistics were then collected about the nature of 

the content observed, without necessarily aggregating and storing observed data locally (Packeer & 

Kannangara, 2022). 

1.2.2 Hash Database Content Matching

One of the major strategies that appears to be employed regularly to check content against a 

desired list (prohibited or otherwise) is the use of hash tables. These are populated with values 

produced by feeding content into hash functions which produce strings that are unintelligible from 
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the  original  data  that  they  came  from.  They  serve  the  purpose  of  obfuscating,  checking,  and 

organizing  media  in  a  way  that  differentiates  it  from its  source  material  (Wong,  2021).  These 

databases can be used to check if there is a match against a prohibited dataset of text or images by 

comparing metadata about the content stored along with the hash  (Shah et al., 2020). Some well 

known companies (Microsoft, Facebook, Google, Twitter), currently work together to maintain a 

shared industry hash database of prohibited content (SIHD) and they collectively form a group 

called the GIFCT (Global Internet Forum to Counter Terrorism) (Gorwa et al., 2020). They have the 

ability (and regulatory pressures) to check effectively all content uploaded to their platforms for 

violation of their terms (Gorwa et al., 2020). Applying this to prohibited content detection media in 

any format can be passed through a hash function to produce a hash string. This hash string (and its 

metadata) can be compared with strings in the database to determine whether or not its origins are  

prohibited content (see Figure 1).

The major issue that hash databases present for independent research is the fact that researchers do 

not have the resources and instantaneous response requirements of large companies, like those in the 

GIFCT. The other issue is that these hash databases for prohibited content recognition are largely 

secretive (Gorwa et al., 2020) and outside of the ability of the research community’s use. 

1.2.3 Advancements in Neural Network Training

One increasingly common method for using artificial intelligence to distinguish information 

about a dataset is the use of neural or “deep” networks, which operate on the principal of having 

multiple “neuronal” layers that work toward a prediction given some initial parameterized input 

functions  (Jordan & Mitchell, 2015). They begin with an input layer (which accepts initial data). 

After which come hidden sub-layers, which are often taking advantage of algorithmic properties that 

can sieve the data closer to a probabilistic result  (Nadkarni et al., 2011). An example of one such 
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Figure 1: Process of media being hashed and compared against a hash database



algorithmic property is Google’s BERT (Bidirectional Encoder Representations from Transformers) 

(Devlin et al., 2019). Google’s model takes advantage of binary (true or false) cross-entropy loss 

which, if paraphrased, means that at each layer of the neural network decidedly incorrect values are 

lost or replaced during each layer reconstruction (getting closer to an accurate prediction result while 

being resilient against corruption of the original input) (Vincent et al., 2008). These properties are 

enabled via what are called “activation functions” in the context of neural networks (Jarynowski et 

al., 2021). These activation functions serve as a gradient of values for the truth probability of the 

output of a specific neuron in the network (Godoy, 2022). The aggregation of decisions from each 

layer, acting as a tiered filter, results in a final prediction output layer. The intermediate neuronal 

layers  are  “trained”  either  manually  (with  the  correct  prediction  data)  or  algorithmically  with 

weighting and reabsorption or transformation of the inputs (Vincent et al., 2008). 

1.2.4 Image Recognition and its Associated Complexity

Image recognition AI (or computer vision, depending on application), like other forms of 

neural networks, relies on the same multi-neuron-layered decision strategies previously mentioned. 

Rather than identifying textual characteristics, it relies on the probabilistic determination of objects 

based on pixel-level annotations of a feature map of the image at each stage of the network cascade 

(Wang et al., 2021). Due to the quantity of open image data available on the internet contemporary 

versions of image recognition methods (like VLAD, Vector of Locally Aggregated Descriptors) are 

trainable on very large datasets like the Flickr10M dataset of 10 million random images (Jégou et 

al., 2012). The improvement in graphics processing equipment (originally designed for gaming) and 

the scope of these large datasets has been a major factor for the improvement of computer vision 

(Jordan & Mitchell, 2015) . Conversely,  there are several issues associated with image recognition 

not present with text based endeavors.  One issue is  that  most image recognition algorithms are 

designed to recognize shapes in natural images (Wang et al., 2021). Objects are not “natural”, blurry 

or aren’t part of a dataset are unlikely to be properly categorized. Image datasets also suffer from 

blurriness (occlusion), which makes it more difficult to train algorithms to recognize what is in the 

image (Wang et al., 2021).

1.2.5 Viability of Using Natural Language Processing with Bots

NLP is one specific method for training an artificial neural network (ANN) that has proven 

success. Google’s BERT is one such example of a neural network model optimized for NLP (Devlin 

et al., 2019). There are even pre-trained Natural Language Processing Models (Like DeepPavlov for 
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Russian) that can be used to deterministically categorize the content of text data from Telegram 

channels (Jarynowski et al., 2021). NLP at its core takes advantage of some fundamental properties 

of the structure of natural human languages. Many language feature characters that only appear in 

specific sequences (called n-grams) that can infer a lot about the content of a message without even 

necessarily  knowing the  context  (Nadkarni  et  al.,  2011).  Aforementioned solutions  apply  these 

fundamental characteristics to ANNs and there are many more use-case specific methods beyond the 

scope of this document that can be found in Nadkarni et al (2011) . Much NLP development doesn’t 

appear to be done from scratch and there exist frameworks upon which pre-trained classification 

models  (BERT,  GPT,  Transformers)  can  be  applied  to  make  development  easier  and  faster 

(“ChatGPT,” 2022)(Devlin et al., 2019).  

Observation of published articles on the subject indicates that text-based data is a common 

choice  for  analysis.  An alternative  to  the  Packeer  & Kannangura  method is  the  aggregation of 

publicly available text to train a recognition algorithm. Shah et al ((2020)) scraped the HTML of 102 

different telegram channels (legal and “illicit”) to feed into their NLP language model to validate 

that their method could identify content legality. They were even able to use a dataset from Twitter 

to compare the origin of content as well with “human comprehensible” differences  (Shah et al., 

2020). Given the success of these aforementioned methods, choosing a sufficiently large natural 

language dataset should be adequate for testing the efficacy of a moderation bot. It also stands to 

reason that some of the complexity associated with other detection methods will not be as difficult 

to handle in the case of natural language processing.

So, the next logical question that follows the assumption that NLP serves as a viable method 

for content detection is “how will this content detection method be deployed in practice?” Platforms, 

as previously discussed, have their own internal methods for content detection deployments, but an 

external party can’t leverage internal tooling to detect content. The next closest thing to internal 

tooling is API exposure, and from this the idea that perhaps a bot (which leverages this platform API 

as if it were a user) could serve as the agent for content detection using natural language processing.

1.3 Bots on Telegram and Other Platforms
Since  it’s  decided  that  bots  could  be  the  vehicle  for  performing  content  detection,  it  is 

important to decompose some of the different fundamentals surrounding bots, what they’re typically 

used for, and how they work in the context of Telegram.
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Traditional Applications for Chatbots:

The fundamental purpose of a bot (or chatbot, when used in a chat format) is to act in place 

of a role that would otherwise be occupied by a human. Businesses, in particular, use bots because 

of their scalability and reduced cost, in opposition to human alternatives (Raj, 2019). Most bots are 

operating using some form of  intents and  entities.  Intents are the purpose for using the bot and 

entities are the keywords and phrases that the bot is looking for in user messages in order to provide 

some useful function (Kahn & Das, 2018). 

Platforms for Bot Development:

Bots, at their core, are small programs that use an API key to authenticate and communicate 

with the Telegram infrastructure. In this way, their deployment location is fairly flexible. As long as 

a  machine  has  access  to  the  internet  and  can  asynchronously  run  the  bot  code,  it  could 

hypothetically host a Telegram bot.  Many modern bots are not being deployed on local hardware. 

Today’s  bots  are  often  being  deployed  on  cloud  (or  serverless)  platforms.  These  platforms 

themselves  often  provide  tools  that  can  assist  in  the  development  of  bots,  including  artificial 

intelligence (Patil et al., 2017)(their useful companion table included below). 

Table 1 : Companion Table for All Cloud Platforms

KORE CHATFUEL Microsoft Bot 

Framework

Microsoft 

Azure

Heroku AWS Lambda IBM Watson

AI BUILT IN Yes No Yes Yes No No Yes

Programming 

needed?

No No Yes Yes Yes Yes Yes

Complexity High Low High High High High Medium

Setup time 10 min 10 min 1 hour 15 min 2 hours 1 day 4 hours

Pre-study 8 hours 4 hours 8 hours 8 hours 8 hours 16 hours 16 hours

IDE Built in Built in Visual Studio Built in Eclipse Atom Eclipse / CLI Eclipse

Pros Extensive Plug ‘n play Most extensive Integrated Env Single dev + 

deployment

Serverless 

deployment

High quality of 

interaction

Cons Steep learning 

curve

Limited 

possibilities

Needs setup 

and 

deployment

Preview only Steep learning 

curve

Steep learning 

curve

Limited cross-

service 

integrations

Note. Adapted from Comparative study of cloud platforms to develop a chatbot, Patil et al., 2017

Chatbots that are designed to converse with end users frequently use commercial implementation of 

NLP to achieve similar results to a natural human conversation. For instance, OpenAI’s (AI research 
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business and nonprofit  enterprise)  most  recent  tools  use “Reinforcement Learning from Human 

Feedback” (Uc-Cetina et al., 2022) to deliver this functionality to a variety of different enterprise 

applications,  like  Algolia  semantic  search  (with  GPT-3)  and  their  own  AI  chatbot,  ChatGPT 

(“ChatGPT,” 2022; OpenAI, Blog, GPT3-Apps, 2021). Many of these AI platforms feature an open 

API (including OpenAI) that can be interfaced with in order the leverage existing technology in 

order to produce new ways of interacting with existing models. Hugging Face, an AI development 

company,  also provides a public API for  their  tool  “Transformers”,  which can be used to train 

machine learning (NLP) models (Transformers, n.d.). From the comparison of cloud platforms and 

the existence of public APIs for NLP models, one could discern that a bot that needs to employ AI 

can be deployed anywhere as long as it is capable of talking to both Telegram servers and public AI 

APIs (assuming publicly hosted AI platforms are the method of choice). 

1.3.1 Existing Telegram Bots and Development Tools

Most social media platforms provide some form of API that can interact with content in the 

platform.  Many are  familiar  with  the  Twitter  API  (Twitter  API  Documentation,  n.d.),  which  is 

frequently  used  to  make  bots.  Telegram also  exposes  their  API  for  creating  bots  using  a  chat 

registration interface called BotFather, which provides API tokens that can be used for performing 

actions on Telegram as a proxy for a user (Telegram Bots, n.d.). 

Table 2: Telegram Bot Examples

Bot Function Open/Closed Source 

Code

Source

Miss Rose Chat moderation Closed, previously open (Miss Rose, n.d.) 
(Larsen, 2017/2022)

DaySandBox Anti-spam Closed, previously open (Telegram Bot 
Daysandbox Bot, n.d.) 
(lorien, 2017/2022)

Combot Anti-Spam Closed (Combot, n.d.) (Combot 
Anti-Spam System, n.d.)

Botanicum Tree Identification from 

images

Open (Korotaeva et al., 2018) 

(Koro, 2019/2019)

Protectron “AI” Chat Moderation Closed, unknown @antispamchat, only 

accessible via telegram 

directly
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Anecdotally, many of the Telegram bots observed while creating this review either did not have open 

source code, or had code that was previously open source and is now closed (presumably for future 

monetization). Some non-exhaustive examples are included in  Table 2. As is clear from the table 

only one of these bots that has a similar focus to this research is from another research article, of 

which the focus is on image detection of leaves instead of natural language processing. It’s quite 

apparent that there isn’t a lot of research surrounding the concept of deploying a bot that leverages 

NLP for content detection. However, what is clear is that bots are commonly deployed as a means to 

perform platform moderation tasks, so even in the event that a standalone bot doesn’t exist that uses 

machine learning to  detect  prohibited content,  it  could at  the very least  serve as  beneficial  for 

existing bots to be augmented with this technology to enhance their capabilities.

Bots, for the most part, don’t really have specific tools that are required to build them. At 

their most basic, they simply interact with an API. So long as a language exists which supports 

easily interacting with a given bot API, that alone should be sufficient for building a chatbot. 
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Table 3: Comparison of Bot and AI Development Tools

Tool Name Type 

(Lib, model, etc)

Platform Used for Citation

Telethon Python Telegram 

Client

Varies, Open Library for 

Telegram API 

Interaction

(Baumgartner et 
al., 2020; 
Jarynowski et al., 
2021; Telethon, 
2016/2023)

Python-telegram-bot Python Telegram 

Client

Varies, Open Library for 

Telegram API 

Interaction

(Python-Telegram-
Bot, n.d.)

Note: This is by no means extensive, there are innumerably more tools for development

For Telegram, there are several open libraries for building bots, but it seems the majority of 

people are using Python, likely because it is simple and interoperable with other libraries. Table 3 

includes some examples of Python libraries for Telegram. Telethon was included in a research article 

that was found during this review, but the python-telegram-bot library appears very robust and easy 

to work with. Likely a good candidate for this research both due to its simplicity and ease of 

integration with other tooling, as will be discussed in section 1.4.

1.4 NLP with Machine Learning Models for Content Detection
Since natural language processing appears to be the most viable method for this research, this 

section serves to break down some of the different aspects of using natural language processing for 

content detection. There are aspects that cover both models themselves, but data and tools used to 

test their performance are covered here.

1.4.1 Machine Learning and Sentiment Analysis

When content detection is performed for qualitative properties against a dataset frequently 

this is referred to as Sentiment Analysis, or the “attempt[s] to automatically determine sentiment 

contained in text” (Taboada, 2016). Models that are good at performing data classification (EG. “is 

this prohibited content or not?”) are not inherently the same as models that are good at creating 

generative human-like response to input (EG. GPT). Binary classification of data, such as assigning 

labels like “hate speech” or “not hate speech” would fall under this sentiment analysis category of 

machine learning.
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1.4.2 Social Media Datasets Used for Sentiment Analysis

There are not a huge number of open Telegram datasets available at the moment. Many of 

the datasets that were gathered in academic research are not posted online for re-use (Jarynowski et 

al.,  2021;  Shah  et  al.,  2020),  but  the  major  (rather  large  and  extensive)  dataset  that  is  openly 

available for research use is  The Pushshift  Telegram Dataset  (Baumgartner et  al.,  2020),  which 

contains 317 million Messages from 2.2 million unique users across 27.8 thousand public channels. 

The scope of this single dataset is large enough, in fact, that it can and has been used for a variety of 

other research as well (Bovet & Grindrod, 2022; Peeters & Willaert, 2022). Datasets don’t need to 

be limited just to Telegram. Twitter happens to also be a common place to harvest data for NLP 

tasks and for content recognition accuracy comparisons (Pak & Paroubek, 2010; Shah et al., 2020). 

Table 4 contains a list of some social media datasets, their scope, and references. 

Table 4: Large Social Media Dataset Examples

Dataset Platform Scope Reference

Pushshift Telegram 317M Messages (Baumgartner et al., 

2020)

Pak & Paroubek Twitter 300,000 text posts (Pak & Paroubek, 

2010)

YFCC100M

Multimedia Commons

Yahoo, Flickr 100 Million Images (Multimedia Commons 
- Registry of Open 
Data on AWS, n.d.)

These large scale datasets tend to have an issue that they suffer from for sentiment analysis. 

The issue is that they are not labeled in a simple way for sentiment derivation. This complicates 

some things because the scope of this research is not to develop a process for dataset labeling. 

Rather it is for detecting sentiment and sets with labels already applied are the best way to test this. 

After reviewing many different datasets and fine tuned machine learning models, hate speech labeled 

datasets  stood  out  as  having  clean  formatting  for  ease  of  use  with  binary  classifiers  (more  on 

specifics in Section 3). It’s not so important, necessarily, that the data being used will come from 

Telegram itself, as all social media share similar characteristics in slang and use of language. 
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Table 5: Pre-labeled Hate Speech Dataset Examples

Dataset Platform Scope Reference

Curated  Hate  Speech 

Dataset

Multiple 451709 messages (Mody et al., 2023)

Dynamically  generated 

hate speech dataset

Multiple 40, 000 messages∼ (Vidgen et al., 2021)

Multi  Platform-Based 

Hate Speech Detection

Multiple 3000 (Cooke et al., 2023)

Automated Hate 

Speech Detection

Twitter 25000 tweets (Davidson et al., 2017)

MMHS150K Twitter 150,000  tweets  image 

and text

(Gomez et al., 2019)

A Benchmark Dataset 

for Learning to 

Intervene in Online 

Hate Speech

Reddit, Gab 22,324 messages (Qian et al., 2019)

Table 5 contains some examples of pre-labeled hate speech datasets which are quite robust and have 

supporting academic papers to back them up. Automated Hate Speech Detection, MMHS150K, and 

A Benchmark Dataset for Learning to Intervene in Online Hate Speech are all particularly good sets 

to work with. A more detailed explanation of why these sets are ideal can be found in Chapter 3, 

dataset analysis.

1.4.3 Tools for AI Development

It is pertinent to compare some of the tools that are used in developing bots and AI in order 

to  determine  what  would  be  most  effective  for  creating  an  automation  bot.  The  programming 

language of choice for developing a bot is, again, not necessarily important as they can be created in 

a large variety of  languages  (Modrzyk,  2019).  What is  important  is  that  the language supports 

libraries  and  tools  that  can  make  communication  with  both  AI  and  bot  platform  aspects  of 

development  smoother.  Python,  for  instance,  was  used  by  multiple  research  groups  for  AI 

development tasks, likely due to its “widely-used”  (Korotaeva et al., 2018) purpose-built libraries 
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like PyTorch (an open-source machine learning framework) or OpenCV (computer vision library) 

(Modrzyk, 2019; PyTorch, n.d.; Shah et al., 2020; Wang et al., 2021). Table 6 includes some tools, 

their purpose, and in which context they have been used in research. 
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Table 6: Comparison of Bot and AI Development Tools

Tool Name Type Platform Used for Citation

MMDetection PyTorch-Based 

Toolbox

Varies, Open Computer Vision 

Research

(MMDetection 

Contributors, 

2018/2018; Wang et 

al., 2021)

PyTorch ML Framework Varies, Open Machine learning 

development

(PyTorch, n.d.; 
Raj, 2019; Wang 
et al., 2021)

Word2Vec 

(BOW, Skip-Gram)

model/architecture Varies, Open Natural Language 

Processing

(Shah et al., 2020; 
Word2vec | 
TensorFlow Core, 
n.d.)

Scikit-learn Python Library Varies, Open Machine Learning 

development

(Korotaeva et al., 

2018; Raj, 2019)

spaCy Python NLP Library Varies, Open NLP Development, 

Information 

Extraction

(Raj, 2019; spaCy, 
n.d.)

Tensorflow (and 

Hub)

Machine Learning 

Framework

Tensorflow and 

others

Data acquisition, 

model training, etc

(Raj, 2019; 
TensorFlow, n.d.)

NLTK (Natural-

Language Toolkit)

Python Modules, 

Datasets, Tutorials

Varies, Open Natural Language 

Processing

(NLTK :: Natural 
Language Toolkit, 
n.d.; Raj, 2019)

Microsoft LUIS Cloud-based natural 

language 

understanding 

service

Microsoft Azure 

Bot Service, 

Commercial

Natural Language 

Processing, Chatbot 

Creation

(Language 
Understanding 
(LUIS) | Microsoft 
Azure, n.d.; Patil 
et al., 2017)

HuggingFace 

Transformers

ML API for 

PyTorch, 

Tensorflow, JAX

HuggingFace, 

commercial, with 

free tier

Pre-trained ML 

model classification

(Transformers, 

n.d.)

GPT-3 API for NLP OpenAI, 

commercial, with 

free tier

Pre-trained Natural 

Language 

Processing Model

(OpenAI, Blog, 
GPT3-Apps, 2021)

Note: This is by no means extensive, there are innumerably more tools for development
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Alongside open tools for manually trained machine learning models, there are commercial 

tools as well that all have free-tiers that shift the burden and expense of model training away from 

the developer. Such tools include GPT-3, HuggingFace, and Microsoft LUIS ( Transformers, n.d.; 

Language Understanding (LUIS) | Microsoft Azure, n.d.; OpenAI, Blog, GPT3-Apps, 2021). The 

open APIs promise the fastest stand-up time, but the tradeoff of using these platforms is that the 

details of what datasets with which their models are trained is mainly undisclosed. It is important to 

note that contemporary machine learning models are not trained from the ground up with code 

written  entirely  from scratch.  They  make  use  of  platforms,  frameworks,  and  libraries  of  code 

optimized for machine learning training tasks to process large amounts of data at scale. The two 

most  apparently  successful  open  source  platforms  for  training  machine  learning  models  are 

Tensorflow, created by Google and optimized to work with hardware designed for machine learning 

(tensor  core  technology)  (TensorFlow,  n.d.) and  Pytorch  (PyTorch,  n.d.).  The  integrations  that 

tensor-based frameworks have with various platforms,  programming languages (like Python and 

Javascript), and their optimizations make them ideal candidates for working with both AI and Bots.

1.5 Design Considerations for a Bot That Can Perform Sentiment 
Analysis

Given the conclusions made about ideal tools for content detection in the previous sections, 

this section serves to expand upon some of the findings when it comes to implementing the different 

tools discussed.

1.5.1 Use of Pretrained ML model(s)

If desirable accuracy is expected, training a machine learning model using local hardware is 

far beyond the scope of this research. However, it’s important to note the resources associated with 

such training in order to disseminate its non-inclusion here. Purchasing hardware outright to train a 

machine learning model can have significant cost even for small models, particularly due to the use 

of graphical processing units (GPUs) for computation. As a result of the cost of local hardware, most 

who are training machine learning models have turned to the use of cloud platform services to 

achieve these goals. However, despite offering elastic scaling for resources, cloud platform services 

are still a potentially significant cost, on the order of several dollars per hour per instance, increasing 

to many thousands when applied at scale to large models  (Justus et al.,  2018).  There are many 

services  that  offer  either  compute  resource  infrastructure  to  train  machine  learning  models 

(Machine Learning – Amazon Web Services, n.d.) or APIs / interfaces with which to feed data to 
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fine-tune models. Many open models can be pulled locally into projects and validated for accuracy 

without dealing with the code overhead or shouldering the cost associated with initial training. Thus, 

one requirement is the importing of pre-trained base machine learning model(s) which can be built  

off of or fine-tuned if necessary.

Additionally,  in the case of models from repositories,  tensor technology is  developed by 

Google and is designed for working with natural language processing models such as BERT. This 

allows users to easily create new purpose-built models from existing work. Consequently it is also 

possible to construct sentiment analysis tools from a large pre-made corpus of models designed for 

specific tasks available freely online. 

1.5.2 Use of Unlabeled Datasets

Unlabeled datasets,  such as the Pushshift  Telegram dataset,  have a very large amount of 

messages. This large quantity of messages makes them ideal for sampling for training data. The 

drawback of datasets like these are that they are,  genuinely,  very large.  Based on some sample 

testing while gathering research the Pushshift set is a 50 gigabyte ZST archive when compressed, 

and its uncompressed size is well over 700 gigabytes. Archive formats like ZST can’t directly be 

broken up into chunks, but pieces of them can be read as data streams in order to extract only a 

fraction of the message data. In cases like this the entire dataset is not needed for analysis, only one 

in every arbitrary Nth message can be selected for decompression, to work with a smaller quantity 

of data. The other issue with unlabeled data is that it is, of course, unlabeled. So it is difficult to use  

for  sentiment  analysis  because  it  has  to  either  be  manually  labeled  or  labeled  with  the  aid  of 

automated methods, such as machine learning models (Vidgen et al., 2021).

1.5.3 Use of Labeled Datasets 

In order to test sentiment analysis accuracy there needs to be a designation of true positive, 

true negative, false positive, and false negative (see section 1.5.6). For reasonable accuracy a large 

scale  dataset  needs  to  have  labeling  manually  applied  for  classification.  For  the  accuracy  of 

sentiment analysis testing, a pre-labeled dataset is required. Many of these are already used to train 

models in repositories and can be re-used for the purpose of testing accuracy at this scale as well.  

This doesn’t exclude unlabeled datasets for use in testing, but it does limit their usefulness.
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1.5.4 Selection Process for Labeled Datasets to Use for Tests

As mentioned previously, hate speech datasets appeared to be ideal candidates for sentiment 

detection.  However,  they  still  need  to  be  further  filtered  based  on  some criteria.  Many  of  the 

available datasets which are labeled for hate speech detection tend to have more labels than a simple 

binary classification (of either hate or not hate speech). Even when they have more than the binary 

result, the categories are either just a breakdown of the hate speech category by type or the inclusion 

of an additional “neither” category. The three most significant labeled fields for this research are 

essentially as follows:

1. Optional: Data source (Twitter, Reddit, Facebook, 4Chan, etc)

2. Message Contents (Dataset text field, comment post, image subtext)

3. Classifier (hate speech, not hate speech, some finer category)

Any and all datasets used for testing models will have to adhere to these basic requirements in order 

to have consideration. More data is preferred and will be easier to test accuracy with. Depending on 

the dataset, extrapolating this information has different challenges. For instance, some datasets that 

are large are “multimodal”, meaning they contain classification data that is not exclusively for text 

but also images or other media (Gomez et al., 2019). These can’t be tested against text-only models, 

so additional work is needed to extract only classified text content from the larger dataset in this 

case. Ideally a dataset will already have user-identifiable information scrubbed and be stored in a 

format  which is  easy  to  work  with  for  parsing  (unusual  unicode  characters  removed,  emojis 

converted to text, et cetera). 

Additionally, it is important that the datasets being fed to models for testing aren’t comprised 

of data that the models were originally trained on. To get a good idea for their detection accuracy, it 

is important that they are being provided with novel data that may not necessarily align with training 

expectations.

1.5.5 Use of Multi-Model Testing for Bias Reduction

The path of least resistance to deciding what kind of sentiment analysis to perform against 

datasets is to aggregate multiple machine learning models which already exist for content detection 

against natural language datasets. Hugging Face, given its large repository, is an example of a good 

place to look for sentiment analysis models. Many are using base NLP models like BERT and are 

trained to look for similar sentiment (toxic language, hate speech, etc), but perhaps have differing 
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training bias.  Additionally, any machine learning model(s) employed to perform sentiment analysis 

are going to include some inherent bias based on whatever the original training data or intent was. 

There  is  additional  bias  from the  creator  of  the  model  and from the  topic  of  sentiment  to  be 

analyzed. Thus, employing multiple models or training models with diverse data can even out the 

bias and improve accuracy (Gaikwad & Thool, 2015). 

From a code standpoint, multiple pre-trained models can be fed the same line of text and 

then an increasing confidence score can be assigned to an individual message as it passes through 

each model’s “filter” for stronger accuracy. The models can together independently process a single 

message  and  derive  sentiment  from it,  adding  to  the  ultimate  score.  This  approach  is  a  more 

simplified version of what is normally called “Bagging” or “Bootstrap Aggregation” when training 

machine learning models (Gaikwad & Thool, 2015), except in this case the models will have already 

been trained and their  aggregate  results  will  be  taken.  This  way there  can be  a  more  accurate 

assessment of whether a message fits a classification without the need to rely on a single model and 

its  associated  training  bias.  The  following  models  have  been  selected  based  on  the  previously 

mentioned positive characteristics.

Model 1: Roberta Hate Speech Dynabench 4 (Vidgen et al., 2021)

The  Roberta  Hate  Speech  Dynabench  4  is  a  model  from  Learning  from  the  Worst: 

Dynamically Generated Datasets to Improve Online Hate Detection  (Vidgen et al.,  2021) which 

produced results at only a 27.7% error rate during its trials and was trained on over 40,000 labeled 

data entries. This makes it a robust candidate to perform preliminary testing against, not to mention 

it was produced by Facebook AI research, which means it was likely designed with platform use 

intent in mind. The true test of its capability will be feeding an external dataset and observing its  

sentiment analysis capabilities outside of its fixed set. This model is fine tuned from the natural 

language processing framework BERT, as previously discussed (Devlin et al., 2019).

Model 2: Twitter 2022 154M (Antypas & Camacho-Collados, 2023), Trained against 154 million 

tweets for hate speech detection, MIT licensed and the latest version is fine-tuned against 13 more 

datasets. This model also uses the BERT underlying model for its natural language processing. 

Model 3:  198M Multilingual Hate Speech Classifier for Social Media Content (Barbieri et al., 

2022) also  trained against  a  separate  independent  scrape  of  198 million  tweets.  This  model  is 

designed  to  work  with  multilingual  data,  arbitrarily  Arabic,  Croatian,  English,  German  and 
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Slovenian are also included. This model was selected for also having the MIT free use license. Also 

its multilingual training may produce interesting results with sample data. The other characteristic 

that make this model interesting for testing is that its sentiment output offensive / not_offensive, 

rather than specifically indicating hate or not hate. It has a set of different qualifiers that it is ranked 

on scoring for, with hate speech itself only constituting a a portion of the final “hate” ranking for the 

sentiment, so it should produce interesting performance results.

All  three  candidate  models  in  the  end  are  selected  due  to  robust  training  methods  and 

accompanying academic papers to rationalize their  methods.  There are many models which are 

available for use, but not all are subject to rigorous scientific process in their production, regardless 

of accuracy. Additionally, “heavy” sentiment analysis testing will not be performed while the bot is 

deployed. Sentiment analysis accuracy can be tested independently from the bot itself  and then 

validated as a proof of concept in tandem after the results of the underlying sentiment analysis code 

are determined.

1.5.6 Calculations to Determine the Performance Accuracy of Model Sentiment

A good statistical  method  for  determining  how good  a  binary  classification  (positive  or 

negative) sentiment analysis is  at  detecting something is  the F-score.  It  is  called the “harmonic 

mean” of precision and recall and it works by comparing true positive, true negative, false positive, 

and false negative binary classification results (Sokolova et al., 2006). 

The adapted table above helps to illustrate this “confusion matrix”

30

Note: adapted from Beyond accuracy, F-score, and ROC  
(Sokolova et al., 2006) 



Recall = TP
TP + FN

Precision = TP
TP + FP

F = 2
1

Recall
+ 1
Precision

F = 2∗Precision ∗ Recall
Precision + Recall

The following is a summary of F score Adapted from (Taha & Hanbury, 2015) and used in a variety 

of works  (Cooke et al., 2023; Mody et al., 2023; Sokolova et al., 2006; Taha & Hanbury, 2015; 

Vidgen et al., 2020)

F-score is calculated based on the 2 values of recall and precision. Recall is the measure of true 
positive (TP) to false negative (FN). 

Recall is the measure of true positive (TP) to false negative (FN).
Precision is the measure of true positive (TP) to false positive (FP).
F-score is the “harmonic mean” of precision and recall. 

As F approaches 1, it indicates higher detection accuracy.

Because  a  baseline  for  true  positive  and  true  negative  must  first  be  set  and  manually 

determined, this rough precision determination can be done in small subsets of random samples of 

messages from the dataset and then averaged to get a rough idea for how well the code will perform 

against unknown data. Many downloadable text classification models online seem to come with a 

predictive F-score, Precision, and Recall (among others) to indicate their accuracy.

1.5.7 Code Hosting for the Bot

A consideration must be made for where code will reside to achieve both goals of sentiment 

analysis and bot development. The more important aspect of this workflow is the sentiment analysis, 

as it is performing the detection. That ultimate goal is more significant than an ultimately functional 

bot. From a hosting standpoint, the sentiment analysis code can reside anywhere as long as it has 

access to either libraries and APIs to talk with machine learning frameworks or repositories. In 

practice, this can be any Linux or Windows PC or server for prototyping and can move elsewhere 

when it comes time to test the detection code alongside the bot code. For the bot code, it matters a 
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bit more where it  is hosted from a practicality standpoint, as it  must be able to speak with the 

Telegram API using Botfather  (Modrzyk,  2019) and have enough security  to  prevent  unwanted 

access or privilege escalation on the machine that it runs on. For this research, the bot can run 

simply off of a local laptop.

1.5.8 Bot Security Implications

One of the challenges associated with bots on Telegram is that they are public facing by 

default and, when deployed, have no inherent security built in to prevent anyone on the platform 

from interacting with them. Once an API key has been made and given to the code running the bot, 

registered with the Botfather, anybody with access to Telegram could hypothetically interact with 

the bot. Thus there are two main considerations that have to be taken into account when making this 

detection bot for testing purposes. 

1. The bot should reside somewhere that, should it prove to be insecure, does not allow access to 

private data or important resources in its host environment (IE. a personal computer).

2. The bot should include a security feature to prevent regular Telegram users from accessing it  and 

chatting with it. This can be built in the form of some authentication challenge or a simple 

user whitelist.

Serverless (function-based) infrastructure is one potential option for hosting this bot. It can be done 

within  the  computational  limits  of  the  free  tier  of  many  major  cloud  providers  (Serverless 

Computing – AWS Lambda Pricing – Amazon Web Services,  n.d.). If serverless infrastructure is 

compromised, it does not reside on a monolithic server instance where a potential malicious actor 

would have access to many other resources aside from the bot. For the purpose of short-term testing, 

consideration number 2 is really the only one that matters in the end.

1.5.9 Communicating With the Bot Through an Interface

When performing sentiment analysis with basic code, results are simply output to a terminal 

display. With a bot the communication between sentiment analysis, the actual bot code and the end 

user is  via the interface of a Telegram chat or channel rather than a terminal’s output.  From a 

practical standpoint the bot can be deployed in a one-on-one chat where data is fed and the bot 

responds with sentiment analysis results. This would look something like a call and response where 

some conversation data is fed to the bot as one message and the bot responds with an interpretation 

of that message. Another way to deploy the bot can be as a passive observer in a simulated channel, 
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where it will actively listen in the “background” and all messages into the channel will be processed 

by the bot and it responds only if a certain prediction threshold is achieved. In the backend, the bot’s  

code will simply be receiving inputs and responding with results from arguments passed to machine 

learning model(s). Again, the sentiment analysis will be testable via a CLI, but for the deployment 

of the bot itself, the Telegram chat will stand as a proxy for a CLI with the bot. Rather than sending 

commands the bot will be listening for input and responding either asynchronously or after given 

intervals.
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1.6 Conclusions of Chapter 1 – Literature Analysis
Automated content moderation is an essential practice on major social platforms due to scale 

and multivariate pressures. Exploration of novel independent moderation strategies provides unique 

insight into these platforms.

Moderation bot should be able to actively monitor simulated conversation in order to be 

comparable to stand-in realistic human moderation and also be ideally more effective than simply a 

whitelist or filter. The accuracy of the model performance can be tested independently from the bot.

Python is the preferred language of choice, due to its ease of access and widely available 

libraries and frameworks for working with both Telegram and AI. Tensorflow will be used to interact 

with  machine  learning  models  and  all  trained  models  will  be  pulled  from  the  HuggingFace 

repository.

The Natural Language Processing Models used to develop the bot should employ pre-trained 

model based on a proven framework like BERT. They must also come from a research background 

and have varying degrees of bias and data used to train them.

The machine learning models will be performing binary classification via sentiment analysis 

for text based data.

Several large and labeled hate speech datasets from social media content are ideal candidates 

for testing sentiment against.
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2. DESIGN PROPOSAL

From  a  practicality  standpoint,  there  are  two  primary  goals  that  this  content  detection 

strategy  will  be  attempting  to  achieve.  The  first  goal  will  be  simply  the  detection of  content, 

(whether truly “hate speech” or not is less significant than the ability to detect the content based on 

labeling). The secondary goal will be the application of this detection method in a trial within its 

natural environment (Telegram chat, in this case). The rest of the process flow for this research 

stems, logically, from the needs of both of these goals. 

2.1 High Level Workflow for Sentiment Analysis

Figure 2  depicts a high-level overview of the steps for achieving machine learning sentiment 

analysis.

Figure 2: High Level Workflow Diagram for Sentiment Analysis

The end user interface of sentiment analysis testing and functionality is a CLI.  The backend code is 

made up of a pre-trained machine learning model or models that are imported via machine learning 

platform libraries (such as Transformers). The analysis is a result of the output of feeding in a 

labeled dataset with deterministic results. This architecture will be further decomposed in its 

individual approach subsection.
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2.2 High Level Workflow for Telegram Bot

Figure 3  a high level overview of the workflow for interfacing with a telegram bot from the chat 

interface and how it interacts with the backend bot code via the Telegram API. 

Figure 3: High Level Workflow Diagram for Telegram Bot

The bot code interacts with an API endpoint and authenticates with Telegram using an API key. 

There are many API libraries for popular languages, but the one that will be used here is for Python 

because it has robust libraries that support both bot development and work with machine learning 

models. This workflow will also have further decomposition in its respective approach section.
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2.3 Combined High Level Workflow for Sentiment Analysis and 
Telegram Bot

Figure 4  depicts a combined overview of the two approaches working in tandem with some 

additional considerations for the hosting location for the respective approaches.

Pictured in red, code for performing sentiment analysis against a given dataset (to detect something). 
Pictured in blue, code and pipeline for performing bot related functions and interacting with bot itself 
(to apply the detection strategy in the platform). 
Pictured in purple, considerations that will apply to both bot and sentiment analysis. 

In addition to the combination of both strategies, there is also a small additional section showing the 

consideration for where code will reside.

2.4 Sentiment Analysis Operational Capability Breakdown

Figure 5 is a diagram of the operational capabilities required for sentiment analysis, roughly 

corresponding to a use case diagram without system decomposition.
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Figure 5: Sentiment analysis operational capabilities diagram

 In the center are capabilities the system should achieve and on the outside are entities that 

participate in achieving those capabilities, be they human or non-human factors.

Table 7: Table of Sentiment Analysis Entities and Descriptions

Entity Name Associated Capability Description

CLI Data Entry Command Line interface for 

interacting with machine 

learning model

Researcher Data Entry User feeding data into machine 

learning model

Dataset (s) Sentiment Determination Labeled data being fed into 

machine learning model(s)

Machine Learning Model Code Data entry, Sentiment 

determination, Output Binary 

Classification, Pass Data to Bot

Code the compromises machine 

learning model for sentiment 

analysis

Bot Code Pass Data to Bot Code from bot that receives 

sentiment analysis inputs

This table is a breakdown of the high level entities that shall comprise the sentiment analysis aspect 
of the design.
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Table 8: Sentiment analysis capability names and descriptions

Capability Name Description

Data Entry Capability of sentiment analysis model to receive 

message data an inputs

Sentiment Determination Aspect of machine learning model that produces a 

binary output for  a given input message

Output binary classification Capability of sentiment analysis model to produce 

output yielding true, false, positive, negative 

sentiments

Pass data to bot Aspect of code that handles results data being fed 

to bot for output to user

This table is a breakdown of the capabilities that the system design aims to achieve.

2.5 Sentiment Analysis Requirements Breakdown

Table 9: Sentiment Analysis - Functional & Non-Functional Requirements

Functional Non-Functional

Use of pretrained ML Model(s) Predefined Prediction Accuracy / Recall / 

Precision Determination

Use  of labeled datasets

Use of Bias Reduction and multi-model testing or 

fine-tuning

Description and rationale for each requirement from Table 9 included in remainder of Section 2.6.
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2.6 Sentiment Analysis Architecture Breakdown
This section breaks down the different steps required for performing sentiment analysis.

2.6.1 Before Sentiment Analysis

Figure 6: Pre - Sentiment Analysis Activity Diagram

The system needs some preliminary activities in order to perform sentiment analysis. As shown in 

Figure 6 they are essentially as follows:

• Write skeleton sentiment analysis code

• Include/test library for working with pretrained models (Transformers)

• create an preliminary setup for at least one machine learning model from online repository

• Select  candidate  pre-trained  machine  learning  models  from  repository,  preferably  with 

topical focus related to content detection
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2.6.2 Sentiment Analysis with an Initial Candidate Test Model

The following diagram shows the steps for performing sentiment analysis with a single initial 

model.

Figure 7: Sentiment Analysis Primary Model Activity Diagram

After some preliminary setup, the rest of the process for the first model is as follows:

• Implement one fully functional machine learning model that can process at least one labeled 

message at a time from an input field

◦ import library for parsing labeled data frames (JSON)

◦ import library for importing and passing data to ML model (Transformers)

◦ extract relevant fields from labeled dataset (ID, text, sentiment_result)

◦ pass fields from dataset into model as input

• Capture primary model outputs and results

• Store results with input data to compare sentiment accuracy
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2.6.3 Sentiment Analysis with Additional Models

The process for performing sentiment analysis with additional models is exactly the same as 

with the first model, only repeated a few more times.

Once an initial model has been tested, the following tasks remain to complete all performance tests:

• Implement additional pre-trained machine learning models from repository (HuggingFace)

• Implement additional code to capture aggregate outputs to produce a single resultant binary 

classification (IE. hate speech or not hate speech), for use as output from the bot.

2.6.4 Using F-score as a Measure for Performance

Additional once all of the results are collected their outputs need to be verified for accuracy 

so that F-scores can be calculated. The flow below shows the steps required to verify accuracy.

Once the initial data has been collected, the accuracy determination can be calculated as follows:

• Perform simple preliminary f-score calculations against initial test dataset with prototype

• The F-score calculation can be decomposed into the following basic parts

◦ Normalize model outputs (JSON)
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◦ Compare input labels against output sentiment (Hate Speech true or false)

◦ Calculate the percentages of incorrect and correct sentiment, based on output labels

◦ Use the counts of correct and incorrect sentiments to derive TF, TP, TN, FN

◦ Calculate F-score with those derived ratios

2.7 Telegram Bot Operational Capability Breakdown
Figure 9 is a diagram of the operational capabilities required for creating the Telegram bot.

Figure 9: Telegram Bot Operational Capabilities Diagram

 This diagram is also roughly corresponding to a UML use case diagram without system 

decomposition, which will be explored in the next section. In the center are the capabilities that the 

bot should be able to achieve and on the outside are the entities that will achieve each capability.

Table 10: Table of Telegram Bot Entities and Descriptions

Entity Name Associated Capability Description

Researcher Send Sample Data to Chat, 

Receive Sample Data, Return 

result of sentiment analysis

User feeding data into and 

receiving data from telegram 

application

Telegram API Receive Sample Data, return 

result of sentiment analysis

Programming interface for 

passing data between researcher 

and bot code

Telegram Application Receive Sample Data User interface for researcher with 
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backend

Machine Learning Model Code Pass Data to Sentiment Analysis Sentiment analysis code 

interfacing with bot code

Bot Code Pass Data to Sentiment Analysis, 

Return result of sentiment 

analysis

Code to pass data between API 

and sentiment analysis

This table is a breakdown of the high level entities that shall comprise the Telegram bot aspect of the 
design.

Table 11: Telegram Bot capability names and descriptions

Capability Name Description

Send sample data to chat Action researcher takes to send data through chat 

interface

Receive Sample Data API and bot code capability of handling data 

passed through interface from researcher

Pass Data to sentiment analysis Bot passing data from API to sentiment analysis

Return result of sentiment analysis Sentiment analysis returning result to bot for 

researcher to view via interface

This table is a breakdown of the capabilities that the Telegram bot design aims to achieve.

2.8 Telegram Bot Requirements Breakdown

Table 12: Telegram Bot - Functional & Non-Functional Requirements

Functional Non-Functional

Bot Communication Channel and End user 

Interface with Bot

Code Hosting for Bot

Feeding unlabeled test data and labeling analysis Bot Code Location and Security Considerations

Description and rationale for each requirement from Table 11 are included in remainder of Section 

2.
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2.9 Telegram Bot Architecture Breakdown

This section breaks down the different steps required for building a telegram bot that can perform 

sentiment analysis.

2.9.1 Bot Registration with API

Figure 10 diagram depicts the steps for registering a Telegram bot for use with the Telegram API.

Figure 10: Process to Register a Telegram Bot for 
Use with the Telegram API

The process for registering a Telegram bot so that it can interact with Telegram’s API are roughly as 

follows:

• Implement some initial bot skeleton code

• Register Telegram bot with Botfather API

◦ New bot creation order

◦ Name Bot

◦ Retrieve API Token

• Add API Token to bot code, test it’s ability to communicate inside of Telegram
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2.9.2 Bot Testing Before Adding Sentiment Analysis
 Figure 11 shows the steps required for getting the bot setup with some minimal features 

before adding in sentiment analysis.

Figure 11: Process for Testing the Bot Before Adding 
Sentiment Analysis

Simply put, the bot needs to be tested to make sure that it works before adding in the sentiment 

analysis functionality. Some of these setup steps include:

• Implement security feature in bot to prevent outside access

• Test security feature implementation

◦ Can bot be interacted with outside of access restriction?

• Simple output response

◦ Test bot call and response to input
46



2.9.3 Bot Testing With Sentiment Analysis Response
No specific diagram required, since this activity is simply a combination of the previous several 

diagrams. Its steps are like so:

• Merge sentiment analysis code with bot code

◦ Pass sentiment analysis output

◦ Send sentiment analysis response via API

• Re-implement sentiment analysis standard input as bot message input

◦ Pass message input into telegram

◦ Have the bot respond with the result of its sentiment analysis

◦ Demonstrate the results

2.9.4 Additional Unlabeled Dataset Analysis
The  following  diagram  shows  the  steps  to  perform  unlabeled  dataset  analysis.  Though 

unlabeled data will not be performance tested, it is still a good exercise to observe its complexity.
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Figure 12: Process for analyzing an unlabeled dataset

Even if it is not required for this research, analyzing unlabeled data is also necessary to understand 

some of its drawbacks and is included here for additional context around the choice to use labeled 

sets for measuring performance. The steps are as follows:

• Unarchive small portion of dataset

• Extract small subsection of dataset

• Determine dataset message format and isolation strategy

• Stream decompression

◦ Break apart dataset into chunks

◦ Extract message samples from chunks
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• Programmatically isolate single message field from chunk

• Programmatically isolate multiple message fields from chunks

• Clean unnecessary data

2.10 Conclusions of Chapter 2 – Design Proposal

The design proposal chapter aims to create a framework for the description of the dual-

approach for both creation of machine learning model sentiment and a bot that uses that sentiment in 

practice. This framework is then used to drive the steps of the following phase to completion. It also  

serves  to  visually  decompose some of  the  complexity  of  each individual  phase  of  creating the 

practical  part  of  this  research.  As  is  apparent  from  the  breakdowns,  there  are  two  distinct 

components of this implementation, and real-world examples of content detection follow similar 

multi-component patterns.
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3. IMPLEMENTATION
This section shows all of the steps that went into dataset analysis, performance testing, and 

building  of  the  content  detection  bot  implementation.  Also  included  is  a  demonstration  of  the 

implementation in practice.

3.1 Dataset Analysis

Before any sentiment analysis determination can be done, it is important to understand why 

some datasets are and are not easy to work with for performance testing. The following is analysis of 

the chosen datasets and the rationale for their inclusions based on some useful characteristics.

3.1.1 Labeled Test Dataset Selection and Preparation

Many datasets were considered and only several were found which were in a format that met 

labeling requirements. Ease of format conversion and lack of use in the training of the candidate 

models were the biggest selection factors. The following are the three sets which were selected for 

prototyping and final performance tests.

1. Multi Platform-Based Hate Speech Detection (Cooke et al., 2023)

A small creative commons dataset from the publication Multi Platform-Based Hate Speech 

Detection (Cooke et al., 2023) was the first used due to its size (3000 messages), ease of formatting, 

and the use of multiple platforms for data (Reddit, Twitter, and 4chan). Since this dataset is not very 

large and is relatively recent it has not already been pulled into other larger aggregate datasets and is 

a good small benchmark to test models against. This set is both for initial prototyping and final 

performance tests.

2. A curated Dataset for hate speech detection on social media (Mody et al., 2023)

This  is  a  large  scale  dataset  which  contains  451709 messages.  It  is  actually  already an 

aggregate set generated from ~20 datasets. There are several quality characteristics in this set that 

make it suitable for this sentiment analysis. The data inside has been scrubbed to remove any user-

identifiable  information.  Scrubbing,  in  this  case,  also  includes  the  exclusion  of  any  model 

incompatible (escape) characters or unusual line breaks which would be difficult to manipulate with 

code. The following is a sample from this set, which has a similar format to the Cooke set. Note, that 
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it  does  exclude  the  metadata  about  the  message  origin  in  the  final  preprocessed  set,  but  this 

information is present in the researchers’ documentation if it is needed.

Figure 13: Curated Dataset for hate speech detection excerpt 

3. A Benchmark Dataset for Learning to Intervene in Online Hate Speech (Qian et al., 2019)

This dataset was originally designed to be used alongside strategies for warning against hate 

speech interactively.  It  is  aggregated from both Reddit  and the  social  media  platform Gab and 

contains 22,324 comments (Qian et al., 2019). Its labeling was performed by crowd sourcing using 

Amazon’s mechanical  turk,  so it  has somewhat different sentiment than other labeled sets.  The 

version of this dataset being used is also provided by the Mody et al team as part of some of the 

original data that was used to test the accuracy of their curated dataset models. The data in this set is 

not part of the larger curated set, so it can also be easily used for testing without overlap. The set is 

also labeled in the convenient aforementioned format, so it is easy to manipulate for parsing.

Other datasets that were considered, but not used

The Hate Speech Detection Set (MacAvaney et al., 2019) was also considered. However, in 

its git repository, the data is not normalized and is split between a combination of individual raw 

text files and a CSV-to-file labeling map. 

It  should be noted that these different datasets are also selected because of the different 

methods used to perform the labeling of their “hate speech” data. Different papers have differing 

opinions on how that labeling should be done. Spreading out the data should also help reduce the 

labeling bias. The differing rationale and justification for labeling is also a good test against the 

inherent bias of model sentiment.

As was discussed in the literature review, the primary candidate model which was selected 

(Roberta Dynabench) was fine-tuned in rounds of around 10,000 messages. So, in order to keep in 

line with that standard, the total number of tested messages should be at or above 10,000 messages 

minimum, which these datasets easily satisfy.
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3.1.2 Labeled dataset analysis

Labeled datasets, in general, come with various types of metadata depending on the content 

of the set and the original research intent of the set. The following is an example of a dataset which 

is difficult to work with for simple binary classification for several reasons (the fact that it wasn’t  

designed with this in mind being among them).

Figure 14: Example of labeled dataset fields 

Note how it includes a large amount of extraneous metadata which must be filtered. It does not 

include binary sentiment labeling, and the relevant fields are interspersed with the actual message 

content. 

By  contrast,  the  contents  of  the  Cooke  dataset  are  single  line,  comma  separated,  and 

normalized in a way that is very easy to work with for parsing.

Due to the fact that dataset lines could contain many string escaping or unicode characters, it 

can  be  very  difficult  to  parse  messages  without  encountering  errors  related  to  these  oddities. 

Datasets like this Cooke set are easy to convert to JSON, which allows for easier results comparison 

for complex strings and manipulation with Python libraries. This is due to the encoding of JSON 

having good handling for  complex strings.  After  messages  undergo JSON manipulation,  a  map 

which looks like the following is the output.
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From here it is much easier to write code to extract single messages or compare results from models.

3.1.3 Unlabeled dataset analysis
The Pushshift Telegram dataset was also analyzed in order to understand the scope of a very 

large dataset which has not had pre-labeling applied and what it would technically entail to extract  

message content from it and why it would be difficult to work with. The following numbered steps 

are what was required to analyze even a small part of the unlabeled data.

1. ) Determine dataset message format and isolation strategy

In order to get a small sample of data to begin creating a more robust message isolation script 

the  Pushshift  dataset  archive  decompression  can  simply  be  interrupted  after  a  few seconds  of 

extraction initially. The dataset comes with two compressed ZST archives: one archive for Telegram 

channel metadata and one archive for messages and their associated metadata. 

Looking at a piece of the Pushshift dataset, the decompressed format of the data is  NDJSON 

(a line-free compressed version of JSON).  A single unit  of data and all  associated metadata in 

unformatted NDJSON for one message looks like the following.

Figure 17: Pushshift Telegram dataset NDJSON string

The only piece of this NDJSON string that matters for sentiment analysis with pre-trained 

machine learning models is the “message” field. 

Figure 18: Single isolated message from Pushshift NDJSON string

Thus,  there will  need to  be some code to  programmatically  isolate  messages from their 

NDJSON strings. This is, fortunately, not too difficult as NDJSON (or rather JSON) is a standard 
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{"_":"Message","date":"2019-09-08T18:23:10+00:00","edit_date":null,"entities":
[],"from_id":600675780,"from_scheduled":false,"fwd_from":null,"grouped_id":null,"id":23801,"
legacy":false,"media":null,"media_unread":false,"mentioned":false,"message":"Hes in the new 
season","out":false,"post":false,"post_author":null,"reply_markup":null,"reply_to_msg_id":23
799,"retrieved_utc":1567978269,"silent":false,"to_id":
{"_":"PeerChannel","channel_id":1271719213},"via_bot_id":null,"views":null}

"message":"Hes in the new season"

Figure 16: Normalized labeled message with JSON



format for data processing and there are many utilities available to extract individual fields from 

JSON, such as “jq” on Linux. A script can take the messages as input and output a file with single 

lines of every message input field. Some pseudocode as an example:

Figure 19: Pseudocode for message extraction
 

A script like this can parse out messages and feed them onto individual lines in an output file  

such that they are just the message field. The following is an example of what a conversation from 

the dataset being extracted looks like.

Figure 20: Example newline isolated messages

2. ) Break apart dataset into sub-archives

Because the Pushshift Telegram archive is so highly compressed, trying to extract the entire 

JSON text onto a local hard drive is both unfeasible and unnecessary for data analysis. What makes 

far more sense is to break the large archive up into smaller pieces to decompress message data from 

each  piece.  The  ZST  archive  format  has  libraries  to  support  “stream  decompression” 

(Decompression APIs — Python-Zstandard 0.22.0-Pre Documentation, n.d.). Essentially the archive 

can be decompressed in sections only without writing the entire decompressed dataset to a disk. 

3. ) Extract message samples from chunks

In a decompression loop, 1 in every Nth JSON string can be extracted and stored. In this way 

radically smaller sub-datasets can be extracted from the larger dataset and analyzed. Thus, say, 1 in 

every 100,000 messages can be isolated and stored to produce a small dataset for testing. Some 

pseudocode for how that works looks like:
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 input_file=File_With_Metadata
 output_file=File_Extracted_Messages

Remove old_output_file          # Remove output file if it already exists
While not end:          # Read the input file line by line

Read input_file          # Extract the "message" field 
Message extract regex               # Check if the message field is not empty, and write
Write output_file

Wow that's Colgate
oh, just a realignment?
never extract ur teeth
did you get your teeth extracted?
Always wear your retainer
I was to lazy wear retainers and I regret it
Even less expensive
thanks for the advice
Remember to wear your retainer



Figure 21: Pseudocode for Nth string extraction process

In  testing  this,  there  are  some  issues  with  Unicode  encoding  and  malformed  JSON 

depending on where in a chunk the archive is broken up. This can be accounted for by storing an 

error ratio against the expected message output. Not all of the data need be extracted and some of 

the data would have to be culled due to the dataset not containing only English language text or non-

ASCII characters. Some of the text is also not conversational, but rather contains links and other 

miscellaneous non-natural language content. If this dataset is indeed used to test against models, 

some amount of manual dataset review and classification will need to be performed before machine 

learning  model tests. There are entire academic papers dedicated to properly processing a dataset 

like this, so unbiased and accurate labeling is unfeasible for the scope of this research.
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 input_file=Pushshift_JSON
 output_file=Extracted_JSON_Lines
With steam_reader # Initialize ZST stream reader

chunk = Reader.read # Storing a specified chunk size
data = chunk.decode #With UTF-8   # Decoding the chunk
object = JSON.decoded # Storing decoded chunk in an object (and iterating)
output_file.write(decoded JSON)   # Writing decoded chunk to a file

output_file.close              # Save and close the file



3.2 Sentiment Analysis
Once datasets have been analyzed the code implementation that is used to feed data for 

sentiment analysis can be created.

3.2.1 Writing Skeleton Sentiment Analysis Code

In order to work with models which are from HuggingFace there are a few different libraries 

that can be used. Transformers or PyTorch are some of the more common libraries. Transformers 

can be used to interact with PyTorch models as well. It is suited for models that are downloaded 

from HuggingFace as they have well-written documentation on how to work with the library.  The 

code for this initial setup is as follows:

1. Import transformers and torch libraries

2. AutoModelForSequenceClassification retrieves model from repository

3. AutoTokenizer automatically generates class with structure that weights can parse

4. Collect data (in an array, or rather, batches of arrays)

5. Pass data into tokenizer to give it a meaningful form for the model

6. Pass tokenized data to model input and capture sentiment output somewhere (to file)

3.2.2 Implementation of One Fully Functional Pre-trained Model 

From the  forms  of  prohibited  content  on  media  platforms  and  a  review of  pre-existing 

models which are available in online repositories, the decision was made to use models which are 

fine-tuned for the detection of hate speech specifically for three reasons:

1. There are many models designed for this purpose.

2. Hate speech is prohibited on many social media platforms 

3. There are also many hate speech datasets against which to test these pre-existing models.

The  Roberta  Hate  Speech Dynabench 4  is  authorized  according to  its  Arxiv  publication  to  be 

repurposed for research. The process of implementation of the model is fairly simple and requires 

the Pytorch and Transformers libraries. The more challenging aspects of working with it are: feeding 

extraneous data, using a format which is correctly tokenized, and having the model’s sentiment be 

recorded in a way that is easy to manipulate.
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The Transformers library supports a class which can “auto-tokenize” input data to a machine 

learning model. This simply means that data can be structured in a way that the model’s weights will 

be able to interpret it. The inputs can be tokenized by feeding an array of input strings like so. 

Initially the idea was to pass data lines JSON formatted in one at a time to observe the 

model’s behavior and sentiment response capabilities.

Figure 23: Line by line sentiment analysis using example dataset

As  can  be  seen  from the  standard  output,  this  worked well  to  demonstrate  the  model’s 

functionality, but it was painfully slow (around 1 message per second). The model input parsing 

logic was reworked in order to parse an N number of lines of input at a time to produce results as  

quickly as possible. Using batch processing the model could take raw line separated input text and 

produce sentiment results for 3000 lines in about 1 minute. Some separate code was written both to 

normalize the input dataset’s JSON formatting and to compare the resulting sentiment against the 

input. 

The candidate pre-trained Roberta model yielded a 6.8% sentiment incorrect labeling against 

the input data’s labels, indicating a good fit for a dataset that it was not trained on. From here the 
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Figure 22: example function for passing data to initialized model

tokenized_inputs = tokenizer(dataset_array, return_tensors='pt', padding=True, 

truncation=True)



tests  simply  scale  up  the  size  and  diversity  of  the  input  dataset  and  the  number  of  models 

interpreting the input data. All of the performance results for all datasets can be seen in Chapter 4. 

3.2.3  Capturing Some Initial Prototype Outputs and Performance Results

The comparison script was altered to produce calculation of the 4 essential F-score quadrants which 

can then be extrapolated to calculate any essential statistics necessary. 

Figure 24: comparison script test result output data for 
Facebook Roberta 

Figure 24 is an adjusted example produced by the input / output comparison script now including all 

of the required F-score calculation metrics. So, in this example the F-score would be calculated as 

follows, using the formulas from section 1.5.6

This is a really promising initial F-score, but it’s important to do more rigorous testing to see more 

realistic results in line with the model’s reported performance metrics (27.7%, see  (Vidgen et al., 

2021)).
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3.3 Bot Development

After sentiment analysis, a bot was developed using the python-telegram-bot library in order 

to pass messages to the models and return detection results.

3.3.1  Bot API registration

Registering a new telegram bot is a fairly simple process. 

The first registration step in Figure 25 is to simply send a message to the Botfather with “/newbot”. 

Then it  will  ask a few more questions about how the bot should be named (Figure 26).  Once 

suitable values are selected, the user is presented with an API token, which can then be used by any 

program to authenticate in place of the bot. With this token it is possible to read, write, and check 
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Figure 25: Registering a new Telegram bot with the Botfather

Figure 26: Choosing a name for the new Telegram bot



messages and user information. From there, all that’s needed is the logic for parsing sentiment from 

the machine learning models.

3.3.2  Testing the Bot Before Adding Sentiment Analysis Features

The code for the bot’s functionality is  essentially as shown in Figures 10 and 11 There are some 

additional functions that are added in order to achieve the rudimentary goals of security and access. 

Figure 27 shows functions for checking the current ID of the user, stop command, and feedback 

about the bot’s current status.
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Figure 27: Picture of bot user identity function and 
sleep status reporting

Figure 28: Picture of simple bot sleep status and start function



Figure 28 shows attempting to retrieve user ID while the bot is asleep and then the start command 

for the beginning of message analysis. 

All of the bot’s functions are protected by this rudimentary user ID check (Figure 29) by using the 

function  decorator  @requires_authorization such  that  all  asynchronous  functions  will  not  run 

without passing the security check. In the event that an unauthorized user ID tries to interact with 

the bot, it will simply appear non-functional or, in this case, return an authorization failure. This is a 

simple example, but the functionality can easily be extrapolated to include multiple user IDs or 

Telegram channel IDs. 
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Figure 29: Example code showing bot's simple security mechanism

def requires_authorization(func):
    @wraps(func)
    async def wrapper(update: Update, context: ContextTypes.DEFAULT_TYPE):
        user_id = str(update.effective_user.id)
        if user_id not in ALLOWED_USERS:
            await update.message.reply_text(str(user_id) + ': Unauthorized')
            return
        return await func(update, context)
    return wrapper



3.4  Implementation of the Sentiment Analysis in Telegram bot

After  the  initial  bot  testing  for  functionality  and security  was  performed,  the  sentiment 

analysis code was combined with the bot code so that the bot could perform detection tasks.

3.4.1 Demonstration of Bot Interaction – Single Model Implemented

The figure below is a full example showing off all of the steps of interacting with the bot 

from start to finish in this sequence:

1. Trying to interact with the bot while it is asleep, showing it’s sleep message

2. Trying to retrieve the user ID while the bot is asleep, showing sleep message

3. Running the bot’s startup function so that it begins polling for new messages

4. Sending a sample message for the bot to test sentiment against the ML model 

5. Returning the raw JSON object with the captured sentiment from the model

6. Trying to retrieve the user ID while the bot is awake, receiving the captured ID

7. Running the bot’s stop function, and then testing to make sure it has fully stopped.
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The raw JSON of the sentiment is returned to the user for demonstrative purposes, but a 

productive version of this bot would quietly await messages that trigger sentiment ‘Hateful: “1”’, 

before performing a followup action. It is trivial upon calculating the violating sentiment to send a 

message, for instance, to a specified “admin” user or to locally record a log of the offense for further 

review. It should also be noted that sentiment response time is roughly around 1 to 2 seconds for a 

single model.
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Figure 30: Picture of full bot interaction cycle



At  this  stage  some  additional  tests  with  filler  text  were  performed  to  see  how the  bot 

responds to maximum message length limits for Telegram. 

This example message contained the maximum number of characters in a message, 4096 at the time 

of writing. 

The  bot  simply  handled  this  without  issue.  Since  the  length  of  this  Telegram  maximum  is 

significantly shorter than the length of some large single messages that were contained in the test 

datasets. 

64

Figure 31: Picture of filler text lorem ipsum message length test

Figure 32: Picture of bot processing lorem ipsum filler message maximum length 
without issue



3.4.2 Demonstration of Bot Interaction – Multiple Models With Aggregate Score
 The scores from the 3 models are averaged per message to achieve an aggregate score (using 

the aforementioned bootstrap aggregation) which would ideally be considered less biased against the 

sample dataset than a single model. 

To  demonstrate  that  it  is  possible  to  implement  the  bootstrap  aggregate  score,  but  also 

potentially useful for true sentiment determination, the bot’s code was modified slightly to yield the 

sentiment from all 3 test models and print the aggregate score to the user along with a message 

about hate speech likelihood. Once the sentiment derivation was increased to 3 models, there was a 

slight  noted  increase  in  time  for  response  from about  1-2  seconds  to  around  2-4  seconds  per 

response.
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Figure 33: Image of bot returning bootstrap aggregate sentiment result for not hate 
speech



It was decided that an aggregate hate score of below 2 would be interpreted as “likely” not 

hate speech, since only 1 or 0 models will have rated it as such. An aggregate hate score of 2 or 

more indicates that at least 2 out of 3 models interpret the message as hate speech and it is worthy of 

either action or manual human review. 
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Figure 34: Image of bot returning bootstrap aggregate result for probable hate 
speech



3.5 Conclusions of Chapter 3 - Implementation
The system design has clear and distinct parts. One for analyzing sentiment, and another for 

the development of a bot. After creating the breakdown of the architecture and requirements, the 

difficult section of the work lies mainly in the dataset analysis and testing of machine learning model 

performance. The breakdown of both labeled and unlabeled datasets showed the value of choosing 

labeled sets and made the performance tests in Chapter 4 much easier to perform.

Another  interesting  characteristic  that  can  be  seen  from  Figure  34 individual  models 

perceive slightly different interpretations of individual messages at times and have different bias 

associated with their training data about what constitutes hate speech. It’s clear that using multiple 

models can potentially uncover sentiment from content that a single model would otherwise miss. In 

the example in  Figure 33,  Facebook’s Roberta with otherwise high performance (see  Chapter 4) 

missed a message that would likely be labeled non hate speech by a human reviewer.
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4. PERFORMANCE RESULTS
In order to get a good bias spread, the 2 additional candidate models that are also open for 

research and trained on different hate speech detection data were selected during literature analysis 

from the HuggingFace repository. The code used to feed these additional models is almost identical 

to the code for the first model, as they are all being interfaced with through the Python Transformers 

library. The results of their performance analysis can be seem below.

4.1 Sentiment Analysis Response Performance Results 

Table  13  contains  the  results  of  testing  all  3  candidate  models  against  the  3  candidate 

datasets. All of the calculations performed are from the equations in Section 1.5.6.  The raw values 

of false positive and negative (FP / FN), recall, precision, and the intermediate calculated values 

(P*R , P+R) for F score are also represented here. Roberta Hate Speech Dynabench 4, Multilingual 

Hate Speech Classifier for Social Media Content, and Twitter 2022 154M are all abbreviated to 

Facebook, Multiling, and Twitbert respectively. Among all models, the best performance was seen 

from  Twitter 2022 154M, followed by the Roberta Hate Speech Dynabench 4, and in last place 

Multilingual Hate Speech.

For  posterity,  Multilingual  Hate  Speech  has  rows   represented  with  “N/A”  for  “Not 

available”. Some of the message contents from the datasets were too large to pass into this model 

without breaking them apart or altering the model’s defaults. It is disingenuous for performance 
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Table 13: Sentiment analysis results - multiple models accuracy calculations

Note: Highest performance results in blue, poorest performance results in red

Model, Sets TP / Correct FP FN Recall Precision P*R P+R F
Facebook
Cooke 2796 101 103 0.964 0.965 0.931 1.930 0.965
Qian 4581 2726 1603 0.741 0.627 0.464 1.368 0.679
Mody 363759 63555 24388 0.937 0.851 0.798 1.788 0.892
Multiling
Cooke 2583 352 65 0.975 0.880 0.858 1.856 0.925
Qian N/A N/A N/A N/A N/A N/A N/A N/A
Mody N/A N/A N/A N/A N/A N/A N/A N/A
Twitbert
Cooke 2830 17 153 0.949 0.994 0.943 1.943 0.971
Qian 4871 1527 2512 0.660 0.761 0.502 1.421 0.707
Mody 375347 22096 54259 0.874 0.944 0.825 1.818 0.908



analysis to say that the model would work well without tweaking the parameters from their defaults. 

Thus the model did not produce results for the two larger datasets. Some attempts were made to alter 

the  default  inputs  to  align  with  the  expected  configuration  on  HuggingFace,  namely  the 

autotokenizer inputs:

    tokenizer = AutoTokenizer.from_pretrained(model_name, max_length=512, truncation=True)

However, when run against the Qian et al. set, these parameter settings caused the model to split 

sentiment  incorrectly  across  multiple  lines,  which  made  it  impossible  to  perform performance 

calculations. The Mody et al set was ignored because it likely would produce the same issues as the 

Qian et al set for this model.

Table 14 shows the F-score of the Roberta Hate Speech Dynabench 4 model against all three 

datasets. Notably performance was highest with the Cooke et al dataset.
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Table 14: Roberta Hate Speech Dynabench 4 Performance 
Results F-score
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Table 15 shows the F-score of the Twitter 154M model against all three datasets. Notably 

performance was highest with the Cooke et al dataset as well.  Table 16 shows the F-score of the 

Multilingual Hate Speech model against the set that it was capable of parsing. It yielded a similar 

performance result to the other two models in this benchmark. Other sets are excluded.

Table 17 contains the amount of time each model needed to process each respective dataset, 

as  well  as  some  additional  information  about  percentage  of  incorrect  sentiment.  The  best 

performance scores are represented in bold. Unsurprisingly, larger sets take significantly longer time 

to process. These tests were run on an 11th Gen Intel i7-11800H with 64 gigabytes of RAM. It is not 
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Table 15: Twitter 154M Performance Results F-score
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Table 16: Multilingual Hate 
Speech Performance Results 
F-score
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Table 17: Model-Per-Dataset Processing Times and Additional Notes

Model  FB Roberta Speed Acc. Multiling Speed Acc. Speed Acc

Dataset

< 1 minute < 1 minute 

“ ” ~ 45 minutes N/A “ ” ~ 1 hour

“ ” ~ 24 hours N/A N/A N/A “ ” ~ 26 hours

Twitter 
Roberta

% 
incorrect 
F-score

Small token 
window

% incorrect F-
score

% incorrect F-
score

Cooke 3000 
Msg

Large 
(arbitrary) 
token 
maximum

%: 6.8  
F: 0.9648

Small max 
tokens 
length, can 
be parsed

~ 3 
minutes 

%: 13.90 F: 
0.9253 

Large 
(arbitrary) 
token 
maximum 

%: 5.67 F: 
0.9708

Qian ~9000 
msg

%: 48.59 
F: 0.6791

Produced 
invalid split 
sentiments, 
results can’t 
be used

~ 210 
minutes

%: 45.33 F: 
0.7069

Mody 
~450,000 
msg

%: 19.47 
F: 0.8922 

%: 16.91 F: 
0.9077



entirely  certain  whether  the  larger  dataset  performance  analysis  was  hindered  by  computer 

specifications or  poor  code optimization.  Of note  is  that  both Roberta  based models  took very 

similar amounts of time to process input. This could be due to several factors including their smaller 

lexical vocabulary of 50265 versus 250002.

4.2 Analysis of Results

The performance variation of the the two Roberta baseline models from Facebook and the 

Twitter 154M are the most interesting comparison here. Since they are both trained with a similar 

base model, this would indicate that only some variation in their training methods has produced a 

difference  in  performance  when  tested  against  the  same datasets.  These  observed  performance 

differences might be related more to the similarity of test data with the model training data than to 

the actual ability of models to properly detect content. The Twitter 154M model had a completely 

different training process than the Roberta Dynabench 4, where it was trained on a corpus of many 

different pre-labeled sets,  with some selection bias for flagging whenever a certain threshold of 

reviewers  labeled  something  as  “hate  speech”.  With  Roberta  Dynabench  4,  their  training 

surprisingly doesn’t appear to have much data overlap with the Twitter 154M model, but during final 

performance  review  a  single  dataset  was  shared  between  them  for  performance  analysis  via 

Davidson et al., 2017. The Dynabench model performed at just 1% better on the Cooke et al. set (if 

it can be considered a small benchmark) than its reported final training round score of 95% (Vidgen 

et al., 2021), which is impressive and reliable accuracy. The Twitter 154M model also produced 

impressive performance up 8.8% from its reported performance of  87.66% accuracy against the 

Cooke et al. set as benchmark. Poor performance on the Qian et al. set can be explained by its 

dataset labeling strategy bias. On the Mody et al. set, it is more difficult to tell why performance is 

worse, but it could be due to some variation in the data mixed in with such a large set. Potentially 

the data in that set being less comprised of data from Twitter could be having an impact on the 

performance as nearly 50% of hate speech data (in larger-scale 63 set analysis) comes from there 

(Vidgen et al., 2021).

The ranking for all datasets is a clean split on all 3 models for performance with Twitter 

154M coming in first, Facebook Dynabench coming in second, and the Multilingual Hate Speech 

coming  in  last.  The  Multilingual  Model’s  paper  notes  that  “multilingual  models  tend  to 

underperform monolingual models in language-specific tasks” (Barbieri et al., 2022), so this worse 

difference  in  performance  is  expected.  However,  what  is  not  expected  is  that  the  multilingual 
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model’s performance is actually about 0.2 higher in F-score than the paper’s prediction range for 

monolingual analysis of 0.5 – 0.7 for various benchmarks (Barbieri et al., 2022). This model also 

has seemingly more selection criteria for what constitutes “hate” than the other two models, so this 

might have an impact on lowering its overall reaction to a given sentiment. Additionally, all of the 

data in the sets  was in English,  so this  predictably might  have had a significant  impact  on the 

performance of a model that was not exclusively trained on English data.

4.3 Conclusions of Chapter 4 – Results

The first observation is that the larger dataset sizes took significantly longer to process than 

the smaller sets. There are a few potential causes for this. Given the computer specs and model 

complexity,  it  is  not  likely  that  better  hardware  would  produce  better  results.  Rather,  code 

optimization is the most likely reason sentiment is not produced more quickly for large sets. Despite  

parsing sets in varying batch size, results were roughly the same across sizes and more work would 

need to be done to properly multithread the parsing for improved performance. Another observation 

from browsing the message contents of datasets is the actual message string length. The two larger 

sets  had a  tendency to  have individual  messages  of  many more characters  in  length.  This  was 

particularly noticeable in data from more long-form social media content, such as Reddit posts. This 

message length increase was perhaps beyond the default vector limit for the multilingual model, so it 

made performance tests  impossible  against  those  larger  sets.  Interestingly,  this  is  not  an actual 

limitation for that model when used with a bot, due to message length limitations in Telegram.

Both models that were able to process the Qian et al. Reddit and Gab dataset performed very 

poorly in contrast to the dataset’s labeling. After some manual review of some of the individual 

message contents, it seems clear that the Mechanical Turk process that was used to label this data 

produced very poor labeling, which made model performance appear much worse for that set.

Also of note is the speed that the Telegram bot was able to respond with. Using a single 

model, speed seemed to be limited mostly by the performance of the Telegram network itself, rather 

than the model’s ability to produce sentiment quickly for a single message. However, once all 3 

models were added, the performance was notably worse. If a bot like this were to be modified to 

perform parallel processing, this could severely hamper performance. As it is currently written, the 

bot queues messages and responds to them one at a time.
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4.4 Recommendations for Further Research

• Given the performance results from all models, if one were to design a bot for use in actual hate 

speech content detection activity, it would likely be best to stick with a single highly-performant 

model or fine-tune a model for a given task. If multiple models are to be used, all models should 

yield  roughly  similar  performance  results  to  reduce  the  likelihood  of  a  single  model  making 

detection  more  difficult.  It  can’t  be  overstressed  that  models  should  have  their  performance 

benchmarked against labeled data that they were not trained on, in order to better understand their 

flexibility.

• One of the major things that became apparent after all testing and implementation was the fact that 

the Telegram bot would not be able to derive sentiment from the contextual nature of conversation. 

This is because the bot can only respond with the sentiment of a single given message. It is beyond 

the scope of this paper to expand on this, but for further research it could be worthwhile to explore 

the implementation of a more context-aware bot. Perhaps one that can gather aggregate sentiment 

over time.

• After  the  performance  analysis,  it  was  already  clear  that  the  bootstrap  aggregate  would  not 

necessarily yield higher accuracy in results at the individual model level. Anecdotally, the difference 

in model training bias still produces interesting detection results for given single messages. A much 

larger scale test of the performance of multiple model’s bootstrapped scores would be potentially of 

interest as well.

• Since these tests were all performed using models and data from outside of Telegram, a team with 

sufficient time and limited bias to adequately label the large quantity of data present in sets like the 

Pushshift Telegram dataset could produce some very useful training data to use with a bot that is 

deployed on Telegram, in order to see if model accuracy is just as good with native data.

• Due to poor model performance with sets with specific bias in their labeling, it is important that 

datasets used in model performance testing have sufficient spread in how they are labeled. It  is 

highly subjective how an individual research team chooses to label their data, and this can have an 

impact on perceived model performance. It seems that a combination of both manual and machine-

learning assisted labeling produces sets  with good results,  where purely crowd-sourced labeling 

struggles to produce good data to work with.
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5. GENERAL CONCLUSIONS
The major goals of this research were both to test the ability to detect prohibited content on 

social media platforms, namely hate speech, and also to apply that detection capability in practice. 

Those goals were achieved and the following conclusions and points have been noted:

1.  From the literature analysis and sentiment analysis bot design consideration sections it is clear 

that Social Media platforms (particularly Telegram) have a great need for content detection 

as a method for platform governance assistance. The analysis showed that many different 

strategies exist for content detection. Not only that, but the ways in which they are applied 

are also numerous. Dissecting current research not only helped to uncover tools, rationale, 

and methods for both detecting natural language content sentiment. It also helped practically 

for applying this sentiment through a Telegram bot.

2. Based on the research, a dual-approach design for a bot that can perform hate speech sentiment 

analysis is proposed. This design is driven both by the practical needs of implementation 

stemming from the unique characteristics of machine learning assisted sentiment analysis 

and also the quirks of this application in the context of a bot. The proposal workflows help to 

contextualize and decompose the different steps required for this implementation and how 

results can be adequately determined from the two proposals. These strategies fundamentally 

drove final implementation and results collection.

3. After datasets were selected during discovery in literature analysis phase, they could be analyzed 

and processed in a way that would be suitable for sentiment analysis with trained machine 

learning models. The sentiment analysis performance was tested in this phase alongside the 

practical  implementation  of  the  code  that  would  drive  the  bot  utilizing  this  sentiment 

analysis. Results show the performance characteristics of the models on data which they 

were not trained and also the application of that performance in context.

4. The performance results indicate that not all models, though trained on similar data, are capable 

of high performance when used against data on which they were not trained. They also show 

some  difference  of  inherent  bias  that  would  otherwise  not  be  clear  without  external 

performance  tests.  Clearly  there  is  an  impact  associated  with  the  methodologies  and 

parameters used for model training that affects their  ability to perform outside of initial 

training context. This includes a more practical application like a content detection bot.
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This thesis highlights some of the significant issues that modern social networks face in the 

context of platform governance. The analysis also showed that many proprietary methods may not 

align with academic understanding of the effectiveness of content detection strategy in isolation. 

Content detection methods are not perfect and the results found from this research serve to 

show that often those methods, without the context of practical application, have mixed variance in 

their ability to perform as expected. The purpose of this thesis was to make it clear that a practical 

implementation of these methods, when found to be performant, is both feasible and potentially 

highly extensible. Recommendations have been made for further analysis of the performance of the 

growing field in the use of these detection methods. Additionally, some strategies for increasing the 

effectiveness of the implementation of these methods with vectors such as bots have been proposed. 

This is all to promote a clearer and open academic understanding of these tools or the “algorithm” 

that frequently drives proprietary content detection strategies.
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