

VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS

APLINKOS INŽINERIJOS FAKULTETAS GEODEZIJOS IR KADASTRO KATEDRA

Aušra Pranskevičiūtė

SKAITMENINIŲ NUOTRAUKŲ APDOROJIMAS FOTOGRAMETRINĖMIS SISTEMOMIS

PROCESSING OF THE DIGITAL IMAGES USING PHOTOGRAMMETRY SYSTEMS

Baigiamasis magistro darbas

Geodezijos ir kartografijos studijų programa, valstybinis kodas 62410T102 Kadastro informacinių sistemų specializacija Matavimų inžinerijos studijų kryptis

Vadovas: doc. dr. Jūratė Sužiedelytė-Visockienė

Vilnius, 2011

VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS APLINKOS INŽINERIJOS FAKULTETAS GEODEZIJOS IR KADASTRO KATEDRA

TVIRTINU Katedros vedėjas

(Parašas) Vladislovas Česlovas Aksamitauskas (Vardas, pavardė)

(Data)

Aušra Pranskevičiūtė

SKAITMENINIŲ NUOTRAUKŲ APDOROJIMAS FOTOGRAMETRINĖMIS SISTEMOMIS

PROCESSING OF THE DIGITAL IMAGES USING PHOTOGRAMMETRY SYSTEMS

Baigiamasis magistro darbas

Geodezijos ir kartografijos studijų programa, valstybinis kodas 62410T102 Kadastro informacinių sistemų specializacija Matavimų inžinerijos studijų kryptis

Vadovas doc. dr. Jūratė Sužiedelytė-Visockienė				
	(Moksl. laipsnis, vardas, pavardė)	(Parašas)	(Data)	
Konsultantas _	(Moksl. laipsnis, vardas, pavardė)	(Parašas)	(Data)	

VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS APLINKOS INŽINERIJOS FAKULTETAS GEODEZIJOS IR KADASTRO KATEDRA

Technologijos mokslų sritis Matavimų inžinerijos mokslo kryptis Matavimų inžinerijos studijų kryptis

Geodezijos ir kartografijos studijų programa, valstybinis kodas 62410T102

Kadastro informacinių sistemų specializacija

TVIRTINU Katedros vedėjas

(Parašas) Vladislovas Česlovas Aksamitauskas (Vardas, pavardė)

(Data)

BAIGIAMOJO MAGISTRO DARBO

UŽDUOTIS 2009-12-09 Nr. Vilnius

Aušrai Pranskevičiūtei Studentui (ei) (Vardas, pavardė)

Baigiamojo darbo tema: . Skaitmeninių nuotraukų apdorojimas fotogrametrinėmis sistemomis

patvirtinta 2009 m. gruodžio 01 d. dekano potvarkiu Nr. 374ap

Baigiamojo darbo užbaigimo terminas 2011 m. birželio 01 d.

BAIGIAMOJO DARBO UŽDUOTIS:

Apdoroti skaitmenines artimų nuotolių fotonuotraukas fotogrametrinėmis sistemomis PhotoMod ir Inpho; Atlikti trianguliacijos skaičiavimus sistema BLUH; Atlikti skaitmenines fotokameros Canon EOS 1D Mark III kalibravimą. Išanalizuoti gautus rezultatus ir pateikti apibendrinančias išvadas.

BAIGIAMOJO DARBO RENGIMO KONSULTANTAI:

(Moksl. laipsnis, vardas, pavardė)

Vadovas (Parašas)

doc. dr. Jūratė Sužiedelytė-Visockienė (Moksl. laipsnis, vardas, pavardė)

Užduotį gavau

(Parašas)

Aušra Pranskevičiūtė (Vardas, pavardė)

2009-12-09 (Data)

Vilniaus Gedimino technikos universiteto egzaminu sesijų ir baigiamųjų darbų rengimo bei gynimo organizavimo tvarkos aprašo 2010-2011 m.m. 6 priedas

(Baigiamojo darbo sąžiningumo deklaracijos forma)

VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS

Aušra Pranskevičiūtė. 20053319

(Studento vardas ir pavardė, studento pažymėjimo Nr.) Aplinkos inžinerijos (Fakultetas) Geodezijos ir kartografijos, KISmf-09

(Studijų programa, akademinė grupė)

BAIGIAMOJO DARBO (PROJEKTO) SĄŽININGUMO DEKLARACIJA

birželio 01 d. 2011 m. (Data)

Patvirtinu, kad mano baigiamasis darbas (projektas) tema Skaitmeninių nuotraukų apdorojimas fotogrametrinėmis sistemomis

patvirtintas 20 09 m. gruodžio 01 d. dekano potvarkiu Nr. 374ap , yra savarankiškai parašytas. Šiame darbe (projekte) pateikta medžiaga nėra plagijuota. Tiesiogiai ar netiesiogiai panaudotos kitų šaltinių citatos pažymėtos literatūros nuorodose.

Parenkant ir ivertinant medžiaga bei rengiant baigiamaji darba (projekta), mane konsultavo mokslininkai ir specialistai:

Mano darbo (projekto) vadovas doc. dr. Jūratė Sužiedelytė-Visockienė

Kitų asmenų indėlio į parengtą baigiamąjį darbą (projektą) nėra. Jokių įstatymų nenumatytų piniginių sumų už šį darbą niekam nesu mokėjęs(-usi).

Aušra Pranskevičiūtė

(Parašas)

(Vardas ir pavardė)

ANOTACIJA

Vilniaus Gedimino technikos universitetas Aplinkos inžinerijos fakultetas Geodezijos ir kadastro katedra ISBN

Egz. sk.

Data-....

Antrosios pakopos studijų Geodezijos ir kartografijos programos baigiamasis darbas
 Pavadinimas
 Skaitmeninių nuotraukų apdorojimas fotogrametrinėmis sistemomis
 Autorius
 Aušra Pranskevičiūtė
 Vadovas
 doc. dr. Jūratė Sužiedelytė-Visockienė

Kalba: anglų

ISSN

Anotacija

Baigiamojo magistro darbo tikslas - nustatyti, ar aerofotogrametrinėms reikmėms skirtos programinės irangos PhotoMod ir Inpho yra tinkamos antžeminiams fotogrametriniams darbams atlikti. Taip pat, remiantis tyrimais, atliktais skirtingomis fotogrametrinėmis sistemomis, nustatyti fotonuotrauku apdorojimo darbu etapu tikslumo reikalavimus. Šiuo tikslu magistro baigiamajame darbe atliktas artimų nuotolių skaitmeninių fotonuotraukų apdorojimas PhotoMod ir Inpho fotogrametrinėmis sistemomis, kurios yra skirtos aerofotonuotraukoms, taip pat palydovinėms nuotraukoms apdoroti ir sistema BLUH, kuri naudojama artimu nuotoliu fotonuotrauku trianguliacijai atlikti. Baigiamojo magistro darbo metu, naudojantis analitine fotogrametrine sistema AICON 3D Studio, atliktas skaitmeninės fotokameros Canon EOS 1D Mark III kalibravimas, o naujai gauti kameros kalibravimo parametrai itraukti apdorojant skaitmenines fotonuotraukas. Darbo pabaigoje pateiktos išvados, atspindinčios darbo tikslus bei uždavinius. Darbą sudaro 10 dalių: įvadas, 7 skyriai, išvados, literatūros sarašas. Darbo apimtis – 83 p. teksto be priedu, 13 iliustr., 25 lent., 42 bibliografiniai šaltiniai. Atskirai pridedami 8 darbo priedai.

Prasminiai žodžiai

Artimų nuotolių skaitmeninės fotonuotraukos; artimų nuotolių skaitmeninių fotonuotraukų apdorojimas; skaitmeninė fotogrametrinė sistema; trianguliacija; trianguliacijos tikslumas; skaitmeninės fotokameros kalibravimas.

ANNOTATION

Vilnius Gediminas Technical University Faculty of Environmental Engineering Department of Geodesy and Cadastre

ISBN

Egz. sk. Data-....

ISSN

Master Degree Studies Geodesy and Cartography study programme Final Thesis		
Title	Processing of the Digital Images Using Photogrammetry Systems	
Author	Aušra Pranskevičiūtė	
Academic supervisor	Assoc Prof Dr Jūratė Sužiedelytė-Visockienė	

Thesis language: English

Annotation

The purpose of the Master thesis is to test if the digital photogrammetric systems PhotoMod and Inpho, which are designed for aerial photogrammetry, are suitable for close range photogrammetric applications. Also, according to performed analysis, to estimate the accuracy requirements of the images processing by using different photogrammetric softwares. For this purpose the digital close-range images were processed by using above mentioned photogrammetric softwares and that same images were processed by using for close-range images designed bundle triangulation system BLUH. The digital camera Canon EOS 1D Mark III calibration procedure using analyzing photogrammetric software AICON 3D Studio was performed. The new camera's calibration parameters were involved to the images processing procedure. Finally, the conclusions, which reflects the purpose of the Master thesis has been listed. The Master thesis consists of 10 parts: introduction, 7 chapters, conclusions and list of literature. Work volume – 83 pages of text without appendixes, 13 illustrations, 25 charts, 42 bibliographical sources. The 8 appendixes have been added separate.

Keywords

Close-range digital images; close-range digital images processing; digital photogrammetic workstation; bundle triangulation; bundle triangulation accuracy control; the calibration procedure of a digital camera.

PROCESSING OF THE DIGITAL IMAGES USING PHOTOGRAMMETRY SYSTEMS

CONTENT

LIST OF FIGURES	9
LIST OF TABLES	10
INTRODUCTION	
1. DIGITAL PHOTOGRAMMETRIC WORKSTATIONS	14
1.1. Development of digital photogrammetric workstations	14
1.2. Images processing work stages	16
1.3. Digital images processing accuracy control	
2. DIGITAL PHOTOGRAMMETRIC SYSTEM PHOTOMOD	
2.1. The modules of digital photogrammetric system <i>PhotoMod</i>	
2.2. Images processing by using photogrammetric software	
2.3. Accuracy control of photogrammetric work stages	
2.4. Processing of the images by using digital photogrammetric software <i>PhotoMod</i>	40
3. DIGITAL PHOTOGRAMMETRIC SYSTEM INPHO	47
3.1. The components of digital photogrammetric system Inpho	
3.2. Accuracy control of photogrammetric work stages	49
3.3. Processing of the images by using digital photogrammetric software Inpho	51
4. BUNDLE BLOCK ADJUSTMENT BLUH	56
4.1. Purpose of bundle block adjustment	56
4.2. The modules of <i>BLUH</i>	58
4.3. Results of the <i>BLUH</i> processing	59
5. ANALYZING PHOTOGRAMMETRIC SOFTWARE AICON 3D STUDIO	63
5.1. Purpose of AICON 3D Studio	63
5.2. The modules of the analyzing photogrammetric software AICON 3D STUDIO	63
6. CAMERA CALIBRATION	65
6.1. The goal of a camera calibration	65
6.2. Measurements for the digital camera calibration	66
6.3. Computation of the digital camera calibration parameters	68
6.4. Results of the digital camera calibration	69

7. THE RESULTS ANALYSIS OF PROCESSED IMAGES AND THE DIGITA	L CAMERA
CALIBRATION PARAMETERS	71
7.1. Aerial triangulation results analysis before camera calibration	71
7.2. Aerial triangulation results analysis after camera calibration	72
7.3. Comparison of aerial triangulation results before camera calibration and	after camera
calibration	73
7.4. Comparison of camera calibration parameters	75
CONCLUSIONS	78
REFERENCES	80
APPENDIXES	83

Appendix 1. PhotoMod aerial triangulation report

Appendix 2. *Inpho* aerial triangulation statistics file of the images which are corrected from the digital camera *Canon EOS 1D Mark III* objective distortions

Appendix 3. *Inpho* aerial triangulation report of the images which are corrected from the digital camera *Canon EOS 1D Mark III* objective distortions

Appendix 4. *Inpho* aerial triangulation statistics file of the original images

Appendix 5. Inpho aerial triangulation report of the original images

Appendix 6. *BLUH* bundle triangulation report of the images which are corrected from the digital camera *Canon EOS 1D Mark III* objective distortions

Appendix 7. BLUH bundle triangulation report of the original images

Appendix 8. The programme of Republican scientific conference "*Civil Engineering and Geodesy*"

LIST OF FIGURES

Fig. 1.1. Images processing	
Fig. 1.2. Accuracy potential of imaging and analysis systems	
Fig. 2.1. Structure of the digital photogrammetric system <i>PhotoMod</i>	
Fig. 2.2. Grouping of tie points in the images overlap	
Fig. 2.3. Grouping of inter-strip tie points in the images side lap areas	
Fig. 2.4. Three overlapping images (P915-P912-P918)	
Fig. 2.5. Break lines of the object	
Fig. 2.6. Orthophoto of the object	
Fig. 3.1. Inpho's modules	
Fig. 4.1. The modules of <i>BLUH</i>	
Fig. 6.1. Test-field for the camera calibration	67
Fig. 6.2. Photo camera position	67
Fig. 6.3. Numbered targets	

LIST OF TABLES

Table 2.1. The basic capabilities of <i>PhotoMod Core</i>	
Table 2.1. continuation	23
Table 2.2. The main features of <i>PhotoMod StereoDraw</i>	24
Table 2.2. continuation:	25
Table 2.3. The main features of PhotoMod Vector	
Table 2.4. Calculated maximum error and root mean squared error to the digital can	mera Canon
EOS 1D Mark III	
Table 2.5. Quality of measurements of GCP and tie points	
Table 2.6. Characteristics of digital camera Canon EOS 1D Mark III	40
Table 2.7. Result of camera Canon EOS 1D Mark III calibration (2008)	41
Table 2.8. Relative orientation result	
Table 2.9. Quality of triplets	
Table 2.10. Residuals between adjusted coordinates and between measured coordin	nates in the
images	
Table 2.10. continuation:	44
Table 2.11. Residuals of measured the image points of the ground control point	45
Table 3.1. Residuals between adjusted coordinates and between measured coordinates in	n the images
Table 3.1. continuation:	53
Table 3.1. continuation (1):	54
Table 3.2. Residuals of measured the image points of the ground control point	55
Table 4.1. Residuals between adjusted coordinates and between measured coordinates in	n the images
	59
Table 4.1. continuation:	60
Table 4.1. continuation (1):	61
Table 4.2. Residuals of measured the image points of the ground control point	
Table. 6.1. Results of bundle block adjustment	69
Table. 6.2. The new calibration results of the digital camera Canon EOS 1D Mark III	69
Table. 6.2. continuation:	70
Table. 7.1. Comparison of standard deviation between adjusted and between measure	ed points in
image space	71
Table. 7.2. Bundle triangulation results	72

Table. 7.3. Comparison of standard deviation between adjusted and between measured points in	the
image space after camera calibration procedure	. 73
Table. 7.4. Bundle triangulation results after the camera calibration procedure	. 73
Table. 7.5. Comparison of standard deviation between adjusted and between measured point	s in
image space before and after camera calibration	. 74
Table. 7.6. Comparison of bundle triangulation results before and after camera calibra	tion
procedure	. 74
Table. 7.7. Comparison of camera calibration parameters	. 75
Table. 7.7. continuation:	. 76
Table. 7.8. Camera calibration parameters in PhotoMod, Inpho and BLUH	. 77

INTRODUCTION

The main product of photogrammetry is a digital image of the object in a threedimensional (3D) space. There are a lot of digital photogrammetric workstations (DPW) (also called *softcopy workstation* (WS)) designed for this result to be achieved (Schenk 1999). All kinds of images, like a taken from the air (from airplanes or satellites) or taken from the surface of the earth (close-range photogrammetry) can be processed by using digital photogrammetric workstations. The requirements of different photogrammetric systems can differ depending on algorithms, used for photogrammetric processing (Atkinson 2001). Therefore it is important to test capabilities and accuracy of data using more than one digital photogrammetric system.

In this Master thesis the images of the research object were taken using the digital camera *Canon EOS 1D Mark III* from the surface of the earth. These close-range digital images were processed – the triangulation procedure was done by using digital photogrammetric systems (*PhotoMod* and *Inpho*) which are suitable for above-mentioned images processing. Triangulation procedure was also performed by using the bundle triangulation program *BLUH*. The accuracy of triangulation influences the accuracy of 3D data (Sužiedelytė-Visockienė, Bručas 2009). **Thus, the aims of Master thesis are:**

• To test if the above mentioned digital photogrammetric systems for aerial photogrammetry are suitable for close-range photogrammetric applications;

• Based on the performed analysis to estimate the accuracy requirements of images processing by using different photogrammetric systems;

• To evaluate the results of 50 mm objective-lens of the digital camera *Canon EOS 1D Mark III* calibration related to the type of images of the object.

To reach the aims of the Master thesis, the followed tasks should be performed:

• The digital close-range images should be processed by using digital photogrammetric softwares *PhotoMod* and *Inpho*;

• The bundle block adjustment of the digital close-range images by using for this purpose developed system *BLUH* should be performed;

• The camera calibration procedure should be performed.

Novelty of the science:

• According to performed processing of the digital close-range images and the analysis of the results, the suitability of explored digital photogrammetric systems for aerial photogrammetry was stated;

12

• The optical calibration parameters of the digital camera *Canon EOS 1D Mark III* were specified.

Practical importance:

• After the close-range digital images processing by using digital photogrametric systems, which are designed for satellite images and aerial photographs processing and after processing of those same images with *BLUH* system, which are designed for close-range images triangulation, it was found that *PhotoMod* and *Inpho* softwares can be used for processing of close-range digital images. Thus, the analysis that was carried out allows the user to choose one software to perform tasks with aerial photographs, satellite images and close-range photogrammetry;

• The digital camera *Canon EOS 1D Mark III* is used for photogrammetrical fixation of heritage objects in scientific and manufacturing enterprise company *Cad and F Projektservisas*. Therefore, the qualified optical parameters of the digital camera and the analysis which was performed during research work will be useful in the further close-range photogrammetry works.

Acknowledgements

The Master thesis was performed in Lithuania and in Germany at Neubrandenburg University of Applied Sciences. Initial data for analysis (the digital images of the object) was provided by scientific-industrial company *Cad and F Projektservisas*. The images were taken with this company's digital photo camera *Canon EOS 1D Mark III* and were processed with this company's digital photogrammetric software *PhotoMod*. Thus, I would like to thank to the head of company *Cad and F Projektservisas* Dalius Čekanavičius for supplied data, technical equipment and software. Also I would like to thank to the supervisor of my Master thesis doc. Jūratė Sužiedelytė Visockienė for the help during images processing procedure by using *PhotoMod* photogrammetric software. In addition I would like to thank to Neubrandenburg's University Prof. Dr.-Ing. Wolfgang Kresse for the help and given possibility to make further researches by using digital photogrammetric software *Inpho*, analyzing photogrammetric software *AICON 3D Studio* and system *Bluh* in photogrammetry laboratory at the Neubrandenburg University of Applied Sciences.

1. DIGITAL PHOTOGRAMMETRIC WORKSTATIONS

At the heart of digital images processing side is a DPWs. Thus, DPWs are the single most significant product of digital photogrammetry.

This chapter consist of a brief history of the development of DPW, discussion of digital images processing work stages and accuracy of the images processing.

1.1. Development of digital photogrammetric workstations

According to the International Society for Photogrammetry and Remote Sensing (ISPRS), a digital photogrammetric system is defined as: hardware and software designed to derive photogrammetric products from digital imagery using manual and automated techniques (Available from internet: <u>http://www.gim-international.com</u>)

The photogrammetrist Gülch splits the development of the digital photogrammetric workstations into three phases. The first phase began in 1955 and ended in 1981 (Schenk 1999). Perhaps the most important development in this period was the invention of the analytical stereo plotter by Helava in 1957. The analytical stereo plotter is essentially an instrument with a built-in digital computer as its main component, which handles the physical and mathematical relationship between object (ground) space and image space (Madani 2001). Shortly after the invention of the analytical plotter, its inventor, Helava, mentioned the possibility of replacing the human operator by an automatic correlator – a typical consideration of digital photogrammetry (Schenk 1999).

The first reasonably detailed concept of a DPW was described by photogrammetrist Sarjakoski in 1981. Referred to as a fully digital stereoplotter, the functionality strongly resembles that of an analytical plotter, the major difference being the fact that the photographs are replaced by digital images. Sarjakoski proposed building the digital stereplotter using image processing systems and analytical plotter software as a basis. The other photogrammetrist Case in 1982 provided another fundamental concept of a digital image exploitation system. Again, the proposed system had the functionality of an analytical plotter with the potential of automating photogrammetric task such as DEM generation (Schenk 1999).

These two design concepts paved the way for the development of DPWs from 1982 – 1988, which photogrammetrist Gülch considers the second phase in the rather short history of DPWs. Additional concepts were presented and experiments began with prototypes in different research institutions. Finally, two digital photogrammetric workstations were introduced during the XVIth ISPRS Congress in Kyoto, 1988 (Madani 2001). Major efforts were directed towards implementing hardware components and developing low-level system software. The application

14

software was "borrowed" from analytical plotters. The systems of that period were very much characterized by minimal functionality and performance; it is not surprising that the photogrammetric community met these first softcopy workstations with a healthy dose of skepticism. No first generation system survived (Schenk 1999).

Finally, in 1990 the third phase of DPW development began with increased activities by researchers, developers and photogrammetric societies. For example, an ISPRS working group was charged with the task of defining the functionality and performance of digital photogrammetric systems, including a critical evaluation of existing systems. The working group provided the following broad definition: "A digital photogrammetric system is defined as hardware and software to derive photogrammetric products from digital imagery using manual and automated techniques" (Schenk 1999).

From the past two decades till nowadays great strides the powerful image processing workstations has appeared. This development of DPWs is related to (Madani 2001):

• Availability of ever increasing quantities of digital images from satellite sensors, chargecoupled device (CCD) cameras and scanners;

• Availability of fast and powerful workstations/computers with many innovative and reliable hightech peripherals, such as storage devices, true color monitors, fast data transfer, and compression/decompression techniques;

• Integration of all types of data in a unified and comprehensive information system such as geographic information systems (GIS);

• Real-time applications such a quality control and robotics;

• Computer aided design (CAD) and industrial applications;

• Lack of trained and experienced photogrammetric operators and high cost of photogrammetric instruments.

Because of these key technological advances - cost, labor, and new areas of applications GIS and CAD - digital photogrammetric systems have been and are still developed. The main idea is the use of digital images for the data capture within the model area with a 3D "floating mark" with sub-pixel accuracy. Then use a digital workstation to compile the required features to form an intelligent description for an information system such as GIS and CAD systems (Madani 2001).

Close range photogrammetry has significant links with aspects of graphics and photographic science, for example computer graphics and computer vision, digital image processing, CAD, GIS and cartography (Luhmann et al. 2006).

The DPW looks much like an ordinary graphics workstation with some additional features, such as stereo display, 3D cursor, and, most likely, increased storage capacity to hold all the digital images of the entire project (Schenk 1999).

The important advantage of digital photogrammetry is the possibility of automation of photogrammetric task that human operators perform with great ease, thereby making use of our most impressive sense, namely "seeing" (Jacobsen 2001; Schenk 1999).

The difference between the first digital processing systems and today's digital processing systems is noticeable in orientation procedures: typically, the parameters of the exterior orientation are determined by two steps orientation in the previous DPW and the third phase - the parameters of the exterior orientation are determined in the two separate steps of the relative orientation and the absolute orientation. In nowadays digital photogrammetric software the exterior orientation parameters are determined during the fully automatic aerial triangulation procedure. The aerial triangulation is the basic procedure, on which the final result of image processing (orthophoto) depends. Nowadays nearly all block triangulation is done using the bundle method (Luhmann et al. 2006).

A more comprehensive description about today's digital photogrammetric systems *PhotoMod* and *Inpho* will be written in the further chapters. Also, in the further chapters will be written about the bundle block adjustment system *BLUH* and photogrammetric analyzing software *AICON 3D Studio*.

1.2. Images processing work stages

Digital image processing is concerned with acquiring, transmiting, processing and representing images (Schenk 1999). The principal procedures in close range photogrammetry is shown in figure 1.1 (Luhmann et al. 2006):

Fig. 1.1. Images processing

1. Recording

a) Targeting: target selection and attachment to object features to improve automation and increase the accuracy of target measurement in the image.

b) Determination of control points or scaling lengths: creation of a global object coordinate system by definition of reference (control) points and/or reference lengths (scales).

c) Image recording: analogue or digital image recording of the object with a photogrammetric system.

2. Pre-processing

a) Computation: calculation of reference point coordinates and/or distance from survey observations (e.g. using network adjustment).

b) Development and printing: photographic laboratory work (developing film, making photographic prints).

c) Digitising: conversion of analogue photographs into digital images (scanning).

d) Numbering and archiving: assigning photo numbers to identify individual images and archiving or storing the images.

3. Orientation

a) Measurement of image points: identification and measurement of reference and scale points; identification and measurement of tie points (points observed into two or more images simply to strengthen the network).

b) Approximation: calculation of approximate (starting) values for unknown quantities to be calculated by the bundle adjustment).

c) Bundle adjustment: adjustment program which simultaneously calculates parameters of the both interior and exterior orientation as well as the object point coordinates which are required for subsequent analysis.

d) Removal of outliers: detection and removal of gross errors which mainly arise during (manual) measurements of image points.

4. Measurement and analysis

a) Single point measurement: creation of three dimensional object point coordinates for further numerical processing.

b) Graphic plotting: production of scales maps or plans in analogue or digital form (e.g. hard copies for maps and electronics files for CAD model or GIS).

c) Rectification / Orthophoto: generation of transformed images or image mosaics which remove the effects of tilt relative to a reference plane (rectification) and/or remove the effects of perspective (orthophoto).

This sequence can, to a large extent, be automated (connections in red in Fig. 1.1). Provided that the object features are suitably marked and identified using coded targets, initial values can be calculated and measurement outliers (gross errors) removed by robust estimation methods (Luhmann et al. 2006).

1.3. Digital images processing accuracy control

Triangulation is the basic procedure, on which the final result (orthophoto) of image processing depends. Thus, the quality of triangulation is highly important (Sužiedelytė-Visockienė, Bručas 2009). In order to analyse the quality of the bundle adjustment, it is posible to calculate image coordinate residuals (corrections), standard deviations of object points and orientations data, correlations between parameters and reliability numbers for the detection of gross errors (Luhmann et al. 2006).

Image measurement accuracy depends on various factors: the performance of the camera (stability and calibration), the accuracy of the image processing system (image quality,

18

measurement algorithm, instrumental precision) and the positioning capability (identification of features) (Luhmann et al. 2006).

Figure 1.2 illustrates schematically the accuracy potential of typical imaging and processing systems as well as common and optimal system combinations (Luhmann et al. 2006).

Fig. 1.2. Accuracy potential of imaging and analysis systems a) with self-calibration and b) without self-calibration

If all above mentioned factors have a minimal influence, the digital imaging systems can reach <u>image measurement</u> accuracies of $0,2 - 1 \mu m$ (see fig. 1.2).

The accuracy result of triangulation is defined by standard deviation of unit weight (σ_0) (Luhmann et al. 2006):

$$\sigma_0 = \sqrt{\frac{[\mathbf{v}^{\mathrm{T}} \mathbf{P}_{\mathbf{v}}]}{\mathbf{n} - \mathbf{u}}},\tag{1.1}$$

where: $v^{T}\mathsf{P}_{\!v}$ – vectors residuals of observations; n – number of observations; u - $\,$ number of unknowns.

However, in many cases adjustment results are reported as root mean square errors (RMS) of the control points instead of the above defined standard deviation of unit weight. The RMS value is the square root of the mean squared difference between n given nominal values X_{nom} and corresponding adjusted observations X_{obs} (Luhmann et al. 2006; Kersten 1999):

$$\mathsf{RMS} = \sqrt{\frac{\Sigma(X_{\text{nom}} - X_{\text{obs}})^2}{n}}, \qquad (1.2)$$

According analysed treatises during literature review, the value of standard deviation of unit weight (σ_0) can be achieved, for example from 1/3 pixel size to 1/5 pixel size.

More about accuracy control at various stages of photogrammetric processing and triangulation results by using different photogrammetric systems will be written in followed sections during images processing procedure.

2. DIGITAL PHOTOGRAMMETRIC SYSTEM PHOTOMOD

PhotoMod is a digital modular system providing full photogrammetric production line from the aerial triangulation to the output of digital terrain models, digital maps and orthomosaics. *PhotoMod* system contains tools for processing aerial photos and scanner satellite images from different sensors. Due to the system modular structure the user can choose the necessary configuration when purchasing the software. Network system version opens wide opportunities of working with a project simultaneously from several workplaces.

PhotoMod system is produced by Racurs Co. (Moscow, Russia) and has been dynamically developed since the version 1.1 in 1994. *PhotoMod's* growing user base includes organizations throughout more than 45 countries worldwide. The main fields of application include: photogrammetric production, cadastral mapping, cartography and remote sensing, academic photogrammetry, mining, architecture and construction (Available from internet: http://www2.racurs.ru).

The shutter / anaglyph glasses for stereo visualisation and hardware key is included in the *PhotoMod* system (Available from internet: <u>http://www.infomap-rs.net</u>).

Further in this chapter will be written about the modules of photogrammetric system *PhotoMod*, basic theory of images processing, accuracy control of photogrammetric measurements data and processing of the digital images.

2.1. The modules of digital photogrammetric system *PhotoMod*

PhotoMod is a modular system and each module of this system performs specific operations during a certain stage of processing. Consequently, there is no need to have all *PhotoMod* modules if they are not necessary for particular workflow.

Each module has a unique place in the overall workflow, making it possible to construct consistent project processing sequences. The fundamental concept of *PhotoMod* is to enable project work through a series of well-defined steps (data preparation, block adjustment, processing) and provide the support of a flexible set of tools at every stage.

The newest version of *PhotoMod* includes its main operating shell whose name is *PhotoMod Core* (in the old system - *Montage Desktop*) and 11 other modules (Fig. 2.1) (Available from internet: <u>http://www.racurs.ru</u>).

21

Fig. 2.1. Structure of the digital photogrammetric system PhotoMod

PhotoMod Core (Montage Desktop) functionality. *PhotoMod Core*, the main shell of the *PhotoMod* system, initiates and manages an array of modules that guide the processing of photogrammetric project through every step. Also, *PhotoMod Core* is equipped with a wide range of auxiliary functions which are designed to simplify and optimize the project processing. The basic capabilities of *PhotoMod Core* is given in table 2.1 (Available from internet: <u>http://www.racurs.ru</u>):

Capabilities	Description
	Type selection of the new project: central projection, satellite scanner
Project	imagery or Airborne Digital Sensor (ADS 40).
creation	Selection of coordinate system: database supplied coordinate system, edition
	of existing coordinate systems or creation new coordinate systems.
	Edition of the project properties; Projects duplication/deletion;
Project	backup/restore function; project location by using new "virtual folder"
management	technology; importation of the projects from older PhotoMod versions
	$(PhotoMod \ 4.x)$

Table 2.1. The basic capabilities of PhotoMod Core	е
--	---

Capabilities	Description
	<i>Images preparation for the project:</i> transformation of non-photogrammetric
	scanner images (PhotoMod ScanCorrect); radiometric image correction
	(most commonly used for 16-bit rasters); rasters convert to internal format;
Block	optional image compression; batch conversion processing.
formation	<i>Images loading and block formation:</i> load images to strips; rotate and
	replace images; the same images (without copying those) could be usable for
	multiple projects: block could be automatically spitted into strips: image
	could be corrected with <i>Image Wizard</i>
Input of	Camera passport data introduction: type of the camera (digital or film)
comero	introduction: coordinates of principal point introduction: focal length
naramatar for	introduction; coordinates of fiducial mark introduction (for film cameras);
	distortion coefficients introduction
"Central	distortion coefficients introduction.
projection"	Cameras duplication, renaming, or deleting; assignition to project images;
projects	importation/exportation.
	Interior orientation; importation/exportation of triangulation points;
	importation of exterior orientation parameters from different formats (can be
	used for direct georeferencing or precise block layout); importation of
Basic project	interior and exterior orientation parameters from Ultra Cam metadata; block
operations	layout creation from different data sources; reports generation of interior and
	relative orientation; importation/exportation and mono-edition of vector
	objects; importation/exportation of DEM, TIN and contour lines; window for
	viewing 3D objects from different angles; distributed processing.
Auxiliary	Explorer: Control Panel: Raster Converter: Image Wizard: GeoCalculator
utilities:	

Table 2.1. continuation

PhotoMod AT functionality. This module is used to recognize and measure ground control points and tie points on the images. Ground control points (GCP) coordinates can be imported from a text file or entered directly by using keyboard. After coordinates are entered, the points are measured on the images in semi-automatic or stereo mode. In addition, to fully automatic aerial triangulation, *PhotoMod AT* includes tools for interior orientation, as well as GCP search and measurement. Collected data is passed to *PhotoMod SolverA* or *PhotoMod SolverS* for block adjustment and computing exterior orientation parameters (Available from internet: http://www.racurs.ru).

PhotoMod SolverA and SolverS functionality. The modules *PhotoMod SolverA* and *SolverS* was named *PhotoMod Solver* before. The main difference between older module (*Solver*) and the newest modules (*SolverA* and *SolverS*) is that the newest modules are used for block adjustment of central projection (*SolverA*) and scanner satellite images (*SolverS*) individually. Sophisticated adjustment and error detection algorithms ensure successful aerial triangulation and highly accurate of Digital Terrain Model (DTM), orthomosaic and vector map output. *PhotoMod SolverA* and *SolverS* is capable to import/export aerial triangulation results which is get by using the software for block adjustment *PATB* (Available from internet: http://www.racurs.ru; http://www.k2-photogrammetry.de/products/patb.html).

PhotoMod DTM functionality. The *PhotoMod DTM* module creates and edits the digital terrain model (DTM). The module supports any type of digital terrain model: pickets, breaklines, Triangulated Irregular Network (TIN), DEM, contour lines, ect. DTMs may be edited in either mono or stereo mode. A special 3D window is used to view and analyze DTMs from different angles (Available from internet: <u>http://www.racurs.ru</u>).

PhotoMod DTM has a powerful set of tools for creating, editing, filtering and checking vector objects. External vector data can also be imported for use.

PhotoMod StereoDraw functionality. PhotoMod StereoDraw is a module for 3D vector objects drawing and editing in stereo mode. 3D vectors can be used for digital map creation and for digital elevation model generation in *PhotoMod DTM* as relief model elements. Besides 3D vectors creation in *PhotoMod StereoDraw*, vector objects can be imported from popular formats. *PhotoMod StereoDraw* has a full tool set for editing 3D vectors, topological reconciliation, dividing into thematic layers, attaching to classifier records. Like other modules - *StereoDraw* supports page-flipping and anaglyph stereomodels.

StereoDraw includes a *3D-Mode* program for 3D modelling and exporting specially prepared 3D objects to *DXF* format.

Main features of the module of *StereoDraw* is given in table 2.2 (Available from internet: <u>http://www.racurs.ru</u>):

Capabilities	Description
	3D marker could be: moved by mouse or keyboard; switched to
	"Marker - mouse" mode; Automated to "Snap to ground" mode.
Marker control	Adjust form, color and size of marker; 2D and 3D snapping mode
	during vectorization.

 Table 2.2. The main features of PhotoMod StereoDraw

Capabilities	Description	
	Supports point, line, and polygon object types; Create objects by	
	code using classifier; Classifier editing; Create table of attributes	
Vector objects	linked to a classifier record, or unique for some objects; Supports	
drawing	thematic layers; Supports of topological links during vector object	
	creating; 90-degree turns during polyline or polygon drawing;	
	Measures of lengths, area and angle.	
	Select objects, groups of objects, objects by layer, objects by code;	
	Insert, delete or move of vertices and reversing point numeration;	
	Edit topology links; Change object types; Check and correct	
ebiests	topology; Create 2D and 3D buffer zones; Group operations with	
objects	vertices — deletion, plane movement, move to chosen Z-position	
	or step along Z-axis; Group operations with objects — deletion,	
	move to chosen Z-position or step along Z-axis; Draws	
Tuning and	Parallax tuning for better stereo effect; Undo with predefined	
additional interface	history length; Correlator parameter tuning; Tune visualization	
capabilities	parameters, etc.	
Import/ormout of	Supported formats (ASCII, ASCII-A, MIF/MID, DXF, DGN and	
vector objects	etc.); Export Classifier and attributes to DBF file, linked to the	
vector objects	vector objects file.	

Table 2.2 continuetion

PhotoMod Mosaic functionality. PhotoMod Mosaic module performs orthotransformation and mosaic creation in a single inseparable process. All geometric and photometric distortions are corrected during the orthomosaic creation process. The result of mosaic can be represented in a given cartographic projection both as a single image and as a set of sheets of specified size.

Any image which is available for *PhotoMod* software can be input for mosaic creation.

Created mosaics can be stored in the following files formats: TIFF, Windows BMP, Vector RSW, GeoTIFF, ERDAS Imagine, NITF, JPEG and PNG.

Formats for saving georeferencing data could be saved into these separate files: PhotoMod Geo, ArcWorld TFW, ArcWorld BPW, MapInfo TAB.

If a mosaic is cut into a number of sheets, raster and georeferencing files are created separately for each sheet (Available from internet: <u>http://www.racurs.ru</u>).

PhotoMod Vector functionality. PhotoMod Vector module is designed to create and edit digital vector maps.

Main features of *PhotoMod Vector* is given in table 2.3 (Available from internet: <u>http://www.racurs.ru</u>):

Capabilities	Description			
Digital map creation	Full support of topographic, geographic and navigation maps nomenclature;			
	Maps creation with specified parameters; Map generalization; Special map			
	symbology editor; Merge or split maps sheets; Maps transformation to/from			
	different coordinate systems and cartographic projections; Maps printing			
	with full marginalia and coordinate grid; Map updating.			
Vector editor	Powerful tools for digitizing and editing; Topological operations (buffer			
	zones, spatial joining and intersection of objects, variety of snapping			
	functions, object creation using existing objects, and more); Map object			
	measurements; Objects selection through queries; Group operations			
	performing with objects; Smoothing of vector objects; Place inscriptions			
	along curves; Inscription placement by selected attributes; Vector objects			
	creation by coordinates from file or user input; Semiautomatic vectorization			
	of linear objects.			
Working with raster files	Georeferencing to digital maps; Mosaics creation; Adjustment of			
	brightness/contrast; Adjustment of color palette; Digitization of over raster			
	image.			
Working with	Creation of DTM from 3D vector objects; Importation of DTMs from			
digital terrain	PhotoMod DTM module; Shed models creation of view; Profiles creation;			
models	Contour lines creation; Conversion of 2D objects to 3D objects.			
Import/export	DXF; MIF-MID; GRD; BMP; TIFF.			

Table 2.3. The main features of <i>Photomoa vector</i>	Table 2.3.	The main	features	of PhotoMod	Vector
---	------------	----------	----------	-------------	--------

PhotoMod StereoVector functionality. PhotoMod StereoVector module is designed to allow parallel work with a digital map in PhotoMod Vector format. The PhotoMod Vector stereo window is identical to that of PhotoMod StereoDraw. In the mono window, maps are displayed in accordance with the selected map symbol library. This module is especially useful for updating existing maps.

Editing is simultaneously implemented in both windows. All changes performed in the stereo window are automatically displayed directly in the mono window, without any need of additional import/export operations.

In its functionality and user interface, *StereoVector* is generally similar to the *StereoDraw* module. However, there are two main differences:

• *Vector* module uses the map classifier, instead of the user-defined *PhotoMod* classifier;

• Created (edited) vector objects are stored in Vector map format, not as *PhotoMod* resources.

It is reasonable to use *PhotoMod StereoVector*, if further map work is to be continued in the Vector module or *Karta 2008* software. If created vector objects are expected to be used in other systems, it is preferable to use *StereoDraw* (Available from internet: <u>http://www.racurs.ru</u>).

PhotoMod StereoACAD functionality. PhotoMod StereoACAD - is intended for 3D vectorization of stereopairs in AutoCAD 2007/2008. 3D objects created in PhotoMod StereoACAD are saved in AutoCAD format DWG/DXF. They are available for viewing and editing with using standard tools of AutoCAD instruments. PhotoMod StereoACAD works in page-flipping stereomode in following AutoCAD OS: MS Windows 2000 and MS Windows XP.

PhotoMod StereoACAD provides the following image visualization functions:

- Page-flipping stereoscopic view;
- Real-time roam with fixed stereo cursor;
- Dynamic zoom;
- Two modes of marker moving pixel and geodetic coordinates;
- 2D-3D snapping modes.

PhotoMod StereoACAD advantages:

- Easy to learn, easy to work;
- Capability to use sophisticated command set of *AutoCAD* graphic engine;
- Quality and fast stereo visualization;
- No special equipment to control stereo cursor.

PhotoMod StereoLink functionality. *PhotoMod StereoLink* is a simple way to convert standard Intel-based PC with *Windows NT* (or later version) into quality stereo plotter. *StereoLink* provides effective stereo feature collection including such DTM features as break lines, height points, etc.

It allows stereoscopic view of stereo pairs, stereo pair images contrast and brightness adjustment, 3D coordinates measurements, stereoscopic feature collection, and creation of user feature tables. Stereo feature collection can be done with or without user tables.

PhotoMod StereoLink works within *MicroStation 95/SE/J* environment as an MDL-application and provides the following image visualization functions:

• Page-flipping stereoscopic view;

- Real-time roam with fixed stereo cursor;
- Dynamic zoom.

PhotoMod StereoLink advantages:

- Capability to use sophisticated command set of *MicroStation* graphic engine;
- Support of user's cell libraries and line styles;
- Quality and fast stereo visualization;
- No special equipment to control stereo cursor;
- Support of industry data formats;
- Support of hierarchical feature tables.

PhotoMod ScanCorrect functionality. *PhotoMod ScanCorrect* program is designed for correction of metric errors caused by scanning of graphical data on the DeskTop Publishing (DTP) scanners.

Transformation of raster image according to the scanner distortion field is used for errors compensation. Scanner distortion field is computed from raster data obtained by scanning calibrated material (regular grid or a set of crosses).

The basic principles of working with *PhotoMod ScanCorrect* are the following:

• Inclusion of calibrated material into sequence of scanning of graphic material to obtain distortion field;

• Formation of the distortion field using raster data from the scanned calibrated material;

• Transformation of all raster data according to the distortion field.

Analysis of precision characteristics of DTP scanners shows that scanner distortion field is caused mainly by systematic scanner errors. Thus it is possible to apply the distortion field created from one image when transforming another.

If original graphic material (for example photo image) has calibrated crosses on it, the technique remains the same, but distortion field is formed from the same raster that is used in transformation. There is an option to input and reckon with the table containing coordinates of the crosses.

Input and output data of the program is 1, 4, 8, and 24-bit files in Windows BMP or TIFF formats. Auxiliary data (distortion field) is saved in ETM files.

The program allows fast converting of raster data (Available from internet: http://www.racurs.ru):

- From Windows BMP format to TIFF format;
- From TIFF format to Windows BMP format.

2.2. Images processing by using photogrammetric software

Images processing of object by photogrammetry method include of the following work steps (Sužiedelytė-Visockienė et al. 2011):

- Images interior orientation;
- Images relative orientation;
- Calculation of Bundle adjustment (triangulation);
- Draw the structural line of object;
- Creating Triangulated Irregular Network (TIN) of object surfaces;
- Creation of orthophoto map.

Interior orientation. The orientation procedure consists of the reconstruction of the interior orientation, which describes the geometry of the ray bundle in the camera, and the exterior orientation. The interior orientation specifies the functional dependencies between the principal point and the point, where the light ray intersects the image plain. The position of this intersection point is described by image coordinates (Wiedemann 2005). The image coordinate system defines a 2D image-based reference system of rectangular Cartesian coordinates. Its physical relationship to the camera is defined by reference points, either fiducial marks or a reseau, which are projected onto the acquired image. For a digital imaging system, the sensor matrix defines the image coordinate system. Usually the origin of the image or frame coordinates is located at the image centre (Luhmann et al. 2006). Thus, the purpose of interior orientation is to create the geometry of the projected rays that formed the image.

If the camera with the known camera calibration parameters is used, the transformation of image to the geodesy coordinate system is calculated according to the equation (Sužiedelytė-Visockienė, Bručas 2009):

$$\mathbf{x} = \mathbf{x}_{c}' + \mathbf{k}_{\mathbf{x}} (\mathbf{x}_{c} \cos \varphi - \mathbf{y}_{c} \sin \varphi), \qquad (2.1)$$

$$y = y'_{c} + k_{v}(x_{c}\sin\varphi + y_{c}\cos\varphi), \qquad (2.2)$$

where x, y – coordinates of a point in the geodesy coordinate system; x_c , y_c – coordinates of the points in digital image coordinate system; $x_c' y_c'$ – origin of the digital image coordinate system in the geodesy coordinate system; ϕ – the rotation angle of the image coordinate system in the geodesy coordinate system; k_x , k_y – the coefficients describing an image deformations along the x, y axes.

If the used camera is calibrated, the interior image orientation may be done by transforming the measured coordinates into a calibration system, defined by the fiducial marks or the réseau crosses (Sužiedelytė-Visockienė, Bručas 2009).

If a non-calibrated camera has been used, an independent set of parameters of the interior orientation is necessary for each image. In frame cameras independent parameters of the interior orientation are only required if the zoom factor or the focus of the camera has been changed during the image acquisition (Sužiedelytė-Visockienė, Bručas 2009).

The procedure of the interior orientation using the photogrammetric system *PhotoMod* depends on the type of the camera with which the images were taken of:

• In images from an analog camera the fiducial marks on the margins of images should be measured. In this case the errors of interior orientation are calculated along both axes (Kiseleva 2002). The procedure used for the interior orientation is dependent upon the fiducial mark data and can be performed in manual, semiautomatic or fully automatic mode, as determined by the camera type (Available from internet: <u>http://www.racurs.ru</u>);

• <u>For images from digital cameras, the interior orientation is performed in an automatic mode.</u> It is only needed to enter the parameters of the interior orientation from the camera protocol and the axis orientation (Kiseleva 2002; Available from internet: <u>http://www.racurs.ru</u>). The parameters of the interior orientation (coordinates of the principal point, the focal length and the radial symmetric lens distortion coefficients) from the camera should be input in the same units – either pixels or millimetres (Racurs 2009).

The interior orientation should be done for each image which will be used for the data processing.

<u>Relative orientation.</u> The relative orientation recovers the position between the two ray bundles, creating a 3D stereo model (Ruzgienė 2008). The process of the relative orientation computes the relative orientation parameters to define the relative position of the pair of images (Racurs 2009).

The process of the relative orientation is as follows (Kiseleva 2002):

• measuring of the tie points in the stereo pairs in the overlapping areas and triplet zones (if we have three images);

- measuring of the tie points between adjacent strips;
- input and measurements of ground control points.

The following tie points position/number is considered as an optimum: tie points are grouped in the special standard zones in the images overlap, at least 2-3 points in each group (Fig.2.2) (Kiseleva 2002).

30

Fig. 2.2. Grouping of tie points in the images overlap

This way provides the most accurate and reliable determination of relative orientation parameters with possibility of localization of blunders. It is recommended that points in the triple overlap area were, if possible, placed uniformly in this zone (Kiseleva 2002).

Inter-strip tie points should be located in the side lap areas symmetrically relatively to its midline approximately as shown on Fig.2.3 (Racurs 2009).

Fig. 2.3. Grouping of inter-strip tie points in the images side lap areas

It should be noticeable, that after entering a tie point in the inter-strip overlap area the results of the relative orientation procedure for the images containing this point are rejected. Thus, in this case, it should be entered such points before making orientation of stereo pairs in strips. Also, inter-strip tie points must be transferred to at least one adjacent image in each strip. Otherwise they will not be taken into account in the block adjustment by independent models method (Racurs 2009).

The measurement of a set tie points on overlapping images is needed to perform phototriangulation (Racurs 2009).

Tie points are used to create models from pairs of adjacent images and to create from these models the model of the whole strip or block in the block adjustment procedure (Racurs 2009).

Measuring points means their stereoscopic measuring on both stereo pair images (Racurs 2009).

Stereoscopic measuring can be fulfilled in three following ways (Racurs 2009):

• By manual positioning of the marker on each of two images;

• By manual positioning of the marker on one image and transferring the marked point to another image with correlation;

• By manual positioning of the marker in stereo mode.

Tie points can be measured in full automatic mode on both stereo pair images using correlation procedure (Racurs 2009).

The measurement of ground control points in photogrammetry is an essential part of producing accurate exterior orientation, DEMs and orthophotos (Available from internet: http://www.pvts.net). Coordinates of GCP could be entered in the software by importing the catalog of GPC (in text file) or entering values of GCP coordinates from keyboard (Racurs 2009). If the coordinates of the images projection centers is known – those could be used for block adjustment. In this case, the names of projection centers should be equal to the names of corresponding images. For the processing of single image in central projection the minimum number of control points is 3 (3 GCPs or 2 GCPs and the projection center). It is should be known that the GCP coordinates are given in the coordinate system selected, during project creation in *PhotoMod Montage Desktop* module (Racurs 2009).

After GCPs coordinates are inputed – the ground control points should be recognized and measured on the images. Ground control points must be identified and measured on one of the strip images only. If a point is imaged on more than one image it can be measured (transferred) to these images at steps 3 (Strip ties) and 4 (Tie points measurements) (Racurs 2009).

The measuring of ground control points on the images is follows (Racurs 2009):

- Selection of the point name in the list in the lower left part of the window;
- The marker positioning exactly on the ground control point on the image;

• The measurement appliance by pushing the button which is need to record the value of GCP.

When two new points are measured, selecting the third and following points in the list leads to the automatic positioning of the marker of the surrounding of selected point (Racurs 2009). Also, after coordinate values are input, points are measured on the images in semi-automatic or stereo mode (Available from internet: <u>http://www.racurs.ru</u>).

The more control and tie points are available, the better the results of the orientation

process in terms of accuracy and reliability can be obtained (Wiedemann 2005).

Bundle adjustment. During the bundle adjustment procedure the block adjustments of the strips and the image blocks takes place. The GCPs and tie points are used for the block adjustment (Racurs 2009).

PhotoMod Solver provides three algorithms to be used for the block adjustment procedure (Racurs 2009):

• **Independent strips.** This method is used to check out the gross errors, such as wrong coordinate values of control points, incorrect tie point's measurements, etc. The accuracy of this method in case of long strips (more than 10 images) may be a dozen times worse than the adjustment accuracy achieved by the other two methods.

• **Independent stereo pairs.** This method is usable for increasing the accuracy and detection of more delicate errors.

• **Bundle adjustment** is used for the final block adjustment.

In most cases, it is practical to perform adjustment alternately by method of independent stereopairs and bundle adjustment for searching and correction of delicate errors (Racurs 2009).

<u>The break lines of object.</u> In this part of processing of the digital images the break lines of the object are drawing (the 3D vector object is creating). Vectorization of objects could be done (Racurs 2009):

- **by stereomodes** (by using anaglyphic or shutter glasses);
- by mono mode.

Stereomode. Objects vectorization by stereo mode is performing by using anaglyphic or shutter glasses.

Anaglyphic glasses. Anaglyph stereoimage is formed by visualization of the left and right images of the stereopair "beyond" red and blue filters. To view such a picture you should use special anaglyph spectacles with red and blue glasses. Anaglyph stereomode requires no special equipment but it is not completely good for working with color images. Another disadvantage is that the picture gets a bit darker when viewing through filters (Racurs 2009).

Shutter glasses. Shutter glasses are liquid crystal glasses synchronized with the vertical refresh rate of the monitor. *PhotoMod* system supports two modes of working with shutter glasses (Racurs 2009):

- Interlace stereo;
- Page-flipping stereo.

Interlace stereo. Interlace ("line by line") display mode divides the display frame into two semi-frames. The first one contains odd lines and the second one contains even lines. The right and left images of the stereopair are displayed one by one in "odd" and "even" frames. The shutter

glasses are synchronized with the monitor vertical refresh rate and allow you to see them "simultaneously" and make stereo measurements. The interlace mode may be applied only for the whole screen, so it introduces some inconvenience when working with menus. Another disadvantage is sampling picture and, thus, reducing its resolution because of using semi-frames. The comfortable vertical refresh rate of your monitor should be at least 75 Hz "for each eye" (150 Hz for interlace mode) (Racurs 2009).

Page-flipping stereo. The page flipping ("frame by frame") display mode provides the highest quality stereo picture because it uses full frames instead of semi-frames. The left and right images of the stereopair are displayed one by one synchronously with the frames switching. The shutter glasses are synchronized with the monitor vertical refresh rate and allows to see them "simultaneously" and make stereo measurements. For working in page-flipping mode - should be used a monitor with a good enough vertical refresh rate (at least 120 Hz) and an appropriate video adapter (Racurs 2009).

Mono mode. Monomode displays the left epipolar image of the stereopair and the left component of the stereomarker. All created in such a way vectors should be checked manually in stereomode to avoid possible correlator errors (Racurs 2009).

Triangulated Irregular Network (TIN). A triangulated irregular network (TIN) is a digital data structure used in a geographic information system (GIS) for the representation of a surface. A TIN is a vector based representation of the physical terrain surface, made up of irregularly distributed nodes and lines with three dimensional coordinates (x, y, and z) that are arranged in a network of non-overlapping triangles (Available from internet: <u>http://en.wikipedia.org</u>).

PhotoMod software provides several different strategies (algorithms) of TIN creation (Racurs 2009):

- Regular TIN;
- Adaptive TIN;
- Smooth TIN;
- TIN from vector objects;
- TIN from regions;
- TIN from pickets;
- Convex TIN from pickets.

Regular TIN. In case of regular model the program calculates Z values of all grid nodes using correlation algorithm. If the program fails to compute Z coordinate of a node in automatic mode the value of the third coordinate is calculated by interpolation between the adjacent nodes with automatically computed coordinates. The errors of automatic computations of the model can be corrected later during the manual model editing. The final TIN is triangulated from grid nodes by modified Delaunay algorithm. It is recommended to build regular TIN when working with very heterogeneous images that can be characterized by the small-granular texture or high degree of details (Racurs 2009).

Adaptive TIN. The adaptive model is the most frequently used type of TIN. It is recommended to process images having big homogeneous or smooth parts. <u>This method is also good for close-range photogrammetry</u> (Racurs 2009).

The program calculates 3D coordinates using most distinctive point of image in the neighborhood of each inner grid node (the area size is 1/3 from grid step), if the option *Fixed nodes* is off. In nodes of grid boundaries the points are calculated exactly in node location. If it is impossible to calculate 3D coordinates for some node, it is skipped (except grid boundary nodes if the Rectangular boundary option is on, in this case such nodes are marked as "uncertain" and their height is calculated by interpolation of adjacent vertices) (Racurs 2009).

The final TIN is triangulated from grid nodes by modified Delaunay algorithm (Racurs 2009).

Smooth TIN. This option is suitable for smooth relief that has relatively small number of characteristic points. In the case of smooth models the polynomial interpolation function describing the surface is calculated based on 3D vector points (pickets) (Racurs 2009).

An additional parameter used for smooth model building is *Max. number of pickets* to calculate node. The total range of values is 3 - 1000. When number of pickets is not very big (500 - 1000) you should use all pickets that allow you to use all pickets and to eliminate time for searching of the closest to every node pickets whose number is equal to selected parameter value (Racurs 2009).

Smooth TIN is useful when working with smooth surfaces since it does not require editing operations related to the correlator errors (Racurs 2009).

This type of model is used for building TIN and computing contour lines for urban areas. In this case you should locate pickets on the "ground surface" to "remove" buildings, fences, trees, etc from TIN. For example you can create 3D vector lines along the town streets and use them as sets of pickets for smooth model creation. However you should keep in mind that the interpolation function may cause some residuals between real and calculated surfaces because of the smoothing (Racurs 2009).

TIN from vector objects. In this case TIN is created by triangulation of currently existing vector objects. Vector points become TIN nodes and vector lines and polygons are linked to the TIN as breaklines.

This method is very useful when you have big enough number of 3D vector objects, which completely describe the surface since it does not require editing operations related to correlator errors. As in case of smooth model you can use **TIN from vectors** algorithm to clean "noisy" elements as buildings, trees, etc. from the model just because they are not vectorized. Creating **TIN from vector objects** is more precise operation in comparison with smooth modelling, as it does not use the interpolation function (Racurs 2009).

TIN from regions. The area of the stereopair may be divided into separate regions (*local regions*) in order to use different strategies for building TIN in each region. So you can "bound" a village area by the local region and create **TIN from vectors** inside this region and **Adaptive TIN** outside this region. Prior to building TIN from regions you should create local regions and set up the parameters for each of them (Racurs 2009).

TIN from pickets. You may create a TIN by direct triangulation of pickets. Prior to TIN creation you can collect data (as 3D points – pickets) about terrain relief using different methods. *PhotoMod* **DTM** uses the same algorithms to build TIN and pickets. The difference is just that the pickets are not triangulated to the net of triangles and are string just as a set of XYZ points. To improve the relief model you can load the breaklines additionally to pickets (Racurs 2009).

You should start automatic pickets' extraction using regular, adaptive and smooth algorithms with rectangular grid creation (Racurs 2009).

You can also add pickets manually by positioning the marker on the place you need on stereo model (Racurs 2009).

Convex TIN from pickets. TIN is created by direct triangulation of pickets. The operation is similar to TIN creation using point vector objects, but in this case they are pickets (Racurs 2009).

The operation results in creation of TIN with convex border. It is useful if the initial pickets are distributed in such a way that they do not cover some part of a model – for instance, if there are vast water bodies (rivers and lakes) on large scale images (Racurs 2009).

<u>Creation of orthophoto map.</u> Orthophoto could be produced by using one image or several neighboring overlap images. Several neighboring overlap images generation into ortophotographic view is calling *mosaicking* (Shariat et al. 2008).

Types of terrain models used in orthorectification by using *PhotoMod* software could be provided by that several different strategies: (Available from internet: <u>http://www.racurs.ru</u>):

- User-defined constant height level;
- Ground control and tie points measured in the aerial triangulation step;
- DEM.
It is necessary to control the data quality in all the above-mentioned work stages, particularly the results of the triangulation. Thus, in the next section will be described accuracy of photogrammetric measurements data.

2.3. Accuracy control of photogrammetric work stages

The accurate measurements of ground control points and tie points in the digital images leads to the accurate results of triangulation (bundle adjustment). Thus, the measurements quality should be observed at every work step.

The measurement quality of tie and ground control points by using this photogrammetric software can be checked by the following ways (Sužiedelytė-Visockienė et al. 2011):

1) Accuracy control using correlation coefficient (if points are added by correlator). The acceptable value of the correlation coefficient can be determined from images quality. For contrast and high quality images the threshold is 0.9–0.95, for unclear images the threshold can be 0.8 at well recognized points.

2) Accuracy control using vertical parallax residual. After measuring 5 points on the stereopair, the relative orientation parameters of images pairs are calculated and then recomputed more exactly by software while points being added. The program calculates the maximum error (E_{max}) of vertical paralallax residuals and the root mean squared error (RMS) (Sužiedelytė-Visockienė et al. 2011):

$$\mathsf{E}_{\max} = 2 \times \mathsf{E}_{\mathrm{mean}} \,, \tag{2.3}$$

$$\mathsf{RMS} = \sqrt{2} \times \mathsf{E}_{\text{mean}} , \qquad (2.4)$$

where E_{mean} – mean error of measurement points in the model. This error should not be greater than half of the scanning pixel size for analog camera and half of matrix pixel size for digital camera.

Measurement units are pixels or millimetres depending on camera units.

The images of the object were taken by using the digital camera *Canon EOS 1D Mark III* with the matrix pixel size of 6.4 μ m. Thus, the mean value should not be more than 3.2 μ m (Sužiedelytė-Visockienė et al. 2011). The maximum error and the root mean squared error of measured tie and ground control points should not exceed the values given in table 2.4.

 Table 2.4. Calculated maximum error and root mean squared error to the digital camera Canon EOS 1D

 Mark III

E _{max} , μm	RMS, μm
6.4	4.5

3) Accuracy control by adjacent models (in overlapping or triplets). After measuring the tie and ground control points on stereo pairs (models) they should be transferred to the geodetic coordinate system. The relative orientation accuracy can be checked by comparing the discrepancies of the points measurements on the adjacent models (in triplets). Triplet errors: $E_{X_i} E_{Y_i} E_Z$ in their X, Y, Z coordinates were calculated on two adjacent models. Mean triplet errors in XY plane and Z coordinates are calculated by following formulas (Sužiedelytė-Visockienė et al. 2011):

$$\mathsf{E}_{\mathrm{mean}}^{\mathrm{XY}} = \sqrt{2} * 0.5 \times pxl, \quad (2.5)$$

$$\mathsf{E}_{\mathrm{mean}}^{\mathrm{Z}} = \frac{c}{b_{r}} \mathsf{E}_{\mathrm{mean}}^{\mathrm{XY}} \,, \tag{2.6}$$

where pxl – is the matrix pixel size for a digital camera (6.4 microns); c – is the focal length of a camera (Table 2.5, 2.6), b_x – is base in the image scale.

Approximate base in the image scale (b_x) was calculated by using the following formula (Kiseleva 2002) :

$$b_x = I_x \times (100\% - p_x) \times m/100\%$$
, (2.7)

where: b_x - survey basis (13.2 mm); l_x - image size along the X axis (35.9 mm); p_x - size of the overlapping zone (60 %); m –scale denominator of the image (0.92).

The discrepancies of E_{mean}^{XY} and E_{mean}^{Z} should not exceed the values given in table 2.5 (Sužiedelytė-Visockienė et al. 2011).

mease	incusationical of over and the points				
	Point	E_{mean}^{XY} ,	E_{mean}^Z ,		
	1 onn	μm	μm		
	GCP,Tie	4.5	17.3		

Table 2.5. Quality of measurements of GCP and tie points

After relative orientation and triplet accuracy control the next stage – bundle adjustment can be performed. According software manufacturers, acceptable errors on bundle adjustment are dependent on different products: topographic maps or orthophoto creation (Kiseleva 2002).

Accuracy control of bundle adjustment for topographic maps creation. Accuracy control for topographic maps creation on ground controls points (GCP) after adjustment should not be greater than 0.2 mm in XY plane (in output map (plane) scale) and $0.15 \times h_{int}$ by Z, where h_{int} – contours interval of the output map (Kiseleva 2002).

Acceptable mean residuals on tie points -0.3 mm in the output map scale. Also acceptable mean residuals on tie points by Z (Kiseleva 2002):

• $0.2 \times h_{int}$ – for contour interval of 1 m and also for scale 1:1000, 1:500 with the contour interval of 0.5 m;

• $0.25 \times h_{int}$ – for contour interval of 2.5 m and also scale – 1:2000 and 1:500 with the contour interval of 0.5 m;

• $0.35 \times h_{int}$ - for contour interval of 5 m and 10 m.

Accuracy control of bundle adjustment for orthophoto creation. Accuracy of adjustment for orthophoto creation is actual for architecture objects or orthophoto maps creation. In the *PhotoMod* software acceptable mean residuals of GCP in XY plane are 0.2 mm in output map scale and in $Z - 1/3\Delta h_{DTM}$, where Δh_{DTM} is mean residuals of Digital Terrain model (DTM). Calculation formula of Δh_{DTM} is (Kiseleva 2002):

$$\Delta h_{DTM} = 0.3mm \times c \times \frac{M}{r} , \qquad (2.8)$$

where M – output map (plane) scale; r – maximum distance from the image point to the nadir point (mm), which equals to the half of diagonal of "working area".

As it is seen from above by software manufacturers given information about bundle adjustment accuracy results - the program does not calculate σ_0 value for final evaluation of triangulation. In this case, the accuracy result of bundle adjustment should be calculated by using 1.1 or 1.2 formulas, given in section 1.3.

Further in next section will be described the images processing procedure and the results of images processing. Also the brief discussion about the processing results will be given.

2.4. Processing of the images by using digital photogrammetric software *PhotoMod*

The object of analysis is the North wall of the Vilnius University yard in the Vilnius old town (Fig. 2.4) (Sužiedelytė-Visockienė et al. 2011).

Fig. 2.4. Three overlapping images (P915-P912-P918)

The images were taken by using the *Canon EOS 1D Mark III* digital photo-camera. The characteristics are listed in Table 2.6 (Sužiedelytė-Visockienė et al. 2011).

<i>~</i>	Characteristics	Value
Савон	Focal lengths (mm)	50
	Resolution (pixel)	21 mln.
a trace of the second	Pixel size, <i>pxl</i> (µm)	6.4×6.4
	Image size (mm)	35.9×23.9
	Image size (pixel)	5616×3744

Table 2.6. Characteristics of digital camera Canon EOS 1D Mark III

This camera is calibrated (its optics distortions determined and evaluated) by using Tcc software at the Institute of Photogrammetry of University of Bonn (Germany) in 2008 (Sužiedelytė-Visockienė, Bručas 2009). The camera parameters are given in Table 2.7 (Sužiedelytė-Visockienė, et al. 2011).

Parameter	Result		
Focal	length (mm)		
С	50.7583		
Scale of in	mage (constant)		
S_{xy}	0.99		
The base point correction	ons of the photo-camera (mm)		
<i>x</i> ₀	-0,0495		
<i>y</i> ₀	-0,2559		
Radial-symmetrical dis	stortion of the photo-camera		
A ₁	-1.789E-09		
Radial-asymmetrical distortion of the photo-camera			
B ₁	1.017E-8		
B ₂	-1.655E-8		

Table 2.7. Result of camera Canon EOS 1D Mark III calibration (2008)

The images of the object were corrected for the digital camera objective distortions by using the special software *Tcc Distortion Correct* made in Germany. In the figure 2.4 were correct three overlapping images.

The calculated accuracy results of the prime step of images processing (relative orientation) is already known (see section 2.3). In this case the images processing could be started. The accuracy results of images processing are always observing with already known measurement discrepancies during the images processing procedure.

The first step of the processing of scanned images is the interior orientation. Because of the images were taken with digital camera, the first step of images processing was performed by software in automatic mode. The coordinates of principal point are known from camera definition where the parameters of sensor geometry during new project creation were entered. The coordinates of principal point are x' = 2808 and y' = 1872 given in the unit pixels (Sužiedelytė-Visockienė, Bručas 2009).

The next step of images processing was the relative orientation. During this procedure, first of all, the 8 tie points were placed uniformly in the triple overlap area and measured. Further, values of 10 ground control points coordinates were entered and ground control points were measured in stereo mode. The coordinates of ground control points are in the relative coordinate system of the building. The tie and ground control points were measured manually.

41

We had the three images and made two models P915-P912 and P912-P918 (triplets) during procedure of relative orientation. In this case the accuracy control of relative orientation by using digital photogrammetric software *PhotoMod* can be checked in followed ways:

• separately in each model (according formulas 2.3 and 2.4). In this case the accuracy control of the final result of relative orientation is computed;

• in all models together (according formulas 2.5 and 2.6). In this case the accuracy control could be observed separately for tie and ground control points in triplets after transference to the relative coordinate system of the building.

The final result of relative orientation was evaluated for two model separately according given formulas 2.3 and 2.4 (see section 2.4). Accuracy control result present in the table 2.8.

Model	E _{max} , μm	RMS, µm
P915-P912	3.5	1.7
P912-P918	3.3	1.9
Average	3.4	1.8

 Table 2.8. Relative orientation result

This step of accuracy control using by manufacturer given formulas was successful: the average of maximum vertical parallax error (E_{max}) and root mean squre error (RMS) for both model does not exceed computed values in table 2.4.

Also, this step of images processing was evaluated according given formulas 2.5 and 2.6 in triplets for tie and ground control points separately. The accuracy result of tie and GCP in triplet of relative orientation (mean triplet errors in XY plane and Z coordinates) is shown in table 2.9.

Point	E_{mean}^{xy} , µm	$E_{mean}^{z}, \mu m$
GCP	3.0	8.0
Tie	4.0	16.0
Average	3.5	12.0

 Table 2.9. Quality of triplets

The second step of accuracy control using by manufacturer given formulas was also successful: the average of mean triplet errors in XY plane and Z coordinates do not exceed values which were computed according 2.4 and 2.5 formulas.

In order, to control accuracy results independent of software manufacturers given formulas, the results of this step of images processing were observed by looking for residuals of each points and computing standard deviation. The displacement of the projection of the adjusted ground coordinate into the image compared to the measured image coordinate is given in table 2.10:

		Number of			
Point	Point	images the	Image	Residuals	Residuals
ID	type	point was	ID	x, µm	y, μm
		measured in			
102	GCP	2	P915	-0,1	-0,1
102	UCI	2	P912	0,0	1,0
			P918	0,1	0,8
105	GCP	3	P915	-0,6	-0,6
			P912	0,8	0,8
			P915	-0,1	-0,1
106	GCP	3	P912	0,0	0,4
			P918	-0,1	0,7
107	GCP	2	P912	0,1	0,0
107	UCI	2	P918	-0,2	0,3
			P915	0,3	0,9
109	GCP	3	P918	0,2	0,0
			P912	0,0	-0,7
110	GCP	2	P915	-0,4	-0,1
110	UCI	2	P912	-0,1	-2,5
			P918	-0,1	-5,1
111	GCP	3	P915	0,0	0,6
			P912	0,0	-0,1
600	GCP	2	P912	0,1	-1,2
000	UCI	2	P915	0,3	-0,2
			P912	0,0	-1,2
602	GCP	GCP 3	P918	-1,4	-1,5
			P915	-1,5	1,5
603	GCP	2	P918	0,3	0,0
		2	P912	-0,2	0,0

Table 2.10. Residuals between adjusted coordinates and between measured coordinates in the images

		Number of			
Point	Point	images the	Image	Residuals	Residuals
ID	type	point was	ID	x, μm	y, μm
		measured in			
901	ТР	2	P918	-0,5	-0,5
701	11	2	P912	0,2	0,1
902	ТР	2	P912	0,0	1,0
<i>y</i> 02		2	P915	-0,2	-0,2
			P915	-0,6	-0,8
903	TP	3	P918	-0,6	0,3
			P912	0,0	1,0
			P918	0,4	0,3
904	TP	3	P915	0,4	-0,3
			P912	0,0	0,6
905	ТР	2	P912	-0,2	0,1
705	11	2	P918	0,3	0,2
906	ТР	2	P912	-0,1	0,0
700	11	2	P918	0,2	0,4
907	ТР	2	P912	0,0	0,0
201	11	2	P918	-0,1	-0,4
908	ТР	2	P912	0,0	1,1
700	11	۷.	P915	-0,1	0,2
	Star	ndard deviation	0,4	1,1	

 Table 2.10. continuation:

As it is seen from table 2.10, the standard deviation is: x = 0,4 and y = 1,1 given in the units micron. This step of images processing was successful and results are great.

As was written in previous section - the program does not calculate σ_0 value for final evaluation of triangulation. In this case, for computation of triangulation result, the residuals of measured the image points of the ground control points (X, Y and Z) is shown in table 2.11:

Point ID	Number of images the point was measured in	Residuals X, m	Residuals Y, m	Residuals Z, m
102	2	-0,003	-0,002	-0,004
105	3	0,001	0,000	0,007
106	3	0,001	-0,001	0,004
107	2	0,001	-0,001	-0,007
109	3	0,001	0,007	0,007
110	2	0,002	-0,002	-0,005
111	3	-0,002	-0,002	0,004
600	2	0,001	0,002	0,004
602	3	-0,002	-0,004	-0,019
603	2	0,000	0,003	0,010
	RMS	0,002	0,003	0,008

Table 2.11. Residuals of measured the image points of the ground control point

As can be see from previous table, the residuals of measured the image points of the ground control points are very trifling. The values of RMS shows the final result of aerial triangulation (see section 1.3). The final result of aerotriangulation is great. The triangulation report is given in appendix 1.

After the bundle adjustment the TIN data of an object is available for compiling break lines and orthophoto map. The accuracy of all these results is determined by the received accuracy of the aerial triangulation (Table 2.11) (Sužiedelytė-Visockienė et al. 2011).

The created break lines of the object were drawn in stereomode by using shutter glasses (Fig. 2.5).

Fig. 2.5. Break lines of the object 45

The TIN of the object was created by using these strategies of the TIN creation:

• Regular TIN. By using this algorithm the smallest step of the grid was selected (0.5 mm). The result has obtained of a cloud of 341 550 points;

• Adaptive TIN. The result has obtained of cloud of 131 830 points by using this algorithm.

• Smooth TIN. Creating TIN of the object by using this algorithm the photo triangulation and break lines data was used. Also, the maximum number of pickets was carried out. Pickets are needed for the calculation of nodes highs. The result has obtained of 334 756 nodes.

The orthophoto of the object was created by using one image P912 (Fig. 2.4). The view of the object is captured from front on it. The image P912 was rectified with reference to ground control points and tie points. The smallest cell size of the ortophotographic view was set to 1 mm. The orthophoto was created for the statue on the left side (Fig.2.6).

Fig. 2.6 Orthophoto of the object

The orthophoto has a reference to a geodetic coordinate system and looks like a picture. In the orthophoto it is possible to measure the position and dimensions of the object.

3. DIGITAL PHOTOGRAMMETRIC SYSTEM INPHO

Inpho is a digital photogrammetric system which was founded in 1980 by Friedrich Ackermann, the retired head of the Institute of Photogrammetry of Stuttgart University. *Inpho* is designed for processing a wide range of digital imagery: scanned aerial film frames, images from digital aerial cameras as well as images from various satellite sensors for all standard tasks in a digital photogrammetric project, including geo-referencing, DTM generation, orthophoto production and 3D feature collection (Lothhammer 2005 ; Available from internet: http://www.inpho.de).

The main advantages of *Inpho's* system are its rigorous mathematical modeling for top accuracy, and its smooth workflow and high degree of automation for supreme productivity (Available from internet: <u>http://www.inpho.de</u>).

The digital photogrammetric system *Inpho* as well as the digital photogrammetric system *PhotoMod* (see section 2.1) consist of several modules. The brief description about the main functions of each component will be given in further section.

3.1. The components of digital photogrammetric system Inpho

Inpho's digital photogrammetric workflow components are given in figure 3.1.

Fig. 3.1. Inpho's modules

The components of a digital photogrammetric workflow (see fig. 3.1) guarantee a high degree of automation (Lothhammer 2005).

ApplicationsMaster. The *ApplicationsMaster* is the core component of *Inpho's* photogrammetric system which integrates project generation and handling tools as well as application programs (*inBLOCK*, *MATCH-AT*, *MATCH-T DSM*, *DT-Master* and *OrthoMaster*) into one working environment (Inpho 2010).

The ApplicationsMaster provides by using tools to setup and edit a project, to generate image pyramids, to determine interior orientation parameters and to import and export exterior orientations and image coordinates from and into various formats. Furthermore, conversion modules allow translating 3rd party project files (e.g. BAE SocetSet projects) into *Inpho* files as well as converting TIFF-images into another format (e.g. scanline TIFF into tiled TIFF). Finally, single points/files or whole projects can be transformed into a different coordinate system using the transform tool just as digital elevation models can be tiled, filtered, interpolated, merged or converted into different formats utilizing the DTMToolkit (Inpho 2010).

MATCH-AT. By using this module of *Inpho's* digital photogrammetric software the full aerial triangulation for geo-referencing of any frame imagery from digital or analogue cameras in one automatic process, including point selection, point transfer and block adjustment could be done (Sigle, Heuchel 2001.; Available from internet: <u>http://www.inpho.de</u>).

MATCH-T (also named *MATCH-T DSM*). This module of *Inpho* is usable for an automated terrain and surface extraction providing highly precise digital terrain models and digital surface models derived from aerial or satellite imagery. The high dense of point clouds in urban and forest areas by using *MATCH-T* could be achieved. This module is designed for processing the most demanding photogrammetric projects with block sizes of 20000 images and even more (Available from internet: <u>http://www.inpho.de</u>).

DTMaster. *DTMaster* is designed for fast and precise DTM editing. *DTMaster* is available stand-alone, or as part of complete solutions for DTM generation by photogrammetry or *LIDAR* (Available from internet: <u>http://www.inpho.de</u>):

• DTM Box combines DTMaster Stereo with MATCH-T, Inpho's product for automatic DTM generation from aerial or satellite imagery;

• *LIDAR Box* combines *DTMaster* with *SCOP++ Kernel* and *SCOP++ LIDAR*, *Inpho's* products for advanced DTM processing and robust filtering of *LIDAR* data.

OrthoMaster. By using this module of *Inpho's* digital photogrammetric software the high quality orthophotos could be generated. The orthophoto could be generated from single image or blocks of images. In combination with *OrthoVista*, *OrthoMaster* is able to generate true orthophotos and true orthomosaics, in which all man-made 3D objects (e.g. buildings and bridges) are presented

48

in their true locations, without disturbing relief displacements (Available from internet: http://www.inpho.de).

OrthoVista. This module of Inpho is usable for automatic compensation of image intensity and color variations originated from the imaging process. *OrthoVista* computes radiometric adjustments that compensate for visual effects within individual images, such as hot spots, lens vignetting and color variations. Further, *OrthoVista* performs a blockwide color balancing by adjusting adjacent images to match in color and brightness. Multiple orthophotos are combined into one seamless, color balanced and geometrically perfect orthomosaic (Available from internet: http://www.inpho.de).

Summit Evolution. This module of *Inpho* is a digital photogrammetric stereo workstation and usable for vector data collection. Vector data could be collected directly into *ArcGIS*, *AutoCAD* or *MicroStation* softwares which are integral parts of *Summit Evolution* (Available from internet: <u>http://www.inpho.de</u>).

3.2. Accuracy control of photogrammetric work stages

The resolution of digital images has a direct influence on the accuracy of photogrammetric processes. In this case, all accuracy check thresholds are dependent on image resolution.

In general, the higher the resolution, the better the image quality and the better the results of photogrammetric processes.

As was mentioned before, the digital photogrammetric system is designed for aerial and satellite images processing. In this case, the following formulas of accuracy control are usable for aerial images (for satellite images the processing of those formulas is not advisable).

The accuracy control of measured tie points and ground control points *in the image*.

The residuals of the measurements in the images shows the displacement of the projection of the adjusted ground coordinates into the image compared to the measured image coordinate. The residuals of the image measurement on manual mode should correspond to the standard deviation (SDx,y) (Inpho 2010):

$$SD_{x,v} = 1/3 \times pixel$$
, (3.1)

where: pixel – pixel size of the camera (6.4 in units micron).

Accuracy control of ground control points measurements. The accuracy control of ground control points is based on <u>calculation of residuals</u> from given ground control points in terrain units (m) and from the adjusted ground control points.

In digital aerial triangulations (for processing aerial images), the achievable accuracy between adjusted ground control points planimetric coordinates and given ground control points coordinates can be calculated by followed formula (Inpho 2010):

$$OBJECT(X,Y) = 1/3 \times pixel \times image scale, (3.2)$$

The accuracy in height could be computed according to the base/height ratio as a factor of the planimetry (Inpho 2010):

HEIGHT ACCURACY = OBJECT(X,Y) ×
$$h/b$$
, (3.3)

where: h = focal length of the camera (mm); b = survey basis (mm).

Also the program calculate Root Mean Square (RMS) error with taking into account the residuals of adjusted ground control points and ground control points with given coordinates (see section 1.3).

Accuracy control of triangulation. The value of the standard deviation of unit weight (σ_0) shows the final result of aerial triangulation (see section 1.3) by making images processing with *Inpho* software. Standard deviation of unit weight at least should correspond to 1/3 pixel (Inpho 2010).

As is seen, the main formulas of accuracy control (3.1, 3.2 and 3.3) are based on image resolution.

The resolution of digital images (taken directly from digital camera) is much higher then the analogue images. As a result, the object surface (e.g. building facade) is represented by too many pixels. The tests have shown, that the in consequence of this, the matching of points could be failed and the accuracy results are not improved and might be made less by using this software. In this case, the accuracy control of using high resolution digital images could be less by changing the pixel identification accuracy in formulas 3.1 and 3.2. To made this, there is always need to keep a close watch on results during images processing for finding the best accuracy result of processed images.

Further in next section will be described the images processing procedure and the results of images processing. Also the brief discussion about the processing results will be given.

3.3. Processing of the images by using digital photogrammetric software Inpho

The digital images processing by using digital photogrammetric software *Inpho* was performed with that same images of the object, which were used for processing by digital photogrammetric software *PhotoMod* (see section 2.4) and with original images of that same object using new camera calibration parameters obtained with using scale bars after the camera calibration procedure (see section 6.4).

As we already know – the first step of the processing of scanned images is the interior orientation. Using *Inpho* photogrammetric software the determination of interior orientation is only required for digitized analogue images. While using digital images, the principal point coordinates are given directly from digital camera. The object images were taken by a digital camera and thus no interior orientation was necessary. The same applied to the *PhotoMod* photogrammetric software.

The coordinates of principal point are known from camera definition where the parameters of sensor geometry during new project creation were entered. The images which were used for processing were taken with that same digital camera *Canon EOS 1D Mark III*. In this case, the principal point coordinates are the same in both cases for corrected from the camera objective distortions images and for original images. The coordinates of principal point are x' = 2807.50 and y' = 1871.50 given in the unit pixels. The results of interior orientation is stored and can be seen only in project files (*.*prj*).

In the next step of the images processing the image points of the ground control points and tie points were measured (but not in stereo mode like it was done by using *PhotoMod* software) in corrected from the camera objective distortions images and in the original images. In order to reach an equivalent comparison of the results, the same 10 ground control points and the 8 tie points were measured in manual mode like it was done by using *PhotoMod* software.

After the points were measured the computations of the aerial triangulation were made. In the first step of the aerial triangulation the a-priori accuracy of the image and the object point was set according to the above mentioned formulas provided by the system manufacturer (see 3.2 section) in both cases for corrected from camera objective distortions images and for original images. In this case, the results still indicated a slightly unbalanced weight of the involved observation types, image and object point measurements.

The images were taken with a 21MPixel camera. This high number of pixels leads to a far too high resolution of the object and does not correspond to the lower definition accuracy of points on the rough surface of the building's facade. As a consequence details on the facade are never better defined then within a few pixel and thus the formula given in section 3.2 does not hold.

51

In order to analyse the quality of the bundle adjustment, it is possible to calculate image coordinate residuals (corrections), standard deviations of object points and orientation data, correlations between parameters and reliability numbers for the detection of gross errors and also for results observing (Luhmann et al. 2006). In the followed tables the accuracy results of basic images processing steps for corrected from camera objective distortions images and for original images are given. These results lead to final result of the aerial triangulation. The accuracy of the image and the object point was set irrespective of the formulas given in section 3.2.

The displacement of the projection of the adjusted ground coordinate into the image compared to the measured image coordinate for corrected from camera objective distortions images and for original images is given in table 3.1.

			Results				
	General information			Before o	camera	After camera	
				calibr	ation	calibi	ration
Point ID	Point type	Number of images the point was measured in	Image ID	Residuals x, μm	Residuals y, μm	Residuals x, μm	Residuals y, μm
102	GCP	2	P915	0,2	0,0	-0,8	-1,8
102	UCI	2	P912	-0,5	-0,2	0,4	1,8
			P918	0,4	0,8	-0,5	0,9
105	GCP 3	3	P915	0,3	0,0	-0,2	-0,5
			P912	-0,8	-0,9	0,5	-0,3
			P915	0,4	-0,5	0,5	-1,2
106	06 GCP	3	P912	-0,1	-0,2	-0,6	-0,2
			P918	-0,2	0,7	0,2	1,6
107	GCP	2	P912	-3,7	-1,3	-0,9	0,3
107	001	2	P918	3,9	1,7	1,1	0,4
			P915	-1,8	-2,1	-0,1	1,0
109	109 GCP	3	P918	-0,1	-0,1	-0,7	-2,1
			P912	3,2	0,8	1,8	-0,5
110	110 CCP	2	P915	0,3	1,7	-0,5	1,0
	۷ –	P912	-0,6	-1,3	-1,2	0,8	

Table 3.1. Residuals between adjusted coordinates and between measured coordinates in the images

			Results				
General information			Before of	camera	After c	amera	
			calibration		calibration		
Point ID	Point type	Number of images the point was measured in	Image ID	Residuals x, μm	Residuals y, µm	Residuals x, μm	Residuals y, µm
			P918	-2,9	-1,8	-1,1	-1,0
111	GCP	3	P915	0,5	1,4	-0,5	0,8
			P912	2,1	0,9	1,2	0,3
600	CCD	2	P912	0,2	-2,0	0,0	0,1
000	GCP	2	P915	-0,1	2,0	-0,1	0,1
			P912	-0,5	1,6	-0,5	-0,8
602	GCP	3	P918	0,1	-1,9	0,1	0,4
			P915	0,1	0,5	0,4	0,5
602	CCD	2	P918	-1,3	0,4	0,8	2,1
005	GCP	Ζ.	P912	1,0	-0,3	-0,7	-2,2
001	тр	2	P915	0,0	-0,8	0,0	-0,7
901	IF	2	P912	0,0	0,8	0,0	0,7
		3	P918	1,7	1,4	0,9	1,0
902	TP		P915	-0,1	-1,0	0,9	0,3
			P912	0,3	-0,4	-1,7	-1,3
			P915	0,0	0,2	-1,0	-1,1
903	TP	3	P918	-0,1	0,2	-1,1	-3,0
			P912	0,1	-0,5	2,0	1,9
904	тр	2	P918	0,0	0,4	0,0	-1,3
704	11	2	P912	0,0	-0,4	0,0	1,3
			P915	1,1	0,4	-0,2	0,3
905	TP	3	P918	1,1	-2,2	-0,2	-1,2
			P912	-2,3	1,8	0,3	0,9
			P912	1,7	1,5	1,2	-0,2
906	TP	3	P915	-0,9	-1,5	-0,6	0,8
		P918	-0,8	0,0	-0,6	-0,8	

Table	3.1.	continuation:
Lanc	J.I.	commutation.

				Results				
	Gene	eral information		Before cameraAfter camecalibrationcalibration		camera ration		
Point ID	Point type	Number of images the point was measured in	Image ID	Residuals x, μm	Residuals y, μm	Residuals x, µm	Residuals y, µm	
908	TP	2	P912 P915	0,0	0,0 0,0	0,0 0,0	0,8 0,7	
909	TP	3	P915 P912 P918	0,0 0,0 0,0	-0,5 0,4 0,2	0,9 -1,8 0,9	-1,6 -0,7 1,0	
	Star	idard deviation		1,3	1,1	0,8	1,2	

 Table 3.1. continuation (1):

As it is seen from table 3.1, the maximum residuals (the worst points) of measured in corrected from camera objective distortions images are: x = 3,9 and y = -2,2 given in the units micron. These residuals are in points 107 and 905 (in images P918) respectively. Nevertheless of those maximum residuals in previous mentioned points, the standard deviation of all residuals is acceptable. The result of standard deviation of all measured points in corrected from the camera objective distortions images is: x = 1,3 and y = 1,1 given in the units micron. It could be stated that this step of images processing was successful and results are great.

The maximum residuals between adjusted and in the image space measured points in the original images which were used after camera calibration procedure are: x = 2,0 and y = -3,0 given in the units micron. These residuals are in point 903 (in the image P912 and P918) respectively. Despite the fact that residuals of those points are slightly higher from the other points - the result of standard deviation of all measured points in corrected from camera distortions images is: x = 0,8 and y = 1,2 given in the units micron. It could be stated that this step of images processing was successful and results are great.

The table 3.2 shows the residuals of measured the image points of the ground control points (X, Y, and Z) also for corrected from camera objective distortions images and also for original images.

General information							
ound		Before camera calibrati		bration	After camera calibration		
	Number of						
Point	images the point	Residuals	Residuals	Residuals	Residuals	Residuals	Residuals
ID	was measured	X, m	Y, m	Z, m	X, m	Y, m	Z, m
	in						
102	2	-0,004	-0,002	0,002	-0,007	0,001	0,000
105	3	-0,002	-0,002	0,000	-0,004	0,002	0,002
106	3	0,001	-0,001	0,002	0,002	0,002	0,001
107	2	0,002	0,010	-0,010	0,005	0,011	0,000
109	3	0,016	-0,021	-0,017	0,016	-0,025	0,011
110	2	-0,004	0,007	0,006	-0,004	0,001	0,005
111	3	-0,002	0,007	0,014	-0,004	0,002	0,003
600	2	0,003	0,000	-0,002	-0,003	0,004	0,001
602	3	-0,004	0,003	0,000	-0,001	0,002	0,001
603	2	-0,005	0,001	0,005	0,001	-0,001	0,003
	RMS	0,006	0,008	0,008	0,006	0,009	0,004

Table 3.2. Residuals of measured the image points of the ground control point

From previous table, the biggest discrepancy between adjusted ground control points planimetric coordinates and between given ground control points coordinates in the 109 point is seen. The biggest discrepancy in height accuracy is seen in the 109 point also. This high discrepancy in X, Y and Z coordinates in 109 point is in corrected from camera objective distortions images and in the original images. In consequence of the high discrepancies in the 109 point the values of RMS are higher. But the residuals calculated in the adjustment should not be used directly for the detection of outliers (Luhmann et al. 2006). In this case and in order to reach an equivalent comparison of the results, the 109 point was not eliminated from adjustments.

Despite the fact that the 109 point was not eliminated from adjustments, the value of the standard deviation (σ_0) which shows the final result of aerial triangulation is 0.5 in units micron (0.1 pixel size) for corrected from camera objective distortions images (before camera calibration) and in the original images (after camera calibration). The final result of aerial triangulation is great. The triangulation statistics and report of corrected from camera objective distortions images are given in appendix 2 and 3 respectively. The triangulation statistics and report of the original images are given in appendix 4 and 5 respectively.

4. BUNDLE BLOCK ADJUSTMENT BLUH

The work with a bundle triangulation program is an optimization process that finds the optimum positioning of the "image-network" in relation to the control point provided. As a result of diverse requirements and applications there are many different bundle adjustment packages on the market. As examples, for aerial applications there are (Luhmann et al. 2006):

- *PAT-B* (*PAT-M*) (University of Stuttgart, Germany) (Ackermann et. al. 1970);
- *BLUH* (University of Hannover, Germany) (Jacobsen 1982);
- ORIMA (Leica Geosystems, Switzerland)

and for close range photogrammetry (Luhmann et al. 2006):

- BINGO (GIP, Germany) (Kruck 1983);
- *STARS* (*GSI*, USA) (Fraser and Brown 1986);
- *CAP* (*K*² *Photogrammetry*, Germany) (Hinsken 1989);
- ORIENT (Technical University of Vienna, Austria) (Kager 1989);
- *PHIDIAS/BUN (PHOCAD*, Germany) (Benning and Schwermann 1997);
- AX. ORI (AXIOS 3D, Germany) (Hemken and Luhmann 2002).

The most famous ones for aerial applications are *PAT-B* and *BLUH* (Wiedemann et al. 2001).

The program system *BLUH* is optimized for aerial triangulation but not limited to this. Even close range images taken from all directions (with exception of omega = 80 - 120 grads) can be handled. *BLUH* software is based on the collinearity equation. Observations are photo coordinates, control point coordinates and (if available) coordinates of the projection centres (usually determined by relative kinematic GPS positioning). Unknowns are the photo orientations, object coordinates and additional parameters (if self calibration with additional parameters is specified for the program run) (Jacobsen 2009).

By using software package BLUH the bundle block adjustment of the images was done.

4.1. Purpose of bundle block adjustment

Bundle block adjustment (bundle triangulation, multi-image triangulation, multi-image orientation) is a method for the simultaneous numerical fit of an unlimited number of spatially disturbed images (bundle of rays). It makes use of photogrammetric observations (measured image points), survey observations and an object coordinate system. Using the points, single images are merged into a global model in which the object surface can be reconstructed in three dimensions. The connection to a global object coordinate system can be provided by a minimum number of

ground control points. In this case, at least three control points should be used (Atkinson 2001). Larger areas without ground control points can be bridged by tieing the images to a photogrammetric block. The corresponding (homologous) point are called tie points and represent image rays that should intersect in their corresponding object point with minimum inconsistency (Luhmann et al. 2006).

In an over-determined system of equations, an adjustment technique estimates 3D object coordinates, image orientation parameters and any additional model parameters, together with related statistical information about accuracy and reliability. Since all observed (measured) values, and all unknown parameters of a photogrammetric project are taken into account within one simultaneous calculation, the bundle triangulation is the most powerful and accurate method of image orientation and point determination in photogrammetry (Luhmann et al. 2006).

By block adjustment the exterior orientation parameters of a block of images, as well as the ground coordinates of tie points, are determined simultaneously (Albertz, Wiggenhagen 2009).

The method is based on the mathematical model of perspective geometry, and uses directly the image coordinates as observations. For the computation the bundles of rays from the projection centres to the image points are established, according to the collinearity equations (Albertz, Wiggenhagen 2009):

$$x'_{i} = c_{k} \frac{a_{11}(X_{i}-X_{0}) + a_{21}(Y_{i}-Y_{0}) + a_{31}(Z_{i}-Z_{0})}{a_{13}(X_{i}-X_{0}) + a_{23}(Y_{i}-Y_{0}) + a_{33}(Z_{i}-Z_{0})}, (4.1)$$

$$y'_{i} = c_{k} \frac{a_{12}(X_{i}-X_{0}) + a_{22}(Y_{i}-Y_{0}) + a_{32}(Z_{i}-Z_{0})}{a_{13}(X_{i}-X_{0}) + a_{23}(Y_{i}-Y_{0}) + a_{33}(Z_{i}-Z_{0})}, (4.2)$$

where given are: c_k - focal length; X_i , Y_i , Z_i - coordinates of the ground control points; measured: x_i , y_i - image coordinates;

unknowns: $X_0, Y_0, Z_0, \varphi, \omega, \kappa$ (the angles are included in the rotation matrix a_{ii}), X_i, Y_i, Z_i of the tie points.

$$v = A_1 \times X_1 + A_2 \times X_2 - I$$
, (4.3)

Adjustment with x_1 = object coordinates and x_2 = image orientation parameters.

In the followed sections the brief discussion about bundle adjustment by using for this purpose suitable software will be given.

4.2. The modules of *BLUH*

The program system *BLUH* has been written for handling in the command window (CMD). The program system has no dialogue and is subdivided into several program modules to ensure a flexible handling (Jacobsen 2009):

Fig. 4.1. The modules of *BLUH*

For the computation of a bundle block adjustment only the modules *BLOR*, *BLAPP*, *BLIM* and *BLUH* are necessary, they can be handled as one unique set or separately (in figure 4.1. they are marked with different colour). Even a batch handling of this group is possible or in can be included into a shell because the control data can be introduced not only by dialogue, it is also possible to introduce it by support files. The other modules can be used for special conditions, for analysis of the data and for other support of the data handling (Jacobsen 2009).

4.3. Results of the *BLUH* processing

After the adjustment in *Inpho* when the corrected from camera objective distortions images and the original images were processed, all measured image co-ordinates of each sub-block and ground control points coordinates were exported in a *BLUH* format. The two separate files for exportation were created. All observations (image coordinates, original ground control points coordinates) were adjusted in a bundle block adjustment.

In order to analyse the quality of the bundle block adjustment, the basic steps of computed results were observed (table 4.1, 4.2). The same manner the results for corrected from camera objective distortions images and for the original images were observed by processing images with digital photogrammetric softwares *PhotoMod* and *Inpho*.

				Result				
	General information			Before camera After c			amera	
				calib	ration	calibi	ration	
Point ID	Point type	Number of images the point was measured in	Image ID	Residuals x, μm	Residuals y, μm	Residuals x, μm	Residuals y, μm	
102	GCP	2	P915	0,0	0,2	0,0	-1,0	
102	UCI	2	P912	0,0	-0,2	0,0	1,1	
			P918	0,4	0,8	-1,3	-1,0	
105	GCP	3	P915	0,4	0,0	-1,3	-1,4	
			P912	-0,8	-0,8	0,5	0,5	
			P915	0,1	-0,6	1,5	-1,2	
106	GCP	3	P912	-0,1	-0,1	-0,6	0,8	
			P918	0,1	0,7	1,3	2,4	
107	GCP	2	P912	0,0	-1,3	0,0	0,7	
107	UCI	2	P918	0,0	1,3	0,0	-0,7	
			P915	-1,2	-1,6	-0,6	1,1	
109	GCP	3	P918	-1,1	0,4	-0,7	0,4	
			P912	2,3	1,2	1,3	-1,8	
110	GCP	2	P915	0,0	1,5	-0,2	0,5	
110		2	P912	0,0	-1,6	0,2	-1,7	

Table 4.1. Residuals between adjusted coordinates and between measured coordinates in the images

			Result				
General information		Before	camera	After o	amera		
				calibration calibration		ration	
Point	Point	Number of images	1 ID	Residuals	Residuals	Residuals	Residuals
ID	type	the point was	Image ID	x, μm	y, µm	x, μm	y, µm
		measured in					
	~ ~~	_	P918	-0,8	-2,0	-1,4	-1,9
111	GCP	3	P915	-0,8	1,4	-0,8	1,1
			P912	1,6	0,5	1,4	-0,3
600	GCP	2	P912	-0,1	-2,0	0,0	-1,4
			P915	0,1	2,0	0,0	1,4
			P912	-0,3	1,7	-0,6	1,5
602	GCP	3	P918	0,1	-1,9	1,2	-1,7
			P915	0,2	0,2	1,4	-1,9
603	603 GCP 2	P918	0,0	0,1	0,0	1,3	
005	UCI	_	P912	0,0	-0,1	0,0	-1,3
901		2	P915	0,0	-0,6	-0,1	0,9
501	11	2	P912	0,0	0,7	-0,1	-0,9
			P918	-0,2	1,5	-0,4	-1,6
902	TP	3	P915	-0,2	-1,2	-0,4	1,2
			P912	0,5	-0,3	0,5	0,9
			P915	-0,1	-0,1	0,0	-0,9
903	TP	3	P918	-0,1	0,3	-0,1	-0,8
			P912	0,2	-0,2	0,0	0,4
004	TD	2	P918	0,0	0,2	0,0	1,2
904	IP	2	P912	0,0	-0,2	0,0	-1,2
			P915	1,2	0,4	1,7	-0,6
905	TP	3	P918	1,2	-2,3	1,6	1,3
			P912	-2,4	1,9	-2,2	1,3
			P912	1,5	1,5	1,0	-1,1
906	TP	3	P915	-0,8	-1,5	-0,4	-1,8
			P918	-0,7	-0,1	-0,5	0,9

Table 4.1.	continuation:
I able hill	communitie

				Result				
	G	eneral information		Before cameraAfter cameracalibrationcalibration			amera ration	
Point ID	Point type	Number of images the point was measured in	Image ID	Residuals x, µm	Residuals y, μm	Residuals x, µm	Residuals y, µm	
908		P912	0,0	-0,1	0,1	-1,4		
200	11	2	P915	0,0	0,1	-0,1	0,3	
			P915	0,4	-0,7	1,6	-1,1	
909	TP	3	P912	0,0	-0,1	-3,0	0,1	
			P918	0,4	0,6	1,3	1,3	
	S	tandard deviation		0,8	1,1	1,0	1,2	

 Table 4.1. continuation (1):

As it is seen from previous table, the maximum residuals (the worst points) measured in corrected from camera objective distortions images are: x = -2,4 and y = -2,3 given in the units micron. These residuals are in the points 905 (in the images P912 and P918) respectively. Nevertheless of those maximum residuals in previous mentioned points, the standard deviation of all residuals is acceptable. The result of standard deviation of all measured points in corrected from camera objective distortions images is: x = 0,8 and y = 1,1 given in the units micron. This step of images processing was successful and results are great.

The maximum residuals between adjusted and in the image space measured points in the original images which were used after camera calibration procedure are: x = -3,0 and y = 2,4 given in the units micron. These residuals are in the points 909 and 106 (in the images P912 and P918) respectively. The residuals in the other points are less. Nevertheless the result of standard deviation of all measured points in the original images is: x = 1,0 and y = 1,2 given in the units micron. This step of images processing was successful and results are great.

The table 4.2 shows the residuals of measured the image points of the ground control points (X, Y, and Z) for corrected from camera objective distortions images and for original images.

General information		Result							
Guilt		Before camera calibration			After camera calibration				
	Number of								
Point	images the	Residuals	Residuals	Residuals	Residuals	Residuals	Residuals		
ID	point was	X, m	Y, m	Z, m	X, m	Y, m	Z, m		
	measured in								
102	2	0,004	0,002	-0,009	-0,010	0,014	0,006		
105	3	0,001	0,002	-0,001	0,007	-0,002	0,020		
106	3	-0,002	0,001	-0,003	0,002	-0,011	0,009		
107	2	0,001	-0,02	0,043	0,007	0,015	-0,009		
109	3	-0,015	0,019	0,021	0,005	-0,011	0,010		
110	2	0,004	-0,006	-0,012	-0,005	-0,012	-0,018		
111	3	0,002	-0,005	-0,016	-0,005	-0,023	-0,013		
600	2	-0,003	0,001	-0,002	-0,003	0,017	-0,021		
602	3	0,003	-0,003	-0,001	0,006	-0,006	-0,006		
603	2	0,004	-0,001	-0,011	0,015	0,006	-0,019		
	RMS	0,005	0,009	0,017	0,007	0,013	0,014		

Table 4.2. Residuals of measured the image points of the ground control point

As can be seen from previous table, the residuals of measured the image points of the ground control points are very trifling for images which are corrected from camera objective distortions. Those same residuals for the original images are small to. The final result of bundle adjustment (σ_0) is 1.36 in units micron (0.3 pixel size) for corrected from camera objective distortions images (before camera calibration) and for the original images (after camera calibration). The bundle triangulation report of corrected from camera objective distortions images are given in appendix 6 and 7 respectively.

5. ANALYZING PHOTOGRAMMETRIC SOFTWARE AICON 3D STUDIO

The analyzing software *AICON 3D Studio* is the one more software which was introduced and with which the digital camera *Canon EOS 1D Mark III* calibration procedure during Master thesis was done. Brief discussion about this system is given in followed sections.

5.1. Purpose of AICON 3D Studio

AICON 3D Studio is an analyzing software which is able to receive 3D data from different measuring systems and process them further. The *AICON 3D Studio* is a modular software. According to application range, the different modules of *AICON 3D Studio* are used. Due to the integration of different measuring modules, the *AICON 3D Studio* is an efficient control panel for different measuring instruments (Available from internet: <u>http://www.aicon3d.de</u>).

5.2. The modules of the analyzing photogrammetric software AICON 3D STUDIO

The analyzing photogrammetric software *AICON 3D Studio* consist of followed modules (Available from internet: <u>http://www.aicon3d.de</u>):

- Digital Photogrammetric Analysis (DPA) system;
- *DPS* system.

DPA system. One of integrated measuring module into the *AICON* software is a *Digital Photogrammetric Analysis* (*DPA*) system. The *AICON's DPA* system is 3D measurement system using for following applications (AICON 3D Systems GmbH 2009; Available from internet: http://www.qfp-service.it):

3D inspection

- Inspection of sheet metal parts and tolerance analysis;
- Fixture inspection;
- Comparison with *CAD*;
- Roundness inspection, e.g. tunnels or tanks;
- Measurement of large steel fabricated structures.

3D process analysis

• Deformation analysis in vehicle safety tests;

• Deformation analysis of sheet metal and plastic parts, e.g. in environmental chambers or strain tests;

• Motion analysis, e.g. of components under loa.

Measuring principle. *AICON's DPA* system are portable 3D measuring machine that use a high resolution digital camera for data collection. The part, which may be of any size, is photographed from a number of directions. The images could be processed and above mentioned tasks could be made either simultaneously with data collection (online processing) or after data collection (offline processing) with *AICON's* software. The *AICON* software automatically calculates the 3D coordinates of all targeted points. The calculation is based on the principle of spatial image triangulation and is processed completely automatic. In addition to 3D coordinates, *DPA* provides statistical analysis of the results with specific accuracy information about each coordinate (Available from internet: <u>http://www.qfp-service.it</u>).

DPS system. DPS system is the other one of integrated measuring module into the AICON software. Combined with the DPS system, it serves as optical 3D positioning equipment that controls the 3D position of the dummy relative to the vehicle during the positioning process. With the help of measuring points or adapters, the current dummy position is recorded in real time, and compared to nominal data.

With all points on the dummy measured and displayed simultaneously in vehicle coordinates, the technician can quickly put the dummy into its target position. Movements of the vehicle that are caused by the positioning of the dummy are compensated automatically because of continuous monitoring of a set of targeted reference points.

The system allows for the measurement of additional coordinates of single points, lengths or angles with the probe according to a predefined measuring plan. The results are shown in a measurement report. Further individual processing via an XML export is available (Available from internet: <u>http://www.aicon3d.de</u>).

By using *AICON's DPA* system the digital camera *Canon EOS 1D Mark III* calibration procedure was done. About camera calibration procedure is written in chapter 6.

6. CAMERA CALIBRATION

The primary objective of photogrammetry is to generate spatial and descriptive information from two-dimensional imagery (Habib et al. 2005). The accuracy obtainable in digital images processing depends on the scale and type of image, the instruments used, the skill of the compiler, the density of ground control points, the amount of terrain surface, and the nature of the vegetative cover. These factors relate to the data taken from the images (Available from internet: <u>http://www.blm.gov</u>). Thus, the images acquisition is the first step which leads to a high accuracy of images processing.

The images for photogrammetric purpose are taken by the analogue or digital photo cameras. In order to generate reliable and accurate information from images, photo cameras usually are calibrated before using them (Sužiedelytė-Visockienė, Bručas 2009).

Next in this chapter will be discussed about the purpose of camera calibration and the calibration procedure of non-metric digital photo-camera *Canon EOS 1D Mark III*. The calibration results will be given in the last section.

6.1. The goal of a camera calibration

The purpose of camera calibration is to determine the geometric camera model described by the parameters of interior orientation (Luhmann et al. 2006; Schenk 2005):

- Principal distance;
- Focal length of the camera;
- Image coordinates of principal points;
- Radial distortion;
- Tangential (asymmetric or decentring) distortion;
- Affinity and shear of the image coordinate system;
- Other additional parameters.

There are 3 different camera calibration methods characterised by the reference object used and by the time and location of calibration (Luhmann et al. 2006; Sužiedelytė-Visockienė, Bručas 2009):

• Laboratory calibration. Interior orientation parameters are determined by goniometers, collimators or other optical alignment techniques where imaging direction or angles of light rays are measured through the lens of the camera. The advantage of this method is that the calibration takes place under laboratory conditions and hence better accuracy at defining of

unknown quantities is achieved. Laboratory calibration is generally only used for metric cameras and is using before surveying.

• Test field calibration. This type of calibration is based on a suitable targeted field of object points with known coordinates and distances. The images of a test-field are taken from different positions and directions from several camera stations (the number of cameras stations depends on test field size), ensuring good ray intersection and filling the image format. The neighbour images should be overlapped. Measured image coordinates and approximately known object data are processed by bundle adjustment to give the parameters of the camera model (interior orientation) as well as the adjusted test field coordinates and the parameters of exterior orientation. Test fields can be mobile, or stationary.

• Self-calibration. For this type of calibration the images acquired for the actual object measurement are used. In this case the test field is replaced by the actual object which must be imaged under conditions similar to those required for test field calibration itself (spatial depth, tiled images and suitable ray intersections). Self-calibrations do not require coordinates of known reference points. The parameters of interior orientation can be calculated solely by the photogrammetric determination of the object shape. If employed, reference points can be used to define a particular global coordinate system for the parameters of exterior orientation.

The camera calibration procedure can be divided into several stages: test-field target images making, processing of the resulting images and estimation of the camera parameters (Sužiedelytė-Visockienė, Bručas 2009).

Determining the parameters of photo cameras (cameras calibration) is absolutely necessary for the successful images processing (Sužiedelytė-Visockienė, Bručas 2009).

In the next section will be written about non-metric camera *Canon EOS 1D Mark III* calibration procedure.

6.2. Measurements for the digital camera calibration

The non-metric camera *Canon EOS 1D Mark III* (see section 2.4) calibration was performed in the photogrammetric laboratory at Neubrandenburg University of Applied Sciences (Germany) using 3D test-field (fig. 6.1).

Fig. 6.1. Test-field for the camera calibration

The field consists of retroreflective targets with known coordinates and distances and of two calibrated scale bars with precisely known distance between points. In order to get spatial information some points are arranged on a stamp at the top of the plane (Abraham 2004).

In order to capture all types of distortions and stabilize the determination of the focal length (especially when using longer focal lengths) the images were taken:

• in different orientations. At each station, the camera was rotated around its optical axis by 0° , 90° and -90° ;

• in different inclinations.

The cameras position with used different orientations and inclinations is given in figure 6.2.

Fig. 6.2. Photo camera position

All automated camera parameters (zoom, auto focus, aperture, white balance, etc.) were kept constant during data capture (were turned off) (Wojtas 2010; Sanz-Ablanedo et al. 2010). The 185 images taken in that case for successful processing of calibration were used.

6.3. Computation of the digital camera calibration parameters

The images were processed and computations of camera calibration parameters were made with software *AICON* (see chapter 5). In order to evaluate the differences between calibration parameters and to estimate the necessity of using scale bars, the images were processed in two different ways:

- including scale bars for the images processing;
- not including scales bars in the images processing.

During the adjustment procedure the software created an approximate 3D model of the points marked on the test-field. The coordinates are required to number the retroreflective targets (including the scale bars), that are detected in the image and to set up correspondences between the targets in different images (fig. 6.3.).

Fig. 6.3. Numbered targets

The numbers of the points are always unique, otherwise the result of the bundle adjustment alignment will be inadequate (Sužiedelytė-Visockienė, Bručas 2009).

The accuracy of the result is defined by the mean value in the coordinate list for X, Y and Z in units mm, RMS also for X, Y and Z in units mm and standard deviation of the weight unit (σ_0) in units micron. The standard deviation (σ_0) shows the mean point measurement accuracy for all images of the adjustment statistics. The accuracy results of calibration are given in table 6.1.

Accuracy, μm	Calibration with using scale bars	Calibration without using scale bars
E ^{XY} mean	4.5	3.2
E ^Z mean	2.5	2.1
RMS xy	5.0	4.0
RMS z	3.4	3.1
σ ₀	5	5

Table. 6.1. Results of bundle block adjustment

The software manufacturers have not listed the value which shows the successful adjustment. It is only stated, that the mean values and the RMS values should have similar sizes for X, Y and Z. The RMS value should be slightly higher then the mean value. However, the final result of bundle adjustment of all images (with scale bars and without it) is 5 in units micron. According the estimated σ_0 value it could be stated that the results of camera calibration in both ways are great (AICON 3D Systems GmbH 2009).

6.4. Results of the digital camera calibration

The interior orientation and lens distortion parameters of the camera, i.e. principal distance c, principal point offset x_0/y_0 , radial-symmetric and tangential distortion coefficients were calculated simultaneously with the numerical 3D reconstruction process by bundle adjustment (Peipe, Stephani 2003). Calibration results and precision parameters of camera are given in table 6.2.

Paramotors	Results						
1 urumeters	With using scale bars	Without using scale bars					
Focal length (mm)							
с	50,7930	50,7931					
The	base point corrections of	the photo-camera					
X 0	-0,2282	-0,2324					
Уо	0,2019	0,2026					

Table. 6.2. The new calibration results of the digital camera Canon EOS 1D Mark III

Parameters	Results						
1 urumeters	With using scale bars	Without using scale bars					
Radi	al-symmetric distortion o	f the photo-camera					
A1	-6,4466E-05	-6,4508E-05					
A2	4,1312E-08	4,1565E-08					
A3	2,8812E-11	2,8407E-11					
Radia	al-asymmetric distortion of	of the photo-camera					
B1	-7,1262E-05	-7,2810E-06					
B2	-2,5987E-06	-2,5725E-06					
Affinity/Orthogonality							
C1	1,3696E-03	1,3715E-03					
C2	-2,5531E-05	-2,6262E-05					

 Table. 6.2. continuation:

As can be seen from the previous table, the values of cameras interior orientation parameters which are estimated using scale bars and without them are very similar: differences between the focal length (c) in both cases is +- 0,0001 in units mm; $x_0 = +-0,0042$ in units mm; $y_0 = +-0,0007$ in units mm. The differences between the radial-symmetric and between the radial-asymmetric distortions are very small: A1=+- 4,2000e-08; A2=+- 2,5300E-10; A3=+- 4,0500E-13; B1= +-6,3981E-05; B2= +- 2,6200E-08; C1= +- 1,9000E-06; C2= +- 7,3100E-07. The previous values have no dimension.

Thus, both camera calibration parameters (see table 6.2) could be used for correction of the camera optical errors in images.

However, digital cameras are not manufactured specifically for the purpose of photogrammetric mapping, and thus have not been built to be as stable as traditional mapping cameras. If a camera is stable, then the derived internal orientation parameters should not vary over time. The test, which were made with digital cameras showed, that the internal orientation parameters was stable as long as no zoom and no auto focus were used after the camera calibration (Habib et al. 2008; Läbe, Förstner 2004).

7. THE RESULTS ANALYSIS OF PROCESSED IMAGES AND THE DIGITAL CAMERA CALIBRATION PARAMETERS

The corrected from camera objective distortions digital images and the original digital images after camera calibration procedure during the research work were processed. The digital images were processed by using digital photogrammetric softwares *PhotoMod* and *Inpho* which are developed for processing a wide range of digital imagery such as scanned aerial film frames, images from digital aerial cameras as well as images from various satellite sensors. By using those systems not only the bundle adjustment but also DTM, digital maps and orthophotos creation could be performed. The other one system by using which the bundle adjustment procedure was performed is *BLUH. BLUH* system is developed only for bundle triangulation and can be used for close range images taken from all directions.

It should be noted that the corrected from camera objective distortions digital images were processed by using both digital photogrammetric softwares (*PhotoMod* and *Inpho*) and the original images after camera calibration procedure were processed by using just digital photogrammetric software *Inpho*. The system *BLUH* was used for both types of the images processing.

Further in next sections the result analysis of processed images will be performed. Also, the comparison between old camera calibration parameters and between new camera calibration parameters will be given.

7.1. Aerial triangulation results analysis before camera calibration

In this section the results analysis of processed digital images which were corrected from camera objective distortions is performed.

The results of standard deviation between adjusted and measured points in image space were observed. The summerised results of calculated discrepancies (residuals) between adjusted points coordinates and between measured coordinates in image space is given in tabale 7.1.

Tublet /	Tuble 711 Comparison of standard do fution between adjusted and between measured points in mage space								
Software	T	Tie	Control	Standard Deviation,	Standard Deviation,				
Soltware	images	points	points	Standard Deviation, $x (\mu m)$ $x (\mu m)$ 0,41,30,8	y (µm)				
PhotoMod	3	8/8	10/10	0,4	1,1				
Inpho	3	8/8	10/10	1,3	1,1				
BLUH	3	8/8	10/10	0,8	1,1				

Table. 7.1. Comparison of standard deviation between adjusted and between measured points in image space

As it can be seen from previous table, the results have slight differences only in x plane. The best result in image measurements was achieved with *PhotoMod*. Nevertheles the results reached with *PhotoMod*, *Inpho* and *BLUH* correspond accuracy requirements for measurements in image space: the values do not exceed 1.0 in units micron.

In order to make comparison of bundle triangulation results the same three images for processing were used. Also the 10 GCP were measured in manual mode. As a priori value, the standard deviation of the ground control points were set as 0,02 in units meters for X, Y and Z to guarantee the same conditions for all adjustments. The results of bundle triangulation are summarised in table 7.2.

Software	Images	Control points	σ_{0} , μm	RMS X, m	RMS Y, m	RMS Z, m
PhotoMod	3	10/10	-	0,002	0,003	0,008
Inpho	3	10/10	0,5	0,006	0,008	0,008
BLUH	3	10/10	1,36	0,005	0,009	0,017

 Table. 7.2. Bundle triangulation results

The *PhotoMod* does not show (compute) the σ_0 value. In this case, the comparison of results could be done to the RMS values which also show the triangulation result. Thus, the results were similar for all systems, but with slight differences in the planimetry and heights. The best results with respect to the RMS of the control points were achieved with *PhotoMod*.

Performing comparison to σ_0 value, best result was achieved with *Inpho* software (0,5 in units micron). The result for *BLUH* is slightly worse (1,36 in units micron). Nevertheles the result of bundle adjustment is good for both softwares, because the accuracy reaches 0,1 and 0,3 pixel size respectively. Also, according to the RMS values given in table 7.2, the assumption about dependence between RMS values and between the results of σ_0 could be made. In this case, the result of σ_0 with *PhotoMod* could be better than with *Inpho* and *BLUH*.

7.2. Aerial triangulation results analysis after camera calibration

In this section the results analysis of processed original digital images which were used after camera calibration is performed.

The results of standard deviation between adjusted and measured points in image space were observed. The summerised results of calculated discrepancies (residuals) between adjusted coordinates and measuerd coordinates in image space is given in tabale 7.3.
Software	Imagaa	Tie	Control	Standard Deviation,	Standard Deviation,
Software	images	points	points	x (μm)	y (µm)
Inpho	3	8/8	10/10	0,8	1,2
BLUH	3	8/8	10/10	1,0	1,2

 Table. 7.3. Comparison of standard deviation between adjusted and between measured points in the image space after camera calibration procedure

As it can be seen from table 7.3, the results achieved with *Inpho* and *BLUH* correspond accuracy requirements for measurements in image space: the values <u>do not exceed 1,0 in units</u> <u>micron.</u>The better result is achieved with *Inpho*.

In order to make comparison of bundle triangulation results using original digital images after camera calibration procedure the 10 GCP were measured in manual mode. As a priori value, the standard deviation of the ground control points were set as 0,02 in units meters for X, Y and Z to guarantee the same conditions for all adjustments. The results of bundle triangulation are summarised in table 7.4.

Software	Images	Control points	σ ₀ , μт	RMS X, m	RMS Y, m	RMS Z, m
Inpho	3	10/10	0,5	0,006	0,009	0,004
BLUH	3	10/10	1,36	0,007	0,013	0,014

Table. 7.4. Bundle triangulation results after the camera calibration procedure

The final result of aerial triangulation (σ_0) was achieved 0.5 in units micron (0.1 pixel size) and 1,36 in units micron (0.3 pixel size) by using digital photogrammetric software *Inpho* and system *BLUH* respectively. The accuracy result reached with *Inpho* and *BLUH* meets the accuracy requirements.

7.3. Comparison of aerial triangulation results before camera calibration and after camera calibration

In this section the results comparison of processed digital images before camera calibration (by using corrected from camera objective distortions digital images) and after camera calibration (by using the original digital images) is given. Because of the original digital images was not processed by using digital photogrammetric system *PhotoMod* – the system in results comparison was not involved.

The results of standard deviation between adjusted and measured points in image space during digital images processing were observed. The summerised results of calculated discrepancies (residuals) between adjusted coordinates and measuerd coordinates in image space before camera calibration and after camera calibration is given in tabale 7.5.

General information		Result						
	General information		Before camera calibration				After camera	calibration
		Tie	Control	Standard	Standard	Standard	Standard	
Software	Images	nointa		Deviation,	Deviation,	Deviation,	Deviation,	
		points	points	x (μm)	y (µm)	x (μm)	y (µm)	
Inpho	3	8/8	10/10	1,3	1,1	0,8	1,2	
BLUH	3	8/8	10/10	0,8	1,1	1,0	1,2	

 Table. 7.5. Comparison of standard deviation between adjusted and between measured points in image space

 before and after camera calibration

As it can be seen from previous table, the results of this measurement step achieved by using digital photogrammetric softwares *Inpho* and *BLUH* are very similar in both cases: before camera calibration in corrected from camera objective distortions images and after camera calibration in the original images. But the better result in x and y planes is achieved by using the original digital images after camera calibration procedure which were processed with *Inpho* software. The result achieved with *BLUH* system by using the original digital images after camera calibration procedure is slightly higher in x plane.

In this step of images processing the best result was achieved with *BLUH* system by using corrected from camera objective distortions digital images before camera calibration procedure.

The summarized bundle triangulation results by using corrected from camera objective distortions digital images and the original digital images are given in the table 7.6

Gene	ral inform	ation	Result							
			Befor	e camer	a calibra	ation	Afte	r camera	a calibra	tion
Software	Images	Control	σ_{0} ,	RMS	RMS	RMS	$\sigma_{0'}$	RMS	RMS	RMS
Soltware	mages	points	μm	X, m	Y, m	Z, m	μт	X, m	Y, m	Z, m
Inpho	3	10/10	0,5	0,006	0,008	0,008	0,5	0,006	0,009	0,004
BLUH	3	10/10	1,36 0,005 0,009 0,017			1,36	0,007	0,013	0,014	

Table. 7.6. Comparison of bundle triangulation results before and after camera calibration procedure

As it is seen from table 7.6, the results of RMS achieved by using digital photogrammetric software *Inpho* are very similar in both cases: before camera calibration in corrected from camera objective distortions images and after camera calibration in the original images. Though, the better result in planimetry is achieved by using corrected from camera objective distortions digital images (before camera calibration procedure) and the twice better result in height is achieved by using the original digital images (after camera calibration procedure). The final result of bundle adjustment is the same before camera calibration procedure and after camera calibration procedure.

Very similar distribution of the results of RMS and of the final adjustment result is achieved by using system *BLUH* (see table 7.6). The better result in planimetry is achieved by using corrected from camera objective distortions digital images (before camera calibration procedure) and the better result in height is achieved by using the original digital images (after camera calibration procedure). The final result of bundle adjustment is the same before camera calibration procedure and after camera calibration procedure.

The best result of bundle adjustment was achieved with digital photogrammetric software *Inpho* after camera calibration procedure by using the original digital images.

7.4. Comparison of camera calibration parameters

In this section the comparison between the old digital camera *Canon EOS 1D Mark III* calibration results and between the results which were got during research work is made. Comparison of camera calibration parameters is given in table 7.7.

		Results	
Parameters	The old calibration	Calibration perform	ed during research work
		With using scale bars	Without using scale bars
	Foo	cal length (mm)	
с	50,7583	50,7930	50,7931
	The base point corre	ctions of the photo-camera	a (mm)
x ₀	-0,0495	-0,2282	-0,2324
y ₀	-0,2559	0,2019	0,2026
	Radial-symmetric	distortion of the photo-car	mera
A1	-1.789E-09	-6,4466E-05	-6,4508E-05
A2	-	4,1312E-08	4,1565E-08
A3	-	2,8812E-11	2,8407E-11

Table. 7.7. Comparison of camera calibration parameters

	Results						
Parameters	The old calibration	Calibration performed during research work					
		With using scale bars	Without using scale bars				
	Radial-asymmetric	distortion of the photo-ca	mera				
B1	1,0170E-05	-7,1262E-05	-7,2810E-06				
B2	-1.655E-8	-2,5987E-06	-2,5725E-06				
	Affin	ity/Orthogonality					
C1	-	1,3696E-03	1,3715E-03				
C2	-	-2,5531E-05	-2,6262E-05				

Table. 7.7. continuation

The camera calibration procedure was performed at the Institute of Photogrammetry in Bonn University (Germany) in 2008 before (the results of this calibration are listed in column named "The old calibration"). As can be seen from the previous table, the values between the old camera calibration interior orientation parameters and between the new calibration interior orientation parameters are very differ. Also, the difference between amount of computed parameters is seen. However, the differences between the proportion of the obtained values of calibration parameters and between amount of computed calibration parameters in both cases (in old calibration and in new calibration) do not mean bad result, because the computations of parameters were performed by using different softwares and different technique during images taking process. Also, there are no standards for calibration reports of digital cameras at the moment. In this case, the camera calibration parameters which should be entered during project creation process depending on the software which is using for images processing. The camera calibration parameters which were need to enter in the digital photogrammetric softwares *PhotoMod* and *Inpho* during project creation process and the camera calibration parameters which were need to enter in system *BLUH* are given in table 7.8.

			Camer	a cali	bratio	on par	ameters		
Software	Focal length (c)	The base point corrections of the photo- camera (x ₀ , y ₀)	R syr distor phot	adial- nmetr tion o o-cam	ic f the era	R asyn diste the ca	adial- mmetric ortion of photo- amera	Affinity/O	rthogonality
			A1	A2	A3	B1	B2	C1	C2
PhotoMod	+	+	+	+	+	-	-	-	-
Inpho	+	+	+	+	+	-	-	-	-
BLUH	+	_	_	-	-	-	-	-	-

 Table. 7.8. Camera calibration parameters in PhotoMod, Inpho and BLUH

As it is seen from previous table, the same number of introduction of camera calibration parameters is required for *PhotoMod* and *Inpho* softwares.

It should be noted when the corrected from camera distortions digital images were used – only calibrated focal length (c) was need to enter during project creation in *PhotoMod* and *Inpho* softwares. Also, because the points measurements in the images were performed with digital photogrammetric system, the system *BLUH* requires to enter only calibrated focal lenght (c).

CONCLUSIONS

1. The digital images of the culture heritage fasade which were corrected from the digital camera *Canon EOS 1D Mark III* objective distortions were processed using digital photogrammetric system *PhotoMod*. After aerial triangulation was done, the root mean square between in images by stereo mode measured ground control points and between in geodetic method measured ground control points were detected: RMS X = 0,002 in units metres, RMS Y = 0,003 in units metres and RMS Z = 0,008 in units metres. Using this software in addition, the break lines of the object were plotted and the orthophoto was generated.

2. The digital images of that same object which were corrected from the digital camera *Canon EOS 1D Mark III* objective distortions were processed using digital photogrammetric system *Inpho*. After aerial triangulation was done, the root mean square between in images not by stereo mode measured ground control points and between by geodetic method measured ground control points were detected: RMS X = 0,006 in units metres, RMS Y = 0,008 in units metres and RMS Z = 0,008 in units metres. The value of σ_0 is equal to 0.5 in units micron.

3. The tie points which were measured in that same digital images of the object which were corrected from the digital camera *Canon EOS 1D Mark III* objective distortions using software *Inpho* and by geodetic method measured ground control points for further processing were transformed to bundle adjustment designed software *BLUH*. After aerial triangulation was done, the root mean square between in images not by stereo mode measured ground control points and between by geodetic method measured ground control points were detected: RMS X = 0,005 in units metres, RMS Y = 0,009 in units metres and RMS Z = 0,017 in units metres. The value of σ_0 is equal to 1.36 in units micron.

4. The calibration of the digital camera *Canon EOS 1D Mark III* (50 mm objective-lens) was performed in a specialy designed calibration laboratory at Neubrandenburg University of Applied Sciences in Germany. Significant differences between the old calibration parameters (obtained three years ago) and between the new results, obtained by the author in this master work, were not found. It means that the parameters which were set during camera calibration procedure three years ago were not changed during all the time the camera was used in this work.

5. By using new camera calibration parameters the aerial triangulation procedure was repeated using digital photogrammetric system *Inpho*. For this purpose the original digital images (not corrected from the digital camera *Canon EOS 1D Mark III* objective distortions) of that same object were used. After aerial triangulation was done using software *Inpho*, the root mean square between in images not by stereo mode measured ground control points and between by geodetic method measured ground control points were detected: RMS X = 0,006 in units metres, RMS Y =

0,009 in units metres and RMS Z = 0,004 in units metres. The value of σ_0 is equal to 0,5 in units micron.

6. By using the new camera calibration parameters the tie points, which were measured in that same original digital images of the object using software *Inpho* and by geodetic method measured ground control points for further processing were transformed to bundle adjustment designed software *BLUH*. After aerial triangulation was done, the root mean square between in images not by stereo mode measured ground control points and between by geodetic method measured ground control points were detected: RMS X = 0,007 in units metres, RMS Y = 0,013 in units metres and RMS Z = 0,014 in units metres. The value of σ_0 is equal to 1.36 in units micron.

7. The results of aerial triangulation which were obtained by using all examined softwares meet accuracy requirements. According to this, it can be stated that the digital photogrammetric systems *PhotoMod* and *Inpho* which are developed for processing scanned aerial film frames, images from various satellite sensors could be used for close-range digital images processing too.

8. During the digital images processing procedure it was established that formulas given for accuracy control by software's manufacturers not allways hold on. Thus, there are an importance for operator experience and skills during digital close-range images processing procedure.

REFERENCES

Abraham S. 2004. Tcc – a software for test field based self-calibration of multi-camerasystems. Institut für Photogrammetrie, Universität Bonn. 39 p.

AICON 3D Systems GmbH. 2009. AICON 3D Studio user Manual. Braunschweig, Germany. 14-9.

Albertz J.; Wiggenhagen M.. 2009. Guide for Photogrammetry and Remote Sensing. Hamburg, Germany. 334.

Atkinson, K.B. 2001. Close Range Photogrammetry and Machine Vision. Scotland, UK. 363.

Habib A.; Jarvis A..; Detchev I.; Stensaas G.; Moe D.; Christopherson J. 2008. Standards and specifications for the calibration and stability of amateur digital cameras for close-range mapping applications. *The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, Vol. XXXVII. Part B1. Beijing. 1059 – 1064.

Habib A. F.; Pullivelli A. M.; Morgan M. 2005. Quantitative measures for the evaluation of camera stability. *Society of Photo-Optical Instrumentation Engineers*. Calagary, Canada.

Inpho. 2010. ApplicationsMaster Manual for Version 5.3 and higher. 363.

Inpho. 2010. Match-AT Manual for Version 5.3 and higher. 244.

Jacobsen, K. 2001. PC-Based Digital Photogrammetry. Damaskus, GORS.

Jacobsen K. 2009. Program system BLUH: User Manual. Hannover, Germany. 21.

Kersten, T. 1999. Results of digital aerial triangulation using different software packages.

OEEPE Workshop on Automation in Digital Photogrammetric Production, No. 37, 241-256.

Kiseleva, A.S. 2002. Accuracy control at various stages of photogrammetric processing in *PhotoMod* system. Moscow.

Läbe, T.; Förstner, W. 2004. Geometric stability of low-cost digital consumer cameras. *The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences*, 35(B1). 528 – 534.

Lothhammer, K. L. 2005. Photogrammetric workflow: the *Inpho* approach. Bogotá, Colombi.

Luhmann T.; Robson S.; Kyle S.; Harley I. 2006. Close range photogrammetry: principles, Methods and Applications. Scotland, United Kingdom. 510.

Madani, M. 2001. Importance of Digital Photogrammetry for a complete GIS. 5th Global Spatial Data Infrastructure Conference. Cartagena, Columbia. Peipe J.; Stephani M. 2003. Performance evaluation of a 5 Megapixel digital metric camera for use in architectural photogrammetry. *The International Archives of the Photogrammetry*, *Remote Sensing and Spatial Information Sciences*, Vol. XXXIV, Part 5/W12. 259-261.

Racurs. 2009. Software *PhotoMod* 4.4 Module Aerial Triangulation user manual. Moscow. 161.

Racurs. 2009.Software *PhotoMod* 4.4 Module *PhotoMod* DTM user manual. Moscow. 75. Racurs. 2009.Software *PhotoMod* 4.4 Module *PhotoMod* Solver user manual. Moscow.

77.

Racurs. 2009. Software *PhotoMod* 4.4 Module *PhotoMod* Stereo Draw user manual. Moscow. 123.

Ruzgienė B. 2008. Fotogrametrija. Vilnius: Technika. 2008. 204.

Sanz-Ablanedo E.; Rodríguez-Pérez J. .; Armesto J.; Taboada M. F. Á. 2010. Geometric Stability and Lens Decentering in Compact Digital Cameras. *MDPI journal: Sensors*. 1553-1572.

Schenk, T. 1999. Digital photogrammetry, Volume 1. Dayton, Ohio, USA. 421.

Schenk T. 2005. Introduction to Photogrammetry. USA. 95.

Shariat M., Azizi A., Saadatseresht M., 2008. Analysis nand the solutions for genetaring a true digital ortho photo in close range photogrammetry. *The International Archives of the Photogrammetry, Remote Sensing and Spastial Information Sciences.* Vol XXXVII, Part B4, Beijing, 439-442.

Sigle M.; Heuchel T. 2001. *MATCH-AT*: Recent Developments and Performance. *Photogrammetric week 01*. 189-194.

Sužiedelytė-Visockienė, J.; Bručas, D. 2009. Digital photogrammetry for building measurements and reverse-engineering. *Geodesy and Cartography*, 35(2), 61–65.

Sužiedelytė-Visockienė, J.; Bručas, D. 2009. Influence of digital camera errors on the photogrammetric image processing. *Geodesy and Cartography*, t.35, No. 1, 29-33.

Sužiedelytė-Visockienė, J.; Kumetaitienė A.; Bagdžiūnaitė R. 2011. Accuracy analysis of different surface reconstruction modelling methods of heritage objects, digitalized according to photogrammetric data. *Environmental Engineering, Volme 3*. The 8th International Conference, 1493.

Wiedemann A. 2005. Digital Architectural Photogrammetry for Building Registration. Berlin, Germany.

Wiedemann A.; Moré J.; Suthau T.; Theodoropoulou I.; Weferling U.; Ergün B. 2001. Comparison of bundle block adjustments for close range applications. *Fourth Turkish-German Joint Geodetic Days*. Paper presented to the conference organized at Berlin, Germany, April 2-6, Vol I, 211-218. Wojtas A. M. 2010. Off-the-shelf close-range photogrammetric software for cultural heritage documentation at Stonehenge. *International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences*, Vol. XXXVIII, Part 5. Commission V Symposium, Newcastle upon Tyne, UK. 603-607.

Web pages:

Analyzing photogrammetric software *AICON 3D Studio* [Accessed 2011-04-28]. Available from internet:

http://www.aicon3d.de/start.html

3D measurement system DPA [Accessed 2011-05-09]. Available from internet:

http://www.qfp-service.it/pdf/AICON_DPA_english_05-2010%5B1%5D.pdf

Digital photogrammetric system *Inpho* [Accessed 2011-04-28]. Available from internet: http://www.inpho.de/index.php?seite=photogrammetric systems

Digital photogrammetric system *PhotoMod* [Accessed 2011-01-24]. Available from rnet:

internet:

http://www.infomap-rs.net/index.php?lang=en&tabid=51

Digital photogrammetric workstations [Accessed 2011-04-24]. Available from internet:

http://www.gim-international.com/issues/articles/id530-

Digital_Photogrammetric_Workstations.html

Ground control points and aerial triangulation [Accessed 2011-04-28]. Available from internet:

http://www.pvts.net/pdfs/ortho/ortho_scp4.pdf

Program PATB. [Accessed 2011-04-26]. Available from internet:

http://www.k2-photogrammetry.de/products/patb.html

The accuracy of photogrammetric surveys [Accessed 2011-05-09]. Available from internet:

http://www.blm.gov/cadastral/Manual/73man/id33.htm

Triangulated irregular network (TIN) [Accessed 2011-02-03]. Available from internet: <u>http://en.wikipedia.org/wiki/Triangulated_irregular_network</u>

APPENDIXES

Appendix 1. PhotoMod aerial triangulation report

```
== 2011 m. geguxns 17 d. == 08:58:11 ==
Отчет по уравниванию блока
 _____
_____
Блок: VU S3
Количество маршрутов: 1
Количество стереопар: 2
Параметры уравнивания:
 метод независимых маршрутов
 полиномиальные поправки: 2-го порядка, XYZ
 система координат: Cartesian Left
 вес уравнений на опорные точки:
 вес уравнений на связующие точки:
 используются поправки дрейфа центров GPS по маршрутам
Единицы измерения: m
_____
_____
Элементы внешнего ориентирования
_____
Снимок: Р912
центр проекции
       1.037072
                -62.712047
                               81.077643
матрица поворота
               0.0702928984 0.1855295066
0.9734315563 -0.2274083608
     0.9801212734
     -0.0267664474
                0.2179218064
    -0.1965854691
                             0.9559624677
альфа, омега, каппа (град.)
    -10.9832059902 13.1445389733
                             -1.5750651602
_____
CHMMOR: P915
центр проекции
       1.249430
                  -68.732966
                               81.757177
матрица поворота
                0.0739597295
0.9790039823
                            0.1507628744
-0.1992592369
     0.9857994289
    -0.0429762619
                0.1899504172
                             0.9682800794
    -0.1623346137
альфа, омега, каппа (град.)
     -8.8499911615
                11.4936445739
                             -2.5135531811
   _____
Снимок: Р918
центр проекции
       0.964182
                -56.166147
                                79.841174
матрица поворота
                0.0584419427
0.9711119898
                           0.2209470972
-0.2385881314
     0.9735332144
     -0.0041481032
                0.2313569592
                             0.9456522002
    -0.2285079291
альфа, омега, каппа (град.)
```

-13.1509671481	13.8032257161	-0.2447373327			
					-
Каталог точек					
					-
(m)	х	Y	Z	Exy	Ez
опорные					
-					
102	9.824	-74.167	50.354	0.003	-0.004
105	6.496	-70.721	49.527	0.001	0.007
106	4.776	-68.223	48.909	0.002	0.004
107	12.166	-62.236	48.021	0.001	-0.007
110	13.703	-69.257	48.819	0.007	-0.00
110	15.900 16.056	-65 708	48 418	0.003	0.00:
600	0.483	-75.332	50.715	0.002	0.004
602	0,963	-67.368	48.887	0.005	-0.019
603	0.212	-63.192	47.789	0.003	0.010
NTOPO	10 Toyer				
контрольные					
NTOPO	0 точек				
сгущения					
ИТОГО	0 Tower				
связующие					
*1	20.020	-70.451	47.898		
*2	12.200	-75.850	51.283		
*5	6.738	-67.674	49.077		
*6	9.369	-68.980	49.053		
*7	0.529	-68.199	48.990		
*8	2.149	-62.758	47.714		
*9	10.226	-62.823	47.667		
~621 итого	15.024 8 דסשפא	-68.415	31.516		
					-
					_
Оценка точности уравн	нивания блока				
Превышения допусков о	отмечены знаком "*".				
					_
					-
Сводная информация об	б ошибках по блоку				
					-
0					
ошиоки по опорным точ	ikaM				

N	Xcp-Xr	ТС-427	Zcp-Zr	Exv	(m)
-	nop m	100 11	2007 21	2.1.7	()
допуск:	0.020	0.020	0.020	0.020	
102	-0.002	-0.002	-0.004	0 002	
102	-0.003	-0.002	-0.004	0.003	
105	0.001	-0.000	0.007	0.001	
106	0.001	-0.001	0.004	0.002	
107	0.001	-0.001	-0.007	0.001	
109	0.001	0.007	0.007	0.007	
110	0.002	-0.002	-0.005	0.003	
111	-0.002	-0.002	0.004	0.002	
600	0.001	0.002	0.004	0.002	
602	-0.002	-0.004	-0.019	0.005	
603	0.000	0.003	0.010	0.003	
v	0.001	0.000	0.007	0.000	
среднии модуль:	0.001	0.002	0.007	0.003	
CRO:	0.002	0.003	0.008	0.003	
Makcumym:	0.003	0.007	0.019	0.007	
всего точек (разнос	стей):				
10	(10	10	10	10)	
центры проекции					
	V V-	V V-	7 7		()
24	vcb-vi.	10p-11	2cp-21	LXY	(m)
допуск:	0.020	0.020	0.020	0.020	
,	0.000				
среднии модуль:	0.000	0.000	0.000	0.000	
CKO:	0.000	0.000	0.000	0.000	
Makcumvm:	0.000	0.000	0.000	0.000	
всего точек (разнос	стей):				
всего точек (разнос О	стей): (0	0	0	0)	
всего точек (разнос 0	стей): (0	0	0	0)	
всего точек (разнос 0	стей): (0	0	0	0)	
всего точек (разнос 0 Ошибки по контрольных	стей): (0 	0	0	0)	
всего точек (разнос 0 Ошибки по контрольных N	стей): (0 и точкам Хср-Хг	0 Уср-Уг	0 Zcp-Zr	0) Exy	(m)
всего точек (разнос 0 Ошибки по контрольным N	стей): (0 и точкам Хср-Хг 0,020	0 Ycp-Yr 0 020	0 Zcp-Zr	0) Exy 0,020	(m)
всего точек (разнос 0 Ошибки по контрольных N допуск:	стей): (0 и точкам Хср-Хг 0.020	0 Ycp-Yr 0.020	0 Zcp-Zr 0.020	0) Exy 0.020	(m)
всего точек (разнос 0 Ошибки по контрольные N допуск:	стей): (0 4 точкам Хср-Хг 0.020	0 Ycp-Yr 0.020	0 Zcp-Zr 0.020	0) Exy 0.020	(m)
всего точек (разнос 0 Ошибки по контрольные N допуск: средний модуль:	стей): (0 4 точкам Хср-Хг 0.020 0.000	0 Ycp-Yr 0.020 0.000	0 Zcp-Zr 0.020 0.000	0) Exy 0.020 0.000	(m)
всего точек (разнос 0 Ошибки по контрольные N допуск: средний модуль: СКО:	стей): (0 и точкам Хср-Хг 0.020 0.000 0.000	0 Ycp-Yr 0.020 0.000 0.000	0 Zcp-Zr 0.020 0.000 0.000	0) Exy 0.020 0.000 0.000	(m)
всего точек (разнос 0 Ошибки по контрольные N допуск: средний модуль: СКО: Максимум:	стей): (0 4 точкам Хср-Хг 0.020 0.000 0.000 0.000	0 Ycp-Yr 0.020 0.000 0.000 0.000	0 Zcp-Zr 0.020 0.000 0.000 0.000	0) Exy 0.020 0.000 0.000 0.000	(m)
всего точек (разнос 0 Ошибки по контрольные N допуск: средний модуль: СКО: максимум: всего точек (разнос	стей): (0 4 точкам Хср-Хг 0.020 0.000 0.000 0.000 0.000	0 Ycp-Yr 0.020 0.000 0.000 0.000	0 Zcp-Zr 0.020 0.000 0.000 0.000	0) Exy 0.020 0.000 0.000 0.000	(m)
всего точек (разнос 0 Ошибки по контрольных N допуск: средний модуль: СКО: Максимум: всего точек (разнос 0	стей): (0 и точкам Хср-Хг 0.020 0.000 0.000 0.000 0.000 0.000	0 Ycp-Yr 0.020 0.000 0.000 0.000 0.000	0 Zcp-Zr 0.020 0.000 0.000 0.000 0.000	0) Exy 0.020 0.000 0.000 0.000 0.000	(m)
всего точек (разнос 0 Ошибки по контрольные N допуск: средний модуль: СКО: максимум: всего точек (разнос 0 центры проекции	стей): (0 4 точкам Хср-Хг 0.020 0.000 0.000 0.000 0.000 0.000 0.000	0 Ycp-Yr 0.020 0.000 0.000 0.000	0 Zcp-Zr 0.020 0.000 0.000 0.000	0) Exy 0.020 0.000 0.000 0.000 0.000	(m)
всего точек (разнос 0 Ошибки по контрольные N допуск: средний модуль: СКО: максимум: всего точек (разнос 0 центры проекции	стей): (0 4 точкам Хср-Хг 0.020 0.000 0.000 0.000 0.000 0.000 0.000	0 Ycp-Yr 0.020 0.000 0.000 0.000	0 Zcp-Zr 0.020 0.000 0.000 0.000	0) Exy 0.020 0.000 0.000 0.000 0.000	(m)
всего точек (разнос 0 Ошибки по контрольных N допуск: средний модуль: СКО: максимум: всего точек (разнос 0 центры проекции N	стей): (0 и точкам Хср-Хг 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0 Ycp-Yr 0.020 0.000 0.000 0 0 Ycp-Yr	0 Zcp-Zr 0.020 0.000 0.000 0.000 0.000 0.000	0) Exy 0.020 0.000 0.000 0.000 0.000 0.000 0.000	(m)
всего точек (разнос 0 Ошибки по контрольные N допуск: средний модуль: СКО: максимум: всего точек (разнос 0 центры проекции N допуск:	стей): (0 4 точкам Хср-Хг 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0 Ycp-Yr 0.020 0.000 0.000 0 Vcp-Yr 0.020	0 Zcp-Zr 0.020 0.000 0.000 0 0 Zcp-Zr 0.020	0) Exy 0.020 0.000 0.000 0.000 0) Exy 0.020	(m) (m)
всего точек (разнос 0 Ошибки по контрольных N допуск: средний модуль: СКО: максимум: всего точек (разнос 0 центры проекции N допуск:	стей): (0 4 точкам Хср-Хг 0.020 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	0 Ycp-Yr 0.020 0.000 0.000 0 0 Ycp-Yr 0.020	0 Zcp-Zr 0.020 0.000 0.000 0.000 0 0 Zcp-Zr 0.020	0) Exy 0.020 0.000 0.000 0.000 0) Exy 0.020	(m) (m)
всего точек (разнос 0 Ошибки по контрольные N допуск: средний модуль: СКО: максимум: всего точек (разнос 0 центры проекции N допуск:	стей): (0 4 точкам Хср-Хг 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.020	0 Ycp-Yr 0.020 0.000 0.000 0 Ycp-Yr 0.020 0.000	0 Zcp-Zr 0.020 0.000 0.000 0 0 Zcp-Zr 0.020 0.000	0) Exy 0.020 0.000 0.000 0.000 0) Exy 0.020 0.000 0.000	(m) (m)
всего точек (разнос 0 Ошибки по контрольные N допуск: средний модуль: СКО: максимум: всего точек (разнос 0 центры проекции N допуск: средний модуль: СКО:	стей): (0 4 точкам Хср-Хг 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.020 Хср-Хг 0.020 0.020	0 Ycp-Yr 0.020 0.000 0.000 0 Vcp-Yr 0.020 0.000 0.000	0 Zcp-Zr 0.020 0.000 0.000 0 0 Zcp-Zr 0.020 0.000 0.000	0) Exy 0.020 0.000 0.000 0.000 0) Exy 0.020 0.000 0.000 0.000	(m) (m)
всего точек (разнос 0 Ошибки по контрольные N допуск: средний модуль: СКО: максимум: всего точек (разнос 0 центры проекции N допуск: средний модуль: СКО: иаксимуми	стей): (0 4 точкам Хср-Хг 0.020 0.000 0.000 0.000 0.000 0.000 0.020 Хср-Хг 0.020 0.020 0.000 0.000 0.000	0 Ycp-Yr 0.020 0.000 0.000 0 Vcp-Yr 0.020 0.000 0.000 0.000	0 Zcp-Zr 0.020 0.000 0.000 0 0 Zcp-Zr 0.020 0.000 0.000 0.000	0) Exy 0.020 0.000 0.000 0.000 0) Exy 0.020 0.000 0.000 0.000 0.000 0.000	(m) (m)
всего точек (разнос 0 Ошибки по контрольных N допуск: средний модуль: СКО: максимум: всего точек (разнос 0 центры проекции N допуск: средний модуль: СКО: иаксимум:	стей): (0 4 точкам Хср-Хг 0.020 0.000 0.000 0.000 0.000 0.000 0.020 Хср-Хг 0.020 0.020 0.000 0.000 0.000	0 Ycp-Yr 0.020 0.000 0.000 0 Vcp-Yr 0.020 0.000 0.000 0.000 0.000	0 Zcp-Zr 0.020 0.000 0.000 0 0 Zcp-Zr 0.020 0.000 0.000 0.000 0.000	0) Exy 0.020 0.000 0.000 0.000 0) Exy 0.020 0.000 0.000 0.000 0.000 0.000	(m) (m)
всего точек (разнос 0 Ошибки по контрольных N допуск: средний модуль: СКО: максимум: всего точек (разнос 0 центры проекции N допуск: СКО: средний модуль: СКО: Максимум: всего точек (разнос 0 0	стей): (0 4 точкам Хср-Хг 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.020 0.020 0.000 0.000 0.000 0.000 0.000 0.000	0 Ycp-Yr 0.020 0.000 0.000 0 Ycp-Yr 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020	0 Zcp-Zr 0.020 0.000 0.000 0 0 Zcp-Zr 0.020 0.000 0.000 0.000 0.000 0.000	0) Exy 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	(m) (m)
всего точек (разнос 0 Ошибки по контрольных N допуск: средний модуль: СКО: максимум: всего точек (разнос 0 центры проекции N допуск: СКО: средний модуль: СКО: максимуль: онискии и	стей): (0 и точкам Хср-Хг 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0 Ycp-Yr 0.020 0.000 0.000 0 Vcp-Yr 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.020 0.020 0.020 0.020 0.020 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000	0 Zcp-Zr 0.020 0.000 0.000 0.000 0 Zcp-Zr 0.020 0.000 0.000 0.000 0.000 0.000	0) Exy 0.020 0.000 0.000 0.000 0.000 0.000 0.020 0.000 0.000 0.000 0.000 0.000	(m) (m)

Ошибки по связующим точкам (от среднего)

Ν	X-Xcp	Ү-Үср	Z-Zcp	Exy (m	1)
gonyck:	0.020	0.020	0.020	0.020	
средний модуль:	0.003	0.003	0.014	0.004	
CKO:	0.003	0.003	0.016	0.004	
Makcumym:	0.005	0.005	0.032*	0.007	
всего точек (разностей):					
7 (14	14	14	14)	
внутри маршрутов					
И	X-Xcp	V-Ven	2-2cp	FXV (m	
	n nop	1 105	1 10p		'
gonyck:	0.020	0.020	0.020	0.020	
×	0.002	0.002	0.014	0.004	
среднии модуль:	0.003	0.003	0.014	0.004	
CKO:	0.003	0.005	0.010	0.004	
Makcumym:	0.005	0.005	0.0321	0.007	
7 (14	14	14	14)	
между маршрутами					
Ν	X-Xcp	Ү-Үср	Z-Zcp	Exy (m)
gonyck:	0.020	0.020	0.020	0.020	
средний модуль:	0.000	0.000	0.000	0.000	
ско:	0.000	0.000	0.000	0.000	
MARCUMVM:	0.000	0.000	0.000	0.000	
всего точек (разностей):					
0 (0	0	0	0)	
Ошибки по точкам сгущения (с	от среднего)				
N	X-Xcp	Y-Ycp	Z-Zcp	Exy (m	1)
2020/021	0.020	0.020	0.020	0 020	
donyok.	0.020	0.020	0.020	0.020	
средний модуль:	0.000	0.000	0.000	0.000	
CKO:	0.000	0.000	0.000	0.000	
MARCUMVM:	0.000	0.000	0.000	0.000	
всего точек (разностей):					
0 (0	0	0	0)	
Ошибки по связи - центры пос	екции (от сре	пнеро)			
omenen no operan denipit npe	ciupai (or ope				
Ν	X-Xcp	Ү-Үср	Z-Zep	Exy (m	1)
допуск:	0.020	0.020	0.020	0.020	
средний модуль:	0.000	0.000	0.000	0.000	
CKO:	0.000	0.000	0.000	0.000	
Makcumym:	0.000	0.000	0.000	0.000	

всего точек (разносте	й):			
1 (2	2	2	2)
Ошибки по связующим точ	кам (на снимках)			
Ν	х_пр-х_изм	у_пр-у_изм	Ежу (мм)	
допуск:	4.699	4.699	4.699	
средний модуль:	0.256	0.510	0.638	
CKO:	0.404	0.728	0.832	
максимум:	1.453	2.518	2.519	
всего точек (разносте	й):			
18 (43	43	43)	
	ия (на снимках)			
Ν	х_пр-к_изм	у_пр-у_изм	Еку (мы)	
допуск:	4.699	4.699	4.699	
средний молуль:	0.000	0.000	0.000	
CKO:	0.000	0.000	0.000	
Makcumvm:	0.000	0.000	0.000	
всего точек (разносте	й):			
0 (. 0	0	0)	
 Детализированная информ	ация об ошибках			
Ошибки по опорным точка	M			
Ν	X-Xr	Y-YI,	Z-Zr	Еху
допуск:	0.020	0.020	0.020	0.020
102 P915-P912	-0.003	-0.002	-0.004	0.003
105				
P912-P918	0.006	-0.003	-0.006	0.007
P915-P912	-0.004	0.003	0.019	0.005
106				
P912-P918	0.002	0.000	0.008	0.002
P915-P912	0.001	-0.002	-0.001	0.002
107				
P912-P918	0.001	-0.001	-0.007	0.001
P912-P918	0.002	0.004	-0.007	0.005
P915-P912	-0.001	0.011	0.020*	0.011
110				
P915-P912 111	0.002	-0.002	-0.005	0.003
P912-P918	0.000	-0.003	-0.003	0.003
P915-P912	-0.004	-0.000	0.012	0.004

600						
	P915-P912	D.001	0.002	0.004	0.002	
602						
	P912-P918	-0.007	0.001	0.014	0.007	
603	P915-P912	0.003	-0.009	-0.051*	0.010	
000	P912-P918	D.000	0.003	0.010	0.003	
центры про	- KI (MM					
	N	X-Xr	Y-YF	Z-Zr	Exy	(m)
	допуск:	0.020	0.020	0.020	0.020	
Ошиоки по	контрольным	точкам				
	N	X-X ^{1,}	Υ-Υι.	Z-Z1	Exy	()
	gonyck:	0.020	0.020	0.020	0.020	
центры про	скции					
	N	X Xr	Ү Үг	Z Zr	Еху	(m)
	допуск:	0.020	0.020	0.020	0.020	
Оцибки цо	связующим т	очкам (от соелне				
	N	Х Хср	У Уср	Z Zop	Exy	(m)
	допуск:	0.020	0.020	0.020	0.020	
*5						
	P912-P918	0.002	0.002	0.013	0.003	
	P915-P912	-0.002	-0.002	-0.013	0.003	
*6						
	P912-P918	0.005	-0.002	-0.011	0.005	
105	F915-F912	-0.005	0.002	0.011	0.000	
	P912-P918	0.005	-0.003	-0.012	0.006	
	P915 P912	0.005	0.003	0.012	0.006	
106						
	P912-P918	0.001	0.001	0.004	0.001	
100	P915-P912	-0.001	-0.001	-0.004	0.001	
108	DG12-DG19	0.002	-0.003	-0.014	0.004	
	P912-P910 D015-D012	-0.002	-0.003	0.014	0.004	
111	591J-FM17	-0.002	0.003	0.014	01004	
	P912-P918	0.002	-0.001	-0.008	0.003	
	P915-P912	-0.002	0.001	0.008	0.003	
602						
	P912-P918	-0.005	0.005	0.032*	0.007	
	P915-P912	0.005	-0.005	-0.032*	0.007	

Ошибки по точкам сгущения (от среднего)

	N	Х-Хср	Y-Yep	Z-Zcp	Exy (m)
	допуск:	0.020	0.020	0.020	0.020
Опирки по	связи – центры і	проекции (от сред	(нето)		
	N	X-Xop	Y-Yop	Z-Zop	Exy (m)
	допуск:	0.020	0.020	0.020	0.020
P912					
	P912-P918	0.000	0.000	0.000	0.000
	P915-P912	0.000	0.000	0.000	0.000

Опибки по связующим точкам (на снимкак)

N	и пр-и изи	у пр−у илеч	Ежу	(14114)
допуск:	4.699	4.699	4.699	
*1				
P912	0.201	0.140	0.245	
P918	-0.483	-0.492	0.689	
*2				
P912	-0.034	0.974	0.974	
P915	-0.230	-0.198	0.303	
*5				
P912	-0.011	1.019	1.019	
P915	0.571	0.751	0.944	
P918	-0.575	0.318	0.657	
*6				
P912	0.006	0.555	0.555	
P915	0.439	-0.310	0.538	
P910	0.432	0.251	0.500	
*7				
P912	-0.159	0.090	0.183	
P918	0.264	0.185	0.323	
*8				
P912	0.124	0.029	0.127	
P918	0.187	0.445	0.483	
*9				
P912	0.044	-0.019	0.048	
8164	-0.143	-0.375	0.401	
-621				
P912	-0.023	1.090	1.091	
P915	-0.145	0.153	0.211	
102				
P912	-0.010	1.033	1.033	
P915	0.120	0.108	0.161	
105				
P912	-0.008	0.768	0.768	
P915	0.614	-0.561	0.832	
P 918	0.681	0.074	0.685	
106				
P912	-0.014	0.390	0.391	
P915	-0.145	-0.120	0.189	
P918	-0.073	0.670	0.674	
107				
P912	0.005	0.027	0.009	
P918	-0.229	0.328	0.400	
		90		

	Here's out			1.000	
	IONVCK:	4.699	4.699	4.699	
	N	х_ пр- х_ изм	у_пр-у_изм	Exy (:	MM)
оширки по :	точкам сгущени	ия (на снимках)			
C					
	P918	0.277	0.015	0.277	
	P912	-0.167	-0.019	0.168	
603					
	P918	-1.359	-1.489	2.016	
	P915	-1.453	1.460	2.060	
	P912	-0.018	-1.166	1.166	
602					
	P915	0.323	-0.154	0.358	
_	P912	0.101	-1.164	1.168	
600					
	P918	-0.144	-0.057	0.155	
	P915	0.026	0.556	0.556	
	P912	0.044	-0.237	0.241	
111		0.000	0.000	0.002	
	P915	-0.388	-0.058	0.392	
	P912	-0.055	-2.518	2.519	
110	1,910	01210	01010	0.011	
	D918	0.240	-0.023	0.241	
	D015	0.347	0.001	0.052	
109	D012	0.035	-0.651	0 652	
100					

Appendix 2. *Inpho* aerial triangulation statistics file of the images which are corrected from the digital camera *Canon EOS 1D Mark III* objective distortions

MATCH-AT statistic file			
Project : V:\dar v	ienas\Kopie	von Kopie	von Kopie von 22.prj
Date of creation : Sun May :	22 15:47:21	2011	
1. Summary:			
sigma O in micron		0.5	
number block points number of images		18 3	
number of iteration redundandancy		5 5 0	
mean std dev ground	x	0.004	[units of terrain system]
	y	0.004	[units of terrain system]
	z	0.008	[units of terrain system]
mean std dev ori om	ega	62.5	[mgrd]
ph	i	79.2	[mgrd]
kaj	DP	24.0	[mgrd]
mean std dev ori	x	0.040	[units of terrain system]
	y	0.032	[units of terrain system]
	z	0.018	[units of terrain system]
rms image points	x y	0.000	[micron] [micron]
rms control in image	x	1.257	[micron]
	y	1.089	[micron]
rms control in terr	x	0.006	[units of terrain system]
	y	0.008	[units of terrain system]
	z	0.008	[units of terrain system]
max res. control	x	0.016	[units of terrain system]
	y	-0.021	[units of terrain system]
	z	-0.017	[units of terrain system]
rms check points	x	0.000	[units of terrain system]
	y	0.000	[units of terrain system]
	z	0.000	[units of terrain system]
max res. check	x	0.000	[units of terrain system]
	y	0.000	[units of terrain system]
	z	0.000	[units of terrain system]

Statistic file-pries kalibravima

2. Estimated orientation parameters and standard deviations:

photo : Z std.Z	ID omega[grd] phi[grd] std.ome[mgrd] std.phi[mgrd]	kappa[grd] std.kappa[mgrd]	× std.X	Y std.Y
	P915 12.235810 10.082963	-4.751286	-68.499	1.594
81.877	61.526 77.707	22.714	0.040	0.031
0.015				
	P912 14.822668 12.709091	-4.704093	-62.274	1.072
81.006	60.255 77.442	23.275	0.039	0.031
0.017				
	P918 15.686157 14.885071	-3.950543	-55.754	0.983
79.849 0.022	65.804 82.394	26.146	0.041	0.034

GNSS observations and resuduals:

Statistic file-pries kalibravima photo ID X Y Z res x res y res z P915 no GNSS observation given P912 no GNSS observation given P918 no GNSS observation given

4. Adjusted coordinates including control/check points and standandard deviations:

fold	point check	ID blun	d ^{>}	c y given x	z given y	sx given z	sy res x	sz res y	code res z
			102	-74.161	9.829	50.356	0.004	0.004	0.007
6	2	0	(-74.165	9.827	50.358	-0.004	-0.002	0.002
			105	-70.719	6.497	49.520	0.003	0.003	0.005
6	3	0		-70.721	6.495	49.520	-0.002	-0.002	-0.000
-	-		106	-68.223	4.776	48.903	0.003	0.003	0.005
6	3	0	107	-68.222	4.775	48.905	0.001	-0.001	0.002
6	2	0	107	-62.237	12.155	48.038	0.004	0.004	0.007
0	2	0	100	-62.235	12,105	40.020	0.002	0.010	-0.010
6	2	0	109	-69.280	13 702	48.812	0.003	-0.021	-0.017
			110	-72.712	15.979	50.118	0.004	0.005	0.007
6	2	0		-72.716	15,986	50,124	-0.004	0.007	0.006
-	-	-	111	-65.704	16.051	48,400	0.004	0.004	0.006
6	3	0		-65,706	16.058	48,414	-0.002	0.007	0.014
			600	-75.337	0.482	50.713	0.005	0.004	0.007
6	2	0		-75.334	0.482	50.711	0.003	-0.000	-0.002
			602	-67.360	0.962	48.906	0.004	0.004	0.006
6	3	0		-67.364	0.965	48.906	-0.004	0.003	0.000
			603	-63.190	0.211	47.774	0.005	0.004	0.007
6	2	0	(-63.195	0.212	47.779	-0.005	0.001	0.005
			901	-75.658	1.059	50.785	0.006	0.004	0.014
5	2	0	()			-999999986	5991104.0	00
-9999	99986991	104.	000 -	-999999986991104.000					
-	-		902	-70.828	1.181	49.534	0.004	0.004	0.008
-0000	3	1104	000	999999999996991104 000			-999999986	5991104.0	00
- 55555	33366331	104.0	902	-67 549	1 062	40 001	0.004	0.004	0.008
E	2	0	905	-67.540	1.062	40.091	-99999998/	5991104 0	0.008
-9999	99986991	104.0	000	9999999986991104.000			33333333	5551104.0	00
			904	-62.782	1.041	47,647	0.005	0.004	0.014
5	2	0)			-999999986	5991104.0	00
-9999	99986991	104.	000	999999986991104.000					
			905	-67.802	6.652	48.843	0.003	0.003	0.007
5	3	0	0)			-999999986	5991104.0	00
-9999	99986991	L104.	000 -	999999986991104.000					
			906	-68.984	9.367	49.047	0.003	0.003	0.007
5	3	0	()			-999999986	5991104.0	00
-9999	99986991	L104.	000 -	999999986991104.000					
_	-		908	-75.607	12.126	50.916	0.006	0.006	0.014
5	2	0)			-999999986	5991104.0	00
-9999	99986991	104.0	000 .	-999999986991104.000					
-	-	~	909	-70.370	20.005	47.926	0.006	0.009	0.011
0000	3	0	· · · · ·	,			-9999999986	5991104.0	00
-9999	2228933	1104.	000 -	.22223333286221104.000					

3. Photo observations and residuals:

vy	photo	point	status	fold	automa	x	vx	У
	P918	107	1	2	0	1897.1	3.9	4694.4
1.7	P912	107	1	2	0	9951.1	-3.7	5502.6
-1.3	P918	111	1	3	0	-3122.1	-2.9	9738.7
-1.0	P912	109	1	3	0	-642.2	3.2	7069.3
1.8	P912	905	1	3	0	1826.8	-2.3	-2935.1

		Sta	tistic	file-pr	ies ka	alibravima		
-2.1	P915	109	1	3	0	6309.8	-1.8	8738.5
-2.2	P918	905	1	3	0	-6532.1	1.1	-3549.4
1.5	P912	906	1	3	0	-125.8	1.7	1043.5
0.9	P912	111	1	3	0	4449.5	2.1	10535.8
	P912	600	1	2	0	-10375.5	0.2	-13045.6
-2.0	P915	600	1	2	0	-2335.7	-0.1	-11714.6
2.0	P918	602	1	3	0	-6147.8	0.1	-12454.4
-1.9	P915	110	1	2	0	870.8	0.3	12063.1
-1.5	P915	906	1	3	0	7186.1	-0.9	2611.7
-1.5	P912	602	1	3	0	2820.1	-0.5	-11895.0
1.5	P915	111	1	3	0	11358.6	0.5	12272.1
1.4	P912	110	1	2	0	-5996.8	-0.6	10318.0
-1.3	P918	603	1	2	0	738.9	-1.3	-13664.5
0.4	P918	902	1	3	0	-11653.6	-0.1	-12122.9
1.4	P915	905	1	3	0	9326.0	1.1	-1386.8
0.4	P912	105	1	3	0	-2777.2	-0.8	-3274.3
-0.9	P912	603	1	2	0	9753.7	1.0	-12942.1
-0.3	P915	902	1	3	0	5099.9	-0.1	-10209.6
-1.0	P918	105	1	3	0	-11083.4	0.4	-3812.5
-0.0	P918	906	1	3	0	-8187.4	-0.8	412.3
-0.0	P912	901	1	2	0	-10890.2	0.0	-12103.0
-0.8	P915	901	1	2	0	-2905.7	-0.0	-10774.1
-0.8	P918	106	1	3	0	-7251.9	-0.2	-6417.6
0.7	P915	106	1	3	0	8888.7	0.4	-4304.7
-0.5	P915	909	1	3	0	4274.1	0.0	16400.8
-0.5	P915	602	1	3	0	10755.9	0.1	-10319.5
0.5	P912	102	1	2	0	-8207.5	-0.5	1589.5
-0.2	P912	903	1	3	0	2519.4	0.1	-11736.8
-0.5	P912	902	1	3	0	-2833.9	0.3	-11685.1
-0.4	P918	904	1	2	0	1403.5	0.0	-12298.4
0.4	P912	904	1	2	0	10326.8	0.0	-11560.2
-0.4	P912	909	1	3	0	-2007.8	-0.0	14521.2
0.4	P915	105	1	3	0	4756.0	0.3	-1778.1
-0.0	P915	903	1	3	0	10436.0	-0.0	-10168.8
0.2	P918	903	1	3	0	-6416.8	-0.0	-12294.7
0.2	P912	106	1	3	0	1263.1	-0.1	-5836.8
-0.2	P915	102	1	2	0	-946.3	0.2	3109.8
0.0	P918	909	1	3	0	-8838.9	0.0	13712.8
0.2	P918	109	1	3	0	-8245.7	-0.1	6363.4

		Stat	istic f	'ile-pri	es kal	libravima		
-0.1	P912	908	1	2	0	-10529.1	-0.0	4955.7
-0.0	P915	908	1	2	0	-3422.6	0.0	6543.0
0.0								

End of MATCH-AT statistic file

Appendix 3. *Inpho* aerial triangulation report of the images which are corrected from the digital camera *Canon EOS 1D Mark III* objective distortions

aat-pries kalibravima

Start Post Processing: Sun May 22 15:47:21 2011		
Active Block Number of photos Number of strips	:	complete Block 3 1
Photo scale Mean terrain height [m]	:	1:635 50
Automatic blunder detection	:	OFF
Use all adjusted points in project file as control (absolute mode)	:	OFF
Control parameter for block adjustment :		
Selfcalibration GNSS-Mode Drift-Mode IMU-Mode Earth's curvature correction Atmospheric correction Do not eliminate manual points		OFF OFF OFF OFF ON OFF
Standard deviations (a-priori) :		
Ground control (planimetry) [m]		
0 (=default)	:	0.020
Ground control (height) [m]		
Set 0 (=default)	:	0.020
Automatic image points [mm]		
Set 0 (=default)	:	0.001
Image points of ground control and manual measurements	[mm] :	0.006
Used Cameras in block:		
1 CanonEOS1DMarkIII Distortion	:	Coefficients
Tie Point Generator		
created 15 observations for photo P created 18 observations for photo P created 13 observations for photo P	915 912 918	

total of 46 measurements in 3 photos are used for adjustment (total 3 photos)

aat-pries kalibravima 336.2 micron (15:47:55) 106.8 micron (15:48:00) 1.0 micron (15:48:06) 0.5 micron (15:48:10) sigma naught sigma naught sigma naught sigma naught 2 photos 3 photos 8 points connecting 10 points connecting found found number of observations number of unknowns 122 72 50 redundancy RMS automatic points in photo (number: 0) x 0.0 micron 0.0 micron У control and manual points in photo (number: 46) x 1.3 micron RMS 1.1 micron y RMS control points with default standard deviation set (number: 10) 0.006 [meter] 0.008 [meter] х у RMS control points with default standard deviation set (number: 10) z 0.008 [meter] sigma naught 0.5 micron (15:48:16) standard deviations of exterior orientation parameters (px, py, pz in [meter] omega,phi,kappa in [deg/1000]) photo ID phi px ру pz omega kappa P912 0.039 0.031 0.017 54.2298 69.6976 20.9474 20.4430 23.5311 0.040 0.041 P915 0.031 0.034 0.015 55.3733 59.2233 69.9365 74.1548 P918 mean standard deviations of rotations 56.3 [deg/1000] 71.3 [deg/1000] 21.6 [deg/1000] omega phi⁻ kappa standard deviations of rotations omega 59.2 [deg/1000] at photo phi 74.2 [deg/1000] at photo kappa 23.5 [deg/1000] at photo max P918 P918 P918 mean standard deviations of translations 0.040 [meter] 0.032 [meter] 0.018 [meter] х y z standard deviations of translations x 0.041 [meter] at photo y 0.034 [meter] at photo z 0.022 [meter] at photo max P918 P918 P918 residuals horizontal control points in [meter] control point ID rx ry 102 -0.004 -0.002 105 -0.002 -0.002 0.001 106 107 -0.001 0.010 109 0.016 -0.021 110-0.004 0.007 111 -0.002 0.007 600 0.003 -0.000

0.003

-0.004

602

	6	03	aat-pries -0.005	kalibravi	ima 0.00	01		
residuals ve	rtical co	ntro l point	s in [mete	r]				
	control p	oint ID	rz					
	1 1 1 1 1 1 6 6 6 6	02 05 06 07 09 10 11 00 02 03	0.002 -0.000 -0.010 -0.017 0.006 0.014 -0.002 0.000 0.005					
max standard x y Z	deviatio 0.0 0.0 0.0	ns of terra 06 [meter] 09 [meter] 14 [meter]	in points at point at point at point			901 909 904		
mean standard x y z	deviatio 0.0 0.0 0.0	ns of terra 04 04 08	in points					
exterior orie rotations fro	ntation p n terrain	arameters (to photo (px, py, pz rotated ax	in [mete es)	r] omega	a,phi,kappa	a in [deg])
I	photo ID	рх	ру		pz	omega	phi	kappa
	P912 P915 P918	-62.274 -68.499 -55.754	1.0 1.5 0.9	72 94 83	81.006 81.877 79.849	13.3404 11.0122 14.1175	11.4382 9.0747 13.3966	-4.2337 -4.2762 -3.5555
WARNING: Susp WARNING: Susp following photo	ect orien photo P912 P915 P918 ect stand (s): photo	tation angl omega 13.34040 11.01223 14.11754 ard deviati omega	e(s) (> 4 phi 11.43818 9.07467 13.39656 on for ori phi	.50000 [d kappa -4.23368 -4.27616 -3.55549 entation kappa	eg]) in angle(s)	following) (> 27.000	photo(s):	.000]) in
	P912 P915 P918	54.22984 55.37330 59.22329	69.69759 69.93648 74.15477	20.94739 20.44304 23.53113				
Sigma naught	: 0.5	[micron] =	0.1 [p	ixel in l	evel 0]			
Elapsed time	= 0 hour	1 min. 7 se	с.					
End of Post P	rocessing	: Sun May 2	2 15:48:26	2011				

Appendix 4. Inpho aerial triangulation statistics file of the original images

Statistic file-po kalibravimo

MATCH-AT	statistic file						
Project Kopie vor	: V:∖GERU 1 22.prj	LIS PRJ po kal	ibravimo	\Kopie von	Kopie von	Kopie von	Kopie von
Date of	creation : Sun May	22 16:39:17 2	011				
1. Summa	ary:						
5	igma O in micron		0.5				
r	number block points number of images	1	18 3				
r r	number of iteration edundandancy	I.	3 50				
п	nean std dev ground	I х У z	0.004 0.004 0.007	[units of 1 [units of 1 [units of 1	terrain sys terrain sys terrain sys	stem] stem] stem]	
п	iean std dev ori o p k	mega hi app	55.5 70.1 21.4	[mgrd] [mgrd] [mgrd]			
п	iean std dev ori	x y z	0.035 0.028 0.016	[units of 1 [units of 1 [units of 1	terrain sys terrain sys terrain sys	stem] stem] stem]	
r	ms image points	x y	0.000	[micron] [micron]			
r	ms control in imag	je x y	0.838	[micron] [micron]			
r	ms control in terr	y z	0.006 0.009 0.004	[units of 1 [units of 1 [units of 1	terrain sys terrain sys terrain sys	stem] stem] stem]	
п	ax res. control	x y z	0.016 -0.025 -0.011	[units of 1 [units of 1 [units of 1	terrain sys terrain sys terrain sys	stem] stem] stem]	
r	ms check points	x y z	0.000 0.000 0.000	[units of 1 [units of 1 [units of 1	terrain sys terrain sys terrain sys	stem] stem] stem]	
п	ax res. check	x y z	0.000 0.000 0.000	[units of 1 [units of 1 [units of 1	terrain sys terrain sys terrain sys	stem] stem] stem]	
2. Estin	nated orientation p	arameters and	standard	deviations	:		
phot Z std.Z	to ID omega std.ome[mgrd]	[grd] phi[grd std.phi[mgrd]] kapp std.k	a[grd] appa[mgrd]	x std.	.x sto	/ 1.Ү
81.49 0.014	P915 12.43 96 54.600	1744 10.39969 68.866	7 -4. 20	774838	-68.49 0.	93 .035 (1.502 0.028
80.63 0.015	P912 14.96 53.532	9854 12.80650 68.532	4 -4. 20	712475 .736	-62.39	98 .034 (1.015 0.027
79.47 0.019	P918 15.88 79 58.385	2515 14.87530 72.877	9 -3. 23	981950 .269	-55.99	51 .036 (0.905

GNSS observations and resuduals:

Statistic file-po kalibravimo

photo ID		х	Y	z	res	x	res	у	res	z
P915 P912 P918	no no no	GNSS GNSS GNSS	observation observation observation	given given given						

4. Adjusted coordinates including control/check points and standandard deviations:

fold	point check	ID blun	d '	given x	z given y	sx given z	sy res x	sz res y	code res z
			102	-74.158	9,826	50.358	0.003	0.003	0.006
6	2	0		-74.165	9.827	50.358	-0.007	0.001	0.000
			105	-70.717	6.493	49.518	0.003	0.003	0.005
6	3	0	0	-70.721	6.495	49.520	-0.004	0.002	0.002
			106	-68.224	4.773	48.904	0.003	0.003	0.005
6	3	0	0	-68.222	4.775	48.905	0.002	0.002	0.001
			107	-62.240	12.154	48.028	0.003	0.004	0.006
6	2	0	0	-62.235	12.165	48.028	0.005	0.011	0.000
			109	-69.280	13.727	48.823	0.003	0.003	0.005
6	3	0	0	-69.264	13.702	48.812	0.016	-0.025	-0.011
			110	-72.712	15.985	50.119	0.004	0.004	0.006
6	2	0	0	-72.716	15.986	50.124	-0.004	0.001	0.005
-	_	-	111	-65.702	16.056	48.411	0.004	0.004	0.006
6	3	0	0	-65.706	16.058	48.414	-0.004	0.002	0.003
-	-	-	600	-75.331	0.478	50.710	0.004	0.004	0.006
6	2	0		-75.334	0.482	50.711	-0.003	0.004	0.001
~	-		602	-67.363	0.963	48.905	0.003	0.003	0.005
6	3	0		-67.364	0.965	48.906	-0.001	0.002	0.001
~	-		603	-63.196	0.213	47.782	0.004	0.004	0.006
6	2	0		-63.195	0.212	4/.//9	0.001	-0.001	-0.003
-	-	~	901	-75.646	1.051	50.812	0.006	0.004	0.012
	2000	1104	~~~ ⁽	,			-999999998	5991104.0	00
-99993	9998699.	1104.	000 -	-39999999986991104.000	1 170	40 533	0.004	0.003	0.007
	2	0	302	-70.823	1.1/5	43.332	-99999999	6991104 0	0.007
_00000	0000000	1104	000	,			33333333	5551104.0	00
- 55555	3336633.	.104.	902	-67 549	1 061	48 889	0.002	0.002	0.007
5	3	0	505	-07.545	1.001	40.005	-999999998	6991104 0	00.007
-99999	9998699	1104.	000 -	999999986991104.000			55555556	0001104.0	
			904	-62.788	1.042	47.662	0.004	0.004	0.012
5	2	0)	1.042	471002	-999999998	6991104.0	00
-99999	99986993	1104.	000 -	999999986991104.000					
			905	-67.804	6,649	48,849	0.003	0.003	0.006
5	3	0)	01015		-99999998	6991104.0	00
-99999	99986991	1104.	000 -	999999986991104.000					
			906	-68.985	9.365	49.049	0.003	0.003	0.006
5	3	0	0)			-99999998	6991104.0	00
-99999	99986991	1104.	000 -	999999986991104.000					
			908	-75.604	12.118	50.931	0.005	0.005	0.012
5	2	0	0)			-99999998	6991104.0	00
-99999	99986991	1104.	000 -	999999986991104.000					
			909	-70.373	20.036	47.931	0.005	0.008	0.010
5	3	0	0)			-99999998	6991104.0	00
-99999	99986991	1104.	000 -	999999986991104.000					

3. Photo observations and residuals:

vy	photo	point	status	fold a	automa	x	vx	У
	P918	903	1	3	0	-6272.5	-1.1	-12193.8
-3.0	P912	903	1	3	0	2673.7	2.0	-11663.9
1.9	P912	603	1	2	0	9878.4	-0.7	-12801.1
-2.2	P918	603	1	2	0	885.8	0.8	-13569.8
2.1	P918	109	1	3	0	-8131.0	-0.7	6498.2

-2.1		50	aciscie	THE-P	U Kall	DI av Illo		
-2.1	P912	902	1	3	0	-2691.2	-1.7	-11609.4
-1.3	P912	110	1	2	0	-5862.0	-1.2	10455.6
-1.7	P915	110	1	2	0	1021.9	0.8	12197.2
1.8	P912	909	1	3	0	-1864.2	-1.8	14621.0
0.7	P915	102	1	2	0	-803.2	-0.8	3252.1
-1.8	P912	109	1	3	0	-493.9	1.8	7229.7
-0.5	P915	909	1	3	0	4400.7	0.9	16450.1
-1.6	P912	102	1	2	0	-8114.9	0.4	1708.6
1.8	P918	106	1	3	0	-7146.4	0.2	-6350.0
1.6	P915	903	1	3	0	10583.8	-1.0	-10060.2
1.1	P918	111	1	3	0	-2989.1	-1.1	9892.8
-1.0	P918	909	1	3	0	-8672.8	0.9	13782.1
1.0	P915	106	1	3	0	9086.6	0.5	-4221.7
-1.2	P918	902	1	3	0	-11478.0	0.9	-11982.7
1.0	P918	904	1	2	0	1554.0	-0.0	-12220.3
-1.3	P912	904	1	2	0	10457.1	-0.0	-11437.2
1.3	P912	111	1	3	0	4613.4	1.2	10678.6
0.3	P918	107	1	2	0	2073.7	1.1	4841.5
0.4	P918	905	1	3	0	-6437.7	-0.2	-3470.3
-1.2	P912	906	1	3	0	22.6	1.2	1163.9
-0.2	P918	906	1	3	0	-8099.9	-0.6	521.6
1.0	P918	105	1	3	0	-10970.9	-0.5	-3719.6
0.9	P915	906	1	3	0	7389.1	-0.6	2736.9
-0.8	P915	109	1	3	0	6484.3	-0.1	8872.5
1.0	P915	111	1	3	0	11475.4	-0.5	12343.1
0.8	P912	905	1	3	0	1991.1	0.3	-2856.7
0.9	P912	602	1	3	0	2973.8	-0.5	-11812.3
-0.8	P915	902	1	3	0	5266.0	0.9	-10139.7
0.3	P912	107	1	2	0	10127.9	-0.9	5618.2
0.3	P912	908	1	2	0	-10419.4	-0.0	5080.9
-0.8	P915	908	1	2	0	-3300.1	0.0	6697.1
0.7	P912	106	1	3	0	1425.0	-0.6	-5783.2
-0.2	P912	901	1	2	0	-10728.9	0.0	-11970.9
0.7	P915	901	1	2	0	-2771.5	-0.0	-10712.2
-0.7	P915	602	1	3	0	10895.7	0.4	-10203.4
0.5	P912	105	1	3	0	-2652.9	0.5	-3201.3
-0.3	P915	105	1	3	0	4955.2	-0.2	-1688.6
-0.5	P918	602	1	3	0	-6006.5	0.1	-12356.1
0.4								

Statistic file-po kalibravimo

		Sta	atistic	file-po	kali	bravimo		
0.3	P915	905	1	3	0	9530.7	-0.2	-1287.1
0.1	P915	600	1	2	0	-2198.2	-0.1	-11638.3
0.1	P912	600	1	2	0	-10201.7	-0.0	-12903.2
0.1								

End of MATCH-AT statistic file

Appendix 5. Inpho aerial triangulation report of the original images

aat-po kalibravimo

Start Post Processing: Sun May 22 16:39:18 2011

Active Block Number of photos	: complete Block
Number of strips	: 1
Photo scale Mean terrain height [m]	: 1:609 : 50
Automatic blunder detection	: OFF
Use all adjusted points in project file as control (absolute mode)	: OFF
Control parameter for block adjustment :	
Selfcalibration GNSS-Mode Drift-Mode IMU-Mode Earth's curvature correction Atmospheric correction Do not eliminate manual points Standard deviations (a-priori) :	: OFF : OFF : OFF : OFF : OFF : ON : OFF
Ground control (planimetry) [m]	
Set 0 (=default)	: 0.020
Ground control (height) [m]	
Set 0 (=default)	: 0.020
Automatic image points [mm]	
Set 0 (=default)	: 0.001
Image points of ground control and manual measurements [mm]	: 0.006
Used Cameras in block:	
1 CanonEOS1DMarkIII Distortion	: Coefficients
Tie Point Generator	
created 15 observations for photo P915 created 18 observations for photo P912 created 13 observations for photo P918	

total of 46 measurements in 3 photos are used for adjustment (total 3 photos)

aat-po kalibravimo 0.5 micron (16:39:39) 0.5 micron (16:39:42) sigma naught sigma naught 8 points connecting 10 points connecting 2 photos 3 photos found found number of observations number of unknowns 122 72 50 redundancy RMS automatic points in photo (number: 0) 0.0 micron х 0.0 micron у control and manual points in photo (number: 46) RMS 0.8 micron х 1.2 micron У RMS control points with default standard deviation set (number: 10) x 0.006 [meter] y 0.009 [meter] RMS control points with default standard deviation set (number: 10) z 0.004 [meter] sigma naught 0.5 micron (16:39:46) standard deviations of exterior orientation parameters (px, py, pz in [meter] omega, phi, kappa in [deg/1000]) photo ID px py pz omega phi kappa P912 0.034 0.027 0.015 48.1791 61.6792 18.6625 61.9796 65.5897 18.2262 20.9421 0.028 49.1402 52.5466 P915 0.035 0.014 P918 0.019 0.036 mean standard deviations of rotations omega 50.0 [deg/1000] phi 63.1 [deg/1000] kappa 19.3 [deg/1000] standard deviations of rotations max 52.5 [deg/1000] at photo 65.6 [deg/1000] at photo 20.9 [deg/1000] at photo omega P918 P918 phi kappa P918 mean standard deviations of translations x 0.035 [meter] y 0.028 [meter] z 0.016 [meter] max standard deviations of translations x 0.036 [meter] at photo y 0.030 [meter] at photo z 0.019 [meter] at photo P918 P918 P918 residuals horizontal control points in [meter] control point ID гх гу 0.001 -0.007 102 -0.004 105 106 0.002 0.005 107 0.011 109 0.025 **1**10 -0.004 0.001 111-0.004 0.002 600 -0.003 0.004 -0.001 602 0.002 603 -0.001

		aat-po kal	ibravimo			
residuals vertical	control point	s in [meter]				
contro	l point ID	rz				
	102 105 106 107 109 110 111 600 602 603	0.000 0.002 0.001 0.000 -0.011 0.005 0.003 0.001 0.001 -0.003				
max standard devia x y z	tions of terra 0.006 [meter] 0.008 [meter] 0.012 [meter]	in points at point at point at point at point		901 909 901		
mean standard devia x y z	tions of terra 0.004 0.004 0.007	in points				
exterior orientation rotation from terr	n parameters (ain to photo (px, py, pz i rotated axes	n [meter] omeg)	a,phi,kapp	a in [deg])
photo	ID px	ру	pz	omega	phi	kappa
P912 P915 P918	-62.398 -68.493 -55.951	1.015 1.502 0.905	80.637 81.496 79.479	13.4729 11.1886 14.2943	11.5259 9.3597 13.3878	-4.2412 -4.2974 -3.5838
WARNING: Suspect or photo P912 P915 P918 WARNING: Suspect st	ientation angl omega 13.47287 11.18857 14.29426	e(s) (> 4.5 phi 11.52585 - 9.35973 - 13.38778 -	0000 [deg]) in kappa 4.24123 4.29735 3.58375	following	photo(s):	0001) in
following photo(s): photo	omega	on for orien phi	kappa) (> 27.00	000 [deg/1	000]) 1N
P912 P915 P918	48.17914 49.14019 52.54662	61.67922 1 61.97964 1 65.58971 2	8.66254 8.22622 0.94213			
Sigma naught :	0.5 [micron] =	: 0.1 [pix	el in level 01			
Elapsed time = 0 ho	ur 0 min. 39 s	sec.	-			
End of Post Process	ing: Sun May 2	2 16:39:54 2	011			

Appendix 6. *BLUH* bundle triangulation report of the images which are corrected from the digital camera *Canon EOS 1D Mark III* objective distortions

bluh-pries kalibravima.lst LEIBNIZ UNIVERSITY HANNOVER PROGRAM BLUH JUL 2010 ____ BUNDLE BLOCK ADJUSTMENT ____ INSTITUTE OF PHOTOGRAMMETRY AND GEOINFORMATION DATE: 22.05.2011 19:33:07 VERSION FUER HS NEUBRANDENBURG FROM L.UNI.HANNOVER TEXT default DAXYZ daxyz.dat DAPOR dapor.dat BLUINF bluinf.dat DABLUH dabluh.dat NUMBER OF PHOTOS GPSWXY GPS GPSWZ GPS ANTENNA OFFSET 3. 3 0 .300 .300 .000 .000 .000 CALIBRATED FOCAL LENGTH 660 50.758 GW(3) IB FEG REC.SCALE ABIT IOUT / 1.0 0 20.0 0. .81 0 GW(2) FEG REC.SCALE ABIT IOUT APPR IFR MAXI IW GW(1) 10 1 1.000 1.000 0 0 FROM PT TO POINT WEIGHT AD PAR WARNING OUTSIDE 50. 99999999999999999 0 1.000 0 0 . SYSIM LIST 0 0 REA REB REC REC2 IMAR IMA2 5.00 4.40 Ν .050 3.00 0 0 APRIORI STANDARD DEVIATIONS: CONTROL POINTS SX = SY = 1.000 1.000 SZ = PHOTO COORDINATES Sy = Sx = 1.0 IPPP NGPSIT NGPSHI **IPU** IFILT IEROUT ISTAR 3 18 7 0 0 1 З PHOTO NUMBER LIST 912 1 918 1 915 1 0 0 CONTROL POINTS POINT Х Z FSP FSZ Y -74.165 9.827 50.358 102 .02 .02 105 -70,721 6.495 49,520 .02 .02

bluh-pries kalibravima.lst -68.222 4.775 -62.235 12.165 106 48.905 .02 .02 107 -62.235 12.165 48,028 .02 .02 .02 13.702 15.986 .02 109 -69.264 48.812 50.124 -72.716 110 .02 .02 111 -65.706 16.058 48.414 .02 .02 .482 .02 600 -75.334 50.711 .02 .965 .02 602 -67.364 48.906 .02 603 -63.195 .212 47,779 .02 .02 RANGE OF PHOTO COORDINATES
 R
 MINIMUM
 =
 -11.654
 X
 MAXIMUM
 =
 11.359
 Y
 MINIMUM
 =
 -13.665
 Y
 MAXIMUM
 =
 16.401
 R
 MAXIMUM
 =
 16.401
 R
 MAXIMUM
 =
 16.401
 R
 MAXIMUM
 =
 16.401
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R
 R</tht UP TO 18 POINTS / PHOTO 10 X,Y-CONTROL: .137 .057 10 Z-CONTROL: 1.291 NO.ITER MS CORR X MS CORR Y MS CORR Z SIGMA 0 (ITER) TIME [ground unit] [microns] _____ .885213E-01 .114311E+00 .775095E+00 48.9 19:33:07 10 X,Y-CONTROL: .171 .118 10 Z-CONTROL: .354 .110633E+00 .480971E-01 .409258E+00 24.3 19:33:07 MEAN HEIGHT CAMERA PROJECTION CENTER TERRAIN PHOTO SCALE 630. FOR [ft]: 192. 16. inch/ft 81. 49. MAIN KAPPA FOR DATA SET 1 : -1.602 3 3 ∠-CONTROL: .022 .216426E+00 10 X,Y-CONTROL: .007 .011 10 Z-CONTROL: .117667E+00 .730071E-01 .216426E+00 2 .117667E+00 .730071E-01 1.6 19:33:07 .006 .010 10 Z-CONTROL: .020 .276170E-02 .484955E-02 10 X,Y-CONTROL: .006 .361015E-02 .2761 3 1.4 19:33:07 10 X,Y-CONTROL: .006 .006 .010 10 Z-CONTROL: .020 .176711E-04 .396784E-04 .145749E-04 1.4 19:33:07 4 STANDARD DEVIATIONS OF PHOTO ORIENTATIONS PHOTO SPHI SOMEGA SKAPPA SY SX SZ .01331 .00252 .023 918 .00280 .021 .015 .00060 .010 .004 912 .00115 .00450 .006 .00399 .012 915 .00101 .00052 .003 .004 PHOTO ORIENTATION [GRADS] SEQUENCE OF ROTATION: PHI, OMEGA, KAPPA _____ _____ _____ _____ PHOTO PHT OMEGA KAPPA EASTING NORTHING HETGHT 81.870 81.006 915 10.2262 12.1016 912 12.9964 14.5412 918 15.2827 15.2650 -2.7999 -68,522 1.584 -2.7955 -1.7172 -.2458 -62.303 1.063 -55.780.976 79.854 PHOTO ORIENTATIONS IN ROTATION SEQUENCE OMEGA, PHI, KAPPA [GRADS] STORED IN DAPORO.DAT PHOTO ORIENTATIONS IN PAT-B-FORMAT STORED IN DAPORP.DAT BLUH ORIENTATIONS WITH ROTATION SEQUENCE PHI OMEGA KAPPA [GRADS] STORED IN dapor.dat

default

ADJUSTED COORDINATES ERROR LIMIT FOR LISTING RESIDUALS 20.00 MICRONS

			bluh-pries	kalibra	vima.lst				
POINT	NAME	EASTING	NORTH1	NG P POP	HEIGHT	PHOTO EAST DV	NORTH	DATASNO	MAY
0.1	DCP: D	IFFERENCE	AT OBJECT	COORDS.	OF CONTRO	DL POINTS	SWEIGHT	DATASNO	MOA
	102 DCPXV	-74.161	9.8	02	50.349	CP	2 BASE 102 50	6.30	
	DCI XI	.004		02		CI .	102 50	.000	
	DCPZ				.009	cz	102		
	105	-70.720	6.4	97	49.519		3		
	DCPXY	001	0	02		CP	105 50	.000	
	DCPZ				.001	cz	105		
	106	-68.224	4.7	76	48.902		3		
	DCPXY	.002	0	01		CP	106 50	.000	
	DCP7				002	67	106		
	DCF2				.005	22	100		
	109	-69.279	13.7	21	48.833		3		
	DCPXY	.015	0	19		CP	109 50	.000	
	DCP7				- 021	67	109		
	DCFZ				021	C2	109		
	110	-72.712	15.9	80	50.112		2 BASE	6.30	
	DCPXY	004	.0	06		CP	110 50	.000	
	DCPZ				.012	C2	110		
	111	-65.704	16.0	53	48.398		3		
	DCPXY	002	.0	05		CP	111 50	.000	
	DCPZ				.016	cz	111		
	600	-75 337	4	82	50 709		2 BASE	6 30	
	DCPXY	.003	0	01	50.705	CP	600 50	.000	
	DCPZ				.002	CZ	600		
	602	-67 261		62	48 005				
	DCPXY	003		03	40.905	CP	602 50	.000	
						-			
	DCPZ				.001	cz	602		
	001	75 650	1.0		50 770		2 8465	6 20	
	901	-70.828	1.0	81	49 521		2 BASE	6.50	
	903	-67.549	1.0	62	48.890		3		
	905	-67.802	6.6	52	48.843		3		
	906	-68.984	9.3	67	49.047		3		
	908	-75.608	12.1	.26	50.911		2 BASE	6.30	
	107	-70.368	20.0	45	47.928		3 2 BASE	6 62	
	DCPXY	001	.0	20	40.071	CP	107 50	.000	
	DCPZ				043	CZ	107		
	603	-62 191		4.4	47 769		2 BASE	6 62	
	DCPXY	004	.2	01	47.700	CP	603 50	.000	
	Der Al						005 50		
	DCPZ				.011	CZ	603		
					17 610				
	904	-62.782	1.0	41	47.649		2 BASE	6.62	
ROOT MEAN SQL	JARE OF DIF	FERENCES	AT CONTROL	POINTS	FOR UNI	T WEIGHT			
10 HORIZONT	AL CONTROL	POINTS	KMSE X = +	.000	b +/-	.303			
10 VERTICAL	CONTROL P	OTNTS	RMSE 7 = +	/- 020	0 +/-	1.017			
10 FERTICAL		-211.5	[9]	round u	nits] '/				
					-				
			- ·						
Y 000	V.	NOL POINT	s: • 000 [around	unite]				
		2000 2		gi ounu i	ann co j				
AVERAGE BASE	FOR 2-RAY-	POINTS:	6.43						
MEAN SQUARE ERRORS [microns] NO PHOT PTS INT MSE X NO IN GROUP INT MSE Y POINT CODE 10 .51 CP7 1 25 1.31 CPXY 2 25 10 1.09 .54 ADJUS .76 1.09 4 18 46 1.01 .84 MEAN MEAN SQUARE CORRECTIONS OF LAST ITERATION .0030 Y: .0057 Z: .0151 [ground units] X: OBSERVATIONS UNKNOWNS REDUNDANCE SIGMA 0 122 72 50 1.36 19:33:07 [microns] ++++++ APRIORI STANDARD DEVIATIONS SHOULD BE CHANGED IN BLIM TO: ++++++ SIGMAO APRIORI : CONTROL POINTS X,Y: . 1. Z: 1.02 .43 MEAN VALUES OF RESIDUALS AND MSE IN RADIAL COMPONENTS IST LINE RADIUS 2ND LINE MEAN RADIAL 3RD LINE MSE RADIAL [CM] [MICRONS] [MICRONS] 4TH LINE MSE TANGENTIAL [MICRONS] STH LINE NUMBER OF POINTS IN GROUP DATA SET 1 .1 .2 .5 .7 .9 .6 1.0 1.1 1.2 1.4 1.5 1.6 1.7 - 0 -4 .0 .2 .2 .0 .0 .0 .0 .0 .0 .1 .0 -.1 .1 .0 .0 .0 .2 .0 .0 .0 .2 .1 .0 .0 .1 .1 .1 .1 .1 .1 .2 .2 .0 .1 .0 .0 .2 .0 .1 .0 .0 .0 .1 .1 .1 1 з 5 13 10 4 5 0 0 4 5 1 з 1 5 MSE (TANGENTIAL) = +/- .1 MSE (RADIAL) = +/- .1 60 PHOTO POINTS MEAN SQUARE NADIR ANGLE : 19.0 1: 656.1 200. = 1 MEAN PHOTO SCALE = 1: 3 PHOTOS 17. in/ft FOR [ft]: 1: ADJUSTED COORDINATES COMPUTED : DATE: 22.05.2011 19:33:07 default POINT NAME EASTING NORTHING HEIGHT RAYS Type Class 9.829 50.349 2 Control 102 -74.161 XYZ 105 -70.720 6.497 49.519 3 Control XYZ 106 4.776 48.902 -68.224 3 Control XYZ 107 -62.234 12.145 48.071 2 Control XYZ 109 -69.279 13.721 48.833 3 Control XYZ

110

111

600

602

603

901 902

903

904

905

906

908

-72.712

-65.704

-75.337

-67.361

-63.191

-75.659

-70.828

-67.549

-62.782 -67.802

-68.984

-75.608

bluh-pries kalibravima.lst

15.980

16.053

.483

.211

1.181

1.062

1.041

6.652

9.367

12.126

.962

50.112

48.398

50.709

48.905

47.768

49.531

48.890

47,649

48.843

49.047

50.911

2 Control

3 Control

2 Control

3 Control

2 Control

2

3

3

2

3

3

2

XYZ

XYZ

XYZ

XYZ

XYZ

bluh-pries kalibravima.lst 909 -70.368 20.004 47.928 3

POINT COORDINATES STORED IN daxyz.dat

DATA FOR TRANSFER TO BLAN STORED IN bluinf.dat

OUTPUT FILES OBJECT COORDINATES : daxyz.dat

ORIENTATIONS PHI OMEGA KAPPA: dapor.dat

ORIENTATIONS OMEGA PHI KAPPA: daporo.dat ORIENTATIONS PAT-B-FORMAT : daporp.dat RESIDUALS AT IMAGE POSITIONS: resi.dat DATA FOR TRANSFER TO BLAN : bluinf.dat

END OF BLUH DATE: 22.05.2011 19:33:07

Appendix 7. BLUH bundle triangulation report of the original images

bluh-po kalibravimo.lst PROGRAM BLUH LEIBNIZ UNIVERSITY HANNOVER JUL 2010 ----- BUNDLE BLOCK ADJUSTMENT -----INSTITUTE OF PHOTOGRAMMETRY AND GEOINFORMATION DATE: 23.05.2011 17:48:57 VERSION FUER HS NEUBRANDENBURG FROM L.UNI.HANNOVER TEXT default DAX'YZ daxyz.dat DAPOR dapor.dat BLUINF bluinf.dat DABLUH dabluh.dat GPSWZ NUMBER OF PHOTOS GPS GPSWXY GPS ANTENNA OFFSET 0 .300 .300 .000 .000 .000 з. 3 CALIBRATED FOCAL LENGTH 660 50.793 GW(3) IB FEG REC.SCALE ABIT IOUT APPR IFR 1.0 0 20.0 0. .81 0 0 0 MAXI IW GW(1) GW(2) 1.000 1.000 0..81 0 0 10 1 FROM PT TO POINT WEIGHT AD PAR WARNING OUTSIDE 50. 9999999999999999 0 0 1.000 0 . SYSIM LIST REA REC IMA2 REB REC2 IMAR 5.00 4.40 3,00 Ν .050 0 0 APRIORI STANDARD DEVIATIONS: CONTROL POINTS SX = SY = 1.000 SZ = 1,000 PHOTO COORDINATES Sy = Sx = 1.0 IPPP IPU NGPSIT NGPSHI IFILT IEROUT ISTAR 3 18 7 0 0 1 з PHOTO NUMBER LIST 915 1 912 1 918 1 0 0 CONTROL POINTS POINT X ESP ESZ 7 -74.165 50.358 .02 9.827 .02 102 105 .02 -70.721 6.495 49.520 .02

bluh-po kalibravimo.lst -68.222 .02 106 4.775 48,905 .02 .02 -62.235 107 48.028 .02 -69.264 13.702 .02 109 48.812 .02 110 -72.716 15.986 50.124 .02 .02 -65.706 16.058 .02 111 48.414 .02 .482 600 -75.334 50.711 .02 .02 .02 .02 602 -67.364 .965 48.906 .212 603 -63.19547.779 .02 .02 RANGE OF PHOTO COORDINATES X MINIMUM = -11.478 X MAXIMUM = 11.675 Y MINIMUM = -13.570 Y MAXIMUM = 16.450 R MAXIMUM = 20.059 FACTOR = 8.10622 18 POINTS / PHOTO UP TO 10 X,Y-CONTROL: .159 .061 10 Z-CONTROL: 1.014 MS CORR Y NO.ITER MS CORR X MS CORR Z SIGMA 0 (ITER) TIME [ground unit] [microns] 0 .971177E-01 .954997E-01 .598418E+00 46.6 17:48:57 .118 18 .064 10 Z-CONTROL: .116911E-01 .3819805 .169 10 X,Y-CONTROL: .381980E+00 .488001E-01 17.2 17:48:57 1 MEAN HEIGHT CAMERA PROJECTION CENTER TERRAIN PHOTO SCALE 81. 49. 633. FOR [ft]: 193. 16. inch/ft MAIN KAPPA FOR DATA SET 1 : -1.584 3 2 10 X,Y-CONTROL: .044 .030 10 Z-CONTROL: .119 .372847E-01 .114805E+00 2 .739378E-01 1.4 17:48:57 .044 10 X,Y-CONTROL: .246304E-02 .030 10 Z-CONTROL: .524448E-03 .171855E-02 1.4 17:48:57 3 STANDARD DEVIATIONS OF PHOTO ORIENTATIONS рното SPHI SOMEGA SKAPPA SX SY SZ .00222 .01670 .019 .029 918 .00276 .028 .00064 .00186 .00485 .013 .003 .009 912 .00108 .00065 .00318 .008 .007 915 .012 PHOTO ORIENTATION [GRADS] SEQUENCE OF ROTATION: PHI, OMEGA, KAPPA РНОТО PHI OMEGA KAPPA EASTING NORTHING HEIGHT 915 10.0067 12.4416 912 12.5729 14.2980 918 16.9407 15.9781 -3.0728 -69.753 2.395 82.060 -1.7183 -62.561 -54.964 2.161 81.319 .0621 918 2.118 79.850 PHOTO ORIENTATIONS IN ROTATION SEQUENCE OMEGA, PHI, KAPPA [GRADS] STORED IN DAPORO.DAT PHOTO ORIENTATIONS IN PAT-B-FORMAT STORED IN DAPORP.DAT BLUH ORIENTATIONS WITH ROTATION SEQUENCE PHI OMEGA KAPPA [GRADS] STORED IN dapor.dat default ADJUSTED COORDINATES ERROR LIMIT FOR LISTING RESIDUALS 20.00 MICRONS _____ POINT NAME AME EASTING NORTHING HEIGHT PHOTOS/POINT IMAGE DX [microns] Dy P ROB.E. DX EAST DY NORTH DCP: DIFFERENCE AT OBJECT COORDS. OF CONTROL POINTS SWEIGHT DATASNO MAX D.I.:

102 DCPXY	-74.175 .010	9.841 014	50.364 CP	2 BASE 7.23 102 50.000
DCPZ			006 CZ	102
105 DCPXY	-70.715 007	6.493 .002	49.540 CP	3 105 50.000
DCPZ			020 CZ	105
106 DCPXY	-68.200 022	4.764	48.914 CP	3 106 50.000
DCPZ			009 CZ	106
109 DCPXY	-69.259	13.691 .011	48.822 CP	3 109 50.000
DCPZ			010 CZ	109
110 DCPXY	-72.721	15.974 .012	50.106 CP	2 BASE 7.23 110 50.000
DCPZ			.018 CZ	110
111 DCPXY	-65.711 .005	16.035 .023	48.401 CP	3 111 50.000
DCPZ			.013 CZ	111
600 DCPXY	-75.337 .003	.499 017	50.690 CP	2 BASE 7.23 600 50.000
DCPZ			.021 CZ	600
602 DCPXY	-67.358 006	.959	48.900 CP	3 602 50.000
DCPZ			.006 CZ	602
901 902 903 905 906 908 909 107 DCPXY	-75.645 -70.825 -67.544 -67.802 -68.987 -75.603 -70.372 -62.228 007	1.051 1.174 1.061 6.644 9.364 12.115 20.039 12.180 015	50.811 49.532 48.889 48.850 49.050 50.930 47.935 48.019 CP	2 BASE 7.23 3 3 2 BASE 7.23 3 2 BASE 7.74 107 50.000
DCPZ			.009 CZ	107
603 DCPXY	-63.180 015	.218	47.760 CP	2 BASE 7.74 603 50.000
DCPZ			.019 CZ	603
904	-62.788	1.042	47.661	2 BASE 7.74
ROOT MEAN SQUARE OF DIF 10 HORIZONTAL CONTROL 10 VERTICAL CONTROL P	FERENCES POINTS OINTS	AT CONTROL POIN RMSE X = +/- RMSE Y = +/- RMSE Z = +/- [ground	TS FOR UNIT WEIGH .008 +/215 .020 +/490 .002 +/- 1.926 d units]	т
MEAN DIFFERENCE AT CONT X: .000 Y: .	ROL POINT 000 Z	S: : .000 [groun	nd units]	
AVERAGE BASE FOR 2-RAY-	POINTS:	7.43		
MEAN SQUARE ERRORS		[microns]		

bluh-po kalibravimo.lst

3 2 3

49.050

50.930 47.935

	BOTHT CODE		bluh-po kalibr	avimo.lst	THT HEF Y	
	POINT CODE	NO IN GROUP	NU PHUT PTS	INT MSE X	INT MSE Y	
CP2	Z 1	10	25	2.01	.73	
CPX	Y 2	10	25	1.67	.20	
MEA	5 4 N	18	46	1.58	.72	
			TTERATION			
MEAN X:	.0030 Y:	.0068 7	11ERALION : .0164 [a	round units]		
~				round unresj		
OBSE	RVATIONS	UNKNOWNS	REDUNDANCE	SIGMA	0	
	122	70	50		=	
	122	12	50	I.S [micro	nsl 17.40.5	·
	APPTOPT ST				TO:	
SIGM/	AO APRIORI	:	7.	ANGED IN BLIM	10. 111111	
CONT	ROL POINTS	X,Y: .4	9 Z: 1.03			
++++	*********	******	*****	******	*********	
MEAN	VALUES OF RE	SIDUALS AND MSE	IN RADIAL COMP	ONENTS		
-	1ST LINE RAD	IUS [C	м]			
-	2ND LINE MEA	N RADIAL [M	ICRONS]			
	4TH LINE MSE	TANGENTTAL M	TCRONS			
1	STH LINE NUM	BER OF POINTS I	N GROUP			
DATA	SET 1					
DATA	0 .1 .2	.4 .5 .6	.7 .9 1.0	1.1 1.2 1.4	1.5 1.6 1	.7
. (0.4.0	.0 .00	.3 .1 .0	.16 .3	.4 .3	.1
	0.4.0	.4 .0 .0	.1 .1 .6	.5 .6 .4	.6 .4	.7
	0.1.0	4 3 3	.2 .0 .7	.5 .1 .5	.4 .4 .	4
						-
MSE	(RADIAL) = +/	1 M	SE (TANGENTIAL)	= +/1	60 PHOTO I	POINTS
MEAN	SOUARE NADIR	ANGLE : 1	7.6			
PILON	SQUARE NADIN		/			
MEAN	PHOTO SCALE	= 1: 655.	1 3 PHOTOS			
FU	к [пс]: 1:	200. =	17. 10/10			
40.711	STED COORDINA				-	
ADJU:	STED COORDINA		: DATE: 23.05.	2011 17:48:5	=	
defa	11+					
uera	urc					
	POINT NAME	EASTING	NORTHING	HEIGHT R	AYS Туре	Class
	102	-74,175	9,841	50.364	2 Control	XYZ
	105	-70.714	6.493	49.540	3 Control	XYZ
	106	-68.200	4.764	48.914	3 Control	XYZ
	107	-62.228	12.180	48.019	2 Control	XYZ
	109	-69.259	13.691	48.822	2 Control	XYZ XY7
	110	-65.711	16.035	48.401	3 Control	XYZ
	600	-75.337	. 499	50.690	2 Control	XYZ
	602	-67.358	.959	48.900	3 Control	XYZ
	603	-63.180	1.051	4/./60	2 Control	XYZ
	902	-70.825	1.174	49.532	3	
	903	-67.544	1.061	48.889	3	
	904	-62.788	1.042	47.661	2	
	905	-67.802	0.644	48.850	3	

908 909

-68.987

-75.603

9.364

12.115 20.039

bluh-po kalibravimo.lst POINT COORDINATES STORED IN daxyz.dat DATA FOR TRANSFER TO BLAN STORED IN bluinf.dat

OUTPUT FILES OBJECT COORDINATES : daxyz.dat ORIENTATIONS PHI OMEGA KAPPA: dapor.dat ORIENTATIONS OMEGA PHI KAPPA: daporo.dat ORIENTATIONS PAT-B-FORMAT : daporp.dat RESIDUALS AT IMAGE POSITIONS: resi.dat DATA FOR TRANSFER TO BLAN : bluinf.dat

END OF BLUH DATE: 23.05.2011 17:48:57

Appendix 8. The programme of Republican scientific conference "Civil Engineering and Geodesy"

RESPUBLIKINĖS MOKSLO KONFERENCIJOS "CIVILINĖ INŽINERIJA IR GEODEZIJA" 2010 spalio 22 d.

DIENOTVARKĖ Mokslo komiteto pirmininkas doc. dr. V. Č. Aksamitauskas Mokslo komiteto sekretorius prof. dr. M. Burinskienė Organizacinio komiteto pirmininkas – doc., dr. G. Paliulis Sekretorius – doc., dr. A. Gasilionis

GEODEZIJOS SEKCIJA

1 posėdis 10.00 – 11.30 2709 a.

- 1. Č. Aksamitauskas. Stasiui Vytautui Kazakevičiui 80 m.
- J. Vaitkevičienė, A. Kumetaitienė. Žemės sklypų kadastrinių matavimų tikrinimo ir derinimo kokybės įvertinimas.
- L. Papšienė, G. Beconytė. Lietuvos erdvinės informacijos infrastruktūros vystymo prielaidos.
- D. Levinskaitė, A. Stanionis, A. Zakarevičius. Žemės plutos įtempių pokyčių kaita Lietuvos teritorijoje.
- I. Jonauskienė. Žemės sklypų kokybės tyrimas.
- R. Birvydienė. Sunkio anomalijos ir jų nustatymo Lietuvos teritorijoje galimybės.
- J. Sužiedelytė-Visockienė, R. Bagdžiūnaitė. VGTU personalo Erasmus programos įgyvendinimas ir mobilumo rezultatai.
- J. Pavliukovič, B. Ruzgienė. Skaitmeninės programinės sistemos geoduomenims gauti.
- J. Sužiedelytė-Visockienė, A. Pranskevičiūtė. Pastatų matavimai skaitmeninės fotogrametrijos metodu.
- D. Sabaitis. Apskritiminių skalių tipai ir jų matavimo būdai.
- D. Popovas. Sunkio lauko kitimo poveikis geodeziniams matavimams.

2 posėdis. 11.45 – 13.15

- J. Tropikaitė. Nekilnojamųjų turto daiktų kadastrinių matavimų kokybės kontrolė.
- B. Gaidamovič. Refrakcijos įtakos tyrimas pagal Lietuvos geodezinio vertikaliojo tinklo niveliavimo duomenis.
- G. Kostygova. Žemės sklypo plano sudarymas CAD programine įranga.
- 15. A. Zubanov. Šilo tilto deformacijų analizė.
- G. Dmitrijev. Automatizuoto komparatoriaus valdymo principai ir algoritmai.
- G. Sriubė. Melioracijos projektų susiejimas su LKS–94 koordinačių sistema.
- R. Uleckaitė. Išmatuotų Žemės plutos deformacijų rodiklių tikslumo tyrimas modeliavimo būdu.
- E. Penšina. Laiko sistemų taikomų geodezinėje astronomijoje analizė.
- A. Šilkaitė. Žemės poliaus judėjimo poveikis astronominėms koordinatėms.
- 21. R. Gaidytė. 2D ir 3D statinių modeliavimo ypatumai.
- A. Savickis. Virtualiųjų GPS referencinių stočių tinklo taikant koordinačių korektūrą sudarymas.
- S. Norkutė, R. Putrimas. Vertikaliojo tinklo linijos Jonava-Zarasai niveliavimo rezultatų analizė.
- E. Dagilytė, V. Budrytė. Žemės dangos skaitmeninių vaizdų koreliacinė analizė.

3 posėdis. 13.45 - 15.15

- E. Videiko. Senųjų žemėlapių susiejimas ir transformavimas į bendrąją sistemą.
- 26. M. Mankauskas. Sunkio vertikaliojo gradiento tyrimas.
- E. Zalanskaitė. Jonosferos įtakos GPS matavimams analizė.
- E. Žilius. Vertikaliųjų Žemės plutos judesių įtaka horizontaliesiems judesiams.
- V. Stukaitė. Melioracijos rekonstrukcijos projekto geodezinių darbų analizė.

- V. Nareiko. ArcGIS programinės įrangos uždavinių automatizavimo analizė.
- O. Čepaitė. Gravimetrinių matavimų duomenų apdorojimo analizė.
- A. Gelžinytė. Vertikaliųjų Žemės plutos judesių linijoje Jonava-Kybartai prognozavimo modeliai.
- A. Lingytė. Namų ūkio ūkininko sodybos plėtros projekto geodezinių darbų aspektai.
- T. Gintvainytė. Telšių rajono žemės sklypų registravimo nekilnojamojo turto registre analizė.
- 35. I. Šapola. Vilniaus miesto nekilnojamojo turto objektų verčių analizė taikant "ArcGIS".
- P. Timinskas. Vilniaus urėdijos geoinformacinės sistemos projektavimas.
- V. Bondzinskas. Skaitmeninės topografinės nuotraukos sudarymas atliekant statybos projektavimo darbus.
- 38. A. Žutautas. Palydovinių sistemų apžvalga.
- D. Volungevičiūtė. Pataisos, redukuojant atstumus į LKS-94 kartografinę projekciją.
- E. Butkutė. Skirtingose koordinačių sistemose sudarytų žemėlapių palyginimas.

Diskusijos

VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS APLINKOS INŽINERIJOS FAKULTETAS

CIVILINĖ INŽINERIJA IR GEODEZIJA

RESPUBLIKINĖS MOKSLO KONFERENCIJOS

PROGRAMA

2010 M. SPALIO 22 D.