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Abstract: One of the many unresolved obstacles in the field of cardiovascular research is an un-
compromising in vitro cardiac model. While primary cell sources from animal models offer both
advantages and disadvantages, efforts over the past half-century have aimed to reduce their use.
Additionally, obtaining a sufficient quantity of human primary cardiomyocytes faces ethical and legal
challenges. As the practically unlimited source of human cardiomyocytes from induced pluripotent
stem cells (hiPSC-CM) is now mostly resolved, there are great efforts to improve their quality and
applicability by overcoming their intrinsic limitations. The greatest bottleneck in the field is the
in vitro ageing of hiPSC-CMs to reach a maturity status that closely resembles that of the adult heart,
thereby allowing for more appropriate drug developmental procedures as there is a clear correlation
between ageing and developing cardiovascular diseases. Here, we review the current state-of-the-art
techniques in the most realistic heart models used in disease modelling and toxicity evaluations from
hiPSC-CM maturation through heart-on-a-chip platforms and in silico models to the in vitro models
of certain cardiovascular diseases.

Keywords: hiPSC-CM; cardiomyocyte; toxicology; drug testing; cardiomyocyte maturation;
heart-on-a-chip; cardiac model; disease modelling

1. Introduction

Cardiovascular diseases (CVDs) are the most prevalent diseases and the leading cause
of death worldwide. In recent decades, most of the phase 3 cardiac clinical trials failed
due to safety concerns, lack of efficiency, or economic considerations as we described
previously [1]. This was best illustrated by the disappointing outcomes of the Cardiac
Arrhythmia Suppression Trial (CAST), CAST II, and Survival with oral d-sotalol (SWORD)
trials. In these studies, antiarrhythmic drugs (encainide, flecainide, moricizine, or d-
sotalol) were administered; however, in the CAST trial, the number of deaths due to
arrhythmia or shock after recurrent myocardial infarction was significantly higher in the
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treated patient groups [2], while the CAST II and SWORD trials resulted in higher risk of
drug-associated mortality (cardiac arrests due to arrhythmias) in patients assigned to the
drug treatment [3-5]. Unexpected adverse effects (e.g., hidden cardiotoxicity), therefore,
will lead to the discontinuation of clinical studies and withdrawal of the drug from the
market, leading to the failure of new therapies and an immense financial burden [6].

As a consequence of the unsuccessful clinical attempts, only nine drugs targeting CVDs
were approved by the U.S. Food and Drug Administration (FDA) in the last decade [1]. To
date, ticagrelor was approved in 2011 to reduce cardiovascular death and heart attack in
patients with acute coronary syndromes [7]; vorapaxar in 2014 to reduce the risk of heart
attacks and stroke in high-risk patients [8]; ivabradine and sacubitril /valsartan in 2015
to reduce hospitalisation from worsening heart failure [9] and to treat heart failure [10],
respectively; tafamidis meglumine in 2019 to treat cardiomyopathy caused by transthyretin-
mediated amyloidosis in adults [11]; vericiguat in 2021 to mitigate the risk of cardiovascular
death and hospitalisation for chronic heart failure [12]; mavacamten in 2022 to cure patients
with obstructive hypertrophic cardiomyopathy [13]; sotagliflozin in 2023 to treat heart
failure [14]; and aprocitentan in 2024 to treat resistant hypertension [15].

The development of realistic cardiac models for preclinical drug testing and cardiotox-
icity assessment could significantly reduce the above-mentioned failure rates in clinical
trials by effectively addressing safety concerns. Furthermore, these advanced models have
the potential to enhance drug development, leading to the production of more effective
treatments for cardiovascular diseases. There is an urgent need for novel and more realistic
heart models that could both replace animal research in preclinical studies and serve as
tools of human origin to better identify drug candidates that can reach production and
large-scale treatment of patients. This toolset will not only allow the selection of potential
drug molecules but can save a tremendous amount of time and expense by identifying
adverse drug effects as early risk prediction before the clinical studies. Recently, human
induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been considered
as potential options for in vitro cytotoxicity evaluations, high-throughput drug screenings,
and complex systems, such as organ-on-a-chip models. Besides assessing the safety profiles
of a compound in the preclinical phase, hiPSC-CMs are anticipated to serve as an ideal cel-
lular source for regenerative and precision or personalised medicine. Ongoing clinical trials
attempt, for example, implanting clinical-grade hiPSC-CMs as surgical grafts to treat pa-
tients [16] or directly injecting allogeneic hiPSC-CM spheroids to remuscularise the injured
myocardium [17]. The hiPSC-CMs have also been considered as valuable resources for
modelling certain genetic heart diseases such as long QT syndrome (LQTS) and cardiomy-
opathies (hypertrophic or dilated cardiomyopathy and arrhythmogenic cardiomyopathy)
or atrial fibrillation (AF), enabling the study of their molecular pathologies [18]. On the
other hand, the maturity status of hiPSC-CMs is still a main bottleneck in the field. To better
understand the real pathophysiology, especially considering the often late in-life onset
of cardiac diseases, and to translate these findings into improved drug development and
more evolved disease modelling, it is key to pay special attention to pioneering maturation
studies. In this review, we summarise the current state-of-the-art in the field of hiPSC-CMs,
focusing on the maturation level of these cells also from a bioengineering point of view,
while highlighting the in silico and disease modelling applications.

2. The Potential of hiPSC-CMs and the Substantial Issues with Maturation

Reprogramming of somatic cells to a pluripotent state was a groundbreaking discovery
that led to the generation of human induced pluripotent stem cells (hiPSCs) [19]. The
pluripotency of hiPSCs offers the possibility of creating virtually every cell type of the
human body through directed differentiation protocols. Soon after the creation of hiPSCs,
the first publications were released on the generation of hiPSC-CMs. The iPSC technology
and, moreover, the possible applications of human-based cardiac models are expected to
revolutionise and transform the field and regenerative medicine. Heart models in research
and in drug screening take advantage of the unlimited human cardiomyocytes (CMs)
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without the ethical debates over the application of embryonic stem cells (ESCs) or without
the translational challenges of animal models.

The de novo CMs are generated by cardiac differentiation. The cardiac induction is
initiated on the hiPSC cultures and can be performed in both 2D and 3D arrangements.
Early attempts to produce CMs followed the hanging drop culture technique, while later
studies applied 2D plate formats or low attachment plates for 3D aggregates. There is also
evidence that co-culture with other cell types can help the survival of hiPSC-CMs. The
different approaches of CM differentiation were summarised elsewhere [1,20]. In general,
several protocols follow a 14-day cultivation with the application of small molecules or
growth factors or alternatively, a combination of the two (Figure 1) [1]. These techniques
allow researchers to collect viable beating cells at Day 14 (D14) with around 70-90% of the
cell population positive to cardiac troponin T (cTnT), a clear marker of CM fate (Figure 2).
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& @ Bo + ¢ &
WPsCs  |wned | we)

1

hiPSC-CM differentiation start

1

hiPSC-CM differentiation end

pal

Figure 1. The process of hiPSC-CM differentiation. (A) Conventional cardiac differentiation protocols
use CHIR99021 and IWP-2 or IWR-1 small molecules to sequentially activate and inhibit the Wnt/3-
catenin pathway, respectively. This panel shows a representative example of a typically applied
hiPSC-CM differentiation protocol. (B) Representative images show the process of cardiac induction
from Day 1 hiPSCs (D1) to Day 14 (D14) beating hiPSC-CMs. Small molecules were applied to a
confluent hiPSC culture on D0. Cardiomyocytes showed spontaneous beating from D7. At D14,
harvesting of the hiPSC-CMs is followed by functional readouts and cryopreservation. Images were
taken on hiPSC-CMs generated by BioTalentum Ltd., at 4 x magnification; scale bar, 200 um.



Int. J. Mol. Sci. 2024, 25,9186

4 of 34
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Figure 2. Immunocytochemistry staining of D15 2D hiPSC-CMs. Immunocytochemistry images of
specific biomarkers for hiPSC-CM characterisation at Day 15 (D15). Cardiac troponin T (cTnT) is the
most generally used marker for CMs, which shows apparent striations ((A), green) in the case of the
development of CM sarcomere structures. Other biomarkers, such as mesodermal marker homeobox
protein Nkx2.5 ((A), red), transcription factor GATA4 ((B), green), and phalloidin ((B), red) are shown,
while 4/,6-diamidino-2-phenylindole (DAPI) shows nuclear staining ((A,B), blue). Images were taken
on hiPSC-CMs generated by BioTalentum Ltd., at 10x and 40x magnification; scale bar, 50 um.

Allogeneic or autologous cell transplantation paved the way for cardiac personalised
and regenerative medicine already with several clinical trials in diseases such as ischaemic
cardiomyopathy and heart failure [16,21-26]. These clinical-grade hiPSC-CMs are trans-
planted into patients following cardiac differentiation, where the purity of the culture is key.
Undoubtedly, superior CM maturation can be observed in vivo and besides the numerous
factors that drive this process, time is also a crucial aspect of CM maturation [27]. While a
study in guinea pigs showed reduced arrhythmia incidence after transplanting human ESC-
derived CMs (hESC-CMs) [28], transplanted de novo hESC-CMs in non-human primate
hearts or allogeneic iPSC-CMs in cynomolgus hearts might carry the risk of post-transplant
arrhythmogenicity with idioventricular rhythms or even with sustained ventricular tachy-
cardia, respectively [29,30].

On the other hand, those hiPSC-CMs that are used for in vitro drug testing and heart-
on-a-chip (HOC) platforms in healthy conditions and disease modelling lack a pivotal
element: the maturation of the cells. Using existing protocols, hiPSC-CMs are develop-
mentally immature, with foetal-like CM properties, such as glycolytic metabolism, circular
cellular shape, lack of sarcomere alignment, and expression of foetal genes in their sarcom-
ere components (e.g., TNNI1 rather than TNNI3). On the other hand, mature CMs express a
different set of maturation markers (e.g., MYH?7, TNNI3, connexin-43, and TTNN2B), while
characterised by a distinct morphology, including hypertrophic, rod-shaped cellular body,
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foetal

higher myofibril density and alignment, and polyploidy (Figure 3). There are also charac-
teristic differences in their electrophysiology; during maturation, the unstable membrane
potential—constant diastolic depolarisation leading to spontaneous activity—changes to a
stable resting membrane potential at around —80-90 mV.
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Figure 3. Key differences between immature and mature CMs. Summary of the main physiological
parameters that are different in a foetal CM compared to an adult one. During maturation, many
processes evolve, from the shape of the cells to the metabolic switch. One of the most important
molecular changes is the development of the adult ion channel pool and the adult-like electrophysio-
logic properties, allowing a stable resting membrane potential and, therefore, a physiological AP and
non-spontaneous contractions.

Although the currently available protocols give a high yield of viable cells, the usually
applied 2-3 weeks of cardiac differentiation is not sufficient to reach an adult phenotype in
these cells (Figure 2). Additionally, it has been shown that several factors are needed to
age hiPSC-CMs (Figure 4) [1]. In the drug development pipeline and disease modelling,
maturity of the cells is crucial as in most of the cases the older the patient, the higher the
likelihood of developing CVDs, the more essential it is to reach an adult phenotype in drug
testing platforms [31]. Several approaches have been tested in recent years to overcome
this developmental stalemate, but there is no fully adequate answer yet to this unresolved
scientific question [32]. On the other hand, it must be noted that the full potential of
early hiPSC-CMs can be exploited if the overall goal is to study neonatal diseases or to
develop neonatal disease models and drug screening platforms and establish methods for
developmental toxicity [33-35].
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Figure 4. The multifactorial process of cardiac maturation. HiPSCs can differentiate into virtually
all cell types. To produce beating muscle cells during cardiac differentiation, small molecules are
applied; however, these cells usually do not reach the desired maturity status. To achieve maturation,
several approaches are available—besides the time factor—in biomaterial sciences, including various
stimuli (mechanical, electrical, topological, and biochemical stimulation, detailed in the text).

2.1. Standardisation Procedures

Despite their immense potential, harnessing hiPSC-CMs for research and therapeutic
purposes needs to overcome several challenges. A primary challenge lies in the neces-
sity to establish standardised procedures for the differentiation process, aiming to assure
reproducibility and consistency across various experiments and laboratory settings. A
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significant achievement in standardisation efforts has been defined through the use of
chemically defined protocols for generating functional hiPSC-CMs [36,37]. Nonetheless,
in hiPSC-CM cultures, the presence of endothelial cells and fibroblasts alongside CMs
underscores the inherent cellular heterogeneity, while further complexity is introduced by
the differential expression of CM subtypes, with distinct characteristics observed between
atrial and ventricular populations [28,38,39]. This cellular heterogeneity is a prominent
feature in these cultures and it is known that factors such as substrate rigidity, the du-
ration and dosage of growth factors, or oxygen levels in the culture milieu contribute
substantially to cell subtype heterogeneity [40—42] and manifest both advantages and dis-
advantages. On the one hand, this diversity mirrors the cellular environment observed
in the native myocardium [43], thereby rendering 2D plate-format hiPSC-CM cultures
invaluable tools for biomimetic inquiries. The broad spectrum of cardiac phenotypes and
responses under diverse physiological and pathological conditions can be explored to
identify disease mechanisms and drug reactions [44,45]. Studies utilising hiPSC-derived
cultures containing diverse CM subtypes also provide insights into cardiac development,
maturation kinetics, and subtype-specific disease manifestations [38,39]. Additionally,
heterogeneous cultures may synergistically contribute to tissue regeneration and func-
tional recovery following cardiac injury, which is beneficial in the context of regenerative
medicine [28]. On the other hand, this cellular heterogeneity of hiPSC-CM cultures presents
challenges, particularly when purity is paramount for specific applications like cell-specific
drug interactions. Efforts have continued for the optimisation of CM differentiation pro-
tocols including the reprogramming and expanding of hiPSC colonies under feeder-free
conditions, facilitated by specific culture media and substrates, and have contributed to
isolating fully reprogrammed hiPSC colonies, thus enhancing the purity of the resulting
CM populations [46]. Other efforts have considered factors such as cell seeding density
and low concentrations of Wnt-agonists that have been shown to significantly impact the
purity of hiPSC-CMs [47]. The pursuit of homogeneous hiPSC-CM cultures highlights the
importance of refining co-culture conditions to replicate the intricate microenvironment of
tissues or organs more effectively.

2.2. The Need for Co-Cultures and Subtype-Specific Cultures

While the necessity for purification and homogeneity is evident, recent insights suggest
that the success of such endeavours may hinge upon co-culture conditions that are only
beginning to emerge, thus introducing a layer of complexity similar to the heart [48].
Co-culture systems have demonstrated effectiveness in enhancing the differentiation of
hiPSC-CMs. One approach involves co-culturing hiPSCs with cardiac fibroblasts (CF)
and cardiac endothelial cells, which facilitates their differentiation into mature CMs [49].
Integrating these various cell types into co-culture systems holds promise for enhancing the
tissue-like features and functionality of differentiated cardiac cells. However, the precise
role of these additional cell types in co-culture systems remains poorly defined, and their
integration presents practical challenges and complexities [45].

Much interest is placed in subtype-directed differentiation of hiPSCs into atrial and
ventricular CMs, highlighting the importance of tailored differentiation strategies [50-52].
Coupling with advanced culture techniques such as microfluidic platforms or 3D tissue
engineering systems offers enhanced control over CM subtype specification and matura-
tion [45,50,53]. Therefore, the need to obtain CM cultures that are homogeneous and are
subtype-specific is particularly important as there are electrophysiological variances among
cardiac subtypes, such as atrial, ventricular, and nodal-like cells [54]. Each subtype displays
distinctive action potential (AP) waveforms, indicative of their specialised functions within
the heart’s electrical conduction system [54]. Much interest is placed in subtype-directed
differentiation of hiPSCs into atrial and ventricular CMs, highlighting the importance of
tailored differentiation strategies [50-52]. For example, CRISPR-Cas9 technology coupled
with fluorescent cell sorting is an effective method for purifying atrial and ventricular
populations from the same hiPSC line [55]. Several studies show the faithful recapitula-
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tion of disease-specific electrophysiological phenotypes in patient-derived cells [48,56].
As such, aberrant AP morphologies in specific CM subtypes may indicate underlying
pathological conditions, such as arrhythmias, hypertrophic cardiomyopathy, or conduction
defects [57,58]. Therefore, elucidating the molecular underpinnings governing CM subtype
specification is essential for directing differentiation towards desired subtypes, thereby
enhancing the fidelity of disease modelling and drug screening applications [59].

2.3. The Benefits of Gene-Editing Technology

Ultimately, the continued improvements in hiPSC-CM cultures, coupled with gene
editing approaches like CRISPR-Cas9, present a powerful advancement for understanding
specific gene mutations underlying cardiomyopathies. For example, such studies may help
further our understanding of conditions such as hypertrophic cardiomyopathy, dilated
cardiomyopathy, and arrhythmogenic cardiomyopathy, which are thought to be inherited
and result from mutations in genes that encode proteins crucial for CM structure and
function [60]. By introducing specific disease-associated mutations into healthy hiPSC-
CMs, researchers can recapitulate and even discern spatiotemporal gene functioning of the
disease phenotype in vitro. Studies have already shown the utility of introducing disease-
associated mutations into healthy cells using CRISPR-Cas9 to investigate inherited cardiac
channelopathies such as LQTS, Brugada syndrome, and short QT syndrome (SQTS) [61-63].
Much research is aimed at exploring the effects of these mutations on ion-channel function
and on the electrophysiology profiles of CMs [63-66]. More recent advances show that
hiPSC-derived cardiac disease models using precision gene editing and bioengineered 3D
tissue models accurately recapitulated clinical phenotypes of inherited cardiac arrhythmias,
providing robust validation of gene mutations and offering a powerful tool for dissecting
pathophysiology in vitro [67]. Continued research efforts toward refining hiPSC-derived
cultures, whether mixed, cell-specific, or even subtype-specific, will undoubtedly remain
an ongoing endeavour in cardiovascular research.

3. In Vitro Cardiotoxicity

Cardiac safety is the main concern related to drug development during clinical trials
and after release to the market. Many drugs have been withdrawn from the market due
to cardiotoxicity, although a wider list of drugs is known to cause cardiac side effects.
Antineoplastic drugs, central nervous system agents, genitourinary system agents, and
anti-inflammatory, anti-infective, and cardiovascular agents are the most common to in-
duce cardiotoxicity [68]. There are different mechanisms of drug-induced cardiotoxicity,
including arrhythmias, disruption of mitochondrial function, apoptosis, altered growth
factor signalling, or oxidative stress [68]. Correlation between animal models and human
cardiac physiology is often complex due to the significant differences in heart rate (rats and
mice have 6-10 times higher heart rate than humans) and the ability to increase heart rate
and due to the dissimilarities in the main ion currents [69,70]. However, non-rodent models
(rabbits, guinea pigs, dogs, and non-human primates) have a 90% chance of predicting QT
interval changes in humans [71]. Given the current tendencies to reduce the use of animal
models in science, in vitro cellular models are increasingly becoming essential tools for
drug toxicity testing, including arrhythmias. The Comprehensive in vitro Proarrhythmia
Assay (CiPA) collaboration, including regulatory agencies, industry, and academia from
U.S. FDA, Europe, Canada, and Japan, created guidelines for cardiotoxic risk evaluation
in drug candidates [72]. These include the in vitro assessment of drug effects on ion chan-
nels, computer modelling to predict risk based on drug effects on ion channels, effects in
hiPSC-CMs, and phase 1 clinical testing in vivo [73-76].

The HOC platform is an automatic tool for large-scale drug testing, measuring electro-
physiological and metabolic responses of CMs to different compounds [77]. HiPSC-CMs
are the most promising model for cardiotoxicity tests as the primary cells are of limited
availability and dedifferentiate rapidly while animal cell lines might provide false results
because of differently functioning ion channels [78,79]. HiPSC-CMs can be used as an
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autologous or personalised system with specific genetic background. Additionally, patient-
specific hiPSC-CMs can reflect the response from an individual patient in a personalised
setting or represent the whole patient population, and these can be used for modelling
various diseases of interest, including genetic mutations [80,81]. A typical HOC platform
includes external electrical or mechanical stimuli, a calcium sensor, or a contraction detector.
Validation of the HOC system can include testing drugs with well-known cardiac effects
(e.g., isoproterenol) to serve as baseline controls [79]. On the other hand, the main concern
about HOC platforms is the insufficient maturity level of CMs; therefore, the functional
response might differ from the fully matured adult CMs [82].

Cardiotoxic Effects and Their Detection

The main cardiotoxic effects include drug-induced arrhythmias or changes in cell
metabolism or viability, which can lead to heart failure. There are many physiological
processes that can be monitored for detecting cardiotoxicity in CMs, including electrophys-
iological assays, cell metabolism, viability, or oxidative stress (Figure 5). Drug-induced
arrhythmias can be caused by many broadly used medications. One of the most serious
conditions is QT interval prolongation, leading to torsade de pointes type ventricular
tachyarrhythmias, although bradyarrhythmia, AF, tachycardia, or Brugada syndrome can
also be caused [83]. It is known that blocking the potassium HERG channel leads to
drug-induced prolongation of QT interval and is associated with sudden cardiac death [84].

Mitochondria account for almost half of human CM volume and are vitally necessary
for energy production. During hiPSC-CM maturation, changes in the cell metabolism
include the switch from glycolysis to fatty acid oxidation by oxidative phosphorylation, a
decrease in glucose uptake, an increase in mitochondrial DNA content, an enhanced mito-
chondrial membrane potential, and a higher mitochondrial calcium level [53]. Cardiotoxic
drugs might interfere with the mitochondprial respiratory chain, inhibit mitochondrial en-
zymes, induce loss of membrane potential, and increase oxidative stress [85]. If damaged
mitochondria are not degraded, they start to accumulate, and it is associated with the
pathogenesis of myocardial dysfunction [86]. For example, doxorubicin causes not only
mitochondrial damage but the impairment of iron metabolism as well, resulting in the
accumulation of reactive oxygen species (ROS) and leading to oxidative stress [87]. Mito-
chondrial damage can not only disrupt physiological processes in the myocardium but
might also lead to cell death. CM death can be caused by several mechanisms, including
autophagy, ferroptosis, apoptosis, pyroptosis, and necroptosis or DNA damage [88,89]. It
has been shown that cardiac troponin I release in the medium correlates with cell viability
data [90]. Consequently, the reduced viability of CMs can lead to structural damage to
the myocardium.

The most important assays for detecting arrhythmias in vitro include multielectrode
assays, patch-clamp and sharp electrode measurements, and optical evaluations of calcium
transients or cell contractions providing analysis of multiple parameters such as the beat
rate, field potential, or AP profiles (Table 1). Cell viability is generally measured by ATP
production, troponin release, the metabolism of formazan-based dye (e.g., CCK-8, MTT,
MTS), or by the intracellular lactate dehydrogenase activity [91]. These methods correlate
with the number of living cells, while repeated measurements can be taken at different time
points, making them suitable for long-term experiments. To evaluate drug effects on cell
metabolism, cell respiration, oxidative stress, or mitochondrial membrane potential can
be measured. Based on these readouts, a set of in vitro assays is available to estimate the
potential damage in the myocardium caused by a substance (Figure 5).
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Figure 5. Methods to detect cardiotoxicity in CMs. In vitro, cardiotoxicity can be evaluated by a range
of methods, including cell viability assays, cell metabolism assays, and electrophysiological readouts.
Ion channel profiles, AP characteristics, and electrophysiological properties can be analysed by patch
clamp, sharp electrode, or multielectrode measurements, in parallel with calcium transient kinetics
and parameters. Cell viability can be monitored by ATP-release-based techniques, intracellular
lactate dehydrogenase (LDH) activity, colorimetric assays such as MTT and CCK-8, and detected
by a plate reader or by measuring apoptotic events. To quantify cell metabolism, the assessment of
glycolytic and oxidative metabolism can be measured by Seahorse assays along with oxidative stress
by measuring the toxic levels of ROS. Mitochondrial stress tests provide information on the resting
respiration of the cells, by determining ATP production and oxygen consumption. Transcriptomic
analysis and metabolomics focus on the underlying genes and their expression, the end products of
these genes, and on the possible interactions in the metabolic pathways. Created with BioRender.com.
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Table 1. Examples of functional readouts for determining cardiotoxicity in cardiomyocyte cellular
models. APA, action potential amplitude; APD, action potential duration; BPM, beats per minute; BR,
beat rate; CL, cycle length; ECG, electrocardiogram; FPD, field potential duration; MCS, maximum
contraction speed; MRS, maximum relaxation speed; OAP, optical action potential; RMP, resting
membrane potential; TdP, torsade de pointes type polymorphic ventricular tachyarrhythmia.

Assay Method Measured Parameters Possible Applications References
stand-alone FPD direction and magnitude of
sodium spike amplitude depolarisation
. . Multielectrode RR-interval (beat-to-beat QT interval, beat-to-beat
Field potential . O [92,93]
array systems interval) variability
measurement spontaneous BR heart rate
network analysis (syncytium) propagation and contractility
. . QT interval on ECG, prediction of
CardioExcyte 96 FPD, impedance TdP risk [94]
Action potential depolarisation tme and APD assessing hiPSC-CM function on
CellOPTIQ by voltage sensitive dye, . [95]
measurement . hydrogels, drug evaluation
spontaneous activity
. .. risk prediction model for TdP in
CardioExcyte 96 myocardial cell activity, BPM, hiPSC-CMs, tool for [94]
FPD - .
compound-induced arrhythmias
electrophysiological
Patch-clamp/ APD, APA, Vax, ion currents, characterisation, drug-induced
Sharp . . [96-98]
. RMP arrhythmias, sequential
microelectrode - - .
pharmacological dissection
long-term electrophysiological
recordings, dynamic changes in
uGMEA APD, I?lf— ?r; t\e];?/?l/ FPD, transmembrane potential of [99]
hiPSC-CMs in network, spatial
heterogeneity
. . detection of propensities for
Optical mapping OAP, CL, d (—F)/dtmax, APD drug-induced tachyarrhythmias [100]
Calcium CellOPTIQ mtracellu}ar Ca cor?centratlon, assessing hiPSC-CM functlpn on [95]
measurement Ca transient amplitude, Tau hydrogels, drug evaluation
intracellular Ca concentration,
]?plﬂ}lorescence Ca tra}r?51ent amplitude, characterisation and drug-induced
with simultaneous contractility, Tau, SR content, . [101-103]
. L . arrhythmias, Ca flux balance
electrophysiology release kinetics, systolic and
diastolic calcium levels
Ca transient peak frequency, cardiotoxicity assessment of a
FLIPR Tetra system  amplitude, rise time and decay compound (contractility and [104]
time arrhythmogenic potential)
. . contraction amplitude, assessing hiPSC-CM function on
Contractile function CellOPTIQ duration, relaxation duration hydrogels, drug evaluation %3]
Cell motion M(;S, MRS, . detection of drug-induced changes
analvsis contraction-relaxation in conteactilit [105]
y duration, BR y
Single cell
contraction single cell shortening, BR assessing drug effects [96]
measurement
Video-based BR, beating velocity, maximum detection of dysfunctional CM [106]
analysis contraction and relaxation contractility

Briefly, arrhythmias, altered metabolism, and reduced cell viability are major con-
ditions representing drug cardiotoxicity that can be tested using in vitro cardiac models,
including HOC. Furthermore, in vitro cardiac models may contribute to the elucidation of
molecular mechanisms leading to drug-induced cardiotoxicity.
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4. Scaffolds in Cardiac Applications

The field of cardiac tissue engineering has seen significant progress in recent years,
with a focus on developing scaffolds that promote the maturation of cardiac cells. This sec-
tion discusses the recent developments related to 2D and 3D scaffolds. The fabrication of 2D
scaffolds involves the production of a stable and soft substrate with a smooth surface for cell
growth and attachment. Several techniques are commonly used for fabricating 2D scaffolds.
Soft lithography utilises elastomeric materials to create 2D patterns on a substrate, while
micropatterning involves creating specific patterns or geometries using photolithography;,
microcontact printing, or microfluidics. Layer-by-layer assembly and various deposition
and casting techniques are also employed for fabricating 2D scaffolds [107]. Electrospin-
ning is a versatile technique that involves the creation of nanofibers using an electric field.
Obtaining aligned fibers using rotating collectors is often the preferred approach [108]. In-
deed, aligned fiber scaffolds offer advantages for tissue engineering applications, including
cardiac tissue engineering, as they mimic the aligned structure of native tissues, such as in
the myocardium, promoting directed cell growth and assisting the functional maturation of
the cells. CM alignment can also be controlled using micropatterning techniques to favour
cell adhesion along geometric pathways.

Two-dimensional CM cultures can simulate viable environments for cardiac cell mat-
uration, which is a relevant and easy way of drug screening and toxicological testing
with high throughput. These 2D cultures are often combined with microelectrode arrays
(MEA) to measure the electrophysiology of the cardiac cells completed with optical imaging.
Single-cell patch clamp and sharp electrode measurements in electrophysiology are also
widely used on 2D cultures as they enable measuring the membrane potential, the upstroke
velocity, and ion currents [107]. The disadvantage of these models is the limited complexity
in the tissue construction without a physiological extracellular matrix (ECM), especially
when using 2D monotypic models [109].

Alternatively, utilising 3D scaffolds offers several advantages over 2D scaffolds in
cardiac tissue engineering. Most importantly, 3D scaffolds allow for the recreation of the
complex architecture and microenvironment found in native tissues, facilitating appro-
priate cell-cell interactions, the formation of gap junctions, and tissue organisation. It
is now well-established that other cell types such as CFs, macrophages, and endothelial
cells are needed to favour the maturation of CMs and to recapitulate specific functions of
the native cardiac tissue [110]. Moreover, 3D-vascularised scaffolds improve nutrient and
oxygen diffusion, promote cellular organisation and polarisation, and offer a physiologi-
cally relevant platform for disease modelling. In addition, 3D scaffolds allow the use of
spatial, electrical, and mechanical cues, which are crucial for cardiac tissue development
and maturation. The physical properties of 3D scaffolds such as stiffness, topography,
and porosity can be precisely controlled to mimic the native mechanical environment.
Different construction methods include 3D aggregation, application of hydrogels, and
micromold design to obtain engineered cardiac tissues (ECT) around anchor pillars or 3D
bioprinting [107,111]. It is important to underline that 3D cardiac tissues can be fabricated
with or without scaffolds [112,113]. Layer-by-layer cardiac tissues, cardiac spheroids, and
organoids can be obtained without scaffolds while the use of hydrogels, decellularised
ECM, and microfabricated 3D scaffolds are alternative strategies to obtain 3D cardiac tissues
using 3D scaffolds with different geometries. For the fabrication of cardiac patches, the
latter approach is usually preferred [114].

In these applications, a crucial issue is the sufficient supply of oxygen and nutrients
without a proper vascularisation of the native 3D tissue. The use of microfluidic systems,
sacrificial materials, or 3D printing of vascular channels has been explored to overcome
this issue [115]. While 3D scaffolds provide a more biomimetic and functionally relevant
platform, shifting toward HOC systems presents significant challenges. These include
the complexity of the cardiac microenvironment, integration of multiple cell types, and
achieving functional maturity of CMs.
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5. Heart-on-a-Chip Platforms

A HOC is a microfluidic device capable of mimicking the complex physiological con-
ditions of the native heart tissue and delivering electrical, mechanical, and/or biochemical
cues under a controlled environment [116]. Mechanical (stretch forces and fluidic shear
stress), biochemical (e.g., vascular endothelial growth factor and fibroblast growth factor),
and electrical stimuli have an influence on cell differentiation, alignment, and physiological
behaviour (Figure 6) [117]. Cell culture medium perfusion, i.e., fluidic shear stress, is
widely applied in HOC devices with the aim of evaluating drug responses. For instance,
Christoffersson et al. attached cardiac spheroids formed by hiPSC-CMs to a microfluidic
device channel coated with laminin to assess drug toxicity [118]. The drug effect was
quantified by observing the cardiac cell outgrowth from 3D spheroids under perfusion
and it was validated using six compounds with well-established effects on cardiac cells.
Despite the sensitivity of the assay, it is worth noting that the CMs used in this study had
an immature phenotype and the model is not completely representative of a 3D model.
However, the easy handling of the system allied to its cost-effectiveness is advantageous,
especially if it is used as a complementary tool to the existing assays. In another study, the
tissue was stimulated with fluid flow, and the platform contained a vascular endothelial
layer to assess the significance of microvessels in drug toxicity experiments [119]. The
dynamic conditions showed reduced dextran permeation compared to the static conditions;
the viability of both human umbilical vein endothelial cells (HUVECs) and hiPSC-CMs was
slightly improved under fluid flow, and HUVECs aligned according to the flow direction.
Hence, fluidic shear stress-induced cell alignment and mimicked in vivo forces.

Electrical stimulation in hiPSC-CMs directs the cell differentiation process towards a
more mature phenotype [120]. Therefore, this type of stimulation has also been incorporated
into HOC platforms. For example, electrical conditioning was used to stimulate the
maturation of atrial and ventricular hiPSC-CMs, which were embedded in a hydrogel
together with CFs, cultured inside the Biowire II platform [121]. This stimulus improved the
sarcomeric organisation in both atrial and ventricular tissues and promoted the expression
of maturation genes associated with contraction in the ventricular construct, calcium
handling, electrical properties, and lipid metabolism.

In addition to providing different types of stimuli to CMs, HOC systems enable the
integration of sensors for continuous monitoring of tissue contractile functions [122]. This
function can be measured using impedance-based sensors [123], strain [124,125], and crack
sensors [126]. Furthermore, tissue contraction can also be assessed optically by changing
the curvature of the cantilever [127] and by capturing images of the tissue [82] or the
hydrogel colour change [128-130] (Figure 6).

Importantly, the incorporation of iPSCs derived from patients with specific diseases
into HOC systems is extremely valuable either to evaluate drug toxicity in a targeted
patient or to develop new and tailored treatments [116]. Despite the efforts in developing
HOC for different applications (e.g., research on the mechanism of heart diseases, drug
development for CVDs, development of medical treatments, and drug toxicity testing)
and their promising results, these devices have several limitations. They fail to replicate
the complexity of the native heart, only incorporating two or three cell types. Indeed,
the incorporation of macrophages, neurons, epicardial cells, and endocardial cells is yet
to be successfully accomplished. Moreover, the dilution of secreted biomolecules in the
circulating fluid hinders their detection [131]. Currently, hiPSC-CMs remain immature
compared to human adult CMs, which hampers their use in pharmacological and toxico-
logical screening. New methodologies for hiPSC-CM maturation must be incorporated
in HOCs, e.g., integrating conductive spheroids or scaffolds (hydrogels and membranes)
into the platforms. These systems must evolve toward the use of low-cost and disposable
materials to be attractive to pharmaceutical companies and research institutions. In the case
of more expensive components, such as sensors or motors, these should be reusable and
easy to sterilise. The development of multi-organ-on-a-chip and human-on-a-chip seems to
be a logical direction to pursue, not only for highly predictable drug toxicology studies but
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also to study the interactions between different organs. However, the complexity of such
platforms together with the need for a universal cell culture medium suitable for all organs
present significant challenges. Innovative approaches and solutions are still needed to
overcome these obstacles and accelerate the adoption of HOC systems in preclinical testing.

Stimuli
a. Mechanical stimulus b. Electrical stimulus
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Figure 6. Current strategies of heart-on-a-chip (HOC) systems using hiPSC-CMs. The microfluidic
HOC systems serve as controlled environments to mimic as much as possible the physiological
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conditions that can be found in the human native heart. The most important stimuli methods (a—c) and
contractility monitoring techniques are shown (d-g). Mechanical stimulation (a) provides mechanical
cues to the cells, which may be shear stress (by exposing the cells to fluid flow) and/or stretch
forces. Biochemical stimulation (b) consists of applying growth factors to the cells and electrical
stimulation (c) can be achieved by applying small electrical pulses to the CMs. Impedance-based
sensors (d) measure cardiac contraction by reading the impedance changes upon contraction of the
CMs. Strain sensors (e) rely on the contraction of CMs to change the curvature of the device baseplate
and measure the difference in resistance, which is then converted by a mathematical formula to the
stress generated by the tissue. In crack sensors (f), the cracks in the sensor open as the tissue contracts,
increasing the resistance. The contraction of the CMs causes the deformation of the hydrogel substrate
leading to a wavelength shift (colour variation), which can be measured with optical sensors (g).
MEA—multielectrode array; IDE—interdigitated electrodes.

6. In Silico Models

The use of mathematical and computational models plays an important role in com-
prehending complicated biological processes. These models promote the identification
of basic behaviours, laying the groundwork for an extensive characterisation and a more
profound understanding of the underlying natural processes. The work from Hodgkin and
Huxley is an early example of a mathematical model intended to imitate electrical signal
generation [132]. Ever since, the application of in silico modelling has become foundational
in cardiac electrophysiology and has shown to be a reliable method that can successfully
connect diverse datasets and precisely define cellular characteristics that are responsible
for the observed variability in experimental outcomes.

One of the most extensively studied functionalities of CMs is the AP. The collection
of AP data is typically carried out using sharp microelectrode or patch clamp techniques.
Calcium transient can also be measured through fluorescent imaging and processed to time
series [133]. These data are then characterised through computational modelling to depict
fundamental behaviours, as it is illustrated by Akwaboah et al. with their implementation of
genetic algorithms to accurately reproduce experimental data to validate AP morphology
and various ion channel blocking mechanisms [134]. Of great importance, contractile
properties of hiPSC-CMs could also be monitored and analysed [135]. Additionally, data
on transcription factors have the potential to model the differentiation state of CMs, as their
expression changes upon differentiation [136,137].

Usually, primary data from hiPSC-CM cultures undergo processing before model
fitting, with derived biomarkers forming the basis for model development. An effective
manner to extract biomarkers is through specialised software for automated quantitative
analysis of specific CM parameters, which offers a user-friendly approach to analyse
data. The ‘Cardio PyMEA’ software (https:/ /github.com/csdunhamUC/cardio_pymea?
tab=GPL-3.0-1-ov-file, accessed on 30 July 2024) allows users to analyse MEA data from
CMs, from beat detection to biomarker analysis such as beat amplitude and interval [138].
SarcGraph v0.2.1 is an open-source Python-based software that extracts data from CM
culture videos of fluorescently labelled contractions [135], which can build upon previous
research works [139,140]. These solutions automatically detect and track the sarcomere
and z-disc allowing for spatio-temporal post-processing and visualisation. Sarcomere
analysis is performed through scanning gradient Fourier transform to the organisation
and alignment of sarcomeres [141]. Other contraction tracking options are also available,
such as plug-in tools to existing software [142] testing out state-of-the-art methods [143]
or focusing on the micro level [144]. Alternatively, images or videos have been directly
analysed through deep learning (DL) and machine learning (ML) to generate models for
detecting abnormal cultures [145,146]. ML—a subset of artificial intelligence (Al)—enables
systems to autonomously learn and enhance from data, utilising various algorithms for
tasks such as classification (e.g., decision tree), clustering (e.g., k-nearest neighbours), and
prediction (e.g., linear regression). While DL—a subfield of ML—employs layered artificial
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neural networks to do analogous tasks. The primary limitation of ML methods is their
requirement for substantial data, with DL being particularly data intensive. In general, the
main drawback of mathematical modelling is that it heavily depends on the quantity and
quality of real-world observations.

An important application of hiPSC-CM cultures is the evaluation of candidate drugs
in a human model [147]. AP, contraction, and calcium transient are used to monitor
drug effects on CM cultures. AP data are particularly valuable for generating computa-
tional models of cell cultures, where the effects of drugs can predict the behaviour of the
CMs [148,149]. This was illustrated by Jeeger et al., who sought to predict the effects of
drugs by modelling the AP of cells both with and without the SQT1 mutation associated
with SQTS [150,151]. Furthermore, a software tool has been implemented to account for
uncertainties in dose-response measurements of drugs in cultures, translating them into
prediction models and providing a probability distribution for the model’s outcome [152].
Functional analysis of CMs has also been conducted through video-derived data, such
as contraction speed, BPM, and calcium transient. ML models have been developed to
assess and classify the effects of drugs in screening assays through the characterisation of
AP [143,153,154]. In 2021, Grafton et al. introduced a DL model specifically designed for the
rapid identification of cardiotoxicity patterns from images. This model was refined through
high-content image analysis of treated hiPSC-CMs across over 1200 compounds [141]. The
integration of these models into automatic high-throughput screening processes enables
the possibility of conducting large drug screenings efficiently.

HiPSC-CMs exhibit significant versatility in altering their functionality, induced
through mutations or specific culture conditions [155,156]. Therefore, developing models
capable of rapidly and accurately identifying abnormal changes is essential. Hwang et al.
proposed a DL model coupled with an analytical algorithm using images that tracked
calcium transient [157]. The model aims to distinguish normal and abnormal behaviour of
hiPSC-CMs. These models led to the development of a range of tools commonly applied
in hiPSC-CM research, including abnormal AP detectors or tools for identifying LQTS.
Moreover, brightfield microscope images and videos, quantifying contraction properties,
have been used to train DL models aimed to characterise the hiPSC-CM cultures before
commencing an experiment [145,146]. In addition, the iMATURE v1.1.2.3 software is a
tool that allows the users to manually select the age of hiPSC-CM post-differentiation
and receive predictive readouts of AP morphology and ion channel dynamics over their
specified age range [158]. This model is built upon the work of Kernik et al. from 2019,
where they collected experimental data from different laboratories to model experimental
variability and describe subcellular mechanisms [159].

Characterising cell lines is pivotal in cellular research, and models play a significant
role in this regard. Notably, there is a maturity level discrepancy between hiPSC-CMs
and primary CMs [137,160], e.g., hiPSC-CMs may lack the completion of critical perinatal
processes [161]. Additionally, Paci et al. demonstrated in 2015 that models for hiPSC-CMs
and CMs are not interchangeable [162]. Subsequently, it has been recognised that models
should be tailored for specific cell lines to enhance predictions of baseline behaviours [149].
For instance, there are differences in gene expression profiles during the differentiation
stages [137], in fact, regression models can define CM culture age with gene expression
biomarkers data as the input [136]. Therefore, understanding the intricacies of cellular
growth, differentiation, and proliferation is also crucial in research, and the models play a
supportive role in deciphering the regulatory processes within these crucial aspects of wet
lab work. Previous works serve as comprehensive resources for theoretical frameworks to
predict differentiation fate or cellular growth [163,164]. Although the adjustment of culture
media was a promising method for enhancing hiPSC-CM maturation, no specific modelling
approaches have been identified, but there are studies on modelling techniques applied to
optimise cell culture formulation [165] and scaffold construction [166].

Typically, biomarkers are derived from raw data to model hiPSC-CM behaviour, and
the ability to generalise insights from computational models relies on acquiring substantial
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amounts of high-quality data. It is important to recognise, though, that gathering this
kind of data is hindered significantly by the cost of experimental observations. Today,
when modelling approaches like DL are popular and promising, we must keep in mind
that their efficacy depends on the availability of significant and reliable data. Although
data scarcity in hiPSC-CMs is still an issue, using mathematical and computer models is
key to understanding complex biological processes because they make it easier to identify
basic behaviours, which lays the groundwork for more detailed characterisation and a
better understanding of the underlying events. Thus, the synergy between cellular and
computational models offers the potential to streamline processes, reduce the need for
animal models, cut down costs, and enhance the reproducibility of scientific experiments.

Besides modelling using hiPSC-CMs, in silico models have also been used to directly
simulate primary CMs, thus allowing mathematical modelling of cell function [167] and
also dysfunction in heart diseases such as ischaemia or heart failure [168,169]. Regardless
of the origin, cellular models carry individual variabilities to some extent, which might be
pivotal in predicting diseases or treatments; however, hiPSC-CMs are considered as models
with reproducible genetic backgrounds and thus less variability than primary cells. On the
other hand for modelling the human population, there is a need for greater genetic diversity
among the hiPSC models [170]. This might increase the resources needed and reduce the
practical benefits of the in vitro assays. Recently, to overcome the issues of individual
differences, ML models were trained on large datasets of CMs to detect individual vari-
ability and predict susceptibility to arrhythmias [171]. The integration of in silico models
with experimental data leads to the development of digital tools that can be implemented
in functional cellular studies and to study the impact of a drug on cardiac tissue. The
experimental data serve as an input for a previously trained computational model, which
can swiftly identify functional changes without the need for complex experiments and, in
parallel, reduce the use of laboratory animals.

7. Disease Modelling
7.1. Atrial Fibrillation

AF is the most prevalent cardiac thythm disorder, affecting 59 million people globally
in 2019 [172]. The incidence and prevalence of AF are rising significantly, considering
this disorder as a global epidemic [173]. Despite significant advances in detection and
management, AF continues to have a major impact on the morbidity and mortality of
millions of patients [174], partly due to unresolved knowledge gaps in AF pathophysiology
and therapeutic strategies, including rate/rhythm control and stroke prevention [175]. Ad-
ditionally, the response in an individual patient to antiarrhythmic drugs is highly variable,
in part due to the inability to target the underlying genetic mechanisms of AF. Indeed,
current pharmacological options remain inefficient, with substantial adverse side effects,
including drug-induced proarrhythmia, and both cardiac and non-cardiac toxicity [175,176].
The limited efficacy of current pharmacological treatment options and the need for a more
complete understanding of the pathophysiology of AF require more advanced human
models, allowing the development of a powerful personalised treatment for AF. Due to
the high interspecies variabilities, in vitro models with human CMs represent a promising
human-based tool to study mechanisms and processes involved in AF. While it is possible
to isolate adult heart cells from patients after heart surgery, several drawbacks exist, includ-
ing severe source limitation, the non-proliferative feature of human CMs in culture, and
consequently a precipitous functional decline in vitro, severely limiting their application
for larger-scale drug screening and disease modelling [38]. In contrast, hiPSCs can be
differentiated into atrial CMs (hiPSC-aCMs), providing a nearly unlimited source of cells
that can be used to model disease at a single cell level, reproducing the human cardiac
electrical phenotype in health and disease [177]. Since gold standard differentiation proto-
cols to obtain hiPSC-CMs yield a mixture of different CM subtypes, such as ventricular-,
atrial-, and nodal-like cells [36,43,178], significant efforts have been made to establish
differentiation protocols and/or selection strategies to generate and purify a population
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of chamber-specific CMs [52,179,180]. The potential of generating such chamber-specific
cell-type models significantly improved the research for disease modelling and drug testing
applications. Atrial-like CMs are particularly suitable for modelling atrial arrhythmias,
such as AF. Nevertheless, to generate relevant models for studying the mechanisms in-
volved in AF, the patterns of AP propagation occurring in the human heart during both
sinus rhythm and arrhythmia should be properly recapitulated in vitro. Moreover, while
it is pivotal to closely mimic the anatomical features of the atria and their function to
investigate specific disease pathways or arrhythmia mechanisms, the model should be
applicable in a standardised, systemic, and controllable manner [181]. One limitation of
using hiPSC-aCMs as a well-established model for AF concerns the method to generate the
cells, which, most of the time, is laborious, time-consuming, and costly and, therefore, hard
to scale up. To improve the stability and reproducibility of the model, studies focused on the
optimisation of the protocol to obtain hiPSC-aCMs in vitro [52,182,183]. Recently, Thorpe
et al. investigated the timing of retinoic acid addition during CM differentiation, with the
aim of developing a robust and scalable protocol to produce large amounts of atrial-specific
CMs [184]. The protocol was successfully applied to six different hiPSC lines, without the
need for line-specific optimisation. The authors could elicit arrhythmic activity in response
to burst pacing, highlighting the potential of the model as an antiarrhythmic drug screening
platform, and investigating human atrial arrhythmias and myopathies. Similarly, Schulz
and colleagues highlighted the variability in the expression of atrium-selective currents,
suspecting methodological issues in producing hiPSC-aCMs [185]. These results showed
that only 1 uM retinoic acid induced enough ultra-rapid delayed rectifier potassium current
(Ikur) to fully reproduce human atrial AP shape.

Besides the improvement and refinement in protocols to generate hiPSC-aCMs, these
cells still phenotypically resemble foetal atrial CMs. This represents another limitation of
the model, and numerous maturation strategies have been implemented [1]. Among several
methods, co-cultures have been recently implemented in the context of AF models [177].
Because of pivotal cellular interactions, co-culture with CFs has been used to improve
hiPSC-CMs maturity [49]. Nevertheless, atrial CFs substantially differ from ventricular CFs,
as they produce chamber-specific ECM protein isoforms, respond differently to key growth
factors, and have distinct proliferation rates [186]. For these reasons, the effects of chamber-
specific fibroblasts on hiPSC-aCM maturation and function remain unclear. Recently, Brown
et al. reported that primary adult atrial fibroblasts induced higher functional maturation
in hiPSC-aCMs [177]. Together with a soft-lithographic process to generate patterned
co-culture of hiPSC-aCMs and ACFs, the work showed a significant improvement in hiPSC-
aCM features (i.e., electrophysiology and metabolism) as compared to conventional and
randomly distributed co-cultures. Moreover, this method showed a higher sensitivity for
drug screening and disease modelling of familial AF [177].

The inclusion of other cell types has also been used in 3D models to generate engi-
neered heart tissues (EHTs). The cellular complexity of these models can produce more
accurate results, incorporating cells that can interact and communicate in a 3D environment,
which is more representative of the physiological state of the cardiac tissue [187]. Compared
to monolayer cultures, the EHT format highlighted atrial versus ventricular differences
in vitro, demonstrating the strength of this method to generate atrial-like muscle structures
in terms of gene expression, contractile force, contraction kinetics, and AP [188].

Finally, a growing understanding of the genetics underlying AF has enabled new
treatment possibilities, allowing a deeper understanding of the disease pathogenesis [189].
Moreover, due to the increased percentage of lone AF cases, efforts have been made
to study the underlying genetic contribution to AF, with the aim of facilitating early
identification of people at high risk of developing this disease later in their lives [190].
Among several genome editing techniques, the CRISPR-Cas9 system has mainly been
used for somatic genome editing of the heart to study disease phenotype and therapeutic
interventions [191]. This system allowed the development of isogenic hiPSC disease lines
of AF, enabling the study of patient-specific disease mechanisms and setting the stage for a



Int. J. Mol. Sci. 2024, 25,9186

18 of 34

pharmaco-genomic screen. Indeed, the use of unrelated controls and the failure to correct
AF-causing genes (to generate an isogenic hiPSCs line) may provide only limited insights
into the underlying pathophysiological mechanisms of familial AF [192]. Recent studies
investigated underlying genetic mutations linked to AF, including isogenic controls and,
hiPSCs from unaffected family members, not harbouring the mutation. For example, in
the study of Hong et al. patient-specific AF hiPSC-aCMs exhibited remarkable in vitro
phenotypes of AF-linked SCN5A mutations [193]. The use of a hiPSC line not harbouring
the SCN5A mutation and the gene corrected-isogenic control line allowed to examine
important insight into genotype-phenotype correlation, confirming the E428 variant as
the cause of the AF. Similarly, Sumer et al. used hiPSCs to precisely correct heterozygous
SHOX2 mutations associated with AF, contributing to elucidating the function of SHOX2
in the genetic network of atrial and nodal CMs and its contribution to the development and
progression of AF [194]. A recent review article discussed the use of hiPSC-CMs as a model
to study the role of small-conductance calcium-activated potassium channel (S5K) variants
associated with AF. The authors highlighted the advantages of using the hiPSC-CMs model
to investigate single nucleotide polymorphisms (SNPs) associated with AF, addressing
limitations and best practices for rigorous hiPSC studies, including the need to minimise
off-target mutagenesis and the need to include isogenic controls to better elucidate the
impact of a single variant [195]. Consequently, improving gene-editing studies will pave
the way to model pre-clinical testing of antiarrhythmic drugs for a more personalised
approach to AF therapy.

7.2. Hypertrophy

Cardiac hypertrophy is an adaptive response to pressure or overload, resulting in
altered gene expression, metabolism, and cell morphology. Hypertrophy can be physiologi-
cal or pathological. Physiological hypertrophy is characterised by a 10-20% increase in CM
length and width, which is caused by postnatal growth, pregnancy, or high endurance exer-
cise, and it is not related to dysfunction [196]. Whereas, pathological cardiac hypertrophy is
caused by myocardial injury, stress induced by hypertension, or neurohumoral regulation
leading to fibrotic remodelling, cardiac dysfunction, heart failure, and even death [197].
The main regulators of hypertrophic response are calcineurin/nuclear factor of activated T
cells (NFAT), mitogen-activated protein kinase ERK, small guanosine triphosphate (GTP)-
binding proteins (Ras, Rho), protein kinase C (PKC), and others [198]. To better understand
molecular mechanisms and possible treatment targets of hypertrophy, in vitro models are
widely used.

In vitro, hypertrophic phenotypes can be characterised by morphological changes,
such as increased cell and nucleus size, upregulated expression of classical hypertrophy
markers (foetal genes, ANP, BNP, and ACTA1, 3-MHC), cell cycle arrest, and metabolic
switch towards the foetal-type under the increased reliance on glucose [199-205]. Increased
glucose consumption is one of the features of hypertrophic response and it can be mea-
sured by increased lactate concentration [203]. Multiomic approaches may give a deeper
understanding of mechanisms of hypertrophy. For instance, transcriptomic analysis has
shown enhanced expression of genes related to muscle contraction, myofibril assembly,
and maturity-related structural elements of the cytoskeleton as well as altered expression
of genes encoding calcium handling proteins in hypertrophic CMs [203,206]. Elevated
expression of COL12A1 and THBS1 genes was also detected in a hiPSC-CM model of
endothelin-1-induced hypertrophy, implying a relation to fibrosis and cardiac remod-
elling [203]. Notably, proteomic analysis revealed that the pathways of cardiac hypertrophy
signalling, actin cytoskeleton signalling, and the superpathway of inositol phosphate
compounds and PPAR«x/RXRe activation were changed significantly in hypertrophic
CMs [207].

For modelling hypertrophy in vitro, neurohormonal or mechanical approaches are
used. Endothelin-1, phenylephrine, isoproterenol, norepinephrine, and angiotensin II
are classically used drugs to develop hypertrophy in CM cultures. Increased pressure
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or overload is introduced using physical stimuli, such as cyclic mechanical stretch [206].
Moderate mechanical stretch is also an option for CM maturation, while high afterload
can cause hypertrophic changes in hiPSC-CMs [208]. Activation of glucose metabolism
by testosterone or prolonged cultivation under high glucose conditions combined with
endothelin-1 and cortisol stimulation can be utilised to induce diabetic hypertrophy in
hiPSC-CMs associated with the accumulation and peroxidation of lipids, altered calcium
handling, and loss of sarcomere integrity [209-211].

Novel approaches including patient-derived materials, such as endothelial cell-derived
microvesicles (EMVs) from obese/hypertensive patients can be used to induce hypertrophy
with increased levels of hypertrophic markers, such as ¢TnT, x-actinin and NF-kB, and
fibrosis marker TGF-f in hiPSC-CMs [212]. HiPSCs from patients with genetic mutations
(i-e., c.478_480del and p.A160E) in TNNT2 or hypertrophy-related diastolic dysfunction are
also accessible for testing drug responses and for novel drug developments due to their
elevated diastolic intracellular calcium levels and altered calcium handling [212,213].

Cardiac organoids serve as promising models to study hypertrophic changes in a
mixed 3D culture, even if hiPSC-CM-based models are still lacking. Hypertrophic effects
of bisphenol A (BPA) and bisphenol AF (BPAF) were studied in cardiac organoids, com-
posed of hiPSC-CMs, human primary cardiac fibroblasts, and human endothelial cells.
Results showed that contraction and calcium transient amplitudes were decreased and
the level of proBNP increased [214]. Therefore, data about fibrosis in hypertrophy are still
missing in both 2D and 3D models. Taken together, the good response of hiPSC-CMs to
hypertrophy-inducing chemical or physical approaches makes them a valuable tool for
drug development in hypertrophy-related cardiac diseases. Furthermore, a successful
hiPSC-CM maturation strategy for adult phenotypes might provide a more suitable basis
for hypertrophy studies.

7.3. Channelopathies

The shape of the APs in CMs is defined by the balance of inward and outward cur-
rents flowing through sodium, potassium, and calcium channels [215]. The disruption of
functionality in any of these channels, or channelopathies, may lead to arrhythmias or other
pathological states [216]. The most common cause of channelopathies is mutations in genes
encoding ion channels [216]. The mutation may cause subtle and multiple alterations in ion
channel activity, including modulated channel conductance, shifted voltage dependence
of activation, or altered channel gating kinetics [215]. This is where the hiPSC technology
has provided significant progress by revealing the mechanisms of channelopathies. Elec-
trophysiological investigation in patient-derived hiPSC-CMs enables the determination
of patient-specific biophysical consequences of a channel mutation [215,217]. Moreover, it
provides the possibility of finding personalised and safe treatment strategies [33].

LQTS is considered one of the most common types of cardiac channelopathies [216].
The delayed repolarisation in LQTS can be caused by different reasons. For instance, LQTS
subtype 1 is caused by the mutation in the KCNQ1 channel [216,218], while LQTS subtype
2 is caused by the mutations in the KCNH2 channel, resulting in reduced potassium
currents through the respective channel [219]. Brugada syndrome is a rare inherited cardiac
arrhythmia, associated with mutations in a number of genes [220,221]. Gene mutations
of sodium voltage-gated channel alpha subunit 5 (SCN5A, encoding the ion channel
Na,1.5) are responsible for 30% of Brugada syndrome cases. SCN5A mutations result in
a constant inward sodium current during the plateau phase of the AP and a prolonged
QT interval [222]. Whereas, another mutation associated with Brugada syndrome in
plakophilin-2 results in deficits of sodium current [223].

HiPSC-CMs can be implemented for modelling a number of other cardiac chan-
nelopathies, including SQTS [224], Timothy syndrome [225], catecholamine-induced poly-
morphic ventricular tachycardia [226], or channelopathy of small- and intermediate-
conductance calcium-activated potassium channels [195,227]. For a more detailed review
of the correlation of calcium handling defects and channelopathies, see our previous review
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by Kistamas et al. [228]. The phenotypic outcomes during the modelling of the cardiac
disease may be influenced not just by presumed causative mutations, but the differences in
the genetic background as well. The precise introduction of desired mutations in a known
hiPSC line can be performed by CRISPR-Cas9 techniques. This approach was used recently
to model LQTS and SQTS phenotypes by introducing a specific mutation of KCNH2 in
isogenic hiPSC-derived cardiac tissues [67].

One of the main shortcomings in the use of hiPSC-CMs for modelling channelopathies
is their immature phenotype. The hiPSC-CMs demonstrate spontaneous activity with a
depolarised membrane, low maximal upstroke velocity, and highly variable action potential
duration [229]. Also, the expression of the inward rectifier potassium current in hiPSC-CMs
is almost negligible in the foetal phenotype [229,230]; however, there are promising studies
showing an increased density of this current upon metabolic maturation medium [231].
Therefore, the shape of the AP and the profile of the individual membrane currents con-
tributing to it substantially differ from those observed in adult human CMs. While there
were some attempts to facilitate the expression of certain ion channels by adenoviral tech-
niques [232] or enhance them with dynamic clamp [233], the new techniques for enhanced
hiPSC-CM maturation will open new possibilities for the investigation of the mechanisms
behind channelopathies and develop novel treatment strategies.

7.4. Ischaemia/Hypoxia

A high number of CVD patients experience chronic or acute ischaemia. Chronic
ischaemia is caused mostly by coronary artery disease, leading to chronic heart failure
and ischaemic cardiomyopathy [234]. Acute myocardial ischaemia is one of the causes
of sudden cardiac death, caused by the obstruction of coronary vessels, leading to the
lack of oxygen and nutrients and the accumulation of waste products in the myocardium.
Ischaemia disrupts cellular metabolism and ion currents leading to lethal arrhythmias [235].
Under ischaemic conditions, metabolism in CMs switches to anaerobic, and the generation
of lactic acid is followed by the development of acidosis, which in turn leads to the reduction
in ATP availability. If ischaemia persists, bradykinin, histamine, and ROS are released,
disrupting CM membranes and leading to changes in electrophysiology [236].

Cardiac ischemia models in hiPSC-CMs can be induced by the application of low
oxygen concentration (<2%) in the absence of glucose and serum. The main responses
to ischaemic conditions consist of reduced cell viability, contractility (reduced beating
frequency, increased depolarisation time, and field potential propagation), and reduced
sarcomere coverage and nuclear size, representing myocardium damage and arrhythmias
in vivo [237-239]. Exposure to 2% oxygen concentration reduces the viability of hiPSC-
CMs, which can be easily indicated by staining of the nuclei with propidium iodide [237].
Modelling acute ischemia (0-1% oxygen and glucose-free) can be combined with reper-
fusion (recovery in normoxia conditions of 19-20% oxygen, serum-free/glucose-free, or
full media), together with hyperkalaemia and acidosis [240,241]. It causes cell apoptosis at
the reoxygenation phase corresponding to the injury in the myocardium of patients when
circulation is restored following a heart attack or cardiopulmonary bypass surgery [241,242].
The advantage of the application of hiPSC-CMs over the proliferative CM cell lines (e.g.,
AC16, HL-1, and H9C2) was shown in simulated ischaemia-reperfusion and hypertrophic
settings [243]. Ischaemia simulation in hiPSC-CM cultures using 1% oxygen resulted in ar-
rhythmias, which were determined by the analysis of the parameters of calcium transients,
such as beat rate, diastolic calcium levels and calcium transient amplitude, irregular phases,
double or multiple peaks, prolonged rise, plateau abnormality, and low or high peaks [239].
Whereas, 0% hypoxia-induced electrophysiological changes, such as decreased beating
frequency and field potential amplitude, could be reverted during the reoxygenation phase.
The reversion of hypoxia-induced morphological changes, such as disruption of the distinct
sarcomere structure or a decrease in the nucleus area was not determined [244]. Metabolic
purification can also be used for the induction of ischaemia as it increases susceptibility
to hypoxia by inhibiting mitochondrial respiration, which can lead to cell death [245,246].
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Metabolic purification was shown to reduce sarcoendoplasmic reticulum calcium-ATPase
(SERCA) expression, as cells were depolarised and had lower mitochondrial membrane
potential [245]. In summary, by reducing the concentration of oxygen in cell cultures and
thus recapitulating the microenvironment of ischaemic diseases, it is possible to reproduce
acute or chronic changes in cardiac models using hiPSC-CM models, such as alterations in
cell viability, electrophysiology, calcium handling, or to study reperfusion-induced injuries
after the reversal from hypoxic to physiological oxygen levels in the culture environment.

8. Conclusions and Future Perspectives

We conclude that with the advent of hiPSC-CM technology and tissue engineering
models, configurations resembling native tissues may be the optimal direction in drug
screening and disease modelling. However, significant limitations persist in the field
that first need to be addressed to make it a reliable tool. The most prominent drawback
of these cells and models is their insufficient maturity status. Nonetheless, numerous
studies demonstrated that these human cells are superior to most animal models, and they
can offer several advantages over human primary cells. Importantly, employing these
cells is expected to enhance adherence to the principles of 3Rs (Replacement, Reduction,
and Refinement) in the use of animals in research. The continuously growing data pool
collected from hiPSC-CMs serves as a ground for extensive in silico modelling, which can
identify particular patterns and biomarkers associated with CVDs and can also predict
drug-induced alterations. On top of that, computational simulations and models might
promote diagnostic purposes, either by earlier diagnosis or by easier and more accurate
follow-up of patients.

Besides the human origin, the pursuit to establish a pure cell culture has two sides.
First, a pure culture having only the desired cell type is a major goal in many studies,
but there are studies showing that without co-culturing with other cell types, genuine
maturation cannot be achieved. Ongoing clinical trials show encouraging results with pure
cultures as a great option for treating heart muscle injuries during myocardial infarction
in vivo. In vitro, however, adding supporting cell types to have a mixed population appears
to be beneficial for CM maturity. Connecting several organ-on-a-chip platforms to establish
a multi-organ-on-a-chip, also known as a human-on-a-chip platform, could allow us to
assess not just hidden cardiotoxicity, but to identify effects of complex toxic environments,
such as air pollution, on different artificial mini organs. Although hiPSC-CM sources are
theoretically unlimited, there are still many ongoing attempts at their large-scale expansion
for clinical and in vitro applications. In terms of financial aspects, it is key to establish
ready-to-use robust, reproducible, and cost-effective protocols in industrial and medical
quality and quantity production.

The demand is high for human disease models as in the case of atrial fibrillation. The
key limitations are that there are no such gold standard protocols that would be ideal for
all hiPSC lines, the low maturity status, and the imperfections in gene editing. The main
limitation of personalised medicine solutions is the limited understanding of the underlying
patient-specific mutation linked to the disease. Even if major advancements have been
achieved with genome-editing techniques (e.g., CRISPR-Cas9), it is still not straightforward
to investigate the phenotype associated with specific mutations. Notably, there is a pivotal
need for isogenic controls. However, progress has been made and several works showed
that including isogenic and healthy controls (not carrying the mutation) will be extremely
relevant for personalised medicine. Next-generation sequencing (NGS) technologies have
enabled fast and affordable gene-based diagnostics, but an important challenge persists
due to the limited comprehension of genetic variants in detected disease-associated genes.
Enhancing our understanding of the molecular pathogenesis of genetic heart diseases can
drive efforts to develop novel therapeutic agents. Overall, hiPSC-CMs are considered to
revolutionise the field, based on their limitless availability, and on the fact that genomic and
proteomic analysis in a human context, high throughput screenings, novel drug discovery,
and disease modelling open new horizons. They also provide vital information to improve
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and validate in silico models. To fulfil this promise, however, we first need to overcome
the current roadblocks, including immaturity, homogeneity, and the lack of relevant 3D
architectures and complex structures.

In summary, the constant development of hiPSC-CMs and protocols carries immense
potential in drug testing and drug discovery, disease modelling, and in regenerative thera-
pies. From bench to bedside, clinical-scale production for regenerative medicine is crucial,
while solving risks, such as tumorigenicity of undifferentiated iPSCs or proarrhythmic
activities of spontaneously active hiPSC-CMs, are equally important. Current trends show
that the purity of hiPSC-CMs is key in vivo, however, drug screening and development
requires mature hiPSC-CMs in vitro. Creating more complex systems (e.g., 3D cultures
instead of 2D, bioreactors, and EHTs) may help to understand their physiology better,
achieve greater maturation, and ultimately, connect basic research with clinical studies to
completely exploit the translational potential in the field.
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Abbreviations

AF atrial fibrillation

Al artificial intelligence

AP action potential

APA action potential amplitude

APD action potential duration

BPA bisphenol A

BPAF bisphenol F

BPM beats per minute

BR beat rate

CAST Cardiac Arrhythmia Suppression Trial
CF cardiac fibroblast

CiPA Comprehensive in vitro Proarrhythmia Assay
CL cycle length

CM cardiomyocyte
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cInT cardiac troponin T

CVD cardiovascular disease

DAPI 4/ 6-diamidino-2-phenylindole

DL deep learning

ECG electrocardiogram

ECM extracellular matrix

ECT engineered cardiac tissues

EHT engineered heart tissue

EMV endothelial cell-derived microvesicle
ESC embryonic stem cell

FDA US Food and Drug Administration
FPD field potential duration

GATA4 GATA binding protein 4

hESC-CM human embryonic stem cell-derived cardiomyocyte
hiPSC human induced pluripotent stem cell

hiPSC-CM human induced pluripotent stem cell-derived cardiomyocyte
hiPSC-aCMs  human induced pluripotent stem cell-derived atrial cardiomyocyte

HOC heart-on-a-chip
HUVEC human umbilical vein endothelial cells
IDE interdigitated electrodes
LDH lactate dehydrogenase
LQTS long QT syndrome
MCS maximum contraction speed
MEA multielectrode array
ML machine learning
MRS maximum relaxation speed
NFAT nuclear factor of activated T-cells
NGS next-generation sequencing
Nkx2.5 homeobox protein Nkx2.5
OAP optical action potential
PKC protein kinase C
RMP resting membrane potential
ROS reactive oxygen species
SERCA sarcopendoplasmic reticulum calcium-ATPase
SK small conductance calcium-activated potassium channel
SNP single nucleotide polymorphism
SQTS short QT syndrome
SR sarcoplasmic reticulum
SWORD Survival with oral d-sotalol Trial
TdP torsade de pointes type polymorphic ventricular tachyarrhythmia
VEGF vascular endothelial growth factor
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