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Abstract—With the growing concern over air pollution (AP), it is 
clear that this has gained more prominence than ever before. The level 
of consciousness has increased and a sense of knowledge now has to 
be forwarded as a duty by those enlightened enough to disseminate it 
to others. This realization often comes after an understanding of how 
poor air quality indices (AQI) damage human health. The study 
focuses on assessing air pollution prediction models specifically for 
Lithuania, addressing a substantial need for empirical research within 
the region. Concentrating on Vilnius, it specifically examines 
particulate matter concentrations 10 micrometers or less in diameter 
(PM10). Utilizing Gaussian Process Regression (GPR) and Regression 
Tree Ensemble, and Regression Tree methodologies, predictive 
forecasting models are validated and tested using hourly data from 
January 2020 to December 2022. The study explores the classification 
of AP data into anthropogenic and natural sources, the impact of AP 
on human health, and its connection to cardiovascular diseases. The 
study revealed varying levels of accuracy among the models, with 
GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in 
validation and 3.89 in testing. 
 

Keywords—Air pollution, anthropogenic and natural sources, 
machine learning, Gaussian process regression, tree ensemble, 
forecasting models, particulate matter.  

I. INTRODUCTION 

IR pollution (AP) seriously threatens human health. It is 
not only the root of numerous respiratory diseases but it 

can also generate acute cardiovascular and neurological 
complications. Since AP has serious implications for public 
health, it ought to be an important issue to address and predict 
the levels of AP with precision. Several studies have 
demonstrated the relevance of AP and conducted the use of 
forecasting methods. It also compels the decision-makers to 
enact appropriate measures to curb and manage the human-
induced contributors to AP. There is unanimous agreement on 
the valuable role that the predictive and forecasting models play 
in this field, especially in helping the efforts to mitigate AP. 

Many research studies have delved into the issue at hand 
aiming to grasp and forecast air dynamics. They have utilized 
forecasting techniques to show the patterns of air pollution. 
This joint effort highlights a move towards utilizing models not 
solely for academic purposes but as crucial instruments for 
policymakers and environmental authorities. These models 
could serve as a link between data-driven understandings and 
practical interventions providing optimism, in the endeavors to 
reduce human-caused air pollution sources. Focusing on 
examinations concerning air pollution predictions, this study 
shows that pollutant PM10 concentrations are influenced by 
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meteorological conditions like wind speed and dew point on 
atmospheric PM10 concentrations within the Vilnius region 
(Lithuania). By using techniques of Gaussian Process 
Regression (GPR), Regression Tree Ensemble, and Regression 
Tree methodologies, predictive forecasting models have been 
validated, and tested. These models used time and 
meteorological parameters as variables to predict PM10 
concentrations, utilizing hourly data from January 2020 to 
December 2022.  

II. LITERATURE REVIEW 

Various research investigations have looked into predicting 
air pollution showing the importance of addressing air quality 
issues. These studies utilize prediction models and methods for 
air pollutants and the environmental domain. For instance, 
using Neural Networks (NN), [1] focused on the prediction of 
PM2.5 pollution related to health issues and deemed 
carcinogenic by the World Health Organization (WHO). In the 
study, deep learning techniques, including long-short term 
memory units (LSTM), recurrent neural networks (RNN), and 
gated recurrent unit (GRU) were used to predict the level of 
PM2.5 in Turkey, based on 1-3 hours of measurements from 
data from the AP quality monitoring stations in the Ankara 
District. In this manner, the highest accuracy in forecasting was 
achieved by an ensemble of GRU and RNN models, 
determining results of 0.832, 0.709, and 0.611 for one, two, and 
three-hour forecasts, respectively. Another interesting case 
involves predictions for many pollutants, such as sulfur dioxide 
(SO2), carbon monoxide (CO), nitrogen dioxide (NO2), ozone 
(O3), PM2.5 and PM10, using multiple linear regression 
(MLR), decision tree, random forest (RF) algorithms and others  
[2]. The research concludes that, among the algorithms tested, 
RF provides the best prediction for poor AQI. The model 
depicts an R² of 0.79 for O3, CO, and PM10, 0.701 for NO2, and 
0.86 for PM2.5.   

Especially in advanced economies and countries such as 
Taiwan, between 2012 and 2017, [3] used the dataset of air 
quality monitoring in Taiwan to make a prediction for PM2.5 
levels using ML algorithms. By using the improvements to the 
conventional methods utilized with Gradient Boosting 
(XGBoost) as a model for PM2.5 level forecasting achieved an 
impressive R² value.  

The air pollution index (API) is a comprehensive indicator 
capturing pollutants like PM2.5, PM10, CO, SO2, NO2, and O3, 
among others. Research was conducted in Malaysia, employing 
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the Support Vector Machine (SVM) for its predictive tasks and 
leveraging its regression capabilities to derive API values from 
certain inputs. To optimize the model, techniques were applied 
to handle missing data and outliers, with the removal of outliers 
notably improving the model's accuracy. The study also 
revealed that different configurations of SVM parameters 
produced varied outcomes. Ultimately, the radial basis function 
(RBF), Kernel function, was selected for the best-result model 
[4] indicating a great prediction performance. Other 
investigation based on the MLR model, for forecasting long-
term PM10 levels during different monsoon periods, was 
conducted in Kuala Terengganu, Malaysia and emphasized the 
opportunity to assess the PM10 concentrations which serve as 
a major environmental and health threat. The study observed 
significant impacts during the Northeast Monsoon (NEM) 
period, while the lowest occurred during the Southwest 
Monsoon (SWM), with data observed from 2005-2011. 
Relative humidity, temperature, precipitation, atmospheric 
pressure, and wind speed were deemed to be critical weather 
elements that affect PM10 levels. Humidity and precipitation 
showed an inverse relationship with PM10 levels, scored R2 
ranging from 0.570 to 0.681, providing valuable insights into 
the seasonal impacts on air quality [5].  

NN, k-nearest neighbors, and decision trees are three 
commonly used machine learning algorithms. Another research 
worked on a dataset of AP (Access Points) data from 
Macedonia in 2016. As a result, the algorithm NN achieved the 
highest accuracy. Despite the fact that the decision trees have 
the advantage of faster processing of information and ease of 
understanding, they turned out to be less accurate than the k-
nearest neighbor and NN algorithms [6], of 92.3%. This 
accuracy was verified using confusion matrices. In the United 
States: Los Angeles, Houston, and Atlanta [7]. Intended to 
evaluate the performance of three different ML algorithms: 
SVM, RF, and RNN. The focus was on comparing these 
algorithms and measuring their effectiveness. The results of this 
research showed that the RNN model actually has significant 
accuracy, compared to the other algorithms. Classified AP 
levels in Atlanta, Houston, and Los Angeles (USA) by using 
RNNs and SVM. Accuracies of 80.27%, 76.71%, and 76.44% 
were achieved with the highest accuracy for RNN for Atlanta 
city. Kulkarni and other researchers presented a system that 
consistently monitored air quality, providing AQI forecasts for 
up to 15 hours. Through the application of the SVM algorithm, 
the study endeavored to predict AQI over the specified period. 
The model measured levels of pollutants such as PM2.5, PM10, 
NO, NO2, and NH3. Data from the Indian air quality database 
was divided, with 70% used for model training and 30% for 
testing. The accuracy of the SVM approach was ascertained 
using the RMSE metric, which showed a score of 13.25 [8].  

A study by [9] introduced an application designed to predict 
AP using various algorithms. They utilized historical data from 
Valencia, Spain, spanning two years (2013 and 2014). This data 
was gathered every hour from three monitoring stations: Moli, 
Francia, and Silla. The study accounted for traffic intensity and 
meteorological factors and the findings indicated that the RF 
algorithm outperformed others in many instances. The mean 

squared error (MSE) for the prediction models across the three 
stations’ measurements. It is noteworthy that the RF algorithm 
demonstrated superior results for most tests across the 
individual stations. In Jordan, where a variety of machine 
learning algorithms, including the Multi-Layer Perceptron 
Neural Network (MLP), Decision Tree Regression (DTR), and 
XGBoost, were utilized for forecasting O3 concentration levels 
for the next day. The dataset was assessed using filters such as 
Holt-Winters smoothing and Savitzky-Golay. It was observed 
that the MLP algorithm was superior, and the incorporation of 
the Savitzky-Golay filter significantly enhanced the prediction 
accuracy, improving the R² by 50% and reducing both the Root 
Mean Square Error (RMSE) and Mean Absolute Error (MAE) 
by 80% [10]. 

Combining Convolutional Neural Networks (CNN), LSTM 
networks, and GPR into a CLSTM-GPR which have been done 
by [11] The model accurately forecast PM2.5 concentrations. 
By effectively harnessing spatial-temporal data, the model 
surpasses existing CNN-GPR, LSTM-GPR, and GPR models 
in both point prediction accuracy and interval reliability. 
Demonstrated at two monitoring stations, the CLSTM-GPR 
model was the best performance, results with R increasing by 
over 4.38%, R² increasing by over 8.96%, MAE decreasing by 
over 5.14%, RMSE decreasing by over 4.68%. 

III. SOURCES AND IMPACTS OF AIR POLLUTION  

AP data is classified into two categories: anthropogenic and 
natural sources. Anthropogenic sources include stationary 
factories, waste incinerators, and mobile sources like cars, 
ships, and planes. Other contributions include controlled 
burning practices in agriculture and forest management, mining 
activities, fumes from aerosols and solvents, landfill waste 
disposal (producing methane), and military activity such as 
nuclear testing [12].  

On the other hand, natural sources of pollution data include 
dust from barren areas, methane from animal digestion, radon 
from radioactive decay, CO from wildfires, and compounds like 
sulfur, chlorine, and ash from volcanic eruptions [13].  

Anthropogenic AP affects human health. Researching the 
quality of the atmosphere is essential because of its ties to well-
being complications. Unwanted elements in the sky can cause 
wellness issues, underlining an international matter of concern  
[14]. End-of-life occurrences are significant. Heart-related 
ailments (cardiovascular disease (CVD)) top the list of causes 
of global mortality. Roughly 17.9 million individuals succumb 
to CVD annually, making up 31% of total fatalities. In 
Malaysia, CVD is the primary cause of death, accounting for 
35% of all deaths [15]. There is a strong connection between air 
quality issues and CVD, with 60-80% of deaths related to air 
contaminants being attributed to CVD [15], [16]. Diverse 
elements lead to AP, stemming from a blend of several harmful 
components. These encompass airborne particles and specific 
gases, such as O3, CO, and NO2. Both human actions and 
natural phenomena are the culprits. While human-related 
emissions can be managed, natural occurrences, atmospheric 
characteristics encompass elements that outline the atmospheric 
composition. Elements like wind, its course, and moisture 
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levels significantly influence how pollutants spread and 
accumulate. Moreover, a rise in atmospheric warmth can shift 
these contaminants. It is noteworthy that, while the atmosphere 
can influence pollution levels, pollution, conversely, impacts 
our climate and urban structure. The layout and structure of a 
city play a pivotal role in how pollution disperses. Key 
structural elements include the layout of the streets, the number 
of inhabitants, land utilization, and contaminant variety. The 
nature of the contaminant, whether it be gaseous or particulate, 
holds significance. The density, velocity, and length of time that 
vehicles are on the road in each area can lead to varying 
pollutant distribution levels [17].  

One of the paramount factors of significant importance is the 
AQI, a metric employed by governmental and environmental 
agencies. It delineates a spectrum denoting the degree of 
cleanliness and healthiness of the air. A higher numerical value 
within this index signifies a deteriorating condition of AP, 
conversely reflecting better air quality when the value is lower. 
Whenever AQI values are between 0 and 50, it comes under the 
‘Excellent’ category, which means it serves a low risk. When 
AQI falls between 51 and 100, it is ‘Good’ and air quality is 
satisfactory, with very little risk. The status ‘Lightly Polluted’ 
corresponds to AQI values between 101 and 150, which is an 
acceptable air quality for those who are sensitive. AQI values 
between 151 and 200 are classified as ‘Moderately Polluted,’ 
indicating that it begins to have an effect on health, especially 
for sensitive groups. Any AQI values between 201 and 300 fall 
under the ‘Heavily Polluted’ range pertaining to health 
emergency conditions with significant impacts. Values 
exceeding 300 are categorized as ‘Severely Polluted’, which 
refer to extreme health risk conditions for individuals [18]. 
Many countries have a system that publish daily AQI values as 
shown in Fig. 1. For instance, the Vilnius Air Quality Index 
(2023).  

 

  

Fig. 1 The air quality in Vilnius City on 2023-10-20 day [19] 

IV. AIR POLLUTION ASSESSMENT ALGORITHMS 

Modern pollution prediction tools are essential, leveraging 
data-driven approaches to anticipate pollution patterns. Their 
main benefit is enabling preventive actions, resulting in purer 
city environments, and supporting choices that encourage 
sustainable growth. Traditional ways to evaluate quality are 
often inexact and require long mathematical calculations. Being 

a part of Artificial Intelligence, ML is an attractive solution. 
Several of these studies highlighted the capacity of ML to 
forecast air conditions, as detailed in Fig. 2. The general steps 
for using ML in the process of prediction focuses its potential 
to benefit preciseness in AQI forecasts [20]. The algorithms 
explored in our investigation, based on the literature review, 
include GPR, Regression Tree Ensemble, and Regression Tree. 

 

 

Fig. 2 General steps for using ML Algorithms [20] 
 

The decision tree algorithm is part of the supervised 
algorithms. It is versatile and can address both regression and 
classification challenges. The process happens in a series of 
steps until a decision is reached. RF is an ML technique that 
combines decision trees to make predictions. During training, it 
constructs multiple decision trees. Then, it determines the most 
likely class (for classification tasks) or average prediction (for 
regression tasks) for new unseen data. By aggregating the 
results from decision trees, RF effectively reduces overfitting 
issues and delivers higher accuracy compared to using a single 
decision tree. In other words, it is like creating a ‘forest’ of 
decision trees and then utilizing their combined insights to 
arrive at a prediction, through voting.  

XGBoost is flexible and suitable for both regression and 
classification problems, since it utilizes gradient-boosted 
decision trees. However, it is more efficient, can generate 
decision trees in parallel and is designed to maximize hardware 
optimization through caching. Moreover, it is feasible to deploy 
XGBoost on a computer cluster [3].  

NN is an ML algorithm concept that is close to the biological 
neural networks (BNN) in the human brain. BNN are complex 
networks of neurons and their connections in our brains are 
responsible for information processing, as well as transmitting. 
An algorithm was been developed to reproduce these networks, 
to a certain extent and many studies have been conducted in this 
area [21]. 

RNN are a type of NN that can use their past outputs as 
current inputs, possessing internal memory in the form of 
hidden layers [22]. LSTM is a type of RNN architecture. They 
were introduced by [23] to address the limitations of traditional 
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RNNs, particularly the vanishing and exploding gradient 
problems. These issues made it difficult for standard RNNs to 
learn and remember long sequences and led to poor 
performance in tasks that required learning from long-term 
dependencies. GRU is a sort of RNN architecture proposed by 
[24]. It was developed to overcome some of the problems 
associated with traditional RNNs, especially the vanishing 
gradient problem, similar to LSTM Networks. However, GRUs 
involve a simplified gating mechanism compared to LSTMs 
and are more computationally efficient under some 
circumstances. 

MLP is another artificial NN architecture; it consists of 
multiple layers: an input layer, several hidden layers, and an 
output layer. Each layer contains nodes or neurons, which are 
interconnected by weighted pathways. Basically, the intuition 
behind MLP is its ability to learn and model the non-linear 
relationships in data. When input is fed into an MLP, it 
propagates through these layers and gets transformed. It 
processes data by applying a weighted sum to the input from 
every neuron and then it goes through an activation function, 
which is usually non-linear in nature rather than linear (sigmoid 
or ReLU). The final output is produced after the input has 
passed through all the layers. The strength of MLPs lies in their 
capacity for approximating complex functions. To train an 
MLP, one adjusts the weights of the connections to reduce the 
discrepancy between its predictions and the actual target values. 
This training process typically employs back-propagation, a 
method where the error is propagated backward through the 
network [10]. 

SVM is a supervised learning algorithm, predominantly 
utilized for classification and regression tasks. It stands as an 
efficient classifier tailored for linear problem-solving. And to 
address non-linear scenarios, SVM incorporates kernel 
functions [25]. The main idea behind SVM is to find a 
hyperplane that best separates the data into classes. In the case 
of a two-class problem, the optimal hyperplane is the one that 
has the maximum margin between two classes. Data points that 
are closest to the hyperplane and influence its position and 
orientation are called ‘support vectors’. Another popular kernel 
function that helps in learning the non-linear relations of data 
points in ML is the RBF kernel, also known as a Gaussian 
kernel. It functions on the basis of distance between two data 
points and keeps the value lessening as more variance is 
achieved for feature space. This means that the RBF kernel 
weights the closer data points with larger values, while those 
which are farther apart have smaller values [26]. It indirectly 
maps the input data to a space with higher dimensions; 
therefore, the data can be linearly separable. As in (1) for the 
RBF kernel, when comparing two data points (x1 and x2). 

 

Kሺx1, x2ሻ ൌ  exp   ሺെγ〖 ∥  x1 െ x2 ∥ 〗^2 ሻ         (1) 
 
where γ is a parameter that determines the spread or shape of 
the kernel.  

MLR techniques have been employed in the area of 
predictive analytics for some time. For instance, MLR has 
worked well to model a relationship between two or three 

variables by fitting the given variables into a linear forecasting 
(2), as suggested in [5]. 

 
𝑦 ൌ  𝑏଴ ൅ ∑ 𝑏௜. 𝑥௜

௡
௜ୀଵ ൅  𝜀.                    (2) 

 
where 𝑏௜ are the regression coefficients and ε is the stochastic 
error associated with the regression. 

Quantile Regression (QR) is a statistical method designed to 
determine conditional quantile functions. As opposed to linear 
regression, which estimates conditional mean functions by 
minimizing the sum of the squared differences, QR estimates 
conditional median functions by minimizing unevenly 
weighted absolute differences. Using quantiles has the primary 
advantage of providing a more detailed and accurate 
relationship between random variables than by simply using 
mean regression [27]. 

V. MATERIALS AND METHODS 

A. Data Preparation   

In our research, we have employed Vilnius, Lithuania as the 
focal study area. We used and compiled an hourly dataset, 
which, after went thorough cleaning process, resulted in 
approximately 22,867 records for PM10, also quantified in 
μg/m³ spanning from January 2020 to December 2022. As 
depicted in Fig. 3, this dataset primarily focuses on air pollution 
metrics, sourced from the European Environment Agency 
(EEA) [28]. These measurements were taken from the National 
Air Monitoring Network specifically at the "Vilnius - 
Senamiestis" air quality station, which is located at coordinates 
25.2852 longitude and 54.6776 latitude. In addition to air 
quality data, the study also incorporates meteorological data, 
including wind speed, temperature, and dew point. This data 
was collected from the " Vilnius International, LH" station, 
provided by the National Center for Environmental Information 
[29]. 

 

 

Fig. 3 Timeline with PM10 concentrations 
 

In the applied methodology for data preparation, data from 
the years 2020 to 2022 were used; 10% was set aside for testing, 
while 25% was allocated for validation. The dataset underwent 
a cleaning process, where irrelevant variables such as station 
identifiers were removed to streamline the dataset. 
Subsequently, the datasets were merged into a single file for a 
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consolidated analysis. The wind speed, temperature, and dew 
point were extracted from complex strings and converted into 
numerical values for analytical purposes all the calculations 
have been made using MATLAB. The data have been filtered 
out regarding to verification condition for each observation. 
Outliers identified through the interquartile range method were 
removed to ensure data integrity. Finally, the cleaned data, with 
standardized timestamps and relevant variables, the 
characteristics of PM10 pollution and meteorological 
conditions are summarized in Table I. This data preparation 
methodology ensures the reliability and accuracy of the analysis 
for insightful research findings. 
 

TABLE I 
STATISTICAL SUMMARY OF SEASONAL PM10 VALUES AND 

METEOROLOGICAL CONDITIONS 

Variable 
PM10 

(µg/m³) 
TMP (°C) DEW (°C) 

WND Speed 
(km/h)

Mean 19.77 7.85 3.94 37.9 

Median 18.71 8 4 36 

Standard Deviation 7.8 8.84 7.75 19.24 

Minimum 5 -18 -20 0 

Maximum 41.63 31 22 88 

Range 36.63 49 42 88 

B. Methods 

GPR has become a powerful method for forecasting 
concentrations of particulate matter (PM), taking advantage of 
low number of needed parameters, and flexibility in managing 
intricate challenges like limited sample sizes, nonlinear 
relationships, and complex dimensional spaces. Esteemed for 
its dependability and extensive usage in numerous academic 
researches, the study utilized a regression learner application, 
incorporating Principal Component Analysis (PCA) with an 
emphasis on achieving a specified explained variance of 95%. 
This approach was chosen to reduce the dimensionality of the 
dataset. The nonparametric characteristics of GPR ensure that 
any limited collection of random variables can be efficiently 
modeled with a multivariate Gaussian distribution. This feature 
is critical for addressing complex regression issues and sorting 
initial data distributions. Additionally, the wide range of 
covariance functions within GPR facilitates the development of 
various continuous structures. In [30], the rational quadratic 
covariance function, as mentioned in (3) within the regression 
model, was selected for its ability to handle varied scales of data 
and to model a more extensive range of functions compared to 
more straightforward kernels. 

 

kሺx,  x′ሻ  ൌ   ቀ1  ൅  
|୶ ି ୶ᇱ|మ

ଶ஑ ୪మ ቁ
ି஑

                        (3) 

 
where x, x' are two points in the input space, |𝑥  െ  𝑥′|ଶ is the 
squared Euclidean distance between x and x',   𝑙ଶ is the length 
scale of the kernel, which determines the "smoothness" of the 
resulting function, α is a scale mixture parameter that controls 
the weight of large- and small-scale variations in the data [31]. 

A Regression Tree is a decision tree designed for continuous 
outcome prediction. It segments the predictor space into distinct 
regions, using a series of binary decisions optimized to reduce 

variance within each region. Predictions are made based on the 
mean outcome of the training observations within each leaf 
node [32]. Bagged Regression Trees, or Bootstrap Aggregating, 
improve prediction robustness and accuracy by training 
multiple regression trees on bootstrapped dataset samples and 
averaging their predictions. This technique reduces variance 
without significantly increasing bias, detailing its effectiveness 
in mitigating overfitting while enhancing predictive 
performance in regression tasks. 

C. Accuracy Indicators  

The indicator accuracy of models comes from the calculation 
of RMSE, MAE, MSE, and the R². RMSE is extremely useful 
as a number to indicate a model's performance, in the case of 
training, cross-validation stage, or monitoring the model 
performance after deployment. The formula is as follows: 

 

RSME ൌ ට∑ሺ௬೔ି௬ഢෞሻమ

ேି௉
                            (4) 

 
where yᵢ is the actual value for the iᵗʰ observation, ŷᵢ is the 
predicted value for the iᵗʰ observation, N is the number of 
observations, and P is the number of parameter estimates, 
including the constant. 

The RMSE is used to evaluate the regression algorithms. In 
order to define the MAE, the absolute difference of the 
measurements for a device under analysis, from the 
measurements of the reference instrument, is calculated. It 
represents the average of the absolute value of deviations for 
the two values. MAE presented in (5) is expressed in the same 
units as the measurements and ranges from 0 to infinity. A low 
MAE means that the measurements from a device under testing 
are very close, in absolute value, to the measurements from the 
reference instrument. A high MAE means that measurements 
are far from those of the reference instrument, in terms of 
absolute value [33].  

 

𝑀𝐴𝐸 ൌ
∑ |௬ᵢି௫ᵢ|೙

೔సభ

௡
                              (5) 

 
where ŷᵢ is the prediction value, xᵢ is the true value, and n is the 
total number of data points. 

It is advised to compute R2 as in (6) in addition to MAE.  
 

𝑅ଶ ൌ 1 െ
∑ ሺ௬ᵢି௬ഢෞሻమ೙

೔సభ
∑ ሺ௬ᵢି௬തሻమ೙

೔సభ
                           (6) 

 
yᵢ is the actual observation value, ŷᵢ is the model prediction 
value, ȳ is the sample mean value, and n is the number of 
samples.      

In analyzing the data from experiments, it should be noted 
that the MAE metric is not a very good indicator of calibrated 
correlated deviations, or deviations which are the result of 
random errors or limitations of the device under analysis. In 
most cases, they cannot be corrected. All kinds of deviations 
increase MAE, equally. For example, if an analyzed device 
achieves a high R² due to perfect tracking with changes in the 
concentration of pollutants but is not quite accurate because of 
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poor calibration, then its MAE might not be dissimilar from that 
of a broken device that always outputs the same number. A high 

R² can point to the possibility of the to calibrate the device 
under analysis [34]. 

 

 

Fig. 4 Scatter plots of predicted response of PM10 concentrations for the validation phase 

 

 

Fig. 5 Scatter plots of residuals for the testing phase 
 

The difference between MAE and R² is that MAE (having 
the same units as the measurements), is interpreted with a 
knowledge of the phenomenon that we are trying to monitor. 

Another popular error metric for regression problems is MSE 
presented in (7). 
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MSE ൌ ଵ

௡
∑ ൫𝑌௜ െ 𝑌ప෡൯

ଶ௡
௜ୀଵ                          (7) 

  
where n is the number of data points, Yᵢ is the observed value, 
and Ŷᵢ is the predicted value.  

VI. RESULTS AND DISCUSSION 

The findings indicate that the three models displayed varying 
levels of accuracy in their predictions. The Rational Quadratic 
GPR showed the results with the RMSE and MSE, on both the 
validation and test datasets as presented in Table II suggesting 
its superior ability to forecast PM10 concentrations. The 
Bagged Trees also delivered good performance achieving 
outcomes across all evaluation metrics. While the Tree model 
performed quite acceptably compared to the other models, it 
excelled in terms of speed. However. the choice of the 
appropriate model should consider the trade-off between 
computational efficiency and predictive performance based on 
specific application requirements. The Fine Tree model yielded 
an RMSE of 4.62 during the validation phase, with 
corresponding MSE and R² values of 21.34 and 0.65, 
respectively. The MAE stood at 3.39. In the test phase, the 
RMSE slightly increased to 4.33, accompanied by an MSE of 
18.76 and an R² of 0.68. The MAE for the test set was 3.39. The 
response between observations and predictions is shown in Fig. 
4 in the validation phase, and Fig. 5 demonstrates the residuals 
in the testing phase. 

The Bagged Trees model showed strong performance with 
an RMSE of 4.40 MSE of 19.36 and R² of 0.68 during 
validation. The MAE was 3.32. In the testing phase, the model 
maintained its effectiveness with an RMSE of 4.20 MSE of 
17.61 and an R² of 0.70. The MAE for the test set remained at 
3.32 as well. The visual representations are shown in Figs. 4 
and 5. On the hand, the GPR model exhibited strong 
performance during validation with an RMSE of 4.14 MSE of 
17.15 and an R² of 0.72. The MAE was recorded at 3.08 in this 
phase as well. 

During testing, the GPR model continued to perform with an 
RMSE of 3.89 and a MSE value standing at 15.13. Impressively 
reaching a value for R2 equaling out to be approximately around 
0.75. The MAE, for this test set also remained stable at a value 
to 3.08.  

 
TABLE II 

PERFORMANCES OF MODELS 

Model  Fine Tree Bagged Trees GPR 

RMSE 

Validation 

4.62 4.40 4.14 

MSE 21.34 19.36 17.15 

R2 0.65 0.68 0.72 

MAE 3.39 3.32 3.08 

RMSE 

Test 

4.33 4.20 3.89 

MSE 18.76 17.61 15.13 

R2 0.68 0.70 0.75 

MAE 3.19 3.14 2.91 

VII. CONCLUSION 

In summary, this research applied three machine learning 
models Fine Tree, Ensemble (Bagged Trees), and GPR to 

predict PM10 concentrations based on hourly data collected in 
Vilnius, Lithuania, from January 2020 to December 2022 on 
around 22,867 records. Meteorological information, including 
wind speed, temperature, and dew point, served as predictor 
variables. The findings revealed varying levels of accuracy 
among the models. GPR demonstrated superior forecasting 
ability for PM10 concentrations, as evidenced by lower RMSE 
of 4.14 for validation and 3.89 for the testing phase. The Bagged 
Trees model also exhibited good performance across all 
evaluation metrics. The Tree model excelled in terms of speed 
with acceptable accuracy regarding the experimental results, 
emphasizing the importance of carefully selecting a model 
based on the specific needs of the application, taking into 
account the balance between computational efficiency and 
predictive accuracy. 

VIII. LIMITATION 

A notable disadvantage at some points is the lack of 
verification of AP data, which results in the exclusion of data 
points. Otherwise, the model could benefit from further 
improvement, the AP model requires proper training, 
validation, and testing stages. High-quality data must be 
carefully and precisely picked, vetted, and evaluated by 
comparing results to known values. Validation involves 
inspecting for errors, inconsistencies, and missing values. 
Comparing model predictions to actual air quality 
measurements from reliable sources to assess the model's 
accuracy, although the study integrates some of the key 
predictors of PM10 concentrations, the inclusion of additional 
variables such as variations in traffic flow, industrial outputs, 
and cross-border pollution might further enhance the models' 
predictive capabilities. 
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