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INTRODUCTION 

The Investigated Problem 

Nowadays bridges are important transportation system structures, without these structures 

traffic of vehicles, trains, and pedestrians is impossible. Modern bridge design is characterized 

by the use of new materials and construction techniques, expressive architectural forms and 

unique design solutions.  

Cable-stayed bridges stand as a bridge type distinguished by its expressive forms and 

technical characteristics. Main components of this kind of bridges are prestressed cable stays 

made of high strength steel, which are connected to the pylons and hold deck structure. Cable-

stayed bridges characterized by a variety of structural arrangements allowing the design of 

technically and economically rational and architecturally expressive structures. Nevertheless, 

all these features can be improved by applying tensegrity systems.  

The origins of tensegrity are arguable, Richard Buckminster Fuller (1962), David 

Georges Emmerich (1964), and Kenneth D. Snelson (1965) all have been considered as 

inventors of tensegrity. Each of them granted their patents in almost the same time. Tensegrity 

systems are technical structures consisting of tension and compression elements which are 

lightweight, deployable, energy efficient, and highly controllable. Tensegrity structure is an 

architype of incessant tension and discontinuous compression. These structures mostly embed 

integrated struts and cables, which are all loaded axially and do not experience any bending 

moments.  

In comparison to the conventional structures tensegrity systems surprise and fascinate 

with exceptional structural forms. The initial geometry of this kind of structures can be defined 

trough so called form-finding process. Form-finding means a procedure for seeking, evaluating 

and obtaining geometry. 

This thesis aims for application of tensegrity systems for the form-finding of cable-stayed 

bridges. The first section of the thesis briefly reviews history and concept of both, cable-stayed 

bridges and tensegrity systems. As well it provides main characteristics of tensegrity systems, 

details their applicability, and presents some of existing examples. The second section of the 

thesis analyses form-finding methods of tensegrity systems. It suggests an approach of form-

finding and writes the computational algorithm. The third one performs form-finding of cable-

stayed bridge composed of tensegrity modules. The newly obtained geometry of the considering 

bridge further analysed with finite element program. The last section of the thesis concludes the 

results of the study. Furthermore, it provides the findings and recommendations for future 

research. 

Importance of the Thesis 

Tensegrity structures being highly efficient for bridging small and mid-distances due to 

excessive deformations under heavy loading and current lack of analytical tools for proper study 

and design still stand as top interest of research. They evoke development of new mathematical 

models, search for computational methods and analytical verifications together with extensive 

studies all around the world. In connection with previously mentioned aspects this thesis aims 

to suggest the possibility to apply tensegrity as constructive load carrying system in cable-

stayed bridges.  

The Main Objective of the Thesis 

The main objective is to propose a new geometrical configuration of the cable-stayed 

bridge by highlighting the state of art of form-finding and applying tensegrity systems. 
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The Main Tasks of the Thesis 

In order to achieve the main objective of the thesis number of particular problems were 

solved that are described as follows: 

1. To review evolution and concept of cable-stayed bridges and tensegrity systems. 

2. To review basic tensegrity systems, characteristics and applications of tensegrity 

systems. 

3. To present examples of existing tensegrity structures. 

4. To analyse form-finding methods of tensegrity systems. 

5. To describe force density method chosen for cable-stayed bridge form-finding 

procedure. 

6. To perform form-finding procedure of cable-stayed bridge by using static extended 

force density form-finding method composed with multi-paradigm numerical 

computing environment MATLAB. 

7. To design obtained structural configuration of the cable-stayed bridge with 

nonlinear solver of finite element software SOFiSTiK. 

 

https://en.wikipedia.org/wiki/Multi-paradigm_programming_language
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Numerical_analysis
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1. CABLE-STAYED BRIDGES AND TENSEGRITY SYSTEMS 

In this chapter, an overview of cable-stayed bridges and tensegrity systems is presented. 

The evolution and concept of cable-stayed bridges are briefly described in Section 1.1 and 

Section 1.2, respectively. In Section 1.3 evolution of tensegrity systems are stated, and the 

concept of tensegrity systems are given in Section 1.4. In Section 1.5 examples of basic 

tensegrity systems are presented. Then the characteristics and applications of tensegrity systems 

are specified in Section 1.6 and Section 1.7 respectively. Moreover, finally, in Section 1.8 real 

examples of tensegrity structures are presented. 

1.1. Evolution of Cable-Stayed Bridges 

Cable-stayed bridge history begins in 1595 when the Croatian inventor Fausto Veranzio 

introduces the idea of cable-stayed bridges in his book (Fig. 1.1). Later cable stays have been 

used in suspension bridges structure as a stabilizing element to eliminate the kinematic effects 

caused by deformation. The first such type bridges were Dryburgh Abbey Bridge near Scottish 

Borders (1817) (Fig. 1.2) and Victoria Bridge in Bath (1836) (Fig. 1.3), later Albert Bridge in 

West London (1872) (Fig. 1.4) and Brooklyn Bridge in New York (1883) (Fig. 1.5) were 

designed and built. Using cable-stayed and suspension bridges combination a very strong bridge 

can be created, it was revealed by that time designers. So taking advantage of their experience, 

John A. Roebling designed the Niagara Falls Suspension Bridge (1855) (Fig. 1.6) which 

connected Ontario and New York and was the longest at that time (Wilson and Gravelle, 1991). 

 

 

Fig. 1.1. Cable-stayed bridge by Fausto 

Verenzio, 1595 

 

Fig. 1.2. Dryburgh Abbey Bridge near 

Scottish Borders, 1817 

 

 

Fig. 1.3. Victoria Bridge in Bath, 1836 

 

Fig. 1.4. Albert Bridge in West London, 

1872 
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The cable-stayed bridge in Bluff Dale, Texas (1890) (Fig. 1.7) is the oldest surviving 

example of such type of bridges. The early examples of cable-stayed bridges in the twentieth 

century are Cassagnes bridge in France (1899) (Fig. 1.8) in which the straight part of the cable 

forces is balanced by a separate horizontal tie wire, preventing significant compression in the 

deck, and Le Coq Bridge in Lezardrieux, Brittany (1924) (Fig. 1.9). Later cable-stayed aqueduct 

at Tempul (1926) (Fig. 1.10) and concrete-decked cable-stayed bridge over the Donzère-

Mondragon canal in Pierrelatte (1952) (Fig. 1.11) were designed and built. Latter is one of the 

first modern type bridges but had little effect on the subsequent development of cable-stayed 

bridges. 

 

 

Fig. 1.5. Brooklyn Bridge in New York, 1883 

 

 

Fig. 1.6. Niagara Falls Suspension Bridge, 

1855 

 

Fig. 1.7. Cable-stayed bridge in Bluff Dale, 

Texas, 1890 

 

 

Fig. 1.8. Cassagnes bridge in France,1899 

 

Fig. 1.9. Bridge in Lezardrieux, 1924 

 

In the early 1950s, after the war in need of the reconstruction of many bridges over the 

River Rhine in Germany the concept of the cable-stayed bridge was proposed as the more 
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economical solution for average spans, than the suspension or arch bridge for the same span. 

The first modern cable-stayed bridge was the Stromsmund Bridge in Sweden (1955) (Fig. 1.12) 

which was designed by Dischinger. Later the Theodor Heuss Bridge with harp cable 

arrangement over the River Rhine at Dusseldorf in Germany (1958) (Fig. 1.13) was constructed. 

The George Street Bridge over the Usk River at Newport, South Wales (1964) (Fig. 1.14) were 

designed with twin vertical stay planes was the first modern Cable-stayed bridge in the United 

Kingdom. The first asymmetrical two-span structure was developed in Germany, the Severin 

Bridge over the Rhine River at Cologne (1961) (Fig. 1.15) which has A-shape pylon and was 

the first cable-stayed bridge with fan cable arrangement (Parke and Hewson, 2008). The first 

cable-stayed bridge with semi-fan cable arrangement was the Flehe Bridge in Dusseldorf, 

Germany over the Rhine River (1979) (Fig. 1.16) which has inverted Y-shape form concrete 

tower. 

 

 

Fig. 1.10. Cable-stayed aqueduct at  

Tempul, 1926 

 

Fig. 1.11. Cable-stayed bridge in  

Pierrelatte, 1952 

 

 

Fig. 1.12. Stromsmund Bridge in Sweden, 

1955 

 

Fig. 1.13 Theodor Heuss Bridge in 

Germany, 1958 

 

 

Fig. 1.14. The George Street Bridge in the 

United Kingdom, 1964 

 

Fig. 1.15. Severin Bridge in Germany, 1961 
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The economic advantages of cable-stayed bridges are the reason why the concept of 

supporting deck by cable stays has been preferred as the best solution for a broad range of spans 

in these days. The Russky Bridge in Vladivostok (Russia) (Fig. 1.17) is the longest span cable-

stayed bridge so far completed in 2012 with a main span length of 1104 m. There are two cable-

stayed bridges which are under construction with similar main span length, one of them is 

Hutong Bridge with a main span length of 1092 m and second one Qiongzhou Strait Bridge 

with a main span length of 1056, both of them are in China. 

 

 

Fig. 1.16. Flehe Bridge in Germany, 1979 

 

Fig. 1.17. The Russky Bridge in Russia, 

2012 

1.2. Concept of Cable-Stayed Bridges 

The idea of a cable-stayed bridge is straightforward. The deck supports the loads and 

stays provide medial supports for the bridge so that it can cross a long distance (Tang, 2000). 

The primary structural elements of cable-stayed bridges are the bridge deck, piers, towers 

(pylons) and the stays (Calado, 2011). All these elements are under axial forces (Fig. 1.18), 

with the stays under tension and both the pylon and the deck under compression (Tang, 2000; 

Calado, 2011). 

 

 

Fig. 1.18. The behavior of a cable-stayed bridge (Calado, 2011) 

 

There is many cable stays arrangement variations in cable-stayed bridges: harp, mono, 

star, and fan. Parke and Hewson (2008) exclude two basic arrangement for the layout of the 

stay cables: 

 The fan stay system (Fig. 1.19a) (including the semi-fan stay system (Fig. 1.19b)). 

In the fan stay system cables all connect to or pass over the top of the pylons. In the 

semi-fan arrangement, the cables terminate near to the top of the tower. 

 The harp stay system (Fig. 1.19c). The cables are almost parallel so that the height 

of their fixing point to the tower is corresponding to the distance from the tower to 

their installation point on the deck. 

https://en.wikipedia.org/w/index.php?title=Qiongzhou_Strait_Bridge&action=edit&redlink=1
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In general, axially loaded members are more efficient than flexural members (Tang, 

2000). It leads to the use of tensegrity systems in cable-stayed bridges design.  

 

 

Fig. 1.19. Alternative stay cable arrangements: a) fan stay system; b) semi-fan stay 

system; c) harp stay system (Parke and Hewson, 2015) 

1.3. Evolution of Tensegrity Systems 

Even though tensegrity first comprehended in the middle of the twentieth century, signs 

of tensegrity systems can be seen in sculpture made by Russian constructivist artist Karl 

Ioganson in 1920 (Motro, 2003). A structure called gleichgewicht konstruktion made of three 

struts, seven tensioned cables, and one cable to change the shape of the structure. In Figure 1.20 

graph of Ioganson’s construction is presented. 

 

 

Fig. 1.20. „Gleichgewicht konstruktion” by Ioganson, 1920 
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The origins of tensegrity are arguable, Richard Buckminster Fuller, David Georges 

Emmerich, and Kenneth D. Snelson considered as inventors of tensegrity (Jauregui, 2004). 

Each of them granted their patents in almost the same time. Fuller on November 13, 1962, 

presented U.S. Patent 3,063,521, “Tensile-Integrity Structures”. Later Emmerich on September 

28, 1964, introduced French Patent No. 1,377,290, “Construction de Reseaux Autotendants and 

Snelson on February 16, 1965, presented U.S. Patent 3,169,611, “Continuous Tension, 

Discontinuous Compression Structure”. Comparison of three details of the three patents given 

in Fig. 1.21 below. 

 

 

Fig. 1.21. Comparison of three details of the three patents (Jauregui, 2004) 

 

In 1948 K. Snelson influenced by what he had learned from R. B. Fuller in his lectures 

on geometric models at Black Mountain College and made his X piece (Fig. 1.22) (Jauregui, 

2004). After seeing his work, R. B. Fuller realized that it was the answer to a question what he 

was searching for years (Jauregui, 2004). 

Alongside, but separately, David Georges Emmerich started to study new types of 

structures as tensile prisms and more elaborate tensegrity systems, which he called "structures 

tendues et autotendants", tensile and self-stressed structures. As a result, he described and 
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patented his "reseaux autotendants", which were the same type of structures that were being 

studied by Fuller and Snelson. 

Nowadays K. Snelson is a well-known artist who designs tensegrities all over the world. 

One of his structures is the Needle Tower II build in 1969 at the Kroller Müller Museum in 

Otterlo, the Netherlands (Fig. 1.23). Snelson discovered tensegrity and went the artistic road 

developing sculptural research whereas Fuller oriented his research more to the analytical side. 

 

 

Fig. 1.22. „X-column“ by Snelson. 

Illustration donated by the artist 

 

Fig. 1.23. The Needle Tower II by 

Snelson. Illustration donated by the 

artist 

 

Fuller and Snelson applied the concept of tensegrity to generate structures that were 

flexible and firm. Their work is an inspiration to engineers and artists all around the world in 

the last century and into the present one to design and create tensegrity based structures. In the 

last 20 years, the broad range of research has been done by a lot of Mathematicians to 

systematize, categorize, and develop algorithms for tensegrity structures. 

1.4. Concept of Tensegrity Systems 

Richard Buckminster Fuller proposed tensegrity or tensional integrity term in 1962 (Juan 

and Tur 2008; Pagitz and Tur, 2009; Rhode-Barbarigos et al., 2010; Amouri et al., 2015; Joshi 

and Al-Hakkak, 2015). It is a property of structures which are in equilibrium and create an 

ensemble of tension and compression components. The concept of tensegrity systems has been 

applied to an extensive range of phenomena from philosophy to cellular mechanics.  

Principals of tensegrity structures based on a few simple design patterns. Any of structural 

member experiences a bending moment because of these patterns. The design patterns are as 

follows: 

 Members are only in pure compression or pure tension if any cable yields or any 

strut buckles the structure will fail. 

 Preload or tensional prestress, which allows cables to be rigid in tension. 

 Mechanical stability, which allows the members to remain in tension/compression 

as stress on the structure increases. 

In tensegrity structures, no structural element experiences a bending moment. It makes 

outstandingly rigid structures for their mass and the cross section of the components.  
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Several definitions of tensegrities presented below. There is no distinct definition of 

tensegrities, however all definitions agree that the ensemble of tension and compression 

components shall be in equilibrium. 

Richard Buckminster Fuller in 1962 described tensegrity systems as “islands of 

compression in an ocean of tension”, later in 1975 he defined tensegrity as follows: 

“The word tensegrity is an invention: it is a contraction of tensional integrity. Tensegrity 

describes a structural‐relationship principle in which structural shape is guaranteed by 

the finitely closed, comprehensively continuous, tensional behaviours of the system and 

not by the discontinuous and exclusively local compressional member behaviours. 

Tensegrity provides the ability to yield increasingly without ultimately breaking or 

coming asunder. The integrity of the whole structure is invested in the finitely closed, 

tensional‐embracement network, and the compressions are local islands.” (Fuller, 1975). 

Throughout the same decade, David George Emmerich in 1963 and Kenneth Snelson in 

1965 presented similar definitions of tensegrity systems. David George Emmerich definition is: 

“Self-stressing structures consist of bars and cables assembled in such a way that the 

bars remain isolated in a continuum of cables. All these elements must be spaced rigidly 

and at the same time interlocked by the pre-stressing resulting from the internal stressing 

of cables without the need for external bearings and anchorage. The whole is maintained 

firmly like a self-supporting structure, whence the term self-stressing.” (Emmerich, 

1963). 

Kenneth Snelson definition is:  

“Tensegrity describes a closed structural system composed of a set of three or more 

elongate compression struts within a network of tension tendons, the combined parts 

mutually supportive in such a way that the struts do not touch one another, but press 

outwardly against nodal points in the tension network to form a firm, triangulated, 

prestressed, tension and compression unit.” (Snelson, 1965). 

Later in 1976 Anthony Pugh proposed a definition, which is the result of combining the 

definitions by Richard Buckminster Fuller, David George Emmerich and Kenneth Snelson:  

“A tensegrity system is established when a set of discontinuous compression components 

interacts with a set of continuous tensile components to define a stable volume in space.” 

(Pugh, 2008). 

Rene Motro suggested a current and widely conceptual meaning in 2003: 

“A tensegrity is a system in stable self-equilibrated state comprising a discontinuous set 

of compressed components inside a continuum of tensioned components.” (Motro, 2003). 

This definition embeds systems where compressed elements are interconnected as 

tensegrity structures. In 2001 Robert Skelton proposed Another widely cited definition of a 

tensegrity systems:  

“A Class k tensegrity structure is a stable equilibrium of axially loaded elements, with a 

maximum of k compressive members connected at the node(s).” (Skelton, 2001). 

It should be noted that tensegrity is a comparatively new area of study, currently none of 

the definitions have been invariably accepted, thus it is very important to know the different 

meanings in a variety of disciplines and the differences among them. 

1.5. Basic Tensegrity Systems 

Snelson (2012) has illustrated five essential weave cells as shown in Fig. 1.24 which can 

be converted into essential tensegrity structures. Among these, the first two geometries on the 

left-hand side (two and three-way cross units) have add up to triangulation making the 

tensegrity structures firm. The rest of the geometries are flabby because they have less cables 

than demanded for full triangulation. By the relative position of cables and complexity of 

arrangement of struts Pugh (1976) classified four basic paterns of tensegrity structures: 
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spherical system, star system, irregular system and cylindrical system (Pugh, 1976; Motro, 

2003). Due to vast scale application in designing tensegrity structures only spherical systems 

are reviewed in this work. Spherical systems are divided into rhombic, circuit and zig-zag 

configurations. 

 

 

Fig. 1.24. Primary weave cells and equivalent basic tensegrity modules (Snelson, 2012) 

1.5.1. Rhombic Configuration 

One of the examples of rhombic configuration is so called tensegrity prism or T-prism 

(see Fig. 1.25). It can be classed as a twisted prism containing two triangular faces twisted on 

each other (Bansod et al., 2014). The T-prism contains nine cables and three struts. The simple 

construction of the T-prism makes it one of the most informative members of primary tensegrity 

structures. To form T-prism, the lengths of one set of cables and struts shall be kept constant 

while lengths of another set of cables are determined. When one edge of the prism is twisted 

about the other, the quadrilateral sides of the prism convert to non-planar quadrilaterals. 

Because of that, two facing angles of each quadrilateral turn into obtuse and acute. To keep 

structure firm and prestressed the prism is twisted in such a manner that the distance among the 

obtuse angles is least and in consequence, a fully stable T-prism is formed (Hanaor, 1987; 

Bansod et al., 2014). 

 

 

Fig. 1.25. T-prism 

 

Fig. 1.26. T-icosahedron 
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Another example of rhombic configuration is so called tensegrity icosahedron or T-

icosahedron (see Fig. 1.26). The topology of T-icosahedron describes these tensegrities, every 

triangle of cables linked to the adjoining one through a strut and two interconnecting cables 

(Hanaor, 1987). It was first shown by Buckminster Fuller in 1949 and is just one of a small 

number of tensegrities which show mirror symmetry. This tensegrity belongs to a class of 

‘diamond’ type tensegrities as each of its struts is bounded by a diamond form of four cables 

which are held by two in line struts (Bansod et al., 2014). 

More examples of rhombic configuration are presented in Figs. 1.27 and 1.28. T-

octahedron presented in Fig. 1.27 consist of three struts and twelve tendons. The three 

compression struts are not linked to each other as they go at the focal point of the octahedron. 

They are linked only to their terminals by the inclusive, triangular tension net. T-cuboctahedron 

is formed by altering the quadrilaterals settled with struts to squares (see Fig. 1.28).  

 

 

Fig. 1.27. T-octahedron  

 

Fig. 1.28. T-cuboctahedron 

 

By opening the octahedral structure from one end and including new layers of struts and 

tendons and linking both closures of every layer, new tensegrity structures with spherical 

symmetry can be produced (Bansod et al., 2014). 

1.5.2. Circuit Configuration 

In circuit configuration systems, the compressed elements are arranged by close circuits 

which do not meet the standard definition of tensegrity (Hanaor, 1987). Circuit arrangement 

can be set up by shutting the rhombus made by struts and cables of T-icosahedron (diamond 

pattern tensegrity)(see Fig. 1.26). 

By joining the struts to shape a circuit pattern, the new cables-struts relationship is set up. 

Circuit design tensegrity structures are concervative in size and capable to resist more 

prominent external load compared to the tensegrity structure constructed using a diamond 

design for the similar number of struts. In comparison with a rhombic arrangement with the 

similar number of struts, circuit arrangement is more rigid (Pugh, 1976). Pugh (1976) in his 

work described several regular and semiregular polyhedra which can be constructed using this 

arrangement, for example, T-icosidodecahedron (see Fig. 1.29), T-cuboctahedron (see Fig. 

1.30), snub cube, and snub icosahedron, etc. If a different set of two squares are constrained 

toward each other, then the whole system twists and contracts (Bansod et al., 2014). 

As can be visible in Fig. 1. 30, the T-cuboctahedron tensegrity is made of four circuits of 

three struts each (triangles) and 24 cables characterizing the edges of the T-cuboctahedron 

(Bansod et al., 2014). The balance of these triangles is guaranteed by four hexagons of cables, 
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each of them being in a plane with one of the triangles and connecting its tops with one top of 

the other three triangles. In this arrangements struts are linked to each other, and it may be 

appealed that it is not a genuine tensegrity structure, but since the triangles of struts act as a 

single compression component, these structures can be viewed as tensegrity structures (Bansod 

et al., 2014). 

 

 

Fig. 1.29. T-icosidodecahedron (Pugh, 

1976) 

 

Fig. 1.30. T-cuboctahedron (Pugh, 1976)  

 

T-rhombicuboctahedron has eight triangular and eighteen square faces. The tensegrity 

structure has twenty-four struts making six square circuits organised in three sets opposite to 

each other and forty-eight cables (see Fig. 1.31) (Bansod et al., 2014). T-icosidodecahedron 

contains of thirty struts of equivalent length organised into six non-touching circuits of 

pentagons and contains sixty cables (see Fig. 1.29) (Bansod et al., 2014).  

 

 

Fig. 1.31. T-rhombicuboctahedron (Pugh, 

1976) 

1.5.3. Zig Zag Configuration 

A ‘zig-zag’ arrangement is gotten from the rhombic arrangement as the initial structure. 

Both closures of any strut should be linked by three independent cables organized to form a ‘Z’ 
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shape. T-tetrahedron (see Fig. 1.32) is a characteristic example of Z-type arrangement gotten 

from T-icosahedron (see Fig. 1.26) which categorized to the class of rhombic arrangements. 

This sort of arrangement can be achieved by eliminating two cables of the confronting 

sides of a non-planar rhombus of T-icosahedron. In this manner, the amount of cables are 

decreased, and their positioning can be changed in a way that three neutral cables are linking 

both closures of a strut form a ‘Z’ shape (Jauregui, 2004). The T-tetrahedron (see Fig. 1.33) is 

the zig-zag analog of the diamond T-icosahedron (see Fig. 1.26). Even assuming both structures 

have six struts, the most imperative change is that T-tetrahedron has four cable 

triangles,whereas the T-icosahedron has eight of them. 

In general, zig-zag structures with Z-type arrangement are more straightforward and less 

firm because of their lower number of cables than their diamond analogue with rhombic 

arrangement (Hanaor, 1987). 

 

 

Fig. 1.32. Truncated Tetrahedron (Estrada 

et al., 2012)  

 

Fig. 1.33. T-Tetrahedron (Hanaor, 1987) 

1.6. Characteristics of Tensegrity Systems 

Tensegrity as a structural system provides many advantages over conventional structural 

systems. The most important characteristics of tensegrity systems submitted by Skelton et al. 

(2001) presented below: 

 Stabilization of the structure through tension. Under the acting load compressive 

members loose their stiffness, on the other hand, tensile ones gain it. There is two 

ways how compressive members loose their stiffness. With on absence of bending 

moment  (forces act exactly through the mass centre of the element) the loss of 

stiifness invokes the redistribution of the material and increase the mean cross-

sectional area on acount of decreased cross-sectional area of tensile members. In the 

presence of bending moment (forces act not through the mass centre of the element, 

there is eccentricity) bar becomes slender. For almost all materials, the tensile 

strength of a longitudinal member is greater than its buckling strength (sand, 

masonry, and unreinforced concrete misfit this rule). For this reason, a large 

stiffness-to-mass ratio can be achieved by increasing the use of tensile members. 

 Tensegrity structures are efficient. The cost-effectiveness of a structure increases 

with the minimal mass design for a specified set of stiffness characteristics. The 

unusual arrangement of members in tensegrity structures allows achieving 

maximum strength with a minimum mass. 
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 Tensegrity structures are deployable. Since the compressive elements of 

tensegrity structures are either disconnected or connected with pin joints, large 

displacement, deployability, and storage in a small volume are possible in tensegrity 

structures. This feature offers an advantages of operation and portability. A 

transportable bridge or a power transmission tower made as a tensegrity structure 

could be constructed in the workshop, stored on a truck or helicopter in a small 

volume, conveyed to the construction site, and positioned using only winches for 

erection through cable tension. Deployable structures can save transportation costs 

by reducing required mass or by eliminating assembling human sources. 

 Tensegrity structures are easily tunable. The same deployment method can also 

make small adjustments for fine tuning of the loaded structures, or replacement of a 

damaged structure. Structures that can be tunable will be a major quality of next 

generation civil engineering structures. 

 Tensegrity structures can be more reliably modelled. All members are only in 

pure compression or pure tension. Under an action of external static loads, tensegrity 

structures bend systematically without bending of individual members. Members 

that deforms in two or three dimensions are much harder to model than members 

that deform in only one dimension. For this reason, increased number of tensile 

members generates more efficient structures. 

 Tensegrity structures can perform multiple functions. Tensile and compressive 

members within the tensegrity structures can be multi-functional. At the same time 

it can be a load-carrying member of the structure, a sensor (measuring tension or 

length), an actuator (such as nickel-titanium wire), a thermal insulator, or an 

electrical conductor. Hence, by proper choice of materials and geometry the 

electrical, thermal, and mechanical energy in material or structure can be controlled. 

 Tensegrity structures have biological basis. The nanostructure of the spider fibre 

is a tensegrity structure. It is the strongest natural fibre. If naturally tensegrity is opt 

for building architecture, then the same incredible efficiency possessed by natural 

systems can be transferred to human-made systems too. 

The advantages of tensegrity over conventional (continuous) structures are listed below: 

 Load distributes in a whole structure, because of that there are no critical points 

of weakness (Kenner, 1976).  

 They do not suffer any torsion and buckling due to spacial arrangement and short 

length of compression members (Fuller, 1975). 

 In tensegrity structures forces are transferred naturally and consequently, the 

members position themselves precisely by aligning with the lines of forces 

transmitted through the shortest path to withstand the induced stress. 

 They are suitable to vibrate and transfer loads very rapidly, and for this reason, 

tensegrity structures can absorb shocks and seismic vibrations which make them 

applicable as sensors or actuators (Skelton and Sultan, 1997; Tibert, 2002) 

 They can be extended endlessly by adding simple structures. 

 Erection of structures using tensegrity concept makes it highly resilient and, at the 

same time, very economical. 

The disadvantages of tensegrity over conventional (continuous) structures are as follows: 

 If the structure grows too large, the struts start running into or touching each other 

(Hanaor, 1987). 

 They show comparatively high deflections and low material efficiency as 

compared to conventional continuous structures (Hanaor, 1987). 
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 Complex manufacture is a significant barrier for the development of floating 

compressive structures (Jauregui, 2004). 

 There is still a lack of sufficient design tools. 

 Within large structures, the resistance of tensegrities is limited to critical load, 

which is corralated to their dimensions and prestress (Hanaor, 1987). 

1.7. Applications of Tensegrity Systems 

Tensegrity structures are applicable in a sort of fields like civil engineering, architecture, 

mechanical engineering, aerospace, and biomechanics (Gilewski et al., 2015; Joshi and Al-

Hakkak, 2015). The characteristics of tensegrity structures which make the technology 

appealing for human use are their deployability and their efficient use of materials. In tensegrity 

structures, the light tensile elements prevail, while a more material-intensive compressive 

elements are minimized. For that reason, the construction of buildings, bridges and other 

structures using tensegrity concept could make them highly durable and very economical at 

once. 

In the domical configuration, tensegrity structures could allow the manufacture of 

remarkably large structures. When erected within the city limits, these structures could work as 

frameworks for environmental control, energy transformation and food production. They could 

be practical in situations where extensive electrical or electromagnetic shielding is needed, or 

in extra-terrestrial circumstances where micrometeorite preservation is required. Moreover, 

they could provide the barring or containment of flying animals over large areas, or contain 

debris from explosions. These domes could encompass vast areas with only minimal support at 

their perimeters. Suspending structures above the earth on such minimal foundations would 

allow the suspended structures to escape terrestrial limits in areas where this is useful. For 

instance of such zones which are crowded or dangerous areas, urban areas, and delicate or 

rugged territory. 

In a spherical arrangement, tensegrity systems could be functional in an outer-space 

context as superstructures for space stations. Their extreme flexibility makes tensegrity 

structures capable withstand large structural shocks like earthquakes. Thus, they could be 

desirable in areas where earthquakes become a problem. 

With many research works conducted by civil engineers and architect all over the world, 

it is now feasible to mathematically model and design tensegrity structures for architectural 

applications (Joshi and Al-Hakkak, 2015). For this reason, tensegrity bridges and roofs are now 

a reality. 

1.8. Examples of Tensegrity Structures in Civil Engineering 

The tensegrity concept gets notable attentiveness among scientists and engineers all over 

a vast area of disciplines and applications. Towers, large dome structures, stadium roofs, 

temporarily structures, tents and bridges using tensegrity systems concept have been built or 

proposed as possible construction type for structures all around the world. 

Towers which made of interconnected tensegrity modules are the best-known tensegrity 

structures. Two of them were designed by Kenneth Snelson: Needle Tower (see Fig. 1.34) and 

the Needle Tower II (see Fig. 1.35) are an example. 

There are some other well know applications of tensegrity concept, such as Munich 

Olympic Stadium, which has been designed for the Summer Olympics of 1972 (see Fig. 1.36) 

and Millennium Dome of Richard Rogers (see Fig. 1.37) marking the beginning of the third 

millennium. The Seoul Olympic Gymnastics Hall (see Fig. 1.38), for the 1988 Summer 

Olympics and the Georgia Dome (see Fig. 1.39), for the 1996 Summer Olympics, serve as an 
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examples of tensegrity in large structures. A pair of tensegrity skeletons, supporting a 

membrane roof, has been constructed at Chiba, Japan in 2001. 

 

 

Fig. 1.34. Needle Tower by Kenneth 

Snelson, 1968 

 

Fig. 1.35. Needle Tower II by Kenneth 

Snelson, 1969 

 

 

Fig. 1.36. Munich Olympic Stadium by Frei 

Otto, 1972 

 

Fig. 1.37. Millennium Dome by Richard 

Rogers, 2000 

 

 

Fig. 1.38. Seoul Olympic Gymnastics Hall 

 

Fig. 1.39. Georgia Dome 

 

An important example of Tensegrity being employed in roof structures is the stadium at 

La Plata, Argentina (see Fig. 1.40), based on a prize-winning concept developed by architect 
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Roberto Ferreira. The design modifies the patented Tenstar tensegrity roof concept to the twin 

peak contour and the plan configuration, and hence, it is more similar to a cable dome structure 

than to an orthodox roof structure. 

 

 

Fig. 1.40. The stadium at La Plata, Argentina by Roberto Ferreira 

 

Probably the first tensegrity based bridge structure was proposed in 1996 by Mott 

MacDonald. It was a proposal for a crossing of the Thames as part of the Millennium Bridge 

design competition in London. The idea did not win the contest and was never realized. 

Millennium Bridge proposal by Mott MacDonald in London presented in Fig. 1.41. 

 

 

Fig. 1.41. Millennium Bridge proposal in London by Mott MacDonald 

 

In 1998 in Purmerend, Netherlands, architect Jord den Hollander takes a step towards of 

using tensegrity system in bridge structures. He designed a platform over the water with 18 

spans of 4 m, which are suspended by cables to the 36 masts. Mast and deck are not directly 

connected. Figure 1.42 presents the bridge in Purmerend. 

 

 

Fig. 1.42. Bridge in Purmerend 
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Wilkinson Eyre and Arup proposed a 35m footbridge spanning the Washington DC 

National Museum's Great Hall to connect galleries (see Fig. 1.43). The design was displayed at 

the Venice Architectural Biennale in 2004. Eyre also proposed a footbridge for the Apraksin 

Dvor area of St Petersburg. The bridge would be hanged by a related tensegrity cloud (see Fig. 

1.44). 

 

 
Fig. 1.43. National Building Museum 

Footbridge Proposal, Washington, DC by 

Wilkinson Eyre and Arup. 

 

Fig. 1.44. St Petersburg Footbridge 

Proposal, St. Petersburg, Russia by 

Wilkinson Eyre 

 

Gomez Jauregui (2004) proposal of advanced use of tensegrity in civil engineering was a 

bridge composed of several basic modules in a row (see Fig. 1.45). He points out that the 

structure could be used as a connecting element between two buildings. In the case of existing 

buildings, the fact that tensegrities form independent structure could be a significant advantage 

to keeping the existing structure intact without the need of strengthening. In 2005 Andrea 

Micheletti together with a research group designed a footbridge out of tensegrity module (see 

Fig. 1.46). Referring the previously mentioned example, Micheletti proposal was based on a 

row of several basic tensegrity configurations.  

 

 
Fig. 1.45. Simplex module footbridge 

proposal by Jauregui 

 

Fig. 1.46. Footbridge at Tor Vergata 

 

 

Rhode-Barbarigos et al. (2012) analysed an option to use tensegrity for a deployable 

pedestrian bridge as part of their work. The design of the bridge composed of four 

corresponding modules connected base to base creating a total span of 20 m. In Figure 1.47 

scheme of the bridge is showed and principle system of deploy process is presented. The 

different module next to each other creates a tube-like structure. 

 

http://www.wilkinsoneyre.com/assets/pdf/Tensegrity_Bridge.pdf
http://www.arup.com/
http://www.nbm.org/about-us/historic-building/
http://www.bdonline.co.uk/story.asp?sectioncode=426&storycode=3040141
http://en.wikipedia.org/wiki/Mostra_di_Architettura_di_Venezia
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Fig. 1.47. Deployable Hollow Rope Footbridge 

 

The most recent proposal is the Suspended Tensegrity Bridge design by Stefano Paradiso 

and Marco Mucedola (see Fig. 1.48). The project covers a footbridge over the Sesia river, not 

far from Greggio. 

 

 

Fig. 1.48. Suspended Tensegrity Bridge by Stefano Paradiso and Marco Mucedola 

 

The most distinguished tensegrity bridge ever build is the Kurilpa Bridge in Brisbane, 

Australia (see Fig. 1.49) which was opened for pedestrian and cyclist in 2009. Designed by Cox 

Rayner Architects the Kurilpa Bridge is 470 m long. Struts and cables floating above and beside 

the deck attain these condemnatory purposes: suspends the sunroof, prevent sideways buckling 

and withstand lateral forces from the wind, earthquakes and patch loads on the floor. 

 

 

Fig. 1.49. Kurilpa Bridge in Brisbane, Australia 

1.9. Concluding Remarks of Chapter 1 

Chapter 1 draws following key findings: 

1. The evolution and concept of cable-stayed and tensegrity systems were presented. 

The idea of a cable-stayed bridge is straightforward. The deck supports the loads 

and stays provide medial supports for the bridge so that it can cross a long 
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distance. However, tensegrity system may be associate with a discrete case of 

truss which composes structural members having particular functions. All the 

members within tensegrity structure are axially loaded and none of the 

individual’s experience any of bending moments. 

2. When considering mass consumption tensegrity systems provide better capability 

to resist external loads in comparison to conventional structures. They are 

lightweight, adjustable and mass efficient. Within tensegrity structures, 

longitudinal members have uncommon non-orthogonal arrangement, which 

enables to achieve maximum mass efficiency by introducing maximum strength 

with minimal mass. This property of tensegrity structures may possibly alternate 

to distinctive rigid structures. The concept of tensegrity presents new 

opportunities for structural expression in civil engineering. 

3. Few, but successful arrangements of tensegrity systems by means of cable-stayed 

bridges, domes and masts show that despite artificial structural basis tensegrity 

can serve as highly structurally efficient and sustainable supporting system.  

4. Tensegrity structures experience a highly efficient structural behavior reasoned 

by exceptionally axial resistance, structural control performed by the pretension 

of tensile members and easier predictable systematic instability.  

5. The extreme flexibility of tensegrity structures makes them capable of 

withstanding large structural shocks and determines applicability for structures 

built in the areas of natural hazards. 

6. Due to wide variation in structural configuration tensegrity structures serve as a 

desirable tool for architects in order to satisfy strict aesthetic requirements and 

realize their self-expression; none the less they are desirable by structural 

engineers as a problem of form-finding. 
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2. FORM-FINDING 

In this chapter, an overview of form-finding methods of tensegrity structures is given, and 

algorithm for form-finding of tensegrity bridges is proposed. Section 2,1 describes the 

definition of form-finding, while Section 2.2 provides and categorizes the existing form-finding 

methods of tensegrity structures. Section 2.3 describes the methodology of form-finding of 

tensegrity bridge using extended force density method (EFDM) 

2.1. Definition 

Form-finding or shape-finding is the design process in which the shape of the structure is 

set on. Several definitions of form-finding are presented below. 

As stated by Bletzinger et al. definition of form-finding is (Veenendaal and Block, 2012; 

Luczkowski et al., 2016): 

Finding a shape of equilibrium of forces in a given boundary with respect to a certain 

stress state. 

Modern form-finding definitions were introduced by Coenders and Bosia in 2006 and by 

Basso and Del Grosso in 2011 (Veenendaal and Block, 2012; Luczkowski et al., 2016). 

Coenders and Bosia definition is: 

Finding an appropriate architectural and structural shape. 

Basso and Del Grosso definition is: 

A structural optimisation process which uses the nodal coordinates as variables. 

Basso and Del Grosso definition is much wider and shows that contemporary object of 

interest is not only cable structures and membranes roofs like in the past, but also skyscrapers 

and long-span bridges (Luczkowski et al., 2016). 

2.2. Form Finding Methods of Tensegrity Structures 

In this section, a study of the existing form-finding methods for tensegrity structures and 

their categorization is done to set a right method for an outline of statically stable tensegrities. 

From 1960’s to 2010’s various methods of form-finding have been established. There are two 

main groups of existing form-finding methods for tensegrity structures: kinematical methods 

and statical methods (Juan and Tur, 2008; Pagitz and Tur, 2009; Tibert and Pellegrino, 20011). 

The former methods are outlined by increasing (decreasing) the length of the struts 

(cables) and keeping the length of the cables (struts) constant until a maximum (minimum) is 

reached (Juan and Tur, 2008; Pagitz and Tur, 2009; Tibert and Pellegrino, 20011). In latter 

methods, when topology and forces of members are given, the relationship is set up between 

equilibrium configurations of a structure (Juan and Tur, 2008; Pagitz and Tur, 2009; Tibert and 

Pellegrino, 20011). 

2.2.1. Kinematical Methods 

The analytical solution (AS) was proposed by Connelly and Terrell in 1995. It embeds 

the coordinates of each node as a function of geometric parameters and then performs the 

maximization (minimization) of the length expressions of struts (cables) with a starting point 

refereeing to arbitrary configuration (Juan and Tur, 2008; Tibert and Pellegrino, 2011). This 

method is easily applicable for the symmetric structures, but due to extensive number of 

variables it becomes unpractical for non-symmetric tensegrities. Research in this field also has 

been done by Li et al. (2010) and Koohestan and Guest (2013). 

Pellegrino (1986) and Burkhardt (2006) proposed non-linear programming (NLP) 

technique by turning the form-finding method of tensegrity structures into another one of 

constrained minimization problem (Juan and Tur, 2008; Tibert and Pellegrino, 2011). For this 

approach, a valid initial configuration is needed to start with and then try to minimize 
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(maximize) the length of same struts (cables), but they do not consider any stress restriction 

(Juan and Tur 2008). For that reason, even being geometrically correct, the outcome structure 

may not be firm. Research in this field also has been done by Burkhardt (2006). 

Finally, Motro (1984) and Belkacem (1987) suggested the dynamic relaxation (DR) 

method for tensegrity structures (Juan and Tur, 2008; Tibert and Pellegrino, 2011). This method 

solves a fictitious dynamic model regarding the acceleration, velocity, and displacement by 

considering initial configuration in order to get the equilibrate state. DR is only practical for 

small size structures, structures, it considers equilibrium state and external forces though (Juan 

and Tur 2008). Research in this field also has been done by Zhang et al. (2006), Ali et al. (2010) 

and Luczkowski et al. (2016). 

2.2.2. Statical Methods 

The AS was proposed by Kenner (1976), where he applied node equilibrium conditions 

and symmetry arguments to come up with the stable configurations of tensegrity structures 

(Juan and Tur, 2008; Tibert and Pellegrino, 2011). This method guarantees the stability of the 

structure without any external load (Juan and Tur 2008). 

Schek (1974) and Linkwitz (1999) suggested the force density method (FDM), where 

nonlinear equilibrium equations are transformed into linear equations (Tibert and Pellegrino, 

2003; Juan and Tur, 2008). This approach demands the understanding of the stress coefficients 

for all members who are a considerable disadvantage since some combinations of stresses may 

not have real applications in specified space (Juan and Tur 2008). There is no possibility to 

control the length of the members which is another disadvantage of this method. Although cons 

this approach is the most used for form finding of tensegrity structures. There are some 

modifications of this approach which eliminates the above described problems. Research in this 

field also has been done by: Schek (1973), Hernandez-Montes et al. (2006), Zhang and Ohsaki 

(2006), Lee et al. (2009), Tran and Lee (2009), Xu and Luo (2009), Miki and Kawaguchi 

(2010), Tran and Lee (2010), Quagliaroli (2011), Lee (2012), Veenendaal and Block (2012), 

Quagliaroli and Malerba (2013), Aboul-Nasr and Mourad (2015), Cercadillo-Garcia and 

Fernandez-Cabo (2016), Harichandran and Sreevalli (2016), Lee and Lee (2016), Luczkowski 

et al. (2016). 

Energy based form-finding method (EM) was presented by Connelly (1993). In this 

method, he set an energy function to a tensegrity and searches the minimum of this function, 

which is sets to test the positive semi-definiteness of the stress matrix (Tibert and Pellegrino, 

2003; Juan and Tur, 2008). This stress matrix is analogous to the force density matrix used in 

the force density method (Juan and Tur, 2008; Tibert and Pellegrino, 2011). 

Reduced coordinates method (RCM) was introduced by Sultan et al. (1999). He 

considered a set of generalized coordinates and used symbolic manipulation to get the 

equilibrium matrix (Juan and Tur, 2008; Tibert and Pellegrino, 2011). Due to the size of the 

equilibrium matrix, the solution of this problem is complex (Juan and Tur, 2008). Research in 

this field also has been done by Juan and Tur (2008). 

Micheletti and Williams (2004) in their method solve a system of differential equations 

(DE) to get stable configuration by changing the length of a given edge and finding the change 

in length of the other sides (Juan and Tur, 2008).  

Masic et al. (2005) developed a modified version of the force density method, the 

algebraic form-finding method (AM). In this method, they included shape constraints and 

considered how the regularity properties can be used to efficiently reduce the number of force 

density variables, equilibrium equations and geometrical variables (Juan and Tur 2008).  
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2.2.3. Other Methods 

Successive approximation method (SAM) was presented by Zhang et al. (2006). In this 

approach first is found the set of axial forces and then the corresponding nodal coordinates, 

equilibrium conditions and structural constraints (Juan and Tur, 2008). This method mainly 

obtains the bases for the self-stress and positioning subspaces and then requires to fix some 

stresses and coordinates equal to the dimension of those subspaces, respectively, in order to 

find the final solution (Juan and Tur, 2008). 

Paul et al. (2005) presented a different approach based on genetic algorithms (GA) to find 

the topology which assures stability. In which genetic algorithms are used to evaluate an initial 

arbitrary topology into a stable one in the workspace (Juan and Tur 2008). This method is fit to 

generate asymmetrical structures. Research in this field also has been done by Chisari et al. 

(2015), Gan et al. (2015), Yamamoto et al. 2011, Koohestani (2012), Skelton et al. (2013). 

Masic et al. (2006) using non-linear programming techniques introduced by Pellegrino 

(1986), developed a method which searches for the topology, geometry, and pre-stress of a 

structure under external forces, and taking into account strength, buckling and form constraints 

(Juan and Tur 2008). The application of sequential quadratic programming (SQP) allows the 

algorithm to find stable configurations starting from a random one. Some uniqueness is in the 

gradient function due to the use of the element length may source the algorithm to diverge or 

as an alternative, link up to a non-optimum solution (Juan and Tur 2008). Also, their form-

finding method holds some physical phenomena due to external loads (Juan and Tur 2008). 

Finally, Estrada et al. (2006) introduced a numerical method (NM) which only requires 

information about the type of each edge and the topology, but does not account for external 

forces (Juan and Tur, 2008). Using rank constraints the equilibrium geometry and force 

densities for each edge are iteratively calculated on both stress and rigidity matrix (Juan and 

Tur, 2008). Research in this field also has been done by Koohestani and Guest (2013), Cheong 

et al. (2014).  

2.2.4. Summary of Form-Finding Methods 

Table 2.1 summarizes previously discussed form-finding methods.  

Table 2.1. Summary of form-finding methods (Juan and Tur, 2008) 

Method 

name 

Class Assures stability Needs a valid initial 

configuration 

Uses 

symmetry 

Needs 

an initial 

topology 

Uses 

external 

forces 

AS Kinematic No No Yes Yes No 

N Kinematic No Yes No Yes No 

DR Kinematic Yes Yes No Yes Yes 

AS Static Yes No Yes Yes No 

FDM Static Given No No Yes Yes 

EM Static Yes No No Yes No 

RCM Static Yes No Yes Yes No 

DE Static Yes Yes No Yes No 

SAM Both Some stresses 

have to be fixed 

Some coordinates 

have to be fixed 

No Yes No 

AM Static Given No No Yes Yes 

GA Topologic Yes No No No No 

SQP Both Yes No No No Yes 

NM Both Yes No No Yes No 
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2.3. Force Density Method for Form-Finding of Tensegrity Bridge 

Through last years there has been a growing development of form-finding techniques, 

also addressed to the study of self-stressed systems. Among the others, force density method is 

a flexible approach, which acts on tensegrity structures without no need of assumptions 

regarding geometry or material properties. This section focuses on extending this approach in 

order to apply it for form-finding of cable-stayed bridge’s systems. New proposal provides the 

possibility to define the boundary conditions referring initial fixed nodal reactions or, in other 

words, to alter the positions of a definite number of nodes and, at the same time, to inflict the 

intensity of the reaction force. A new form-finding technique enables to determine the distinct 

equilibrium shape (geometry and associated prestress) of a system composed of cables and 

struts under arbitrary loading conditions. This chapter presents the force density method based 

on researches performed by Schek (1974), Quagliaroli (2011), Quagliaroli and Malerba (2013), 

Aboul-Nasr and Mourad (2015). 

2.3.1. Force Density Method 

Considering a general tensegrity structure, having 𝑛 free nodes and 𝑛𝑓 fixed nodes (the 

total number of nodes is 𝑛𝑠 = 𝑛 + 𝑛𝑓), connected by 𝑚 members, it is assumed that: 

 The structure made of straight cable and strut elements joined at the nodes. Part 

of the nodes is free, part of them is fixed. 

 The structure connectivity is known, and the nodal coordinates define its 

geometry. 

 The cable and strut elements are weightless. 

 The structure is subjected to concentrated forces, applied at the nodes.  

Concerning the 𝑖th node of Fig. 2.1, the equilibrium equations in the 𝑥, 𝑦, 𝑧 directions are 

as follows: 

 

 

Fig. 2.1. Generic free node (Quagliaroli and Malerba, 2013) 

 

 

{
  
 

  
 𝑇𝑖𝑗

𝑥𝑗 − 𝑥𝑖

𝐿𝑖𝑗
+ 𝑇𝑖𝑘

𝑥𝑘 − 𝑥𝑖
𝐿𝑖𝑘

+ 𝑇𝑖𝑙
𝑥𝑙 − 𝑥𝑖
𝐿𝑖𝑙

+ 𝑇𝑖𝑚
𝑥𝑚 − 𝑥𝑖
𝐿𝑖𝑚

+ 𝐹𝑥𝑖 = 0

𝑇𝑖𝑗
𝑦𝑗 − 𝑦𝑖

𝐿𝑖𝑗
+ 𝑇𝑖𝑘

𝑦𝑘 − 𝑦𝑖
𝐿𝑖𝑘

+ 𝑇𝑖𝑙
𝑦𝑙 − 𝑦𝑖
𝐿𝑖𝑙

+ 𝑇𝑖𝑚
𝑦𝑚 − 𝑦𝑖
𝐿𝑖𝑚

+ 𝐹𝑦𝑖 = 0

𝑇𝑖𝑗
𝑧𝑗 − 𝑧𝑖

𝐿𝑖𝑗
+ 𝑇𝑖𝑘

𝑧𝑘 − 𝑧𝑖
𝐿𝑖𝑘

+ 𝑇𝑖𝑙
𝑧𝑙 − 𝑧𝑖
𝐿𝑖𝑙

+ 𝑇𝑖𝑚
𝑧𝑚 − 𝑧𝑖
𝐿𝑖𝑚

+ 𝐹𝑧𝑖 = 0

 

(2.1) 

where 

𝑇𝑖𝑗 – the tensile (compressive) force of the cable (strut) element between the nodes 𝑖 and 

𝑗 
𝐿𝑖𝑗 – the length of the cable (strut) element between the nodes 𝑖 and 𝑗 (Eq. (2.2)) 

𝑥𝑖, 𝑦𝑖, 𝑧𝑖 – node coordinates in 𝑥, 𝑦, 𝑧 directions 

𝐹𝑥𝑖, 𝐹𝑦𝑖 𝐹𝑧𝑖 – nodal forces in 𝑥, 𝑦, 𝑧 directions 
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 𝐿𝑖𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
+ (𝑧𝑖 − 𝑧𝑗)

2
 (2.2) 

 

To set Eq. (2.1) into matrix form the following vectors and matrices introduced: 

 𝒙, 𝒚, 𝒛, [𝑛 × 1], coordinates of the free nodes. 

 𝒙𝑓, 𝒚𝑓, 𝒛𝑓, [𝑛𝑓 × 1], coordinates of the fixed nodes. 

 𝒇𝑥, 𝒇𝑦, 𝒇𝑧, [𝑛 × 1], nodal forces. 

 𝒍, [𝑚 × 1], length of the elements. 

 𝒕, [𝑚 × 1], axial forces in the elements. 

The first step in the force density method is to define the network connectivity. For a 

structure with 𝑚 members, 𝑛 free nodes and 𝑛𝑓 fixed nodes, its topology can be described by a 

connectivity matrix 𝑪𝑠, having dimensions [𝑚 × 𝑛𝑠]. If member 𝑘 connects nodes 𝑖 and 𝑗 (𝑖 <
𝑗), then the 𝑖th and 𝑗th elements of the 𝑘th row of 𝑪𝑠 are set to 1 and −1, respectively, as: 

 

 𝑪𝑠(𝑘,𝑝) = {
1
−1
0
    

𝑓𝑜𝑟 𝑝 = 𝑖             
𝑓𝑜𝑟 𝑝 = 𝑗             
𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠.

 

(2.3) 

 

If free nodes numbered first, 𝑪𝑠 can be separated as: 

 

 𝑪𝑠 = [𝑪 𝑪𝑓] (2.4) 

where 

𝑪 – connectivity matrix of free nodes 

𝑪𝑓 – connectivity matrix of fixed nodes 

 

The difference between the pairs of coordinates in the three directions 𝑥, 𝑦, 𝑧 are: 

 

 𝒖 = 𝑪𝑠𝒙𝑠 = 𝑪𝒙 + 𝑪𝑓𝒙𝑓 (2.5) 

 

 𝒗 = 𝑪𝑠𝒚𝑠 = 𝑪𝒚 + 𝑪𝑓𝒚𝑓 (2.6) 

 

 𝒘 = 𝑪𝑠𝒛𝑠 = 𝑪𝒛 + 𝑪𝑓𝒛𝑓 (2.7) 

 

The free nodes equilibrium equation expressed as: 

 

 [
𝑪𝑇𝑼𝑳−1

𝑪𝑇𝑽𝑳−1

𝑪𝑇𝑾𝑳−1
] 𝒕 = [

𝒇𝑥
𝒇𝑦
𝒇𝑧

] → 𝑨𝒕 = 𝒇 

(2.8) 

where 

𝑼 – diagonal matrix of vector 𝒖; 𝑼 = 𝑑𝑖𝑎𝑔(𝒖) 
𝑽 – diagonal matrix of vector 𝒗; 𝑽 = 𝑑𝑖𝑎𝑔(𝒗) 
𝑾 – diagonal matrix of vector 𝒘; 𝑾 = 𝑑𝑖𝑎𝑔(𝒘) 
𝑳 – diagonal matrix of vector 𝒍; 𝑳 = 𝑑𝑖𝑎𝑔(𝒍) 
𝑨 – equilibrium matrix of free nodes 
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Force density coefficient is defined as ratio of its member force to its member length 

𝑞𝑖𝑗 = 𝑇𝑖𝑗 𝐿𝑖𝑗⁄ , moreover, the force density vector consisting of force densities of all members 

is calculated by: 

 

 𝒒 = 𝑳−1𝒕 (2.9) 

where 

𝒒 – force density vector 

 

The equations of the system (2.8) became linear and uncoupled in the three 

directions 𝑥, 𝑦, 𝑧: 
 

 𝑪𝑇𝑼𝒒 = 𝒇𝑥 (2.10) 

 

 𝑪𝑇𝑽𝒒 = 𝒇𝑦 (2.11) 

 

 𝑪𝑇𝑾𝒒 = 𝒇𝑧 (2.12) 

 

By introducing the diagonal matrix 𝑸 = 𝑑𝑖𝑎𝑔(𝒒) and substituting 𝒖, 𝒗, 𝒘 as given by 

Eq. (2.5), (2.6) and (2.7), it becomes: 

 

 𝑪𝑇𝑸𝒖 = (𝑪𝑇𝑸𝑪)𝒙 + (𝑪𝑇𝑸𝑪𝑓)𝒙𝑓 = 𝒇𝑥 (2.13) 

 

 𝑪𝑇𝑸𝒗 = (𝑪𝑇𝑸𝑪)𝒚 + (𝑪𝑇𝑸𝑪𝑓)𝒚𝑓 = 𝒇𝑦 (2.14) 

 

 𝑪𝑇𝑸𝒘 = (𝑪𝑇𝑸𝑪)𝒛 + (𝑪𝑇𝑸𝑪𝑓)𝒛𝑓 = 𝒇𝑧 (2.15) 

 

The Eq. (2.13), (2.14) and (2.15) can be rewritten as: 

 

 𝑫𝒙 = 𝒇𝑥 −𝑫𝑓𝒙𝑓 (2.16) 

 

 𝑫𝒚 = 𝒇𝑦 −𝑫𝑓𝒚𝑓 (2.17) 

 

 𝑫𝒛 = 𝒇𝑧 −𝑫𝑓𝒛𝑓 (2.18) 

where 

𝑫 – force density matrix of the free nodes (Eq. (2.19)) 

𝑫𝑓 – force density matrix of the fixed nodes (Eq. (2.20)) 

 

 𝑫 = 𝑪𝑇𝑸𝑪 (2.19) 

 

 𝑫𝑓 = 𝑪
𝑇𝑸𝑪𝑓 (2.20) 

 

Then the solutions of Eq. (2.16), (2.17) and (2.18) are: 

 

 𝒙 = 𝑫−𝟏(𝒇𝑥 −𝑫𝑓𝒙𝑓) (2.21) 

 

 𝒚 = 𝑫−𝟏(𝒇𝑦 −𝑫𝑓𝒚𝑓) (2.22) 

 

 𝒛 = 𝑫−𝟏(𝒇𝑧 −𝑫𝑓𝒛𝑓) (2.23) 
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Given topology and assumed vector 𝒒 of force densities, Eq. (2.21), (2.22), and (2.23) 

allows to find the unique equilibrium configuration of the system. 

2.3.1.1. General Constraint 

The linear expression of the force density method presented above makes it feasible to 

find all the possible equilibrium arrangements of a cable strut system with a certainly given 

connectivity and with given boundary conditions on the nodes. Each unique configuration 

corresponds to an assumed force density distribution. The possibility of imposing assigned 

relative distance among the nodes, the tensile level in the elements and their initial length, was 

introduced by Schek (1974). 

By assuming that all these conditions are the function of the nodal coordinates and the 

force densities, the additional generic state obtains the following form: 

 

 𝑔𝑖(𝒙, 𝒚, 𝒛, 𝒒) = 0     (𝑖 = 1: 𝑟; 𝑟 < 𝑚) (2.24) 

 

For all the 𝑟 conditions: 

 

 𝒈(𝒙, 𝒚, 𝒛, 𝒒) = 𝒈(𝒙(𝒒), 𝒚(𝒒), 𝒛(𝒒), 𝒒) = 𝟎 (2.25) 

 

The initial force density vector has been set to 𝒒(0). For this assumed force density state, 

Eq. (2.25) generally is not satisfied, search of new vector is required: 

 

 𝒒(1) = 𝒒(0) + ∆𝒒 (2.26) 

 

The solution searched in an iterative form. The Newton method has been selected in order 

to find the vector ∆𝒒 which fulfills the following linearization condition: 

 

 𝒈(𝒒(0)) +
𝜕𝒈(𝒒(0))

𝜕𝒒
∆𝒒 = 0 

(2.27) 

 

By using Jacobian matrix 𝑮𝑇 and misfit 𝒓: 

 

 𝑮𝑇 =
𝜕𝒈(𝒒(0))

𝜕𝒒
 

(2.28) 

 

 𝒓 = −𝒈(𝒒(0)) (2.29) 

 

Equation (2.27) becomes: 

 

 𝑮𝑇∆𝒒 = 𝒓 (2.30) 

 

In this way, the linear system has been obtained, which coefficient matrix has dimensions 

[𝑟 × 𝑚]. In a form-finding problem, the number of the added conditions 𝑟 cannot be larger than 

the number of the free parameters, which equals the number of the members of the structure 𝑚. 

Being 𝑚 > 𝑟, the system (2.30) is underdetermined and states ∞𝑚−𝑟 solutions. The 

minimum norm should be found among the infinite solutions. In other words, among all the 

vectors which satisfy the system (2.30) there should be found the solution ∆𝒒 which as well 

satisfies the equation: 
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 ∆𝒒 = 𝑎𝑟𝑔𝑚𝑖𝑛‖∆𝒒‖2
2 (2.31) 

 

Equations (2.30) and (2.31) form a problem of constrained optimisation, seeking for the 

minimum of the function: 

 

 𝑓(∆𝒒) = ∆𝒒𝑇∆𝒒, with the constraints 𝑮𝑇∆𝒒 = 𝒓 (2.32) 

 

By pertaining the Lagrange multipliers method, it becomes: 

 

 ∆𝒒 = 𝑮(𝑮𝑇𝑮)−1𝒓 (2.33) 

 

Being the initial conditions approximated via the linearization given by Eq. (2.27), the 

solution attained in an iterative way. At the set up of each iteration it has been assumed that: 

 

 𝒒(𝑘+1) = 𝒒(𝑘) + ∆𝒒(𝑘) (2.34) 

 

Then, by updating the corresponding matrix 𝑮𝑇 and vector 𝒓 and, Eq. (2.33) determines 

the vector ∆𝒒. The iterative process stops, when the following condition results in small 

tolerance: 

 

 𝒈(𝒒(𝑘)) = −𝒓(𝒒(𝑘)) = 𝟎 (2.35) 

2.3.1.2. Jacobian Matrix 

The iterative approach needs an effective formulation of the Jacobian matrix 𝑮𝑇. The 

extension of 𝑮𝑇 by using chain rule derives: 

 

 𝑮𝑇 =
𝜕𝒈

𝜕𝒒
=
𝜕𝒈

𝜕𝒙

𝜕𝒙

𝜕𝒒
+
𝜕𝒈

𝜕𝒚

𝜕𝒚

𝜕𝒒
+
𝜕𝒈

𝜕𝒛

𝜕𝒛

𝜕𝒒
+
𝜕𝒈

𝜕𝒒
 

(2.36) 

 

The derivatives 𝜕𝒙 𝜕𝒒⁄ , 𝜕𝒚 𝜕𝒒⁄ , 𝜕𝒛 𝜕𝒒⁄  are independent of Eq. (2.25) and can be 

expressed considering known quantities in this way: 

 

 
𝜕𝒙

𝜕𝒒
= −𝑫−𝟏𝑪𝑇𝑼 

(2.37) 

 

 
𝜕𝒚

𝜕𝒒
= −𝑫−𝟏𝑪𝑇𝑽 

(2.38) 

 

 
𝜕𝒛

𝜕𝒒
= −𝑫−𝟏𝑪𝑇𝑾 

(2.39) 

 

Rather, the derivatives 𝜕𝒙 𝜕𝒒⁄ , 𝜕𝒚 𝜕𝒒⁄ , 𝜕𝒛 𝜕𝒒⁄ , and 𝜕𝒈 𝜕𝒒⁄  alter on the added conditions 

set by Eq. (2.25) and, hence, on the assumed other conditions. Different forms of these 

derivatives have been done by Schek (1973) to set up constraints on the distances between the 

end nodes, or on the forces acting on the elements or of the cutting lengths (Quagliaroli, 2011; 

Quagliaroli and Malerba, 2013; Aboul-Nasr and Mourad, 2015). 
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2.3.2. The Extended Force Density Method 

As already shown, the non-linear force density method allows to cope with constraints 

regarding set relative distances between the nodes, the tensile intensity in the elements and their 

initial length. A donation which extends the capabilities of the method consists in setting 

conditions regarding given fixed nodal reactions or, in other words, to establish the positions of 

a particular number of nodes and, together, to impose the intensity of the reaction force. 

Equation (2.1) set the equilibrium equations of a free node of the net. The equilibrium of 

a fixed node configured in an analogous way, by replacing the forces 𝑭𝑖with the end reactions 

𝑹𝑖, projected in their three components. Via this replacement the equilibrium equations of the 

fixed nodes are: 

 

 [

𝑪𝑓
𝑇𝑼𝑳−1

𝑪𝑓
𝑇𝑽𝑳−1

𝑪𝑓
𝑇𝑾𝑳−1

] 𝒕 = [

𝑹𝑥
𝑹𝑦
𝑹𝑧

] → 𝑨𝑓𝒕 = 𝑹 

(2.40) 

where 

𝑹𝑥, 𝑹𝑦, 𝑹𝑧 – end reactions  

𝑨𝑓 – equilibrium matrix of fixed nodes 

 

Through Eq. (2.40), which derives the end reaction, new form finding conditions can be 

established. The previous conditions were working on sets of 𝑟 elements. The constraints on 

the end reactions act on sets of the 𝑛𝑓 fixed nodes. Restraints are placed on a number 𝑠 ≤ 𝑛𝑓 of 

the fixed nodes. Each reaction has three factors. Reactions in each direction are considered 

distinctly and computation of the variation between the basic value of the reaction 𝑹𝑖 is given 

by Eq. (2.40) and the value of the reactions is imposed by 𝑹𝑖𝑣. 

By writing the equations in matrix form, variations are: 

 

 𝒈𝑥 = 𝑹̅𝑥 − 𝑹̅𝑥𝑣 = 𝟎 (2.41) 

 

 𝒈𝑦 = 𝑹̅𝑦 − 𝑹̅𝑦𝑣 = 𝟎 (2.42) 

 

 𝒈𝑧 = 𝑹̅𝑧 − 𝑹̅𝑧𝑣 = 𝟎 (2.43) 

where 

𝑹̅(𝑥,𝑦,𝑧) – the values of end reactions in the three directions 𝑥, 𝑦, 𝑧 with dimensions [𝑠 × 1] 

𝑹̅(𝑥,𝑦,𝑧)𝑣 – the prescribed values to be imposed in the three directions 𝑥, 𝑦, 𝑧 with 

dimensions [𝑠 × 1] 
 

Basic values of reactions in the three directions 𝑥, 𝑦, 𝑧 obtained by partitioning the vectors 

𝑹̅(𝑥,𝑦,𝑧) are as follows: 

 

 𝑹̅𝑥 = 𝑪̅𝑓
𝑇𝑼𝑳−1𝒕 (2.44) 

 

 𝑹̅𝑦 = 𝑪̅𝑓
𝑇𝑽𝑳−1𝒕 (2.45) 

 

 𝑹̅𝑧 = 𝑪̅𝑓
𝑇𝑾𝑳−1𝒕 (2.46) 

where 

𝑪̅𝑓
𝑇 – transpose of the constrained nodes connectivity matrix with dimensions [𝑠 × 𝑚] 
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Matrix 𝑪̅𝑓
𝑇 derives from matrix 𝑪𝑓

𝑇 by extracting the row corresponding to the nodes to be 

constrained. It must be pointed out that, working on the nodes, and not on the elements, all the 

elements and all the terms of the matrices 𝑼, 𝑽, 𝑾, 𝑳−1and of the vector 𝒕 are involved in the 

computation. 

2.3.2.1. Jacobian Matrix 

Concidering Eq. (2.36), the derivatives of the nodal coordinates on the force densities 

𝜕𝒙 𝜕𝒒⁄ , 𝜕𝒚 𝜕𝒒⁄ , 𝜕𝒛 𝜕𝒒⁄  should be computed as before in Eq. (2.37), (2.38), (2.39) while 

𝜕𝒈 𝜕𝒙⁄ , 𝜕𝒈 𝜕𝒚⁄ , 𝜕𝒈 𝜕𝒛⁄  and 𝜕𝒈 𝜕𝒒⁄ , depend on the new conditions to be imposed. Vector 𝒈𝑥 

is considered. The vectors 𝒈𝑦 and 𝒈𝑧 should be considered in an analogous way. Being 𝑹̅𝑥𝑣 a 

constant vector, equality beholds: 

 

 
𝜕𝒈𝑥
𝜕𝒙

=
𝜕𝑹̅𝑥
𝜕𝒙

 
(2.47) 

 

The dimensions of 𝑹̅𝑥, 𝒙 and 𝜕𝒈𝑥 𝜕𝒙⁄  are [𝑠 × 1], [𝑛 × 1] and [𝑠 × 𝑛], respectively. 

By deriving Eq. (2.47), it becomes: 

 

 
𝜕𝑹̅𝑥
𝜕𝒙

=
𝜕

𝜕𝒙
(𝑪̅𝑓

𝑇𝑼𝑳−1𝒕) = 𝑪̅𝑓
𝑇
𝜕

𝜕𝒙
(𝑼𝑳−1𝒕) 

(2.48) 

 

In which, both 𝑼 and 𝑳−1 subjected to 𝒙. By introducing the equation 𝑳−1𝒕 = 𝒒 into Eq. 

(2.48), it transforms to: 

 

 
𝜕𝑹̅𝑥
𝜕𝒙

= 𝑪̅𝑓
𝑇
𝜕

𝜕𝒙
(𝑼𝒒) = 𝑪̅𝑓

𝑇
𝜕

𝜕𝒙
(𝑸𝒖) = 𝑪̅𝑓

𝑇𝑸
𝜕𝒖

𝜕𝒙
 

(2.49) 

 

By using equality 𝜕𝒖 𝜕𝒙⁄ = 𝑪 from Eq. (2.5), Eq. (2.47) becomes: 

 

 
𝜕𝒈𝑥
𝜕𝒙

= 𝑪̅𝑓
𝑇𝑸𝑪 

(2.50) 

 

Being 𝒖 = 𝒖(𝒙), the derivatives 𝜕𝒈𝑥 𝜕𝒚⁄  and 𝜕𝒈𝑥 𝜕𝒛⁄  are null, as can be seen in the 

following: 

 

 
𝜕𝒈𝑥
𝜕𝒚

=
𝜕𝑹̅𝑥
𝜕𝒚

= 𝑪̅𝑓
𝑇𝑸
𝜕𝒖

𝜕𝒚
≡ 𝟎 

(2.51) 

 

 
𝜕𝒈𝑥
𝜕𝒛

=
𝜕𝑹̅𝑥
𝜕𝒛

= 𝑪̅𝑓
𝑇𝑸
𝜕𝒖

𝜕𝒛
≡ 𝟎 

(2.52) 

 

The equation giving 𝜕𝒈𝑥 𝜕𝒒⁄  is obtained as follows: 

 

 
𝜕𝒈𝑥
𝜕𝒒

=
𝜕𝑹̅𝑥
𝜕𝒒

= 𝑪̅𝑓
𝑇
𝜕

𝜕𝒒
(𝑼𝒒) = 𝑪̅𝑓

𝑇𝑼
𝜕𝒒

𝜕𝒒
= 𝑪̅𝑓

𝑇𝑼 
(2.53) 

 

The Jacobian matrix has dimensions [𝑠 × 𝑚]. The same is made in the other directions. 

The three Jacobian matrices are finally set up: 
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 𝑮𝑅𝑥
𝑇 = 𝑪̅𝑓

𝑇𝑼− 𝑪̅𝑓
𝑇𝑸𝑪𝑫−𝟏𝑪𝑇𝑼 (2.54) 

 

 𝑮𝑅𝑦
𝑇 = 𝑪̅𝑓

𝑇𝑽 − 𝑪̅𝑓
𝑇𝑸𝑪𝑫−𝟏𝑪𝑇𝑽 (2.55) 

 

 𝑮𝑅𝑧
𝑇 = 𝑪̅𝑓

𝑇𝑾− 𝑪̅𝑓
𝑇𝑸𝑪𝑫−𝟏𝑪𝑇𝑾 (2.56) 

 

With these equations, the problem of finding the geometry of a tensegrity structure for 

which, in certain fixed nodes, the end reactions assumes prescribed values in the three directions 

of the reference system, can be solved. 

2.3.2.2. Multiple Constraints 

It is supposed to assign end reaction forces with arbitrary intensities and directions. This 

involves a generalization of the method, with the setting of multiple conditions. Let 𝑛𝑣,𝑥 and 

𝑛𝑣,𝑧 the number of the constrained nodes respectively in 𝑥 and 𝑧 directions. By working with 

the Newton method, at each step the vector ∆𝒒 must satisfy both the conditions on 𝑥 and 𝑧, 

which are given by: 

 

 {
𝑮𝑅𝑥
𝑇 ∆𝒒 = 𝒓𝑥 = −𝒈𝑥
𝑮𝑅𝑧
𝑇 ∆𝒒 = 𝒓𝑧 = −𝒈𝑧

 
(2.57) 

 

Alternatively, in matrix form, by: 

 

 [
𝑮𝑅𝑥
𝑇

𝑮𝑅𝑧
𝑇 ] ∆𝒒 = [

𝒓𝑥
𝒓𝑧
] 

(2.58) 

 

By letting: 

 

 𝑮𝑅
𝑇 = [

𝑮𝑅𝑥
𝑇

𝑮𝑅𝑧
𝑇 ] (2.59) 

 

 𝒓𝑥𝑧 = [
𝒓𝑥
𝒓𝑧
] (2.60) 

 

Equation (2.58) becomes: 

 

 𝑮𝑅
𝑇∆𝒒 = 𝒓𝑥𝑧 (2.61) 

 

Eq. (2.61) is analogous to Eq. (2.30). Only the dimensions of vectors and matrices change: 

now the matrix 𝑮𝑅
𝑇  and the vector 𝒓𝑥𝑧 have dimensions [(𝑛𝑣,𝑥 + 𝑛𝑣,𝑧) × 𝑚] and 

[(𝑛𝑣,𝑥 + 𝑛𝑣,𝑧) × 1], respectively, while ∆𝒒 maintains the dimension [𝑚 × 1].  

2.4. Form-Finding Process 

The proposed form-finding procedure only needs to know the topology of structure 

regarding the connectivity matrix 𝑪𝑠, loading conditions and type of each member, i.e. either 

cable or strut which is under tension or compression, respectively. Based on element type, the 

initial force density coefficients of cables (tension) are automatically assigned as +1 while 

those of struts (compression) as −1, respectively, as follows: 
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 𝒒0 = [+1 + 1…+ 1⏟        
𝑐𝑎𝑏𝑙𝑒𝑠

   −1 − 1…− 1⏟        
𝑠𝑡𝑟𝑢𝑡𝑠

]

𝑇

 
(2.62) 

 

Subsequently, the force density matrices 𝑫 and 𝑫𝑓 are calculated from 𝒒0 by Eq. (2.19) 

and (2.20) respectively. After that, the nodal coordinates in 𝑥, 𝑦, 𝑧 directions are found from the 

computation of the Eq. (2.21), (2.22) and (2.23). These nodal coordinates are substituted into 

Eq. (2.5), (2.6) and (2.7) to define end reaction vectors 𝑹̅(𝑥,𝑦,𝑧) through Eq. (2.44), (2.45) and 

(2.46). Then the difference between the basic value of the reactions 𝑹̅(𝑥,𝑦,𝑧) and the value of the 

reactions that we want to impose 𝑹̅(𝑥,𝑦,𝑧)𝑣 are calculated (Eq. (2.41), (2.42) and (2.43)). 

Residual forces 𝒓𝑥𝑧 are defined by Eq. (2.60). After that, Jacobian matrices are calculated 

through Eq. (2.54), (2.55) and (2.56) to update the corresponding matrix 𝑮𝑅
𝑇  (Eq. (2.59)). Then, 

by updating the corresponding matrix 𝑮𝑇 and vector 𝒓 and, Eq. (2.33) determines the vector 

∆𝒒. The force density vector 𝒒 is then updated by Eq. (2.34). The iterative process stops when 

the convergence of residual forces vector 𝒓𝑥𝑧, with a given small tolerance, is equal to 0.  

Proposed form-finding procedure can simultaneously define two sets of parameters, 

which are nodal coordinates [𝒙 𝒚 𝒛] and force density vector 𝒒, by applying the following 

algorithm: 

 Step 1: Define 𝑪𝑠 by Eq. (2.3) for the given topology of the tensegrity structure. 

 Step 2: Specify the type of each member to generate initial force density vector 

𝒒0 by Eq. (2.62). 

 Step 3: Calculate 𝑫 and 𝑫𝑓 using Eq. (2.19) and (2.20), respectively. 

 Step 4: Define nodal coordinates [𝒙 𝒚 𝒛] through Eq. (2.21), (2.22) and (2.23). 

 Step 5: Determine 𝑹̅(𝑥,𝑦,𝑧) through Eq. (2.44), (2.45) and (2.46). 

 Step 6: Carry out Eq. (2.41), (2.42) and (2.43) to define residual forces vector 𝒓𝑥𝑧 
by Eq. (2.60). 

 Step 7: Carry out Eq. (2.54), (2.55) and (2.56) to define the corresponding matrix 

𝑮𝑅
𝑇  by Eq. (2.59). 

 Step 8: Determine vector ∆𝒒 through Eq. (2.33). 

 Step 9: Update force density vector 𝒒 by Eq. (2.34) 

 Step 10: The iterative process stops when the convergence of residual forces 

vector 𝒓𝑥𝑧, with a given small tolerance, is equal to 0. The final coordinates and 

force density vector are the desirable solutions. Otherwise, return to Step 3. 

 Step 11: Calculate lengths, forces and preliminary cross-section areas of elements.  

 Step 12: Make output file and dxf drawing file. 

The procedure of form-finding also outlined in a flowchart presented in Fig. 2.2.  
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Fig. 2.2. Flowchart of form-finding procedure using EFDM 
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2.5. Concluding Remarks of Chapter 2 

Chapter 2 draws following key findings: 

1. Form-finding stands as a self-governing procedure prior to structural analysis and 

design of flexible structures and defines possible geometry based on an actual set 

of loads. Geometry becoming a main unknown of the problem makes this 

procedure uncommon. 

2. The overview of existing form-finding methods resulted in FDM to be chosen for 

future analysis. Due to its flexibility FDM acts on tensegrity structures with no 

need of assumption referring to geometry or material properties. 

3. FDM makes it feasible to find all the possible equilibrium arrangements of a cable 

strut system with a certainly given connectivity and with given boundary 

conditions on the nodes.  

4. NFDM allows to cope with constraints regarding the set of relative distances 

between the nodes, pretension of the elements and their initial lengths. 

5. To establish the positions of a particular number of nodes and, together, to impose 

the intensity of the reaction force the EFDM was proposed.  

6. The form-finding process through EFDM was introduced and presented. This 

process lets to determine tensegrity structure form by setting the topology of 

structure, loading conditions and type of each member, i.e. either cable or strut 

which is under tension or compression, respectively. 
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3. TENSEGRITY BRIDGE 

In this chapter, a cable-stayed pedestrian bridge made of tensegrity modules is analysed. 

The form-finding procedure through EFDM described above are done and then analysis of the 

tensegrity bridge is performed with FEM program. The aim of this work is to determine the 

particular pretension system (common form-finding problem) under specific loading 

conditions. Once the initial equilibrium problem has been solved, the structural behavior can 

be dealt by nonlinear FEA. 

In Section 3.1 structural model of tensegrity bridge described. Preliminary data required 

for the analysis, the form-finding procedure through EFDM, and the non-linear FEA of the 

bridge performed in Sections 3.2, 3.3 and 3.4, respectively. 

3.1. Modelling the Tensegrity Bridge 

In this master thesis analysis of the pedestrian cable-stayed bridge composed of tensegrity 

modules performed. The span of 50.0 m, width of 5.0 m and height of 10.0 m for pylon assumed. 

The bridge geometry is chosen such that two pedestrians and one cyclist can pass bridge side-

by-side. The bridge composed of five tensegrity modules. Each tensegrity module for the bridge 

is assumed to be 10.0 m long. Rhombic configuration discussed in section 1.5.1 chosen as the 

main arrangement of cable and strut elements for tensegrity module (see Fig. 3.1). 

 

Fig. 3.1. Main module of the tensegrity bridge 

 

The module consists of one strut and four cable elements connected to the deck by pin-

joints. To assure the stability of the bridge, nodes by which tensegrity module attached to the 

deck assumed as fixed in form-finding procedure. Modules one to other connected by nodes at 

the deck and by cable elements on the top node of the module. 

Strut elements in the side modules of the bridge replaced with A-shape pylons (see Fig. 

3.2). In form-finding procedure top node of the pylon and end nodes of the deck assumed to be 

fixed, hence pylon and two side cable elements are not considered in form-finding process and 

further analysis of the bridge. 

The final configuration of tensegrity bridge consists of three modules depicted in Fig. 3.1 

and two side modules (see Fig. 3.2). Suggested tensegrity bridge model represented in Fig. 3.3 

and 3.4. 
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Fig. 3.2. Side module of the tensegrity bridge 

 

 

Fig. 3.3. 3D view of computational model of the tensegrity bridge 

 

 

Fig. 3.4. Front view of computational model of the tensegrity bridge 
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After defining initial configuration of the tensegrity bridge, the form-finding procedure 

through EFDM and FEA were performed using MATLAB computer program and FEM 

software SOFiSTiK. 

3.2. Preliminary Data Required for Analysis 

The dead and live loads considered in this thesis are based on EN 1991-1-1 and EN 1991-

2, respectively. The dead load of the bridge contains the structural weight of the bridge. The 

composite deck made of two longitudinal 0.7 m high side girders (suspended by cable stays) 

and a slab of uniform thickness of 0.2 m. The slab is supported by the longitudinal girders and 

the floor beams of 0.5 m high. The floor beams are transverse girders spaced at 5.0 m. Deck 

construction is only assumed for dead load calculation. The live load of the bridge contains 

uniformly distributed crowd loading equal to 5.0 𝑘𝑁 𝑚2⁄ . 

In Table 3.1 cross-section values for deck members are presented. These values will be 

used for computation of dead load and later for FEA. 

Table 3.1. Cross-section values of deck members for dead load calculation and FEA 

Element Cross-section Material Nominal weight, 𝑘𝑔/𝑚 

Longitudinal girder HEB 700 Steel 241.0 

Transverse girder HEB 500 Steel 187.0 

Slab 5000x200 Concrete 2500.0 

 

Uniformly distributed dead load is: 

 

 𝑞 =
(𝑛𝑙𝛾𝑙𝑙𝑙 + 𝑛𝑡𝛾𝑡𝑙𝑡 + 𝛾𝑠𝑙𝑠)𝑔

𝑏𝐿
= 6.3 𝑘𝑁/𝑚2 (3.1) 

where 

𝛾𝑙, 𝛾𝑡, 𝛾𝑠  – nominal weights of longitudinal girder, transverse girder and concrete slab, 

respectively, [𝑘𝑔/𝑚] 
𝑙𝑙, 𝑙𝑡, 𝑙𝑙  – length of longitudinal girder, transverse girder and concrete slab, respectively, 

[𝑚] 
𝑛𝑙, 𝑛𝑡 – number of separate longitudinal girders and transverse girders, respectively 

𝑔 – gravitational acceleration, [𝑚 𝑠2⁄ ] 
𝑏 – width of bridge deck, [𝑚] 
𝐿 – length of the bridge, [𝑚] 
 

In this thesis analyses of ULS and SLS are performed in FEA. For form-finding procedure 

only ULS load combination without pretension forces of cable elements are used. According to 

EN 1991-2 and EN 1990, the load factors and combinations for pedestrian bridge are as 

described below. 

Load factors and combination for ULS: 

 

 1.35𝐷 + 1.5𝐿 + 𝑃 (3.2) 

 

Load factors and combination for SLS: 

 

 𝐷 + 𝐿 + 𝑃 (3.3) 

where 

𝐷 – the dead load 

𝐿 – the live load 

𝑃 – the pretension force of cable elements 
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Let consider the continuous deck shown in Fig. 3.5. The deck is suspended at the cable 

stays at the nodes 4-11 and connected to struts at the nodes 12-14. The nodes at the top of the 

pylons are numbered 15 and 16, and the deck is supported on abutments at the nodes A-D. The 

geometry of the tensegrity system should be defined through the nodes 1-3. We search for 

tensegrity system exerting at the internal supports 4-11 a set of forces which equals to the fixed 

support reactions of the structure shown in Fig. 3.6. In this work, only vertical forces are 

considered in form-finding process and FEA. 

 

 

Fig. 3.5. Elements, fixed and free nodes for the tensegrity bridge  

 

 

Fig. 3.6. Reaction forces 

 

Reaction force from dead load: 

 

 𝑅𝑧,𝑣𝑑 =
𝑞𝑏𝑙

2
 (3.4) 

where 
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𝑅𝑧,𝑣𝑑 – reaction force from dead load, [𝑘𝑁] 
𝑏 – width of bridge deck, [𝑚] 
𝑙 – distance between inner supports, [𝑚]  
 

Reaction force from live load: 

 

 𝑅𝑧,𝑣𝑙 =
𝑝𝑏𝑙

2
 (3.5) 

where 

𝑅𝑧,𝑣𝑙 – reaction force from live load, [𝑘𝑁] 
𝑏 – width of bridge deck, [𝑚] 
𝑙 – distance between inner supports, [𝑚]  
 

The characteristic values of the reaction forces to be imposed presented in Table 3.3. 

Table 3.2. The characteristic values of the reaction forces 

Node 

group 

Nodes Reaction from dead 

load 𝑅𝑧,𝑣𝑑, 𝑘𝑁 

Reaction from live 

load 𝑅𝑧,𝑣𝑙, 𝑘𝑁 

Total reaction 

𝑅𝑧,𝑣, 𝑘𝑁 

1 4-11 157.5 125.0 282.5 

 

Material properties used for form-finding process and FEA are presented in the table 

below (see Table 3.2).  

Table 3.3. Material properties of bridge elements  

Grade Yield strength 

𝑓𝑦, 𝑁 𝑚𝑚2⁄  

Proof strength 

𝐹0.2𝑘, 𝑁 𝑚𝑚2⁄  

Rope grade 

𝑅𝑟 , 𝑁 𝑚𝑚2⁄  

Modulus of 

elasticity 𝐸, 𝑁 𝑚𝑚2⁄  

Poisons 

ratio 𝜇 

S 355 355.0 - - 210000.0 0.3 

Y1770 - 1570.0 1770.0 195000.0 0.3 

 

S 355 grade steel is used for deck structure and strut elements, and Y1770 grade rope is 

used for cable stays. 

Table 3.4 defines the coordinates of fixed nodes. 

  Table 3.4. Coordinates of fixed nodes 

Node Coordinate 

x y z 

4 10.0 2.5 0.0 

5 10.0 -2.5 0.0 

6 20.0 2.5 0.0 

7 20.0 -2.5 0.0 

8 30.0 2.5 0.0 

9 30.0 -2.5 0.0 

10 40.0 2.5 0.0 

11 40.0 -2.5 0.0 

12 15.0 0.0 0.0 

13 25.0 0.0 0.0 

14 35.0 0.0 0.0 

15 5.0 1.0 10.0 

16 45.0 -1.0 10.0 
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To generate initial force density vector 𝒒0 the type of each member specified and depicted 

in Fig. 3.4. Thin line represents elements under tension (cables) and thick line represents 

elements under compression (struts). Table 3.5 defines initial force density vector. 

Table 3.5. Initial force density vector 

Member 1 2 3 4 5 6 7 8 9 10 11 12 

𝑞0  1 1 1 1 1 1 1 1 1 1 1 1 

Member 13 14 15 16 17 18 19 20 21 22 23  

𝑞0  1 1 1 1 1 1 1 1 -1 -1 -1  

 

Connectivity matrix is defined in Table 3.6. 

Table 3.6. Connectivity matrix of the tensegrity bridge 

Member/ 

node 
𝑪𝑠  
𝑪  𝑪𝑓  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 

2 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 

3 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 

4 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 

5 0 1 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 

6 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 

7 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 

8 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 

9 0 0 1 0 0 0 0 -1 0 0 0 0 0 0 0 0 

1 0 0 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 

11 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 

12 0 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0 

13 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 

14 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 

15 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1 

16 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1 

17 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 

18 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -1 

21 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 

22 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 

23 0 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 

 

Connectivity matrix of all structure (𝑪𝑠), free nodes (𝑪), and fixed nodes (𝑪𝑓) consume 

dimensions of [23 × 16], [23 × 3], and [23 × 13], respectively. Matrix 𝑪̅𝑓 derived from matrix 

𝑪𝑓 by extracting the columns corresponding to the nodes to be constrained consume dimensions 

of [23 × 8]. 

3.3. Form-Finding of Tensegrity Bridge 

Multi-paradigm numerical computing environment MATLAB selected to perform form-

finding of above-presented tensegrity bridge. A proprietary programming language developed 

https://en.wikipedia.org/wiki/Multi-paradigm_programming_language
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Proprietary_programming_language
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by MathWorks, MATLAB allows matrix manipulations, plotting of data, and implementation 

of algorithms. 

Form-finding algorithm written with MATLAB outlined in section 3.3.1 and the results 

of a search of the new form of the bridge presented in section 3.3.2. 

3.3.1. Computational Algorithm of Tensegrity Bridge 

EFDM algorithm formulated in section 2.4 is composed using MATLAB computer 

program. Iterative process is performed until the convergence with a small given tolerance 

reaches 0 value. After that calculation of the elements axial forces and geometrical parameters 

(length, cross section area of strut and cable elements) are done.  

Calculation process of the elements axial forces and geometrical parameters are 

performed as follows: 

 Calculation of length of cable and strut elements (Eq. 3.6) 

 Calculation of elements axial forces, from concept of force density 𝑞𝑖𝑗 = 𝑇𝑖𝑗 𝐿𝑖𝑗⁄  

(Eq. 3.7) 

 Estimation of strut cross-section area according to ULS conditions (EN 1993-1-

1) (Eq. 3.8); 

 Estimation of cable cross-section area according to ULS conditions (EN 1993-1-

11) (Eq. 3.9).  

Length of the elements: 

 

 𝒍 = 𝑑𝑖𝑎𝑔(𝑳) = 𝑑𝑖𝑎𝑔 (√𝑼2 + 𝑽2 +𝑾2) (3.6) 

 

Axial forces in elements: 

 

 𝒕 = 𝑳𝒒 (3.7) 

 

Cross-section area of strut elements: 

 

 𝐴𝑠 = √
𝐹𝑠𝛾𝑀0
𝑓𝑦

 

(3.8) 

where 

𝐹𝑠 – axial force in strut elements, [𝑘𝑁] 
𝛾𝑀0 – the partial safety factor equal to 1.0 (EN 1993-1-1) 

𝑓𝑦 – yield strength equal to 355.0 (LST EN 1993-1-1), [𝑁 𝑚𝑚2]⁄  

 

Cross-section area of cable elements: 

 

 𝐴𝑐 = 𝑚𝑖𝑛(√
1500𝐹𝑐𝛾𝑅𝜋

4𝐾𝑅𝑟𝑘𝑒
; √
1000𝐹𝑐𝛾𝑅
𝐹0.2𝑘

) 

(3.9) 

where 

𝐹𝑐 – axial force in cable elements, [𝑘𝑁] 
𝛾𝑅 – the partial safety factor equal to 1.0 (EN 1993-1-11) 

𝐾 – the minimum breaking force factor taking account of the spinning loss equal to 0.51 

(EN 12385-2) 

https://en.wikipedia.org/wiki/MathWorks
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Algorithm
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𝐹0.2𝑘 – the characteristic value of the proof strength of the tension component equal to 

1370.0 (EN 10264), [𝑁 𝑚𝑚2]⁄  

𝑅𝑟 – the rope grade equal to 1570.0 (EN 12385-2), [𝑁 𝑚𝑚2]⁄  

𝑘𝑒 – the loss factor equal to 1.0 (EN 1993-1-11) 

Algorithm written with MATLAB is presented below. 

 

clear 
clc 
  
% Form finding algorithm of tensegrity bridge 
% Input data 
% Number of elements 
m = 23; 
% Number of free nodes 
n = 3; 
% Number of auxiliary nodes 
n_a = 8; 
% Number of constrained nodes 
n_c = 5; 
% Number of fixed nodes 
n_f = n_a + n_c; 
% Connectivity matrix of free nodes 
C = [1,0,0;1,0,0;1,0,0;1,0,0;0,1,0;0,1,0;0,1,0;0,1,0;0,0,1;0,0,1;0,0,1;0,0,1;0,0,0;0,0,0;0,0,0;0, 
0,0;1,0,0;1,-1,0;0,1,-1;0,0,1;1,0,0;0,1,0;0,0,1]; 
% Connectivity matrix of auxiliary nodes 
C_a = [-1,0,0,0,0,0,0,0;0,-1,0,0,0,0,0,0;0,0,-1,0,0,0,0,0;0,0,0,-1,0,0,0,0;0,0,-1,0,0,0,0,0;0,0,0,-
1,0,0,0,0;0,0,0,0,-1,0,0,0;0,0,0,0,0,-1,0,0;0,0,0,0,-1,0,0,0;0,0,0,0,0,-1,0,0;0,0,0,0,0,0,-1,0;0,0, 
0,0,0,0,0,-1;1,0,0,0,0,0,0,0;0,1,0,0,0,0,0,0;0,0,0,0,0,0,1,0;0,0,0,0,0,0,0,1;0,0,0,0,0,0,0,0;0,0,0, 
0,0,0,0,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0]; 
% Connectivity matrix of constrained nodes 
C_c = [0,0,0,0,0;0,0,0,0,0;0,0,0,0,0;0,0,0,0,0;0,0,0,0,0;0,0,0,0,0;0,0,0,0,0;0,0,0,0,0;0,0,0,0,0; 
0,0,0,0,0;0,0,0,0,0;0,0,0,0,0;0,0,0,-1,0;0,0,0,-1,0;0,0,0,0,-1;0,0,0,0,-1;0,0,0,-1,0;0,0,0,0,0;0, 
0,0,0,0;0,0,0,0,-1;-1,0,0,0,0;0,-1,0,0,0;0,0,-1,0,0]; 
% Connectivity matrix of fixed nodes 
C_f = [C_a C_c]; 
% Connectivity matrix of all structure 
C_s = [C C_f]; 
% Coordinates of auxiliary nodes in x, y and z direction 
x_a = [10;10;20;20;30;30;40;40]; 
y_a = [2.5;-2.5;2.5;-2.5;2.5;-2.5;2.5;-2.5]; 
z_a = [0;0;0;0;0;0;0;0]; 
% Coordinates of constrained nodes in x, y and z direction 
x_c = [15;25;35;5;45]; 
y_c = [0;0;0;1;-1]; 
z_c = [0;0;0;10;10]; 
% Coordinates of fixed nodes in x, y and z direction 
x_f = [x_a; x_c]; 
y_f = [y_a; y_c]; 
z_f = [z_a; z_c]; 
% Force density vector 
q = [1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;1;-1;-1;-1];   
% Diagonal matrix of vector q 
Q = diag(q); 
% Force density matrix of free nodes 
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D = C'*Q*C; 
% Force density matrix of fixed nodes 
D_f = C'*Q*C_f; 
% Free nodes loads in x, y and z direction 
p_x = [0;0;0]; 
p_y = [0;0;0]; 
p_z = [0;0;0]; 
% New coordinates of free nodes in x, y and z direction 
x = D^(-1)*(p_x-D_f*x_f); 
y = D^(-1)*(p_y-D_f*y_f); 
z = D^(-1)*(p_z-D_f*z_f); 
% Coordinate differences in x, y and z direction 
u = C*x+C_f*x_f; 
v = C*y+C_f*y_f; 
w = C*z+C_f*z_f; 
% Diagonal matrices of vectors u, v and w 
U = diag(u); 
V = diag(v); 
W = diag(w); 
% Value of the calculated reaction in x, y and z direction 
R_x = C_a'*U*q; 
R_y = C_a'*V*q; 
R_z = C_a'*W*q; 
% Value of the imposed reaction in x, y and z direction 
R_xv = [0;0;0;0;0;0;0;0]; 
R_yv = [0;0;0;0;0;0;0;0]; 
R_zv = [-400.125;-400.125;-400.125;-400.125;-400.125;-400.125;-400.125;-400.125]; 
% The difference between calculated and imposed reactions 
g_x = R_x-R_xv; 
g_y = R_y-R_yv; 
g_z = R_z-R_zv; 
% Constraints 
r_xz = [-g_x;-g_z]; 
% Jacobian matrices 
G_Rx = C_a'*U-C_a'*Q*C*D^(-1)*C'*U; 
G_Ry = C_a'*V-C_a'*Q*C*D^(-1)*C'*V; 
G_Rz = C_a'*W-C_a'*Q*C*D^(-1)*C'*W; 
% Corresponding matrix 
G_R = [G_Rx;G_Rz]; 
% Change in force density vector 
q_delta = G_R'*pinv(G_R*G_R')*r_xz; 
% Convergence 
k = r_xz'*r_xz; 
% Iterations 
while k >= 0.001 
    q = q + q_delta; 
    Q = diag(q); 
    D = C'*Q*C; 
    D_f = C'*Q*C_f; 
    x = D^(-1)*(p_x-D_f*x_f); 
    y = D^(-1)*(p_y-D_f*y_f); 
    z = D^(-1)*(p_z-D_f*z_f); 
    u = C*x+C_f*x_f; 
    v = C*y+C_f*y_f; 
    w = C*z+C_f*z_f; 
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    U = diag(u); 
    V = diag(v); 
    W = diag(w); 
    R_x = C_a'*U*q; 
    R_y = C_a'*V*q; 
    R_z = C_a'*W*q; 
    g_x = R_x-R_xv; 
    g_y = R_y-R_yv; 
    g_z = R_z-R_zv; 
    r_xz = [-g_x;-g_z]; 
    G_Rx = C_a'*U-C_a'*Q*C*D^(-1)*C'*U; 
    G_Ry = C_a'*V-C_a'*Q*C*D^(-1)*C'*V; 
    G_Rz = C_a'*W-C_a'*Q*C*D^(-1)*C'*W; 
    G_R = [G_Rx;G_Rz]; 
    q_delta = G_R'*pinv(G_R*G_R')*r_xz; 
    k = r_xz'*r_xz; 
end 
% Elements length 
L = sqrt(U^2 + V^2 + W^2); 
l = diag(L); 
% Axial forces 
t = L*q; 
% Maximum force in strut elements 
F_s = max(abs(t([21:23]))); 
% Maximum force in cable elements 
F_c = max(t([1:20])); 
% The partial safety factors 
gama_M0 = 1; 
gama_R = 1; 
% Yield strength 
f_y = 355; 
% The characteristic value of the proof strength of the tension component 
F_02k = 1570; 
% The rope grade 
R_r = 1770; 
% The minimum breaking force factor taking account of the spinning loss 
K = 0.51; 
% The loss factor 
k_e = 1; 
% The minimum cross-section area of strut elements 
A_s = (F_s*gama_M0)/(f_y*10^-3); 
% The minimum cross-section area of cable elements 
A_c = min((1500*F_c*gama_R*pi)/(4*K*R_r*k_e),(1000*F_c*gama_R) 
/(F_02k)); 
% Results 
disp(x) 
disp(y) 
disp(z) 
disp(q) 
disp(l) 
disp(t) 
disp(F_s) 
disp(F_c) 
disp(A_s) 
disp(A_c) 
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scatter3(x_f,y_f,z_f,'*') 
hold on 
scatter3(x,y,z,'*') 
grid on 

 

Results of form-finding process and computations of the elements axial forces and 

geometrical parameters presented in Section 3.2.3. 

3.3.2. Results of Form-Finding 

The output data of the algorithm compiled with MATLAB presented in tables and figures 

below. Table 3.7 gives new free node’s coordinates.  

 Table 3.7. New free nodes coordinates 

Node Coordinate 

x y z 

1 15.776 0.401 5.703 

2 25.000 0.000 4.112 

3 34.224 -0.401 5.703 

 

After we get free nodes coordinates final configuration of the tensegrity bridge structure 

can be defined. 3D view of computational model of the tensegrity bridge depicted in Fig. 3.7 

also front, top, and side views of the model shown in Figs. 3.8, 3.9, and 3.10, respectively. 

 

 

Fig. 3.7. 3D view of the final configuration of the tensegrity bridge 

 

 

Fig. 3.8. Front view of the final configuration of the tensegrity bridge 
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Fig. 3.9. Top view of the final configuration of the tensegrity bridge 

 

 

Fig. 3.10. Side view of the final 

configuration of the tensegrity 

bridge  

 

Updated force density vector 𝒒 is presented in Table 3.8.  

Table 3.8. Force density vector 

Member 1 2 3 4 5 6 

Force density𝑞 23.19 23.19 43.59 43.59 36.82 36.82 

Member 7 8 9 10 11 12 

Force density𝑞 36.82 36.82 43.59 43.59 23.19 23.19 

Member 13 14 15 16 17 18 

Force density𝑞 26.79 26.79 26.79 26.79 123.35 126.84 

Member 19 20 21 22 23  

Force density𝑞 126.84 123.35 -76.01 -49.25 -76.01  

 

Based on element type, the updated force density coefficients vector of cables (tension) 

automatically gets positive values while those of struts (compression) gets negative ones. 

Calculation results of the elements axial forces and geometrical parameters (length, cross 

section area of strut and cable elements) presented in Table 3.9. 
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Table 3.9. Calculation results of the elements axial forces and geometrical parameters 

Group Member Length 𝑙, 𝑚 Axial force 

𝑡, 𝑘𝑁 

Maximum 

force 𝐹, 𝑘𝑁 

Minimum 

cross-section 

area 𝐴,𝑚𝑚2 

Cable 

elements 

1 8.384 194.42 1432.86 1050.0 

2 8.619 199.89 

3 7.401 322.61 

4 7.667 334.21 

5 6.940 255.55 

6 6.940 255.55 

7 6.940 255.55 

8 6.940 255.55 

9 7.667 334.21 

10 7.401 322.61 

11 8.619 199.89 

12 8.384 194.42 

13 11.281 302.16 

14 11.715 313.81 

15 11.715 313.81 

16 11.281 302.16 

17 11.616 1432.86 

18 9.369 1188.26 

19 9.369 1188.26 

20 11.616 1432.86 

Strut 

elements 

21 5.769 -438.68 438.68 1240.0 

22 4.112 -202.64 

23 5.769 -438.68 

 

These results were obtained after an initial calculation was performed with a fixed 

tolerance equal to 0.001 for their respective convergence criteria (Eq. 2.35). All elements 

lengths and axial forces were defined. According to maximum forces of cable and strut elements 

minimum required cross-section areas were estimated. After estimation of all parameters 

described before, FEA of tensegrity bridge can be performed.  

3.4. FEA of Tensegrity Bridge 

FEA and CAD software SOFiSTiK for civil and structural engineering modeling, 

analysis, design, and detailing selected to perform FEA of in form-finding process gotten 

tensegrity bridge structure.  

Camputanional bridge scheme describred in section 3.4.1 and the results of FEA of the 

tensegrity bridge presented in section 3.4.2. 

3.4.1. Finite Element Model of Tensegrity Bridge 

In this work FEA purpose is to check if the results obtained from form-finding process is 

reliable and can be used for further analysis of the analysed structure. FEA has been performed 

in order to ensure that the stability and the bearing capacity of the elements, as well as, 

deflection of the deck, and natural frequencies conform the requirements of EN 1993-1-1, EN 

1993-1-11, and EN 1991-2. 

Strut and cable elements bearing capacity was checked by using design tool in FEM 

software SOFiSTiK. Maximal deflections of the deck should be limited to 1/250 of span length. 
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Natural frequencies (corresponding to vertical, horizontal, torsional vibrations) of the main 

structure of the bridge deck should be: 

 vertical, with a frequency that can range between 1 and 3 Hz, and 

 horizontal, with a frequency that can range between 0,5 and 1,5 Hz. 

Groups of joggers may cross a footbridge with a frequency of 3 Hz. 

FEA has been done in three main stages: 

 Pre-processing, in which a finite element mesh of the geometry obtained in form-

finding process is developed and material properties, boundary conditions and 

loads are applied. 

 Solution, during which the program solves for the displacements, strains, and 

stresses.  

 Post-processing, in which the results are obtained.  

The 3D model obtained with SOFiSTiK shown in Figs. 3.11, 3.12, 3.13, and 3.14. 

Boundary conditions are indicated as red highlight. 

 

 

Fig. 3.11. 3D view of computational model of the tensegrity bridge for FEA 

 

 

Fig. 3.12. Front view of computational model of the tensegrity bridge for FEA 

 

 

Fig. 3.13. Top view of computational model of the tensegrity bridge for FEA 
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Fig. 3.14. Side view of 

computational model of the 

tensegrity bridge for FEA 

 

Cable and strut elements chosen according to minimum cross-section area gotten during 

form-finding procedure described in Table 3.10. 

Table 3.10. Cross-section values of cable and strut members for FEA 

Element Cross-section Material Nominal weight, 𝑘𝑔/𝑚 

Cable stays D60 1x127 Steel 10.0 

Strut TUBE 244.5x8 Steel 46.7 

 

Material properties used for the tensegrity bridge modelling with FEA software 

SOFiSTiK are described in section 3.2. 

Two load combinations have been used to the 3D model of the tensegrity bridge. One is 

to check for ULS and second for SLS. Dead and live loads and loads combinations are described 

in Section 3.2. Pretension forces of cable elements obtained from form-finding procedure are 

presented in Table 3.11. Only symmetrical loading is considered in FEA. Loaded tensegrity 

bridge structure depicted in Figs. 3.15, 3.16, and 3.17. 

Table 3.11. Pretension forces in cable elements 

Member 1 2 3 4 5 

Post-tensioning force 𝑃, 𝑘𝑁 194.42 199.89 322.61 334.21 255.55 

Member 6 7 8 9 10 

Post-tensioning force 𝑃, 𝑘𝑁 255.55 255.55 255.55 334.21 322.61 

Member 11 12 13 14 15 

Post-tensioning force 𝑃, 𝑘𝑁 199.89 194.42 302.16 313.81 313.81 

Member 16 17 18 19 20 

Post-tensioning force 𝑃, 𝑘𝑁 302.16 1432.86 1188.26 1188.26 1432.86 

 



62 

 

 

Fig. 3.15. Dead load 

 

 

Fig. 3.16. Live load 
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Fig. 3.17. Pretension forces 

 

After first stage of FEA was performed and all needed input data were developed and 

applied in SOFiSTiK software second stage of FEA was initiated. Results of FEA represented 

in next section.  

3.4.2. Results of FEA  

FEA result are presented in figures and tables below. Bending moments diagram 

presented in Fig. 3.18, while axial forces diagrams of cable and strut elements depicted in Figs. 

3.19 and 3.20, respectively. 

 

 

Fig. 3.18. Diagram of bending moments of deck structure  

 

 

Fig. 3.19. Diagram of axial forces of strut elements 
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Fig. 3.20. Diagram of axial forces of cable elements 

 

As can be seen in Fig. 3.18 maximum and minimum moments from ULS load 

combination in deck structure are 𝑀𝑚𝑎𝑥 = 177.7 𝑘𝑁/𝑚 and 𝑀𝑚𝑖𝑛 = −167.5 𝑘𝑁/𝑚, 

respectively. Deference between them is 6.1%, that shows good distribution of bending 

moments in deck structure. 

Axial forces acting in cable and strut elements and their bearing capacity calculation 

results are summarized in Table 3.12. 

Table 3.12. Bearing capacity of cable and strut elements 

Group Member Axial force 

𝑡, 𝑘𝑁 

Maximum 

force 𝑁𝐸𝑑 , 𝑘𝑁 

Bearing 

capacity 

𝑁𝑅𝑑, 𝑘𝑁 

Buckling 

resistance 

𝑁𝑅𝑑, 𝑘𝑁 

Cable 

elements 

1 4.71 1787.80 2166.48 - 

2 0.00 

3 334.77 

4 487.89 

5 280.38 

6 64.83 

7 64.83 

8 280.41 

9 487.87 

10 334.74 

11 0.00 

12 4.73 

13 506.78 

14 590.11 

15 590.11 

16 506.77 

17 1787.89 

18 1130.80 

19 1130.77 

20 1787.80 

Strut 

elements 

21 -78.60 78.60 2110.12 524.36 

22 -25.20 

23 -78.60 

 

According to the results of the analysis, bearing capacity of the elements is sufficient. 
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After the analysis of ULS conditions, analysis of the SLS conditions were performed. 

Deck deflection and natural frequencies of the deck structure were calculated. 

Calculation result of deck deflection presented in Fig. 3.21. 

 

 

Fig. 3.21. Deflection of the tensegrity bridge deck structure 

 

In this case maximal deck deflections should be limited to 200.0 mm. As can be seen in 

Fig. 3.21 maximum deflection from SLS load combination in deck structure is equal to 18.1 

mm. Condition of deck deflection is satisfied.  

Eight forms of natural frequencies of the deck structure were calculated. Calculation 

results presented in Figs. 3.22 to 3.29 and Table 3.13. 

 

 

 

Fig. 3.22. 1st eigenform 
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Fig. 3.23. 2nd eigenform 

 

 

 

 

Fig. 3.24. 3rd eigenform 
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Fig. 3.25. 4th eigenform 

 

 

 

 

Fig. 3.26. 5th eigenform 
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Fig. 3.27. 6th eigenform 

 

 

 

 

Fig. 3.28. 7th eigenform 
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Fig. 3.29. 8th eigenform 

Table 3.13. Natural frequencies of the main structure of the bridge deck 

No. Eigenvalue, 1 𝑠2⁄  Relative error Frequency, 𝐻𝑧 Period, 𝑠 
1 8.40261E-03 5.13E-06 0.015 68.544518 

2 8.54655E-03 1.29E-05 0.015 67.964874 

3 9.06294E-03 8.09E-06 0.015 66.000221 

4 1.30939E-02 5.82E-04 0.018 54.909164 

5 1.54399E-02 1.62E-02 0.020 50.565952 

6 1.63515E-02 2.97E-02 0.020 49.136173 

7 1.97408E-02 4.41E-02 0.022 44.719582 

8 2.33209E-02 8.35E-02 0.024 41.144100 

 

According to the results none of eight calculated frequencies get in critical range of 

natural frequencies. 

After FEA of the tensegrity bridge it can be stated that bridge is stable and results obtained 

from form-finding process is reliable and can be used for further analysis of the structure.  

3.5. Concluding Remarks of Chapter 3 

Chapter 3 draws following key findings: 

1. A conversion of EFDM appropriate to deal with tensegrity systems supporting 

beams in flexure has been presented. For a given assembly of tensile and 

compressive elements and loading condition, suggested improvement enables to 

find the particular prestressed system which replaces both static and kinematic 

functions of the inner reactions of an elastic flexural continuous beam. 

2. Considered application of the tensegrity for the cable-stayed bridge shows the 

effectiveness and the adaptability of the suggested approach seeking to solve 
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problems of complex geometries and/or constrains and contributes to the design 

of new creative forms. 

3. The FEA of the tensegrity bridge showed that data obtained from form-finding 

procedure through suggested algorithm of EFDM is reliable and can be used for 

further analysis of the structure. 

4. Deference between maximum and minimum bending moments of the deck 

structure is 6.1%, that shows good distribution of bending moments and that 

pretension forces obtained from form-finding procedure are sufficient. 

5. The tensegrity bridge structure is rigid, deflection of deck structure from SLS load 

combination is very small it is only 9.05% of limited maximal deflection. 

6. Tensegrity bridge structure is stable, none of eight calculated frequencies get in 

critical range of natural frequencies. 
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GENERAL CONCLUSIONS 

Present study suggests a possibility of applying tensegrity as constructive load carrying 

system in cable-stayed bridges and concludes as following: 

1. An overview of cable-stayed bridges and tensegrity systems was presented. The 

idea of a cable-stayed bridge is straightforward. The deck supports the loads and 

stays provide medial supports for the bridge so that it can cross a long distance. 

By replacing usual cable-stays system with tensegrity system more technically 

and economically rational and architecturally expressive structures can be 

achieved.  

2. Tensegrity structures integrate axially loaded discrete members without any 

bending moments in them. These structures are lightweight, adjustable and 

resourceful in mass. 

3. When considering mass consumption tensegrity systems provide better capability 

to resist external loads in comparison to conventional structures. This property of 

tensegrity structures may possibly alternate to distinctive rigid structures. The 

tensegrity concept presents new opportunities for structural expression in civil 

engineering. 

4. Tensegrity structures experience a highly efficient structural behaviour reasoned 

by exceptionally axial resistance, structural control performed by pretension of 

tensile members and easer predictable systematic instability. The extreme 

flexibility of tensegrity structures makes them capable to withstand large 

structural shocks and determines applicability for structures built at the areas of 

natural hazards. Due to wide variation in structural configuration tensegrity 

structures serve as a desirable tool for architects in order to satisfy strict aesthetic 

requirements and realize their self-expression; none the less they are desirable by 

structural engineers as a problem of form-finding. 

5. A study of the existing form-finding methods for tensegrity structures and their 

categorization is done to set a right method for an outline of statically stable 

tensegrities. After analysis of existing form-finding methods for tensegrity 

structures, the FDM is chosen for its flexibility. 

6. Adding constraints to FDM allows to set relative distances between the nodes, the 

tensile intensity in the elements and their initial length. To establish the positions 

of a particular number of nodes and, together, to impose the intensity of the 

reaction force the EFDM was proposed. 

7. New arrangement of cable-staying system for cable-stayed bridge was proposed 

and the form-finding process through EFDM was performed. This process lets to 

determine tensegrity structure form by setting the topology of structure, loading 

conditions and type of each member. Considered application of the tensegrity for 

the cable-stayed bridge shows the effectiveness and the adaptability of the 

suggested approach seeking to solve problems of complex geometries and/or 

constrains and contributes to the design of new creative forms. 

8. EFDM suitable to deal with tensegrity systems supporting beams and allows to 

find that particular pretensioning system which replaces both the static and the 

kinematic functions of the inner reactions of a flexural elastic continuous beam. 

9. The FEA of the tensegrity bridge showed that data obtained from form-finding 

procedure through suggested algorithm of EFDM is reliable. Bridge structure is 

rigid and stable. 
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Suggestions for Future Research 

Tensegrity systems use in large structures is limited due to the current lack of analytical 

tools to study and design tensegrity structures. In the future perspective, the following issues 

may become the subjects of studies: 

1. To provide more accurate computational methods for the analysis of 

geometrically nonlinear behavior of tensegrity based cable-stayed bridge the 

following aspects could be taken into account: the beam-column effect, the large 

displacements effect and the cable sag effect. 

2. By examining the relation among methods and how they solve the initial 

equilibrium problem the new hybrid approaches can be developed by combining 

strengths of these methods. 

3. More detailed analysis of the tensegrity based cable-stayed bridge behaviour for 

asymmetric load should be done. 
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Abstract. Tensegrity systems are technical structures consisting of tension and compression elements 

which are light weight, deployable, energy efficient, and highly controllable. The use of tensegrity systems for 

cable-stayed bridges, may prove to be very economical. The objective of this review paper is to understand the 

basic principles on which a tensegrity system is based. This paper reviews: a finite element computation 

procedure for the form-finding analysis of cable-stayed bridge and introduces the theoretical foundation of the 

proposed methods; definitions given by various researchers in the field of tensegrity; characteristics, advantages 

and disadvantages of these structures; various applications of tensegrity systems; form-finding methods of 

tensegrity systems. 

 

Keywords: tensegrity systems, form-finding, cable-stayed bridge. 

1. Introduction  

Over the last half century, a large number of 

cable-stayed bridges has been built or are under 

construction all over the world (Wang et al. 1993; 

Wang, Yang 1995; Wang et al. 2003). Because of its 

aesthetic appeal, economic grounds and the ease of 

erection, the cable-stayed bridge is considered as 

most suitable for medium to long span bridges (Wang 

et al. 1993; Wang, Yang 1995; Wang et al. 2003). Use 

of tensegrity systems for this bridges, may prove to 

be very economical.  

Tensegrity systems are technical structures 

consisting of tension and compression elements 

which are light weight, deployable, energy efficient, 

and highly controllable (Joshi, Al-Hakkak 2015; 

Rhode-Barbarigos et al. 2010; Ali et al. 2010; 

Nuhoglu, Korkmaz, K. 2011; Korkmaz, S. et al. 

2011; Ali, Smith 2010; Juan, Tur 2007). A tensegrity 

structure is a paradigm of continual tension and 

intermittent compression. These structures essentially 

consist of bars and strings attached to the end of the 

bars, which are all loaded axially and do not receive 

bending moments (Joshi, Al-Hakkak 2015). 

This paper reviews literature background of the 

current state of the art in form-finding for cable-

stayed bridges and tensegrity structures. The paper is 

organized as follows: Section 2 reviews a finite 

element computation procedure for the form-finding 

analysis of cable-stayed bridge and introduces the 

theoretical foundation of the proposed methods. 

Section 3 presents the definitions given by various 

researchers in the field of tensegrity. Section 4 discus 

characteristics, advantages and disadvantages of 

these structures. Section 5 introduce various 

applications of tensegrity systems. Section 6 reviews 

form-finding methods of tensegrity systems. Finally, 

Section 7 concludes the paper. 

2. Form-finding analysis of cable-stayed bridges 

2.1. Finite element model 

Based on the finite element theory, a cable-stayed 

bridge can be take into consideration as an assembly 

of a finite number of cable and beam (girder) column 

(tower) elements. In presented finite element 

computation approach for form-finding of cable-

stayed bridges some assumptions are made as follows 

(Wang et al. 1993; Wang, Yang 1995; Wang et al. 

2003). The material is homogeneous and isotropic 

and behaves linearly elastically. The external loads 

are displacement independent. All cables are fixed to 

the tower and to the girder at their joints of 

attachment. Large displacements and large rotations 

are allowed, but strain is small. The geometric 

nonlinearities are taken into account in the 

computation approach for form-finding of cable-

stayed bridges. 

2.2. Nonlinearities 

There are three main sources of geometrically 

nonlinear behaviour of cable-stayed bridges which 

must be taken into account: the beam-column effect, 

the large displacements effect and the cable sag effect 

(Freire et al. 2006; Wang et al. 1993; Wang, Yang 

1995; Wang et al. 2003). 

The elastic cable is assumed to be perfectly 

flexible and have only tension stiffness; it is lacking 

ability of withstanding compression, shear and 

bending forces. The inclined cable stay of cable-

stayed bridges is in general quite long and cable hold 

up at its end and under the action of dead load and 
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axial tensile force will sag into catenary shape. 

Changing sag, the axial stiffness of a cable will 

change. When an unswerving cable element for a full-

length inclined cable stay is used in the analysis, the 

sag effect has to be taken into account (Freire et al. 

2006; Wang et al. 1993; Wang, Yang 1995; Wang et 

al. 2003).  

The towers and part of the girders are subjected 

to a large compression action since a high pretension 

force exists in inclined cable stays; this means that the 

beam-column effect has to be taken into account for 

girders and towers of the cable-stayed bridge (Freire 

et al. 2006; Wang et al. 1993; Wang, Yang 1995; 

Wang et al. 2003).  

Generally, cable-stayed bridges have an of 

considerable size span and smaller weight than that of 

standard steel and reinforced concrete bridges. Large 

deflections may easily emerge in cable-stayed 

bridges, this means that the large displacement effect 

has to be taken into account in the analysis and the 

equilibrium equations have to be set up based on the 

deformed position (Freire et al. 2006; Wang et al. 

1993; Wang, Yang 1995; Wang et al. 2003).  

2.3. General system equation 

The general system equation for finite element model, 

derived from the virtual work principle have the 

following form (Wang et al. 1993; Wang, Yang 1995; 

Wang et al. 2003): 

 

𝑲𝑗 ∙ 𝒃𝛼
𝑗
−∑𝑆𝑗𝑎𝑗𝛼

𝐸𝐿

= 0   𝛼

= 1,2, … , 𝑁 𝐷𝑂𝐹, 
 

(1) 

where 𝑃𝛼 = 𝑲𝑗 ∙ 𝒃𝛼
𝑗  the generalized external forces, 

𝑲𝑗the external nodal load vectors, 𝒃𝛼
𝑗
= 𝜕𝑾𝑗 𝜕𝑞𝛼⁄  

the basis vector, 𝑾𝑗 the displacement vectors 

corresponding to 𝑲𝑗, 𝑞𝛼 the generalized systems 

coordinates, 𝑇𝛼 = ∑ 𝑆𝑗𝑎𝑗𝛼𝐸𝐿  the generalized internal 

forces, ∑𝐸𝐿 the summation over all elements, 𝑆𝑗 =

𝑲𝑬𝑗𝑘𝑢𝑗 + 𝑆𝑗
0 the generalized element forces, 𝑲𝑬𝑗𝑘 

the element stiffness matrix, 𝑢𝑗 the generalized 

element coordinates, 𝑆𝑗
0 the generalized initial 

element forces, 𝑎𝑗𝛼 = 𝜕𝑢𝑗 𝜕𝑞𝛼⁄  the transformation 

coefficients, 𝑁 the number of degree of freedom 

(DOF). The superscript 𝑗 denotes the nodal number. 

The subscripts 𝛼, 𝛽, 𝛾, … denote the number of the 

system coordinate and 𝑗, 𝑘, 𝑙, … are the number of the 

element coordinate. The index summation convention 

is used here for the superscripts and subscripts. 

Letters printed in bold-face type, e.g. 𝑲𝑗, 𝒃𝛼
𝑗

, 

represent vectors. The dot notation between vectors 

means scalar product. General system equation can be 

solved by the load increment methods or the iteration 

methods (Wang et al. 1993; Wang, Yang 1995; Wang 

et al. 2003). 

2.4. Linearized system equation 

In nonlinear statics the linearized finite element 

system equation, derived from the virtual work 

principle have the following form (Wang et al. 1993; 

Wang, Yang 1995; Wang et al. 2003): 

 

∆𝑃𝛼
𝑛 + 𝑃𝛼

𝑛
𝑢 = 𝐾𝛼𝛽

𝑛 ∙ ∆𝑞𝛽
𝑛2    𝑓𝑜𝑟 𝑃𝛼

𝑛 ≤ 𝑃𝛼 ≤ 𝑃𝛼
𝑛+1, 

 

(2) 

where ∆𝑃𝛼
𝑛 = 𝑃𝛼

𝑛+1 − 𝑃𝛼
𝑛 the load increments, 

𝑃𝛼
𝑛

𝑢 = 𝑃𝛼
𝑛 − ∑ 𝑆𝑗

𝑛𝑎𝑗𝛼
𝑛

𝐸𝐿  the unbalanced forces at 𝑛th 

load step in statics, 

𝐾𝛼𝛽
𝑛 = ∑ 𝑲𝑬𝑗𝑘

𝑛 𝑎𝑗𝛼
𝑛 𝑎𝑘𝛽

𝑛
𝐸𝐿 + ∑ 𝑆𝑗

𝑛𝑎𝑗𝛼,𝛽
𝑛

𝐸𝐿 −2  

− 𝑲𝑗 ∙ 𝒃𝛼,𝛽
𝑗𝑛𝑛 − 𝑲𝛽

𝑗
∙ 𝒃𝛼

𝑗𝑛𝑛  the tangent system 

stiffness matrix, ∆𝑞𝛼
𝑛 = 𝑞𝛼

𝑛+1 − 𝑞𝛼
𝑛 the displacement 

increments, 𝑎𝑗𝛼,𝛽 = 𝜕𝑎𝑗𝛼 𝜕𝑞𝛽⁄  the transformation 

coefficients of second-order, 𝒃𝛼,𝛽
𝑗
= 𝜕𝒃𝛼

𝑗
𝜕𝑞𝛽⁄ . The 

superscript “𝑛” denotes the number of load step, 

e.g., 𝑞𝛽
𝑛 = 𝑞𝛽|𝑃𝛼=𝑃𝛼𝑛, and the number “2” means 

iteration matrix of second-order (Wang et al. 1993; 

Wang, Yang 1995; Wang et al. 2003). 

2.5. Form-finding procedure  

The form-finding of cable-stayed bridge gives the 

geometric shape as well as the prestress distribution 

of the bridge under the action of dead load of girders 

and towers and the pretension force in inclined cable 

stays. The analysis can be performed in two different 

ways: linear theory and nonlinear theory. 

Theoretically, exact and more smooth shape of the 

bridge girder can be found only by the nonlinear 

theory (Wang et al. 1993; Wang, Yang 1995; Wang 

et al. 2003).  

Wang et.al (1993) and Wang, Yang (1995) 

present a finite element computation approach for 

form-finding of cable-stayed bridges under the action 

of the dead loads of girders and pretension in inclined 

cables, later Wang et.al (2003) set up a finite element 

computation approach for the form-finding analysis 

of cable-stayed bridges during erection procedures: 

forward process analysis and backward process 

analysis by using both the linear computation 

procedure and the nonlinear computation procedures. 

The former solved using the Newton-Raphson 

method and the latter solved using the cantilever 

method.  

The Newton-Raphson method of form-finding 

analysis of cable-stayed bridges is in short outlined in 

the following (Wang et al. 1993; Wang, Yang 1995; 

Wang et al. 2003): 

1) Input the geometric and physical data of the 

bridge. 

2) Input the dead load of girders and towers. 

3) Input the reference configuration (designed 

shape) of the bridge. 

4) Input suitably estimated initial forces in cable 

stays to start the computation. 

5) Find equilibrium position 

i. Linear procedure 
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 Linear cable and beam-column elements 

and linear constant coordinate 

transformation coefficients 𝑎𝑗𝛼  are used. 

 Set up and solve the linear system equation 

for 𝑞𝛼 (equilibrium position). 

 No equilibrium iteration is carried out. 

ii. Nonlinear procedure 

 Nonlinear cable element with sag effect 

and beam-column element and nonlinear 

coordinate transformation coefficients 𝑎𝑗𝛼 , 

𝑎𝑗𝛼,𝛽 are used. 

 Set up and solve the incremental linearized 

system equation for ∆𝑞𝛼 . 

 Equilibrium iteration is performed by 

using the Newton–Raphson method. 

6) Shape iteration 

 Check if the convergence tolerance |
𝑞𝛼

𝐿𝑠
| ≤

𝜀𝑠 is achieved or not. 

 If converged, the equilibrium 

configuration is the desired initial shape. 

Otherwise, the newly obtained axial forces 

of members are taken as initial element 

forces, repeat steps 5 and 6. 

7) Output of the initial shape including geometric 

configuration and element forces. 

The form-finding during erections procedures in 

detail analysed by Wang et al. (2003) The forward 

process analysis of cable-stayed bridges during 

construction is performed by following the sequence 

of erection stages in bridge construction, while the 

backward process analysis follows the reverse 

direction of the sequence of the bridge erection 

procedure. At each erection stage, the finite element 

analysis model is rebuilt, then the system equation is 

set up and solved anew under the action of dead load 

and member forces determined in the previous stage 

for finding the corresponding new initial shape 

(Wang et al. 2003). 

3. Concept of tensegrity systems 

Tensegrity systems are technical structures consisting 

of tension and compression elements which are light 

weight, deployable, energy efficient, and highly 

controllable (Joshi, Al-Hakkak 2015; Rhode-

Barbarigos et al. 2010; Ali et al. 2010; Nuhoglu, 

Korkmaz, K. 2011; Korkmaz, S. et al. 2011; Ali, 

Smith 2010; Juan, Tur 2007). The word tensegrity is 

a combination of tensile and integrity, it was proposed 

by Richard Buckminster Fuller in 1962 (Joshi, Al-

Hakkak 2015; Rhode-Barbarigos et al. 2010; Pagitz, 

Tur 2009; Amouri et al. 2014; Juan, Tur 2007). He 

described tensegrity systems as “islands of 

compression in an ocean of tension” (Joshi, Al-

Hakkak 2015; Rhode-Barbarigos et al. 2010; Juan, 

Tur 2007), later in 1975 he defines tensegrity as 

follows:” The word tensegrity is an invention: it is a 

contraction of tensional integrity. Tensegrity 

describes a structural‐relationship principle in which 

structural shape is guaranteed by the finitely closed, 

comprehensively continuous, tensional behaviours of 

the system and not by the discontinuous and 

exclusively local compressional member behaviours. 

Tensegrity provides the ability to yield increasingly 

without ultimately breaking or coming asunder. The 

integrity of the whole structure is invested in the 

finitely closed, tensional‐embracement network, and 

the compressions are local islands.” (Joshi, Al-

Hakkak 2015). 

Throughout the same decade, David George 

Emmerich in 1963 and Kenneth Snelson in 1965 

patented similar systems (Joshi, Al-Hakkak 2015; 

Rhode-Barbarigos et al. 2010; Amouri et al. 2014; 

Juan, Tur 2007). Kenneth Snelson defines tensegrity 

system as follows: “Tensegrity describes a closed 

structural system composed of a set of three or more 

elongate compression struts within a network of 

tension tendons, the combined parts mutually 

supportive in such a way that the struts do not touch 

one another, but press outwardly against nodal points 

in the tension network to form a firm, triangulated, 

prestressed, tension and compression unit.” (Joshi, 

Al-Hakkak 2015). David George Emmerich describe 

tensegrity system as follows: “Self-stressing 

structures consist of bars and cables assembled in 

such a way that the bars remain isolated in a 

continuum of cables. All these elements must be 

spaced rigidly and at the same time interlocked by the 

pre-stressing resulting from the internal stressing of 

cables without the need for external bearings and 

anchorage. The whole is maintained firmly like a self-

supporting structure, whence the term self-stressing.” 

(Juan, Tur 2007). 

Anthony Pugh in 1976 proposed definition, 

which is the result of combining the definitions by 

Richard Buckminster Fuller, David George 

Emmerich and Kenneth Snelson: “A tensegrity system 

is established when a set of discontinuous 

compression components interacts with a set of 

continuous tensile components to define a stable 

volume in space.” (Juan, Tur 2007). 

A current and widely conceptual meaning was 

suggested by Rene Motro in 2003: “A tensegrity is a 

system in stable self-equilibrated state comprising a 

discontinuous set of compressed components inside a 

continuum of tensioned components.” (Joshi, Al-

Hakkak 2015; Rhode-Barbarigos et al. 2010; Ali et 

al. 2010; Quirant et al. 2003; Ali, Smith 2010; 

Amouri et al. 2014; Juan, Tur 2007). This definition 

takes in systems where compressed elements are 

interconnected as tensegrity structures (Rhode-

Barbarigos et al. 2010). 

Another widely cited definition of a tensegrity 

systems is proposed by Robert Skelton in 2001: “A 

Class k tensegrity structure is a stable equilibrium of 

axially loaded elements, with a maximum of k 

compressive members connected at the node(s).“ 

(Joshi, Al-Hakkak 2015; Juan, Tur 2007). 

Tensegrity is a comparatively new area of study, 

currently none of the definitions have been invariably 
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accepted, why it is very important to know the 

different definitions in a variety of disciplines and the 

differences among them (Joshi, Al-Hakkak 2015). 

4. Characteristics of tensegrity structures 

The main characteristics of tensegrity are presented 

as follows (Joshi, Al-Hakkak 2015; Skelton et al. 

2001): 

 Tensegrity structures are stable structures. They 

are also completely independent of external 

forces.  

 In a tensegrity structure, members are designed 

for axial loads and none of the member 

experience bending moments. For this reason, 

more dependable and precise models can be 

presumed. Moreover, buckling load in 

compressive elements cannot be predicted 

exactly in application as equate the tensile 

strength of a member. For this reason, increased 

use of tensile members in tensegrity structures 

can help to have more precise models of the 

structures.  

 Tensegrity structures are mass efficient. In 

tensegrity structures, longitudinal members are 

arranged in uncommon systems which are not 

orthogonal to achieve maximum strength with 

minimum mass. For this reason, bridges, domes 

etc. constructed using the principles of 

tensegrity may prove to be very economical.  

 Tensegrity structures are deployable structures. 

Because the compressive members of tensegrity 

structures are either disjoint or connected with 

ball joints, large displacement, deployability, 

and stowage in a compact volume will be 

immediate virtues of tensegrity structures. This 

feature offers operational and portability 

advantages. 

 Tensegrity structures vibrate readily and 

transfer loads rapidly. For this reason, none of 

the individual members experience any stresses 

locally. By the virtue of this property, tensegrity 

structures may prove useful in absorption of 

seismic shocks.  

 In contrast to most of the orthodox structures 

and mechanisms, tensegrity structures can be 

controlled with much smaller control energy.  

 Pre-tensioning grows the stiffness of tensegrity 

structures. But, to achieve high levels of 

stiffness, immense pre-tension in the strings is 

needed which may not be easy to execute. This 

is considered as the foremost disadvantage of 

these structures.  

 The manufacture of tensegrity structures is not 

easy. Complicated structures like spherical and 

domical structures may be confronted by 

problems in fabrication.  

 These structures are nonlinear and for that 

reason their modeling and control needs special 

methods which are still under progress.  

5. Applications of tensegrity systems 

Tensegrity structures find applications in a sort of 

fields like civil engineering, architecture, mechanical 

engineering, aerospace, and biomechanics (Joshi, Al-

Hakkak 2015). 

These days, material costs have been a point of 

concern and as material costs go on rising, tensegrity 

structures which use material more effective are 

becoming more and more attractive. Configuration of 

tensegrity structures is controllable. In case of 

earthquakes or wind loads adjustable tensegrity 

structures can be used to lower damage.  

In domical arrangement, tensegrity structures 

can be used for manufacture of remarkably extensive 

structures, for diverse purposes such as extensive 

electrical or electromagnetic shielding, green house 

for plant and food production, etc. Tensegrity 

structures are deployable. For that reason, they can be 

used for disaster-stricken areas, building field 

hospitals, temporary shelters, etc.  

Tensegrity systems can be used to build light 

weight shells for pavilions. In situations where large 

displacements are not a matter of concern or 

considerable displacements are acceptable, tensegrity 

towers can be employed to support antennas, 

receptors, radio transmitters, mobile telephone 

transmitters, etc. (Joshi, Al-Hakkak 2015).  

With a lot of research works conducted by civil 

engineers and architect all over the world, it is now 

feasible to mathematically model and design 

tensegrity structures for architectural applications 

(Joshi, Al-Hakkak 2015). For this reason, tensegrity 

bridges (Fig. 1) and roofs are now a reality. 

6. Form finding methods of tensegrity systems 

Form-finding methods for tensegrity structures have 

been analysed by many authors. Existing form-

finding methods for tensegrity structures can be 

classified into two categories: kinematical methods 

and statical methods (Tibert, Pellegrino 2011; Pagitz, 

Tur 2009; Juan, Tur 2008). The former methods are 

outlined by increasing (decreasing) the length of the 

struts (cables) and keeping the length of the cables 

(struts) constant until a maximum (minimum) is 

reached (Tibert, Pellegrino 2011; Pagitz, Tur 2009; 

Juan, Tur 2008). In these methods it is not needed that 

Fig. 81. Kurilpa bridge in Brisbane Australia 

built in 2009 
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the members be in a state of pre-stress. In latter 

methods, when topology and the forces in its 

members are given, relationship is set up between 

equilibrium configurations of a structure (Tibert, 

Pellegrino 2011; Pagitz, Tur 2009; Juan, Tur 2008). 

This link is then analysed by different techniques. 

In kinematical methods category, Connelly and 

Terrell (1995) used an analytical method, where the 

coordinates of each node are expressed as a function 

of geometric parameters and then maximize 

(minimize) the length expressions for struts (cables) 

given the length of the cables (struts) starting from an 

arbitrary configuration (Tibert, Pellegrino 2011; 

Pagitz, Tur 2009; Juan, Tur 2008). This method is 

simple for very symmetric structures, but it is 

infeasible for non-symmetric tensegrities due to the 

large number of variables needed (Juan, Tur 2008). 

Research in this field also have been done by: 

Koohestan, Guest (2013); Li et al. (2010). 

Pellegrino (1986) and Burkhardt (2006) 

proposed non-linear programming technique by 

turning the form-finding method of tensegrity 

structures into another one of constrained 

minimization problem. For these methods need a 

correct configuration to start with and then try to 

minimize (maximize) the length of same struts 

(cables), but they do not take into account any stress 

restriction. For that reason, in spite of the fact that 

geometrically correct, the outcome structure may not 

be firm (Juan, Tur 2008). Research in this field also 

have been done by Burkhardt (2006). 

Finally, Motro (1984) and Belkacem (1987) 

suggested the dynamic relaxation method for 

tensegrity structures. In order to get the equilibrium 

configuration, this method solves a fictitious dynamic 

model in terms of the acceleration, velocity and 

displacement from the initial configuration like the 

one shown below: 

 

 𝑴𝒅̈ + 𝑫𝒅̇ + 𝑲𝒅 = 𝒇, 
 

(3) 

where 𝑲 is a stiffness matrix, 𝑴 a mass matrix, 𝑫 a 

damping matrix, 𝒇 the vector of external forces, and 

𝒅̈, 𝒅̇ and 𝒅 the vectors of acceleration, velocity and 

displacement from the initial configuration, 

respectively (Juan, Tur 2008; Tibert, Pellegrino 

2011). This method is only practical for small size 

structures, but it takes into account equilibrium 

considerations and the existence of external forces 

(Juan, Tur 2008). Research in this field also have been 

done by: Ali et al. (2010); Zhang et al. (2006). 

In statical methods category Kenner (1976) 

applied node equilibrium conditions and symmetry 

arguments to come up with the stable configurations 

of some simple tensegrity structures (Juan, Tur 2008). 

This method is alike to Connelly and Terrell (1995) 

method for kinematic analytical approach but it 

guarantees stability of the structure without any 

external load (Juan, Tur 2008). 

Schek (1974) and Linkwitz (1999) suggested the 

force density method which transforms the nonlinear 

equilibrium equations into a set of linear equations 

(Juan, Tur 2008; Tibert, Pellegrino 2011). This 

method demands the priory understanding of the 

stress coefficients for all members which is one of its 

greatest disadvantage since some combinations of 

stresses may not have physical applications in a given 

space (Juan, Tur 2008). Another disadvantage of this 

method is that it is not possible to control the length 

of the members (Juan, Tur 2008). The equilibrium 

equation of a general pin-jointed structure is 

 

 𝑪𝑇𝑸𝑪𝒑𝑖 + 𝑪
𝑇𝑸𝑪𝑓𝒑𝑖,𝑓 = 𝒇𝑖 , 

 

(4) 

where 𝑪 and 𝑪𝑓 is the incidence matrixes for a given 

topology, 𝑸 is a diagonal matrix containing the force 

density coefficients, 𝒑𝑖, 𝒑𝑖,𝑓 and 𝒇𝑖 are the coordinate 

vector and the external force applied to each node in 

the ith direction, respectively. The product 𝑪𝑇𝑸𝑪 

(𝑪𝑇𝑸𝑪𝑓) is called the force density matrix (Juan, Tur 

2008; Tibert, Pellegrino 2011). Research in this field 

also have been done by: Aboul-Nasr, Mourad (2015); 

Miki, Kawaguchi (2010); Quagliaroli, Malerba 

(2013); Tran, Lee (2009); Tran, Lee (2010a); Tran, 

Lee (2010b); Tran, Lee (2010c); Xu, Luo (2009) 

Zhang, Ohsaki (2006). 

Energy based form-finding method was 

presented by Connelly (1993). In this method he 

assigns an energy function to a tensegrity and 

searches the minimum of this function, which is 

equivalent to test the positive semi-definiteness of the 

stress matrix (𝛀) (Juan, Tur 2008; Tibert, Pellegrino 

2011).  This stress matrix is identical to the force 

density matrix used in the force density method (Juan, 

Tur 2008; Tibert, Pellegrino 2011). 

Another method was introduced by Sultan et al. 

(1999). Consider a set of generalized coordinates for 

a particular tensegrity framework and use symbolic 

manipulation to obtain the equilibrium matrix (𝑹(𝒑)) 
(Juan, Tur 2008; Tibert, Pellegrino 2011). Sultan 

(1999) specified the pre-stress state for a two stage 

SVD tensegrity structure which can be specified with 

just three parameters (i.e. the azimuth (𝛼), the 

declination (𝛿) and the overlap (ℎ)) (Juan, Tur 2008; 

Tibert, Pellegrino 2011). Research in this field also 

have been done by Tur, Juan (2008). 

Micheletti and Williams (2004) introduce a 

method based on solving a system of differential 

equations. These authors also suggest a method to 

modify a given stable configuration to get to one more 

by changing the length of a given edge and solving 

the system of differential equations to get the change 

in length of the other edges (Juan, Tur 2008). 

Zhang et al. (2006) developed a method to first 

find a set of axial forces compatible with a given 

structure and then find the relative nodal coordinates 

under equilibrium conditions and structure 

constraints (Juan, Tur 2008). This method mainly 

obtains the bases for the self-stress and positioning 
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subspaces and then requires to fix a number of 

stresses and coordinates equal to the dimension of 

those subspaces, respectively, in order to find the 

final solution (Juan, Tur 2008).  

Masic et al. (2005) introduced a modified 

version of the force density method introduced by 

Schek (1974) and Linkwitz (1999) which directly 

involves form constraints. They also studied how the 

symmetry properties can be used to systematically 

reduce the number of force density variables, 

equilibrium equations and geometrical variables 

(Juan, Tur 2008). They put on view that the 

equilibrium of a tensegrity structure is invariant under 

an affine transformation (i.e.𝒑̅ = 𝑺𝒑 + 𝒓) of the 

nodal coordinates (Juan, Tur 2008). 

Paul et al. (2005) presented a different approach 

based on genetic algorithms to find the topology 

which assures stability. In which genetic algorithms 

are used to evaluate an initial arbitrary topology into 

a stable one in the work space (Juan, Tur 2008). This 

method is fit to generate asymmetrical structures. 

Research in this field also have been done by: Chisari 

et al. (2015); Gan et al. (2015); Yamamoto et al. 

2011; Koohestani (2012); Skelton et al. (2013). 

Masic et al. (2006) using non-linear 

programming techniques introduced by Pellegrino 

(1986), developed a method which search for the 

topology, geometry and pre-stress of a structure under 

external forces, and taking into account strength, 

buckling and form constraints (Juan, Tur 2008). The 

application of sequential quadratic programming (a 

penalty method) allows the algorithm to find stable 

configurations starting from a random one, but some 

uniqueness’s in the gradient function due to the use of 

the element length may source the algorithm to 

diverge or as an alternative, link up to a non-optimum 

solution (Juan, Tur 2008). Also, their form-finding 

method holds some physical phenomena due to 

external loads (Juan, Tur 2008). 

Finally, Estrada et al. (2006) introduced a 

method which only requires information about the 

type of each 

Table 14. Summary of form-finding methods of tensegrity systems 

Method name Class Assures 

stability 

Needs a valid initial 

configuration 

Uses 

symmetry 

Needs an 

initial 

topology 

Uses 

external 

forces 

Analytic solution Kinematic No No Yes Yes No 

Non-linear 

programming 

Kinematic No Yes No Yes No 

Dynamic relaxation Kinematic Yes Yes No Yes Yes 

Analytic solution Static Yes No Yes Yes No 

Force density 

method 

Static Must be given No No Yes Yes 

Energy method Static Yes No No Yes No 

Reduced coordinates Static Yes No Yes Yes No 

Differential 

equations 

Static Yes Yes No Yes No 

Successive 

approximation 

Both Some stresses 

have to be 

fixed 

Some coordinates 

have to be fixed 

No Yes No 

Algebraic method Static Must be given No No Yes Yes 

Genetic algorithm Topologic Yes No No No No 

Sequential quadratic 

programming 

Both Yes No No No Yes 

Numerical Method Both Yes No No Yes No 

edge and about the topology, but does not account for 

external forces (Juan, Tur 2008). Then, the 

equilibrium geometry and force densities for each 

edge are iteratively calculated using rank constraints 

on both the stress matrix (𝛀) and the rigidity matrix 

(𝑹(𝒑)) (Juan, Tur 2008). Research in this field also 

have been done by: Cheong et al. (2014); Koohestani, 

Guest (2013). 

In Table 1 there is a summary of the form-

finding methods (Juan, Tur 2008). 

7. Conclusions  

This review paper is focused on understanding the 

definitions, characteristics, applications and form-

finding methods of tensegrity structures, also a finite 

element computation procedure for form-finding 

analysis of cable-stayed bridges is in short presented.  

A tensegrity system is a particular case of a truss 

in which structural members have particular 

functions. All the members in a tensegrity structure 

are axially loaded and not one of the single members 

undergo bending moment. Tensegrity structures 

provide better ability to withstand external loads as 

compared to typical rigid structures with comparable 

mass. These structures are lightweight, deployable 

and mass efficient. In tensegrity structures, 

longitudinal members are arranged in uncommon 

systems which are not orthogonal, maximum mass 

efficiency is achieved having maximum strength with 

minimal mass. This property of tensegrity structures 
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makes them a possible alternative for typical rigid 

structures. The tensegrity concept presents new 

opportunities for structural expression in civil 

engineering. 
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