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Abstract
The main topic of this dissertation is the estimation of the Hurst index

H of the solutions of stochastic differential equations (SDEs) driven by the
fractional Brownian motion (fBm).

Firstly, the limit behavior of the first and second order quadratic variations
of the solutions of SDEs driven by the fBm is analyzed. This yields several
strongly consistent estimators of the Hurst index H . Secondly, it is proved that
in case the solution of the SDE is replaced by its Milstein approximation, the
estimators remain strongly consistent. Additionally, the possibilities of apply-
ing the increment ratios (IR) statistic based estimator of H originally obtained
by J. M. Bardet and D. Surgailis in 2010 to the fractional geometric Brownian
motion are examined. Furthermore, this dissertation derives the convergence
rate of the modified Gladyshev’s estimator of the Hurst index to its real value.

The estimators obtained in the dissertation were compared with several
other known estimators of the Hurst index H , namely the naive and ordinary
least squares Gladyshev and η-summing oscillation estimators, the variogram
estimator and the IR estimator. The models chosen for comparison of these
estimators were the fractional Ornstein-Uhlenbeck (O-U) process and the frac-
tional geometric Brownian motion (gBm). The initial inference about the be-
havior of these estimators was drawn for the O-U process which is Gaussian,
while the gBm process was used to check how the estimators behave in a non-
Gaussian case. The scope of modelling was 100 sample paths of the length
n = 214 + 1 for each value of H ∈ {0.55, 0.6, . . . , 0.95} on the unit interval
t ∈ [0, 1].

The dissertation consists of the introduction, 3 main chapters, the conclu-
sions, the bibliography, the list of author’s publications on the topic of disser-
tation and two appendices.

The results obtained during the doctoral studies were published in 6 papers
in reviewed periodic scientific journals and were presented at 5 conferences, of
which 2 – international.



Santrauka
Pagrindinė šios disertacijos tema – stochastinių diferencialinių lygčių

(SDL), valdomų trupmeninio Brauno judesio (tBj), sprendinių Hursto indekso
H vertinimas.

Pirmiausia disertacijoje išnagrinėta SDL, valdomų tBj, sprendinių pirmos
ir antros eilės kvadratinių variacijų ribinė elgsena. Iš šių rezultatų seka keli
stipriai pagrįsti Hursto indekso H įvertiniai. Įrodyta, kad šie įvertiniai išlieka
stipriai pagrįsti, jei tikra sprendinio trajektorija keičiama jos Milšteino aproksi-
macija. Taip pat išnagrinėtos pokyčių santykio (increment ratios) statistikos H
įvertinio, gauto J. M. Bardeto ir D. Surgailio 2010 m., taikymo trupmeninio ge-
ometrinio Brauno judesio Hursto indekso vertinimui galimybės bei nustatytas
modifikuoto Gladyševo H įvertinio konvergavimo į tikrąją parametro reikšmę
greitis.

Gauti įvertiniai palyginti su kai kuriais kitais žinomais Hursto indekso H
įvertiniais: naiviais bei mažiausių kvadratų Gladyševo ir η-sumavimo oscil-
iacijos įvertiniais, variogramos įvertiniu ir pokyčių santykio statistikos įver-
tiniu. Įvertinių elgsena buvo palyginta trupmeniniam Ornšteino-Ulenbeko (O-
U) procesui bei trupmeniniam geometriniam Brauno judesiui (gBj). Pradinės
išvados buvo padarytos O-U procesui, kuris yra Gauso, o gBj procesas buvo
naudojamas patikrinti, kaip šie įvertiniai elgiasi, kai procesas yra ne Gauso.
Modeliavimo apimtis buvo po 100 trajektorijų kiekvienai Hursto indekso reikš-
meiH ∈ {0, 55, 0, 6, . . . , 0, 95} vienetiniame intervale t ∈ [0, 1]; kiekvienos
trajektorijos ilgis buvo n = 214 + 1 taškų.

Disertaciją sudaro įvadas, 3 pagrindiniai skyriai, išvados, literatūros sąraš-
as, autoriaus publikacijų disertacijos tema sąrašas ir du priedai.

Doktorantūros studijų metu gauti rezultatai buvo paskelbti 6 straipsniuose
recenzuojamuose periodiniuose mokslo leidiniuose ir pristatyti 5 konferenci-
jose, iš kurių 2 – tarptautinės.



Notation

Symbols

fBm – the fractional Brownian motion
SDE – stochastic differential equation
gBm – the fractional geometric Brownian motion
O-U – the Ornstein-Uhlenbeck process
N – the set of natural numbers
Z – the set of integer numbers
R – the set of real numbers
EX – the expectation of X
MSE(X) – the mean squared error of X
a.s. – almost surely
1A – the indicator function of the set A
[x] – the integer part of x
V

(1)
n (X, 2) – the first order quadratic variation of X (regular subdivisions)
V

(2)
n (X, 2) – the second order quadratic variation of X (regular subdiv.)
V

(1)
πn (X, 2) – the first order quadratic variation of X (irregular subdiv.)
V

(2)
πn (X, 2) – the second order quadratic variation of X (irregular subdiv.)
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viii NOTATION

vp(f ; [a, b]) – the p-variation of f on the interval [a, b]
Wp([a, b]) – the set of functions with bounded p-variation on [a, b]
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Introduction

Formulation of the problem

In fields as diverse as economics and finance, mathematics, physics, chem-
istry, environmental studies and computer science it is not uncommon to en-
counter observations made far apart in time or space which are non-trivially
correlated. This phenomenon is known as long memory or long-range depen-
dance and was first studied by the hydrologist Hurst (1951) who tried to de-
rive a suitable model for the flow of the Nile river. The stochastic calculus
of stochastic processes possessing the long-range dependance property started
with the work of Mandelbrot, van Ness (1968) which introduced the fractional
Brownian motion (fBm), the backbone of such processes. Later on B. B. Man-
delbrot summarized his results on fractals and scaling in Mandelbrot (1995).
The first result in which the fBm appeared as the limit of stationary sums of
random variables in the Skorokhod topology was obtained by Taqqu (1975).
In the 1990s intensive studies of possibilities of applying the fBm in various
teletraffic, finance and climate models started which, in turn, encouraged the
stochastic analysis studies of the fBm (e. g., Decreusefond, Üstünel (1995)).

The Hurst index H ∈ (0, 1) determines the correlation structure of fBm:
if H = 1/2 it is the standard Brownian motion, if H < 1/2 the increments
of the process are negatively correlated and if H > 1/2 the increments of
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2 INTRODUCTION

the process are positively correlated which implies the long-range dependance.
The latter property of the fBm encouraged the studies of stochastic models in
which the standard Brownian motion is replaced by the fBm, since the long-
range dependance is often encountered in the observed data. Therefore it is
important to be able to study this dependance and check if it really exists.
The problem examined in this thesis is the estimation of the Hurst index H of
certain generalizations of the fBm from discrete data.

Topicality of the work

The estimation and modeling of the Hurst index has been a subject of in-
tense studies lately. A whole set of methods and estimators have been proposed
for the Gaussian processes of the fractional type. However little is known about
the construction of the estimators when the considered process is a solution of a
stochastic differential equation driven by the fBm. In the work of Berzin, León
(2008) such estimators are given for several specific types of such equations,
where the integrands are either constants or linear functions. Naturally it’s de-
sirable to obtain estimators for the solutions of the general case of stochastic
differential equations driven by the fBm which would be simple to implement
and computationally efficient.

Research object

The research objects are the solutions of stochastic differential equations
driven by the fractional Brownian motion with the Hurst index H > 1/2.

The aim and tasks of the work

The aim of this work is to study the limit behavior of certain statistics
based on the observed values of the process and use the obtained results to
derive consistent estimators of the Hurst index H as well as to study the prop-
erties of these estimators. The tasks of this work are:

1. To study the limit behavior of the quadratic variations of the solutions
of SIEs driven by the fBm both in the case of equally and non-equally
spaced observations.
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2. To derive consistent estimators of the Hurst indexH based on quadratic
variations.

3. To study the possibility of applying the increment ratios (IR) statistic
to estimate the Hurst index H of the solutions of SIEs driven by the
fBm.

4. To compare the performance of the obtained estimators to that of other
known estimators.

Applied methods

In the theoretical part of the work the p-variation calculus techniques have
been applied along with an array of known inequalities. As for the modelling
part of the work, the fractional Brownian motion sample paths were generated
using the circular matrix embedding method (see, f.e., Coeurjolly (2000)). All
calculations were performed using the R software package.

Scientific novelty

It was shown that the estimators of the Hurst index H originally obtained
by Istas, Lang (1997) and Benassi et al (1998) for the fBm retain their proper-
ties when the underlying process is a solution of a stochastic differential equa-
tion, which is not necessarily Gaussian. Additionally, it was proved that the IR
statistic estimator originally obtained by Bardet, Surgailis (2010) can be used
to estimate the Hurst index H of the fractional geometric Brownian motion.
Furthermore, the convergence rate of the modified Gladyshev Hurst index es-
timator has been derived.

Practical value of the results

The estimators studied in this work are suitable for a wide spectrum of
processes including the fractional Ornstein-Uhlenbeck process and the frac-
tional geometric Brownian motion. For the latter two models, the estimators
were additionally studied through simulated data. They are easy to implement,
computationally efficient and do not impose any specific requirements on the
sample path lengths.
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Propositions presented for defence

1. Two strongly consistent estimators of the Hurst indexH of the solution
of a stochastic differential equation driven by the fractional Brownian
motion have been obtained which is a non-covering extension of the
results known up to date.

2. It was shown that the IR statistic estimator of the Hurst index H is
applicable to the fractional geometric Brownian motion.

3. The convergence speed of the modified Gladyshev estimator has been
obtained.

4. Computer modelling suggests that the performance of the obtained es-
timators is comparable to or better than that of other estimators con-
sidered in this non-exhaustive study.

Approval of the results

On the topic of dissertation there were 6 papers published in reviewed sci-
entific journals. The research results were reported at 5 scientific conferences.
The list of conference talks is as follows:

1. K. Kubilius, D. Melichov, Estimating the Hurst index of the solution
of a stochastic integral equation, 10th international Vilnius conference
on probability theory and mathematical statistics, Vilnius, 2010.

2. K. Kubilius, D. Melichov, On estimation and asymptotics of the Hurst
index of solutions of stochastic integral equations, Applied stochastic
models and data analysis, Vilnius, 2009.

3. K. Kubilius, D. Melichov, Using the IR ir DV statistics to estimate the
Hurst index of solutions of stochastic differential equations, LMD 52nd
conference, Vilnius, 2011.

4. K. Kubilius, D. Melichov, On estimation of the Hurst index of solutions
of stochastic integral equations, LMD 51st conference, Šiauliai, 2010.

5. K. Kubilius, D. Melichov, On estimation of the Hurst index of solutions
of stochastic integral equations, LMD 50th conference, Vilnius, 2009.
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Structure of the dissertation

The dissertation consists of the introduction, three chapters, the conclu-
sions, references, the list of author’s publications on the topic of the disser-
tation and two appendices. The total scope of the dissertation is 78 pages, 5
tables, 4 figures and 34 items of reference.

The first chapter is the introduction which presents the considered stochas-
tic differential equation, the overview of other authors’ works on the topic of
dissertation and introduces some common definitions used further on.

The second chapter presents the obtained theoretical results, namely the
asymptotics of the quadratic variations of the solutions of stochastic differen-
tial equations driven by the fBm and the estimators of the Hurst indexH . Addi-
tionally, the usage of the IR statistic based estimator to estimate the Hurst index
of the solutions of SDEs is considered; it’s proved that if the underlying process
is the fractional geometric Brownian motion, then the a.s. convergence of the
IR statistic holds. Moreover, the convergence rates of the modified Gladyshev
estimator are studied.

The third chapter shows the comparison of performance of the obtained
estimators of the Hurst index H with that of other known estimators for a
Gaussian (fractional Ornstein-Uhlenbeck) and a non-Gaussian (fractional geo-
metric Brownian motion) processes.





1
Definitions and the historical

overview

1.1. The fractional Brownian motion

1.1 Definition. A processBH
t = {BH

t ; t > 0} is a fractional Brownian motion
(fBm) with the Hurst index H ∈ (0, 1) if it is a continuous centered Gaussian
process with the covariance function

E
(
BH
t B

H
s

)
= 1

2
(
t2H + s2H − |t− s|2H

)
, ∀t, s > 0.

The fractional Brownian motion has the following primary properties:

• Self-similarity: for any a > 0, the processes {aHBH
t ; t > 0} and

{BH
at ; t > 0} have identic probability distributions;

• Stationary increments: for any s > 0, the processes {BH
t ; t > 0} and

{BH
t+s −BH

s ; t > 0} have identic probability distributions;

• Correlated increments: for u < s < t, the fBm has independent in-
crements only if H = 1/2, this corresponds to the standard Brownian

7
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Fig. 1.1. 5 sample paths of the fractional Brownian motion, n = 1024.

motion; if H 6= 1/2, then the increments of BH are correlated:

corr
(
BH
t −BH

s , B
H
s −BH

u

)




> 0 if H > 1/2;
= 0 if H = 1/2;
< 0 if H < 1/2.

• Hölder continuity: for α < H , almost all sample paths of fBm are
Hölder continuous of order α, that is,

sup
t 6=s
|BH

t −BH
s |

|t− s|α <∞.
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• Bounded p-variation: almost all sample paths of fBm with the Hurst
index 1/2 < H < 1 have bounded p-variation for p > 1/H , that is,

vp
(
BH ; [a, b]

)
= sup

κ

n∑

k=1

∣∣∣BH(tk)−BH(tk−1)
∣∣∣
p
<∞,

κ = {ti : i = 0, . . . , n} being all finite partitions of the interval [a, b]
such that a = t0 < ti < . . . < tn = b.

• Fractal dimension: the graph of a sample path of fBm with the Hurst
index H has the fractal dimension equal to 2−H .

1.2. The main equation

Consider a SDE driven by the fBm with the Hurst index 1/2 < H < 1

Xt = ξ +
∫ t

0
f(Xs) ds+

∫ t

0
g(Xs) dBH

s , (1.1)

t ∈ [0, T ], T > 0, ξ ∈ R. It is known that almost all sample paths of BH ,
1/2 < H < 1, have bounded p-variation for p > 1/H . Thus the integrals on
the right side of (1.1) will exist pathwise as the Riemann-Stieltjes integrals. For
1
H − 1 < α 6 1, C1+α(R) denotes the set of all C1-functions g: R → R such
that

sup
x
|g′(x)|+ sup

x6=y
|g′(x)− g′(y)|
|x− y|α <∞.

Let f be a Lipschitz-continuos function and let g ∈ C1+α(R), 1
H − 1 <

α 6 1. For 1 6 p < 1 + α there exists a unique solution of the equation (1.1)
with almost all sample paths in the class of all continuous functions defined
on [0, T ] with bounded p-variation (see Lyons (1994), Dudley (1999), Kubilius
(2000), Nualart, Rǎşcanu (2002)).

For the estimation of the Hurst parameter H first of all we consider the
limits of the first and second order quadratic variations of a pathwise solution
X of (1.1). Results of such type for Gaussian processes were considered in
Bégyn (2005)-Bégyn (2006) (see also references in Bégyn (2006)).
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1.3. The estimators of the Hurst index

In 1961, E. Gladyshev derived a limit theorem for a statistic based on the
first order quadratic variations of fBm. This yielded an estimator of H which
was strongly consistent but not asymptotically normal.

In 1997, another estimator was introduced by J. Istas and G. Lang. This
estimator was designed for centered Gaussian processes with stationary incre-
ments and again employed the first order quadratic variations. The obtained
estimator was asymptotically normal for H ∈ (1/2, 3/4).

In 1998, A. Benassi et al considered the second order quadratic variations
of a class of Gaussian processes, having locally the same fractal properties as
the fractional Brownian motion and obtained an estimator of the Hurst index
H which was asymptotically normal for all H .

In 2001, J. F. Coeurjolly developed a class of consistent estimators of H
based on the asymptotic behavior of the k-th absolute moment of discrete vari-
ations of its sample paths over a discrete partition of the interval [0, 1]. Explicit
convergence rates for these types of estimators, valid through the whole range
0 < H < 1 of the self-similarity parameter, were derived, and the asymptotic
normality of the obtained estimators was established.

In 2005, A. Bégyn considered the second order quadratic variations along
general subdivisions for processes with Gaussian increments. A more complete
survey on asymptotic behavior of quadratic variations for Gaussian processes
can be found in the thesis of A. Bégyn (2006).

In 2006, C. Berzin and J. R. León proposed estimators of H and the diffu-
sion function g for several specific cases of (1.1), namely for the combinations
of f(Xs) = µ or f(Xs) = µXs and g(Xs) = σ or g(Xs) = σXs. Addition-
ally they assumed that the process Xt was smoothed by convolution defined
as Xε(t) = ϕε ∗Xt where ε, which tends to zero, is the smoothing parameter
and ϕε(·) is the convolution kernel defined as ϕε(·) = 1

εϕ( ·ε). Here ϕ(·) is a
C2 positive kernel with L1 norm equal to one. The estimators of H and g use
functionals of the type

∫ 1
0 h(Xε(t))|Ẍε(t)|k dt where h(x) = 1/|x|k in the

case of g(Xs) = σXs and h(x) = 1 in the case of g(Xs) = σ.
In 2011, R. Bertrand, M. Fhima and A. Guillin introduced a method for

change point analysis on the Hurst index for a piecewise fractional Brown-
ian motion, a generalization of the regular fractional Brownian motion. Their
procedure is the combination, on the one hand, of the filtered derivative with p-
value (FDpV) method for detection of change of the mean, variance or regres-
sion parameter, and, on the other hand, of a variation of the increment ratios
(IR) statistic estimator introduced in J. M. Bardet and D. Surgailis (2010).
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1.4. Quadratic variations

1.4.1. Regular subdivisions

1.2 Definition. For a real-valued processX = {Xt; t ∈ [0, T ]}, we define the
first and second order quadratic variations along regular subdivisions as

V (1)
n (X, 2) =

n∑

k=1
(∆Xn

k )2 , V (2)
n (X, 2) =

n−1∑

k=1

(
∆(2)Xn

k

)2
,

where

∆Xn
k = X(tnk)−X(tnk−1) , ∆(2)Xn

k = X(tnk+1)− 2X(tnk) +X(tnk−1)

and tnk = kT/n.

1.4.2. Irregular subdivisions

Let πn = {0 = tn0 < tn1 < · · · < tnNn = T}, T > 0, be a sequence
of subdivisions of the interval [0, T ] and (Nn) is an increasing sequence of
natural numbers. Such sequence of subdivisions is called irregular. Define

mn = max
16k6Nn

∆tnk , pn = min
16k6Nn

∆tnk , ∆tnk = tnk − tnk−1.

Usually the observed values of the process are only available at discrete
regular time intervals. However, it may happen that part of the observations
are lost, resulting in observations at irregular time intervals.

1.3 Definition. The first and second order quadratic variations of X along the
subdivisions (πn)n∈N with normalization 1/2 < H < 1 is defined by

V (1)
πn (X, 2) =

Nn∑

k=1

(∆Xn
k )2

(∆tnk)2H−1 , ∆Xn
k = X(tnk)−X(tnk−1),

and

V (2)
πn (X, 2) = 2

Nn−1∑

k=1

∆tnk+1(∆(2)
ir X

n
k )2

(∆tnk)1/2+H(∆tnk+1)1/2+H(∆tnk + ∆tnk+1)
,
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where

∆(2)
ir X

n
k = ∆tnkX(tnk+1) + ∆tnk+1X(tnk−1)− (∆tnk + ∆tnk+1)X(tnk).

1.5. Auxiliary results

LetWp([a, b]) denote the set of functions which have bounded p-variation
on the interval [a, b]:

Wp([a, b]) := {f : [a, b]→ R : vp (f ; [a, b]) <∞} ,

where

vp (f ; [a, b]) = sup
κ

n∑

k=1
|f(xk)− f(xk−1)|p ,

κ = {xi : i = 0, . . . , n} being all finite partitions of [a, b] such that a =
x0 < xi < . . . < xn = b. Let Vp(f) := Vp(f ; [a, b]) = v

1/p
p (f ; [a, b]). Vp(f)

is a non-increasing function of p, that is, if 0 < q < p then Vp(f) 6 Vq(f).
Let a < c < b and let f ∈ Wp([a, b]) with 0 < p <∞. Then

vp(f ; [a, c]) + vp(f ; [c, b]) 6 vp(f ; [a, b]), (1.2)

Vp(f ; [a, b]) 6 Vp(f ; [a, c]) + Vp(f ; [c, b]). (1.3)

Let f ∈ Wq([a, b]) and h ∈ Wp([a, b]). The Love-Young inequality states that

∣∣∣∣
∫ b

a
f dh− f(y)

[
h(b)− h(a)

]∣∣∣∣ 6 Cp,qVq(f ; [a, b])Vp(h; [a, b]) (1.4)

and

Vp

(∫ ·
a
f dh; [a, b]

)
6 Cp,qVq,∞(f ; [a, b])Vp(h; [a, b]), (1.5)

where Vq,∞(f ; [a, b]) = Vq(f ; [a, b]) + supa6x6b |f(x)|, Cp,q = ζ(p−1 + q−1)
and ζ(s) = ∑

n>1 n
−s. Let f ∈ Wq([a, b]) and g ∈ Wp([a, b]), 0 < p < ∞.

Then fg ∈ Wp([a, b]) and

Vp,∞(fg; [a, b]) 6 CpVp,∞(f ; [a, b])Vp,∞(g; [a, b]). (1.6)
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Let f ∈ Wq([a, b]) and g ∈ Wp([a, b]). For any partitionκ and for p−1+q−1 >
1 the Young’s version of Hölder’s inequality and the inequality (1.2) yield

∑

i

Vq
(
f ; [xi−1, xi]

)
Vp
(
g; [xi−1, xi]

)
6 Vq

(
f ; [a, b]

)
Vp
(
g; [a, b]

)
, (1.7)

since
∑

i

Vq
(
f ; [xi−1, xi]

)
Vp
(
g; [xi−1, xi]

)

6
(∑

i

V q
q

(
f ; [xi−1, xi]

)
) 1
q

·
(∑

i

V p
p

(
g; [xi−1, xi]

)
) 1
p

=
(∑

i

vq
(
f ; [xi−1, xi]

)
) 1
q

·
(∑

i

vp
(
g; [xi−1, xi]

)
) 1
p

6
(
vq
(
f ; [a, b]

)) 1
q · (vp

(
g; [a, b]

)) 1
p = Vq

(
f ; [a, b]

)
Vp
(
g; [a, b]

)
.

Since almost all sample paths of the BH , 1/2 6 H < 1, are locally Hölder
continuous, it follows that

Vp(BH ; [s, t]) 6 L
H,1/p
T (t− s)1/p, (1.8)

where s < t 6 T, p > 1/H ,

LH,γT = sup
s6=t
s,t6T

|BH
t −BH

s |
|t− s|γ , 0 < γ < H, E

(
LH,γT

)k
<∞, ∀k > 1.

1.6. Conclusions of the first chapter

The estimation of the Hurst index H has been thoroughly studied for var-
ious types of Gaussian processes. The goal of this dissertation is to address
such estimation when the underlying process is the solution of the stochastic
differential equation (1.1) which is not necessarily Gaussian.





2
Quadratic variations and the

increment ratios statistic

2.1. Regular subdivisions

2.1 Theorem. Let f be a Lipschitz-continuos function and let g ∈ C1+α, 1
H −

1 < α 6 1. Assume that the subdivision of the interval [0, T ] is regular. Then

lim
n→∞n

2H−1V (1)
n (X, 2) =

∫ T

0
g2(Xt) dt

where X is the solution of the equation (1.1).

Define

Ĥn
dv1 := 1

2 −
1

2 ln 2 ln V
(1)

2n (X, 2)
V

(1)
n (X, 2)

.

Here and further V (·)
2n (X, 2) corresponds to the quadratic variation of the whole

sample path while V (·)
n (X, 2) is the variation of the subset {Xk : k = 2j, 0 6

j 6 [n/2]}, [x] denotes the integer part of x.

2.2 Theorem. Assume that conditions of Theorem 2.1 are satisfied. Then

Ĥn
dv1 −→ H a.s. as n→∞.

15
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2.3 Theorem. Let f be a Lipschitz-continuos function and let g ∈ C1+α, 1
H −

1 < α 6 1. Assume that the subdivision of the interval [0, T ] is regular. Then

lim
n→∞n

2H−1V (2)
n (X, 2) = (4− 22H)

∫ T

0
g2(Xt) dt

where X is the solution of (1.1).

Define

Ĥn
dv2 := 1

2 −
1

2 ln 2 ln V
(2)

2n (X, 2)
V

(2)
n (X, 2)

.

2.4 Theorem. Assume that conditions of Theorem 2.3 are satisfied. Then

Ĥn
dv2 −→ H a.s. as n→∞.

The proof of Theorem 2.1 does not differ significantly from that of Theo-
rem 2.6 and shall be omitted. The proof of Theorem 2.2 follows immediately
from the proof of Theorem 2.4 and the result of Theorem 2.1.

Proof of Theorem 2.3. Under the conditions of the theorem the solution
of the equation (1.1) exists for 1 6 p < 1+α and Vp(X; [0, T ]) <∞ for every
p > 1/H . For simplicity the index n for t in the sequel will be omitted. So

V 2
n (X, 2) =

n−1∑

k=1

(∫ tk+1

tk

f(Xs) ds−
∫ tk

tk−1
f(Xs) ds

)2

+
n−1∑

k=1

(∫ tk+1

tk

g(Xs) dBH
s −

∫ tk

tk−1
g(Xs) dBH

s

)2

+ 2
n−1∑

k=1

(∫ tk+1

tk

g(Xs) dBH
s −

∫ tk

tk−1
g(Xs) dBH

s

)

×
(∫ tk+1

tk

f(Xs) ds−
∫ tk

tk−1
f(Xs) ds

)

=:S1 + S2 + S12.
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Denote Xk := X(tnk). Let’s evaluate the behavior of

V (2)
n (X, 2)−

n−1∑

k=1
g2(Xk)

(
∆(2)BH

k

)2

= S1 +
(
S2 −

n−1∑

k=1
g2(Xk)

(
∆(2)BH

k

)2
)

+ S12

=: S1 + S̃2 + S12.

Obviously,
∫ tk+1

tk

g(Xs) dBH
s −

∫ tk

tk−1
g(Xs) dBH

s

=
(∫ tk+1

tk

g(Xs) dBH
s − g(Xk)∆BH

k+1

)

−
(∫ tk

tk−1
g(Xs) dBH

s − g(Xk)∆BH
k

)
+ g(Xk)∆(2)BH

k .

Thus

|S̃2| 6
n−1∑

k=1

(∫ tk+1

tk

g(Xs) dBH
s − g(Xk)∆BH

k+1

)2

+
n−1∑

k=1

(∫ tk

tk−1
g(Xs) dBH

s − g(Xk)∆BH
k

)2

+ 2
n−1∑

k=1

∣∣g(Xk)∆(2)BH
k

∣∣ ·
∣∣∣∣
∫ tk+1

tk

g(Xs) dBH
s − g(Xk)∆BH

k+1

∣∣∣∣

+ 2
n−1∑

k=1

∣∣g(Xk)∆(2)BH
k

∣∣ ·
∣∣∣∣
∫ tk

tk−1
g(Xs) dBH

s − g(Xk)∆BH
k

∣∣∣∣ .

Further, from the Love-Young inequality (1.4) it follows that

|S̃2| 6 2C2
p,p|g′|2∞

n−1∑

k=0
V 2
p (X; [tk, tk+1])V 2

p (BH ; [tk, tk+1])

+ 2Cp,p|g′|∞
n−1∑

k=1

∣∣g(Xk)∆(2)BH
k

∣∣ · Vp(X; [tk, tk+1])Vp(BH ; [tk, tk+1])
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+ 2Cp,p|g′|∞
n−1∑

k=1

∣∣g(Xk)∆(2)BH
k

∣∣ · Vp(X; [tk−1, tk])Vp(BH ; [tk−1, tk])

which, coupled with the inequality (1.7), yields

|S̃2| 62C2
p,p|g′|2∞ max

06k6n−1

[
Vp(X; [tk, tk+1])Vp(BH ; [tk, tk+1])

]

× Vp(X; [0, T ])Vp(BH ; [0, T ])
+ 4Cp,p|g′|∞ max

16k6n−1

∣∣g(Xk)∆(2)BH
k

∣∣Vp(X; [0, T ])Vp(BH ; [0, T ])

62C2
p,p|g′|2∞ max

06k6n−1

[
Vp(BH ; [tk, tk+1])

]
V 2
p (X; [0, T ])Vp(BH ; [0, T ])

+ 8Cp,p|g′|∞ max
16k6n

∣∣∆BH
k

∣∣[|g′|∞Vp(X; [0, T ]) + |g(ξ)|]

× Vp(X; [0, T ])Vp(BH ; [0, T ])

since for all 0 6 k 6 n

|g(Xk)| 6 |g′|∞Vp(X; [0, T ]) + |g(ξ)|.

|S12| can be rewritten as

|S12| =2
n−1∑

k=1

∣∣∣∣
∫ tk+1

tk

g(Xs) dBH
s − g(Xk)∆BH

k

−
∫ tk

tk−1
g(Xs) dBH

s + g(Xk)∆BH
k

∣∣∣∣

×
∣∣∣∣
∫ tk+1

tk

f(Xs) ds−
∫ tk

tk−1
f(Xs) ds

∣∣∣∣ .

From the Love-Young inequality (1.4) it follows that

|S12| 6 2Cp,p
n−1∑

k=1

{[
Vp(g(X); [tk, tk+1])Vp(BH ; [tk, tk+1])

+ Vp(g(X); [tk−1, tk])Vp(BH ; [tk−1, tk])
]

×
[ ∫ tk+1

tk

|f(Xs)| ds+
∫ tk

tk−1
|f(Xs)| ds

]}

6 4Cp,p max
16k6n

[
Vp(g(X); [tk−1, tk])Vp(BH ; [tk−1, tk])

]
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×
n−1∑

k=1

[ ∫ tk+1

tk

|f(Xs)| ds+
∫ tk

tk−1
|f(Xs)| ds

]

6 8Cp,p|g′|∞Vp(X; [0, T ]) max
16k6n

[
Vp(BH ; [tk−1, tk])

]

×
∫ T

0
|f(Xs)| ds .

Additionally,

|f(Xs)| 6 |f(Xs)− f(ξ)| + |f(ξ)| 6 LVp(X; [0, T ]) + |f(ξ)| ,

where L is the Lipschitz constant of the function f . Therefore,

|S12| 6 8Cp,p|g′|∞Vp(X; [0, T ]) max
16k6n

[
Vp(BH ; [tk−1, tk])

]

× [LVp(X; [0, T ]) + |f(ξ)|] and

S1 =
n−1∑

k=1

(∫ tk+1

tk

f(Xs) ds−
∫ tk

tk−1
f(Xs) ds

)2

6 2
n−1∑

k=0

(∫ tk+1

tk

f(Xs) ds
)2

6 2n−1
∫ T

0
f2(Xs) ds

6 2Tn−1[|f(ξ)|+ LVp(X; [0, T ])
]2
.

Note that for p such that H − 1/p < 1−H it follows that

n2H−1 max
{|∆BH

k |, Vp(BH ; [tk, tk+1])
}

6 L
H,1/p
T T 1/pn2H−1−1/p a.s.−→ 0 as n→∞.

Such a value of p will always exist. Therefore it follows that

n2H−1|S1 + S̃2 + S12| a.s.−→ 0 as n→∞.

Consequently, the theorem will be proved if the convergence

n2H−1
n−1∑

k=1
g2(Xk)(∆(2)BH

k )2 a.s.−→ (4− 22H)
∫ T

0
g2(Xt) dt

is obtained. To do so, the Helly-Bray theorem is applied.
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2.5 Theorem. Let the functions Fn (n = 1, 2, . . .) be non-decreasing and
uniformly bounded. If the sequence Fn converges to F in its continuity points
and

Fn(−∞)→ F (−∞), Fn(∞)→ F (∞),

then for every continuous bounded function g
∫ ∞
−∞

g(x) dFn(x)→
∫ ∞
−∞

g(x) dF (x) .

Let

V (2)
n (BH , 2)t =

[nt/T ]−1∑

k=1
(∆(2)BH

k )2 , t ∈ [0, T ]

and Sn(t) = n2H−1V
(2)
n (BH , 2)(t). Then

n2H−1
n−1∑

k=1
g2(Xk)(∆(2)BH

k )2 =
∫ T

0
g2(Xt) dSn(t).

It is known (see, e.g., Bégyn (2006) 122p.) that

n2H−1V 2
n (BH , 2)t a.s.−→ (4− 22H)t .

Since the function Snt is non-decreasing, it follows that (see Lemma 1 in
McLeish (1978))

sup
t6T
|Snt − t| a.s.−→ 0 as n→∞ .

The function Snt is non-decreasing and uniformly bounded for every ω. There-
fore the Helly-Bray theorem yields

∫ T

0
g2(Xt) dSn(t) a.s.−→ (4− 22H)

∫ T

0
g2(Xt) dt as n→∞

which completes the proof.
Proof of Theorem 2.4. The estimator Ĥn

dv2 can be rewritten as

Ĥn
dv2 =1

2 −
1

2 ln 2
[
(2H − 1) ln 1

2

+ ln (2n)2H−1V2n(X, 2)
(n)2H−1Vn(X, 2)

]
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=H − 1
2 ln 2 ln (2n)2H−1V2n(X, 2)

(n)2H−1Vn(X, 2) ,

which, coupled with the results of Theorem 2.3 yields the convergence

Ĥn
dv2 −H a.s.−→ 0.

2.2. Irregular subdivisions

2.6 Theorem. Let f be a Lipschitz-continuos function and let g ∈ C1+α, 1
H −

1 < α 6 1. Let (πn)n∈N be a sequence of subdivisions of the interval [0, T ]
such that

m2−2H
n

n→∞= o(1/ lnn) and mn
n→∞= O(pn).

Then

V (1)
πn (X, 2) a.s.−→

∫ T

0
g2(Xt) dt as mn → 0,

where X is the solution of (1.1).

Let (πn)n>1 be a sequence of partitions of [0, T ] such that 0 = tn0 <
tn1 < · · · < tnNn = T for all n > 1. Assume that we have two sequences of
partitions (πi(n))n>1 and (πj(n))n>1 of [0, T ] such that πi(n) ⊂ πj(n) ⊆ πn,
i(n) < j(n) 6 Nn, for all n ∈ N, where πi(n) = {0 = tn0 < tni(1) < tni(2) <

· · · < tni(n) = T} and πj(n) = {0 = tn0 < tnj(1) < tnj(2) < · · · < tnj(n) = T}.
Define

H̃n
dv1 := 1

2−
1

2 ln(mi(n)/pj(n))
ln
V

(1)
j(n)(X, 2)

V
(1)
i(n)(X, 2)

, V
(1)
i(n)(X, 2) =

i(n)∑

k=1

(
∆Xn

k

)2
,

where

∆tnk = tni(k) − tni(k−1), mi(n) = max
16k6i(n)

∆tnk , pi(n) = min
16k6i(n)

∆tnk .

2.7 Theorem. Assume that conditions of Theorem 2.6 are satisfied. If the se-
quences of partitions (πi(n)) and (πj(n)), i(n) < j(n), are regular or such that
ln(pi(n)/pj(n))→∞ as n→∞, then

H̃n
dv1 −→ H a.s. as n→∞.
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To study the almost sure convergence of the second order quadratic varia-
tions of X additional assumptions on the sequence (πn)n∈N are required.

2.1 Definition. (see Bégyn (2006)) Let (`k)k>1 be a sequence of real numbers
in the interval (0,∞). We say that (πn)n∈N is a sequence of subdivisions with
asymptotic ratios (`k)k>1 if it satisfies the following assumptions:

• mn
n→∞= O(pn);

• limn→∞ sup16k6Nn

∣∣∣∣
∆tnk−1
∆tn

k
− `k

∣∣∣∣ = 0.

The set L = {`1, `2, . . . , `k, . . .} will be called the range of the asymp-
totic ratios of the sequence (πn)n∈N.

It is clear that if the sequence (πn)n∈N is regular, then it is a sequence with
asymptotic ratios `k = 1 for all k > 1.

2.2 Definition. (see Bégyn (2006)) The function g : (0, ∞) → R is invariant
on L if for all `, ˆ̀∈ L, g(`) = g(ˆ̀).

For example, let L = {α, α−1} be the set containing two real positive
numbers and let

h(λ) = 1 + λ2H−1 − (1 + λ)2H−1

λH−1/2 .

The function h is invariant on L.

2.8 Theorem. Let f be a Lipschitz-continuos function and let g ∈ C1+α, 1
H −

1 < α 6 1. Let (πn)n∈N be a sequence of subdivisions with asymptotic ratios
(`k)k>1 and range of the asymptotic ratios L. Assume that the lower mesh of
the subdivisions πn satisfy pn

n→∞= o(1/ lnn) and

h(λ) = 1 + λ2H−1 − (1 + λ)2H−1

λH−1/2 .

Let X be the solution of (1.1). If the function h is invariant on L or the se-
quence of functions `n(t) converges uniformly to `(t) on the interval [0, T ],
where

`n(t) =
Nn−1∑

k=1
`k1[tn

k
, tn
k+1)(t),
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then

lim
n→∞V

(2)
πn (X, 2) = 2

∫ T

0
g2(Xt)h(`(t)) dt.

Proof of Theorem 2.6. The p-variation boundedness of almost all paths of
solution of the equation (1.1) implies the existence of the integrals

∫ T
0 f2(Xt) dt

and
∫ T
0 g2(Xt) dt.

Set Xn
k := X(tnk). For simplicity, the indexH for B will be omitted in the

sequel. Note that

(∆Xn
k )2 =

(∫ tnk

tn
k−1

f(Xs) ds
)2

+ 2
∫ tnk

tn
k−1

f(Xs) ds ·
∫ tnk

tn
k

g(Xs) dBs

+
(∫ tnk

tn
k−1

[
g(Xs)− g(Xn

k )
]
dBs

)2
+ g2(Xn

k )
(
∆Bn

k

)2

+ 2g(Xn
k )∆Bn

k

(∫ tnk

tnk−1

[
g(Xs)− g(Xn

k )
]
dBs

)

=
5∑

j=1
I

(j)
n,k .

It’ll be proved that
5∑
j=1
j 6=4

I
(j)
n,k

a.s.−→ 0 as mn → 0.

Note that

|I(1)
n,k| 6 ∆tnk

∫ tnk

tn
k−1

f2(Xs) ds.

By Love-Young inequality (1.4) for all p > 1/H

|I(2)
n,k| 62

∣∣∣∣
∫ tnk

tn
k−1

f(Xs) ds
∣∣∣∣ ·
∣∣g(Xk)∆Bn

k

∣∣

+ 2
∣∣∣∣
∫ tnk

tn
k−1

f(Xs) ds
∣∣∣∣ ·
∣∣∣∣
∫ tnk

tn
k−1

[
g(Xs)− g(Xn

k )
]
dBs

∣∣∣∣

62
∣∣∆Bn

k

∣∣ sup
t6T
|g(Xt)|

∫ tnk

tn
k−1

|f(Xs)| ds
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+ 2Cp,p|g′|∞Vp(X; [tnk ; tnk+1])Vp(B; [tnk ; tnk+1])
∫ tnk

tnk−1

|f(Xs)| ds,

|I(3)
n,k| 6C2

p,p|g′|2∞V 2
p (X; [tnk ; tnk+1])V 2

p (B; [tnk ; tnk+1]),

|I(5)
n,k| 62Cp,p|g′|∞

∣∣∆Bn
k

∣∣ sup
t6T
|g(Xt)|Vp(X; [tnk ; tnk+1])Vp(B; [tnk ; tnk+1]).

It is evident that

Nn∑

k=1
(∆tk)1−2H |I(1)

n,k| 6 m2−2H
n

∫ T

0
f2(Xs) ds ,

Nn∑

k=1
(∆tk)1−2H |I(2)

n,k| 6 2 max
16k6Nn

|∆Bn
k |

(∆tk)2H−1 sup
t6T
|g(Xt)|

∫ T

0
|f(Xs)| ds

+ 2Cp,p|g′|∞ max
16k6Nn−1

Vp(B; [tk, tk+1])
(∆tk)2H−1 Vp(X; [0, T ])

∫ T

0
|f(Xs)| ds .

By using the inequality (1.7) the remaining two terms are estimated as

Nn∑

k=1
(∆tk)1−2H |I(3)

n,k|

6 C2
p,p|g′|2∞ max

16k6Nn−1

Vp(B; [tk, tk+1])
(∆tk)2H−1 V 2

p (X; [0, T ])Vp(B; [0, T ]),

Nn∑

k=1
(∆tk)1−2H |I(5)

n,k|

6 2Cp,p|g′|∞ max
16k6Nn

|∆Bn
k |

(∆tk)2H−1 sup
t6T
|g(Xt)|Vp(X; [0, T ])Vp(B; [0, T ]).

By (1.8) it follows that

max
16k6Nn

|∆Bn
k | 6 L

H,1/p
T m1/p

n , max
16k6Nn

[
Vp(B; [tnk−1; tnk ])

]
6 L

H,1/p
T m1/p

n .

All the inequalities obtained above are correct for every p > 1/H . Thus there
can always be chosen such a p that 1/p+ 1− 2H > 0. For this value of p

V (1)
πn (X, 2)−

Nn∑

k=1
g2(Xk)

(
∆Bn

k

)2

(∆tnk)2H−1
a.s.−→ 0
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as mn → 0. Consequently, the theorem will be proved if the convergence

Nn∑

k=1
g2(Xn

k )
(
∆Bn

k

)2

(∆tnk)2H−1
a.s.−→

∫ T

0
g2(Xt) dt.

is obtained. Set

Snt =
rn(t)∑

k=1

(
∆Bn

k

)2

(∆tnk)2H−1 , t ∈ [0, T ],

where rn(t) = max{k : tnk 6 t}. Then

Nn∑

k=1
g2(Xn

k )
(
∆Bn

k

)2

(∆tnk)2H−1 =
∫ T

0
g2(Xt) dSnt .

It is known (see Gine, Klein (1975)) that Snt
a.s.−→ t if

m2−2H
n

n→∞= o(1/ lnn) and mn
n→∞= O(pn).

The function Snt is non-decreasing and uniformly bounded. Consequently, the
Helly-Bray theorem implies that

∫ T

0
g2(Xt) dSnt

a.s.−→
∫ T

0
g2(Xt) dt as n→∞ .

This completes the proof of the theorem.

Proof of Theorem 2.7. Note that

m1−2H
j(n) V

(1)
j(n)(X, 2)

p1−2H
i(n) V

(1)
i(n)(X, 2)

6
V

(1)
πj(n)(X, 2)
V

(1)
πi(n)(X, 2)

6
p1−2H
j(n) V

(1)
j(n)(X, 2)

m1−2H
i(n) V

(1)
i(n)(X, 2)

. (2.1)

It is evident that

Ĥ(1)
n =1

2 −
1

2 ln(mi(n)/pj(n))

×
[
(2H − 1) ln(pj(n)/mi(n)) + ln

p1−2H
j(n) V

(1)
j(n)(X, 2)

m1−2H
i(n) V

(1)
i(n)(X, 2)

]
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=H − 1
2 ln(mi(n)/pj(n))

ln
p1−2H
j(n) V

(1)
j(n)(X, 2)

m1−2H
i(n) V

(1)
i(n)(X, 2)

=H − 1
2 ln(mi(n)/pj(n))

×
[

ln
V

(1)
πj(n)(X, 2)
V

(1)
πi(n)(X, 2)

+ ln
( p1−2H

j(n) V
(1)
j(n)(X, 2)

m1−2H
i(n) V

(1)
i(n)(X, 2)

/V (1)
πj(n)(X, 2)
V

(1)
πi(n)(X, 2)

)]
.

From the inequality (2.9) it follows that

ln
( p1−2H

j(n) V
(1)
j(n)(X, 2)

m1−2H
i(n) V

(1)
i(n)(X, 2)

/V (1)
πj(n)(X, 2)
V

(1)
πi(n)(X, 2)

)
> 0.

Also ln(mi(n)/pj(n)) > 0. Thus

Ĥ(1)
n 6 H − 1

2 ln(mi(n)/pj(n))
ln
V

(1)
πj(n)(X, 2)
V

(1)
πi(n)(X, 2)

.

Further,

Ĥ(1)
n =1

2 −
1

2 ln(mi(n)/pj(n))

×
[
(2H − 1) ln(mj(n)/pi(n)) + ln

m1−2H
j(n) V

(1)
j(n)(X, 2)

p1−2H
i(n) V

(1)
i(n)(X, 2)

]

=1
2 −

(
H − 1

2
) ln(mj(n)/pi(n))

ln(mi(n)/pj(n))

− 1
2 ln(mi(n)/pj(n))

ln
m1−2H
j(n) V

(1)
j(n)(X, 2)

p1−2H
i(n) V

(1)
i(n)(X, 2)

=H +
(
H − 1

2
) ln(pi(n)/mj(n))− ln(mi(n)/pj(n))

ln(mi(n)/pj(n))

− 1
2 ln(mi(n)/pj(n))

[
ln
V

(1)
πj(n)(X, 2)
V

(1)
πi(n)(X, 2)
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+ ln
(m1−2H

j(n) V
(1)
j(n)(X, 2)

p1−2H
i(n) V

(1)
i(n)(X, 2)

/V (1)
πj(n)(X, 2)
V

(1)
πi(n)(X, 2)

)]
.

Again, from (2.9) it follows that

ln
(m1−2H

j(n) V
(1)
j(n)(X, 2)

p1−2H
i(n) V

(1)
i(n)(X, 2)

/V (1)
πj(n)(X, 2)
V

(1)
πi(n)(X, 2)

)
6 0

which implies

Ĥ(1)
n >H +

(
H − 1

2
) ln(pi(n)/mi(n)) + ln(pj(n)/mj(n))

ln(mi(n)/pj(n))

− 1
2 ln(mi(n)/pj(n))

ln
V

(1)
πj(n)(X, 2)
V

(1)
πi(n)(X, 2)

. (2.2)

If the sequences of partitions (πi(n)) and (πj(n)), i(n) < j(n), are regular
then the second term in the inequality (2.2) is equal to 0. If ln(pi(n)/pj(n))→
∞, n → ∞, then the second term in the inequality (2.2) converges to 0. By
Theorem 2.6 we get that

1
2 ln(mi(n)/pj(n))

ln
V

(1)
πj(n)(X, 2)
V

(1)
πi(n)(X, 2)

−→ 0 a.s. as n→∞.

Therefore the convergence Ĥ(1)
n −→ H a.s. as n→∞ holds.

Proof of Theorem 2.8. It is obvious that the square of the second order
increments can be rewritten as

(
∆(2)
ir X

n
k

)2 =
(

∆tnk
∫ tk+1

tn
k

f(Xs) ds−∆tnk+1

∫ tnk

tn
k−1

f(Xs) ds
)2

+ 2
(

∆tnk
∫ tnk+1

tn
k

[
g(Xs)− g(Xn

k )
]
dBs

−∆tnk+1

∫ tnk

tn
k−1

[
g(Xs)− g(Xn

k )
]
dBs

)
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×
(

∆tnk
∫ tnk+1

tnk

f(Xs) ds−∆tnk+1

∫ tnk

tnk−1

f(Xs) ds
)

+ 2g(Xn
k ) ∆(2)

ir B
n
k

(
∆tnk

∫ tnk+1

tn
k

f(Xs) ds−∆tnk+1

∫ tnk

tn
k−1

f(Xs) ds
)

+
(

∆tnk
∫ tnk+1

tnk

[
g(Xs)− g(Xn

k )
]
dBs

−∆tnk+1

∫ tnk

tn
k−1

[
g(Xs)− g(Xn

k )
]
dBs

)2

+ 2g(Xn
k ) ∆(2)

ir B
n
k

(
∆tnk

∫ tnk+1

tn
k

[
g(Xs)− g(Xn

k )
]
dBs

−∆tnk+1

∫ tnk

tn
k−1

[
g(Xs)− g(Xn

k )
]
dBs

)

+ g2(Xn
k )
(
∆(2)
ir B

n
k

)2 =
6∑

i=1
I

(i)
n,k.

The Love-Young inequality and simple calculations yield

I
(1)
n,k 62m3

n

∫ tnk+1

tn
k

f2(Xs) ds+ 2m3
n

∫ tnk

tn
k−1

f2(Xs) ds,

∣∣I(2)
n,k

∣∣ 64Cp,p|g′|∞m2
n max

16k6Nn

[
Vp(B; [tnk−1, t

n
k ])
]
Vp(X; [0, T ])

×
[ ∫ tnk+1

tn
k

|f(Xs)| ds+
∫ tnk

tn
k−1

|f(Xs)| ds
]
,

∣∣I(3)
n,k

∣∣ 62mn max
16k6Nn−1

∣∣∆(2)
ir Bk

∣∣ sup
t6T
|g(Xt)|

×
[ ∫ tnk+1

tn
k

|f(Xs)| ds+
∫ tnk

tn
k−1

|f(Xs)| ds
]
,

∣∣I(4)
n,k

∣∣ 62C2
p,p|g′|2∞m2

n

[
V 2
p (X; [tnk , tnk+1])V 2

p (B; [tnk , tnk+1])
+ V 2

p (X; [tnk−1, t
n
k ])V 2

p (B; [tnk−1, t
n
k ])
]
,

∣∣I(5)
n,k

∣∣ 62Cp,p|g′|∞mn max
16k6Nn−1

∣∣∆(2)
ir B

n
k

∣∣ sup
t6T
|g(Xt)|

× {Vp(X; [tk, tk+1])Vp(B; [tnk , tnk+1])
+ Vp(X; [tnk−1, t

n
k ])Vp(B; [tnk−1, t

n
k ])
}
.
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Set
µnk = 2 1

(∆tnk)1/2+H(∆tnk+1)1/2+H(∆tnk + ∆tnk+1)
.

Note that µnk 6 1
p2+2H
n

and

max
16k6Nn−1

∣∣∆(2)
ir B

n
k

∣∣ 6 2mn max
16k6Nn

∣∣∆Bn
k

∣∣ 6 2m1+1/p
n L

H,1/p
T .

Thus

Nn−1∑

k=1
µnk∆tk · I(1)

n,k 64 m4
n

p2+2H
n

∫ T

0
f2(Xs) ds,

Nn−1∑

k=1
µnk∆tk · I(2)

n,k 68Cp,p|g′|∞ m3
n

p2+2H
n

max
16k6Nn

Vp(B; [tnk−1, t
n
k ])

× Vp(X; [0, T ])
∫ T

0
|f(Xs)| ds,

Nn−1∑

k=1
µnk∆tk · I(3)

n,k 68 m3
n

p2+2H
n

max
16k6Nn

∣∣∆Bn
k

∣∣ sup
t6T
|g(Xt)|

∫ T

0
|f(Xs)| ds,

Nn−1∑

k=1
µnk∆tk · I(4)

n,k 64C2
p,p|g′|2∞

m3
n

p2+2H
n

max
16k6Nn

Vp(B; [tnk−1, t
n
k ])V 2

p (X; [0, T ])

× Vp(B; [0, T ]),
Nn−1∑

k=1
µnk∆tnk · I(5)

n,k 68Cp,p|g′|∞ m3
n

p2+2H
n

max
16k6Nn

∣∣∆Bn
k

∣∣ sup
t6T
|g(Xt)|

× Vp(X; [0, T ])Vp(BH ; [0, T ]).

The inequalities obtained above are valid for all p > 1/H . By Definition 2.1

m
3+1/p
n

p2+2H
n

−→ 0, m4
n

p2+2H
n

−→ 0, m
3+2/p
n

p2+2H
n

−→ 0 as n→∞,

if 3 + 1/p − 2 − 2H > 0 and 3 + 2/p − 2 − 2H > 0. Such a value of p can
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always be chosen. Thus

5∑

j=1

Nn−1∑

k=1
µnk∆tnk · I(j)

n,k
a.s.−→ 0 as n→∞

and

V (2)
πn (X, 2)−

Nn−1∑

k=1
µnk∆tnkg2(Xn

k )
(
∆(2)
ir B

n
k

)2 a.s.−→ 0 as n→∞.

Denote rn(t) = max{k : tnk 6 t} and assume that

V (2)
πn (X, 2)t = 2

rn(t)−1∑

k=1

∆tnk+1(∆(2)
ir X

n
k )2

(∆tnk)1/2+H(∆tnk+1)1/2+H(∆tnk + ∆tnk+1)

=: 2
rn(t)−1∑

k=1
µnk∆tnk+1(∆(2)

ir X
n
k )2 .

From the results obtained in Bégyn (2006) it is easy to see that for every t ∈
[0, T ]

V (2)
πn (BH , 2)t − EV (2)

πn (BH , 2)t a.s.−→ 0 as n→∞ .

Let’s show that

EV (2)
πn (BH , 2)t = 2

rn(t)−1∑

k=1
h(`k)∆tnk+1 .

Obviously,

EV (2)
πn (X, 2)t = 2

rn(t)−1∑

k=1
µnk∆tnk+1E(∆(2)

ir X
n
k )2 ,

and simple calculations yield

E(∆(2)
ir X

n
k )2 = E

(
∆tk∆BH

k+1 −∆tk+1∆BH
k

)2
= (∆tk)2 · (∆tk+1)2H

− 2∆tk∆tk+1E∆BH
k ∆BH

k+1 + (∆tk+1)2 · (∆tk)2H

= (∆tk)2 · (∆tk+1)2H + (∆tk+1)2 · (∆tk)2H
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−∆tk∆tk+1
[
(∆tk+1 + ∆tk)2H − (∆tk+1)2H − (∆tk)2H

]

=∆tk∆tk+1 (∆tk + ∆tk+1)
[

(∆tk+1)2H−1 + (∆tk)2H−1

− (∆tk+1 + ∆tk)2H−1
]
.

Therefore

EV (2)
πn (X, 2)t

= 2
rn(t)−1∑

k=1
∆tk+1

(∆tk+1)2H−1 − (∆tk+1 + ∆tk)2H−1 + (∆tk)2H−1

(
∆tnk

)H−1/2 ·
(
∆tnk+1

)H−1/2

= 2
rn(t)−1∑

k=1
∆tk+1

1− (`k + 1)2H−1 + `2H−1
k

`
H−1/2
k

= 2
rn(t)−1∑

k=1
h(`k)∆tnk+1 .

Further it’ll be proved that

sup
t6T
|Snt | a.s.−→ 0 as n→∞, where (2.3)

Snt = 2
rn(t)−1∑

k=1

[
µnk∆tnk+1

(
∆(2)
ir B

H
k

)2 − h(`k)∆tnk+1
]
, t ∈ [0, T ].

Let (smj ), 0 6 j 6 m, m > 1, be a sequence of partitions of the interval
[0, T ], 0 = sm0 < sm1 < . . . < smm = T , such that max16j6m(smj −smj−1)→ 0
as m → ∞. To prove (2.3) it is suffices to show that for every such sequence
(smj ) (see Lemma 5 in Liptser, Shiryaev (1989) p. 556-557)

lim
m→∞ lim sup

n→∞
max

16j6m−1

∣∣∣∣
rn(smj+1)−1∑

k=1
h(`k)∆tnk+1 −

rn(smj )−1∑

k=1
h(`k)∆tnk+1

∣∣∣∣ = 0.

Note that the function h is continuous and bounded, i. e. 0 6 h(λ) 6 1 for
λ > 0. Thus

max
16j6m−1

∣∣∣∣
rn(smj+1)−1∑

k=1
h(`k)∆tnk+1 −

rn(smj )−1∑

k=1
h(`k)∆tnk+1

∣∣∣∣

6 max
16j6m−1

∣∣ρn(smj+1)− ρn(smj )
∣∣ ,
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where ρn(t) = max{tnk : tnk 6 t}, and for sufficiently large n the value of
m can be chosen such that the right side of inequality is a diminutive value.
Therefore Snt is uniformly bounded for almost all ω and by the Helly-Bray
theorem

Nn−1∑

k=1
g2(Xn

k )
[
µnk∆tnk

(
∆(2)
ir B

n
k

)2 − 2h(`k)∆tnk+1
]

=
∫ T

0
g2(Xt) dSnt

a.s.−→ 0 as n→∞ .

Then
Nn−1∑

k=1
g2(Xn

k )h(`k)∆tnk+1 =
∫ T

0
g2(Xπn

t )h
(
`n(t)

)
dt

and
∫ T

0

∣∣g2(Xt)h
(
`(t)

)− g2(Xπn
t )h

(
`n(t)

)∣∣ dt

6 T sup
t6T
|g2(Xt)| sup

t6T
|h(`n(t))− h(`(t))|

+ T sup
t6T

∣∣g2(Xt)− g2(Xπn
t )
∣∣ −→ 0 as n→∞

which completes the proof.

2.3. The Milstein approximation

For a process {Xt}, its Milstein approximation at the points tnk , k =
1, . . . , n is defined as

Y n
k = Y n

k−1 + f(Y n
k−1)∆tk + g(Y n

k−1)∆BH
k + 1

2 g(Y n
k−1)g′(Y n

k−1)
(
∆BH

k

)2
,

where g′ denotes the derivative of g and Y n
0 = X0.

The following result allows us to assert that if we replace the solution by
its Milstein approximation the estimators of H remain consistent.
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2.9 Theorem. Let f be a Lipschitz-continuos function and let g ∈ C1+α, 1
H −

1 < α 6 1. Define

Ĥ(1),M
n := 1

2 −
1

2 ln(N2n/Nn) ln
V

(1)
N2n

(Y n, 2)
V

(1)
Nn

(Y n, 2)
,

Ĥ(2),M
n := 1

2 −
1

2 ln(N2n/Nn) ln
V

(2)
N2n

(Y n, 2)
V

(2)
Nn

(Y n, 2)
.

If the subdivisions of the interval [0, T ] satisfy the conditions of Theorem 2.6,
then Ĥ(1),M

n −H a.s.−→ 0 as n→∞. If subdivisions of the interval [0, T ] satisfy
the conditions of Theorem 2.8, then Ĥ(2),M

n −H a.s.−→ 0 as n→∞.

Proof of Theorem 2.9. We consider only the second order increments of
the Milstein approximation of the solution X of the equation (1.1). A con-
sideration of the first order increments of the Milstein approximation is quite
similar. Note that at subdivision points {tnk} the Milstein approximation can be
written in the form

Y n(tnk) =Y n(tnk−1) + f(Y n(tnk−1)) · ∆tnk + g(Y n(tnk−1)) ·∆BH,n
k

+ 1
2 g(Y n(tnk−1))g′(Y n(tnk−1)) ·

(
∆BH,n

k

)2
,

Y n(0) = X(0) = ξ. Denote Y n
k = Y n(tnk) and gg′(Y n

k ) = g(Y n
k )g′(Y n

k ).
Then

∆ir
(2)Y n

k = ∆tnkY n
k+1 + ∆tnk+1Y

n
k−1 − (∆tnk + ∆tnk+1)Y n

k

= ∆tnk(Y n
k+1 − Y n

k )−∆tnk+1(Y n
k − Y n

k−1)

= ∆tnk
[
f(Y n

k )∆tnk+1 + g(Y n
k )∆BH,n

k+1 + 1
2 gg

′(Y n
k )
(
∆BH,n

k+1
)2]

−∆tnk+1

[
f(Y n

k−1)∆tnk + g(Y n
k−1)∆BH,n

k + 1
2 gg

′(Yk−1)
(
∆BH,n

k

)2]
.

Therefore ∆(2)
ir Y

n
k can be rewritten as

∆ir
(2)Y n

k = ∆tnk∆tnk+1
[
f(Y n

k )− f(Y n
k−1)

]

+
[
g(Y n

k )∆tnk∆BH,n
k+1 − g(Y n

k−1)∆tnk+1∆BH,n
k

]

+ 1
2
[
gg′(Y n

k )∆tnk
(
∆BH,n

k+1
)2 − gg′(Y n

k−1)∆tnk+1
(
∆BH,n

k

)2]
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and, therefore

∆ir
(2)Y n

k =
[ [
f(Y n

k )− f(Y n
k−1)

]
∆tnk∆tnk+1

+
[
g(Y n

k )− g(Y n
k−1)

]
∆tnk+1∆BH,n

k

]

+ 1
2
[
gg′(Y n

k )∆tnk
(
∆BH,n

k+1
)2 − gg′(Y n

k−1)∆tnk+1
(
∆BH,n

k

)2]

+ g(Y n
k )∆(2)

ir B
H,n
k

= I
(1)
n,k + 1

2 I
(2)
n,k + g(Y n

k )∆(2)
ir B

H,n
k .

Further
(
I

(1)
n,k

)2 6 2 max
16k6Nn

|Y n
k − Y n

k−1|2
[
m4
nL

2 +m2
n|g′|2∞ max

16k6Nn
|∆BH,n

k |2
]
,

∣∣I(1)
n,k

[
g(Y n

k )∆(2)
ir B

H,n
k

]∣∣ 6
6 2m2

n max
16k6Nn

|g(Y n
k )| max

16k6Nn
|Y n
k − Y n

k−1| max
16k6Nn

|∆BH,n
k |

×
[
Lmn + |g′|∞ max

16k6Nn
|∆BH,n

k |
]
,

(
I

(2)
n,k

)2 6 4m2
n max

16k6Nn
|gg′(Y n

k )|2 max
16k6Nn

|∆BH,n
k |4 .

By using the inequality (1.8) we get

Nn−1∑

k=1
µnk∆tnk

(
I

(1)
n,k

)2 6

6 2T max
16k6Nn

|Y n
k − Y n

k−1|2
[
m4
nL

2

p2+2H
n

+ m
2+2/p
n |g′|2∞
p2+2H
n

(
L
H,1/p
T

)2]
,

2
Nn−1∑

k=1
µnk∆tnk

∣∣I(1)
n,k

[
g(Y n

k )∆(2)
ir B

H,n
k

]∣∣ 6

6 4T max
16k6Nn

|g(Y n
k )| max

16k6Nn
|Y n
k − Y n

k−1|LH,1/pT

×
[
m

3+1/p
n L

p2+2H
n

+ m
2+2/p
n |g′|∞
p2+2H
n

L
H,1/p
T

]
,
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1
4

Nn−1∑

k=1
µnk∆tnk

(
I

(2)
n,k

)2 6 T
m

2+4/p
n

p2+2H
n

max
16k6Nn

|gg′(Y n
k )|2(LH,1/pT

)4

and

Nn−1∑

k=1
µnk∆tnk

∣∣[I(1)
n,k + g(Y n

k )∆(2)
ir B

H,n
k

]
I

(2)
n,k

∣∣

6

√√√√2
Nn−1∑

k=1
µnk∆tnk

[∣∣I(1)
n,k

∣∣2 + g2(Y n
k )
(
∆(2)
ir B

H,n
k

)2]Nn−1∑

k=1
µnk∆tnk

∣∣I(2)
n,k

∣∣2 .

It is easily verified that

max
16k6Nn

|Y n
k − Y n

k−1| 6 max
16k6Nn

|f(Y n
k−1)| ·∆tnk + max

16k6Nn
|g(Y n

k−1) ·∆BH,n
k |

+ 1
2 max

16k6Nn

∣∣∣gg′(Y n
k−1)

(
∆BH,n

k

)2∣∣∣

6m1/p
n

[
max

16k6Nn
|f(Y n

k−1)|+ max
16k6Nn

|g(Y n
k−1)| · LH,1/pT

]

+m2/p
n max

16k6Nn
|gg′(Y n

k−1)| · (LH,1/pT

)2
.

Since supn Vp
(
Y n; [0, T ]

)
<∞ (see Kubilius (1999)), the functions g(Y n

k ),
g′(Y n

k ) and gg′(Y n
k ) are uniformly bounded. Thus

V (2)
πn (Y n, 2)−

Nn−1∑

k=1
µnk∆tnk+1g

2(Y n
k )
(
∆(2)
ir B

H,n
k

)2 a.s.−→ 0 as n→∞.

To complete the proof, it suffices to observe that
∣∣∣∣∣
Nn−1∑

k=1
µnk∆tnk+1

[
g2(Xn

k )− g2(Y n
k )
] (

∆(2)
ir B

H,n
k

)2
∣∣∣∣∣

6 max
16k6Nn

∣∣g2(Xn
k )− g2(Y n

k )
∣∣
Nn−1∑

k=1
µnk∆tnk+1

(
∆(2)
ir B

H,n
k

)2

and the last term tends to 0 as n→∞. To prove this we use some well known
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results. In Bégyn (2005) it was proved that

Nn−1∑

k=1
µnk∆tnk+1

(
∆(2)
ir B

H,n
k

)2 a.s.−→ 2
∫ T

0
h(`(s)) ds as n→∞.

The p-variation distance between the solution and its Milstein approximation
was estimated in Kubilius (1999) (see also Kubilius (2000)). It follows from
this that

sup
t6T
|Y n
t −Xn

t | a.s.−→ 0 as n→∞.

Consequently, the limit behavior of the second order increments of the
Milstein approximation is the same as the limit behavior of the solution of
SDE. Thus, the convergence Ĥ(2),M

n −H a.s.→ 0 holds as n→∞.

2.4. The increment ratios statistic

The increment ratios (IR) statistic is defined as

Rp,n(f) = 1
n− p

n−p−1∑

k=0

|∆p,n
k f + ∆p,n

k+1f |
|∆p,n

k f |+ |∆p,n
k+1f |

,

where ∆p,n
k f denotes the p-order increments of a real-valued function f at tnk ,

p = 1, 2, . . ., k = 0, 1, . . . , n− p, that is,

∆1,n
k f = f

(
tnk+1

)− f(tnk
)
, ∆p,n

k f = ∆1,n
k ∆p−1,n

k f.

J. M. Bardet and D. Surgailis (2010) showed that if X is a fractional Brownian
motion (BH ) with parameter H ∈ (0, 1), then

Rp,n(f) a.s.−→ Λp(H) as n→∞, p = 1, 2, (2.4)

where Λp(H) = E
|∆p

0B
H + ∆p

1B
H |

|∆p
0B

H |+ |∆p
1B

H | .

The R2,n(f) statistic is better suited for practical purposes than R1,n(f)
since the error arising from approximating Λ2(H) with a line is considerably
lower than that of Λ1(H). Fig. 2.1 presents the graph of Λ2(H) as well as the
graph of R2,100(BH) averaged over 50 sample paths.

In the recent years it has been proposed by several authors to replace the
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Fig. 2.1. Graphs of Λ2(H) and R2,100(BH)

classic Black–Scholes model, based on the standard geometric Brownian mo-
tion, with its fractional counterpart. This would enable the model to handle
the possible existence of long-range dependance in the observed data. In this
section it is shown that the convergence (2.4) holds for H ∈ (1/2, 7/8) when
p = 1 and H ∈ (1/2, 1) when p = 2 if X is the solution of the fractional
Black–Scholes equation.

2.10 Theorem. Let BH = {BH
t ; t ∈ [0, 1]} denote the fractional Brownian

motion with parameter H and let X be the solution of the fractional Black–
Scholes equation (or, in other words, the fractional geometric Brownian mo-
tion)

dXt = µXt dt+ σXt dB
H
t , µ, σ,X0 ∈ R (2.5)

observed at times tnk = k
2n , k = 0, 1, . . . , 2n. Then

Rp,n(X) a.s.−→ Λp(H) as n→∞, p = 1, 2

for H ∈ (1/2, 7/8) when p = 1 and H ∈ (1/2, 1) when p = 2.

The proof of this theorem is based on the following lemma which is a
generalization of the corresponding lemma in the paper of J. M. Bardet and D.
Surgailis.

2.1 Lemma. Let ψ(x1, x2) = |x1+x2|
|x1|+|x2| , x1, x2 ∈ R, and let (Z1, Z2) be a
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Gaussian vector with zero mean and dispersion EZ2
i = 1, i = 1, 2. Then for

any r. v. ξi, i = 1, 2,

E
∣∣ψ(Z1 + ξ1, Z2 + ξ2)− ψ(Z1, Z2)

∣∣ 6 16 max
i=1,2

3
√

Eξ2
i , k > 1.

Proof of Lemma 2.1. Let δ2 = maxi=1,2 Eξ2
i . Denote U := ψ(Z1 + ξ1, Z2 +

ξ2)− ψ(Z1, Z2) = Uδ + U cδ ,

Uδ :=U1Aδ =
(
ψ(Z1 + ξ1, Z2 + ξ2)− ψ(Z1, Z2)

)
1Aδ ,

U cδ :=U1Ac
δ

=
(
ψ(Z1 + ξ1, Z2 + ξ2)− ψ(Z1, Z2)

)
1Ac

δ
,

where 1Aδ is the indicator of the event

Aδ :=
{|Z1| > δ2/3, |Z2| > δ2/3, |ξ1| < δ2/3/2, |ξ2| < δ2/3/2

}

and 1Ac
δ

= 1− 1Aδ is the indicator of the complementary event Acδ. Clearly,

E|U cδ | 62
[
P
(|Z1| < δ2/3)+ P

(|Z2| < δ2/3)

+ P
(|ξ1| > δ2/3/2

)
+ P

(|ξ2| > δ2/3/2
)]

6 8√
2π

δ2/3 + 8 max
i=1,2

E|ξi|2
δ4/3 6 12δ2/3.

It remains to estimate E|Uδ|. By the mean value theorem,

Uδ =
(
ξ1
∂ψ

∂x1
(Z1 + θξ1, Z2 + θξ2) + ξ2

∂ψ

∂x2
(Z1 + θξ1, Z2 + θξ2)

)
1Aδ ,

where 0 < θ(ω) < 1 and
∣∣∣∣
∂ψ

∂xi
(x1, x2)

∣∣∣∣ = |(|x1|+ |x2|) sgn(x1 + x2)− |x1 + x2| sgn(xi)|
(|x1|+ |x2|)2

6 2
|x1|+ |x2| .

Thus
∣∣∣∣
∂ψ

∂xi
(Z1 + θξ1, Z2 + θξ2)

∣∣∣∣1Aδ 6
2

|Z1 + θξ1|+ |Z2 + θξ2|1Aδ
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6 2
|Z1 + θξ1|+ |Z2 + θξ2|1Bδ 6

2
δ2/3 1Bδ ,

where

Bδ =
{|Z1 + θξ1| > δ2/3/2, |Z1 + θξ1| > δ2/3/2,

|ξ1| 6 δ2/3/2, |ξ2| 6 δ2/3/2
}
.

Therefore

E|Uδ| 6 E1/2ξ2
1 · E1/2

[∣∣∣∣
∂ψ

∂x1
(Z1 + θξ1, Z2 + θξ2)

∣∣∣∣
2
1Aδ

]

+ E1/2ξ2
2 · E1/2

[∣∣∣∣
∂ψ

∂x2
(Z1 + θξ1, Z2 + θξ2)

∣∣∣∣
2
1Aδ

]
6 4δ2/3

and
E|U | 6 16δ2/3.

Proof of Theorem 2.10. Let ∆tn denote the mesh of the subdivision, that is,
∆tn := 2−n. Let ψnk = µ∆tn + σ∆BH,n

k . The fractional geometric Brownian
motion (2.5) is Xt = c exp (µt+ σBH

t ). Therefore R1,n(X) can be rewritten
as

R1,n(X) = 1
2n − 1

2n−2∑

k=0

| exp(ψnk+1)− exp(−ψnk )|
|1− exp(−ψnk )|+ | exp(ψnk+1)− 1| .

For briefness, let the index n be omitted. Then the Taylor expansion yields

exp
(
ψk+1

)− 1 = σ∆BH
k+1 +

(
µ∆t+R

(
µ∆t+ σ∆BH

k+1
))
,

1− exp
(− ψk

)
= σ∆BH

k +
(
µ∆t−R(− µ∆t− σ∆BH

k

))
,

exp
(
ψk+1

)− exp
(− ψk

)
= σ

(
∆BH

k+1 + ∆BH
k

)
+

+
(
2µ∆t+R

(
µ∆t+ σ∆BH

k+1
)−R(− µ∆t− σ∆BH

k

))
,

where

R(x) = x2

2 e
θx, 0 < θ < 1.

LetZ1(k) = σ∆BH
k , ξ1(k) = µ∆t−R(−µ∆t−σ∆BH

k

)
,Z2(k) = σ∆BH

k+1,
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ξ2(k) = µ∆t+R
(
µ∆t+ σ∆BH

k+1
)
. Obviously

R1,n(X) = 1
2n − 1

2n−2∑

k=0

|Z1(k) + ξ1(k) + Z2(k) + ξ2(k)|
|Z1(k) + ξ1(k)|+ |Z2(k) + ξ2(k)| .

Define ψk := µ∆t+ σ∆BH
k . Then

E(ξ1(k))2 6 2(µ∆t)2 + E
(
ψ4
ke
−2θψk)

6 2(µ∆t)2 +
√

105(Eψ2
k)4 · Ee−4θψk

6 4
√

105
[
(µ∆t)4 + σ4(∆t)4H]√Ee−4θψk

since ψk are Gaussian and therefore Eψ8
k = 105(Eψ2

k)4. Further,

Ee−4θψk 6 Ee4|ψk| 6 e4|µ|∆tEe4|σ∆BHk | 6 2e4|µ|+8σ2
,

which yields that

E(ξ1(k))2 6 4
√

210
[
(µ∆t)4 + σ4(∆t)4H]e2|µ|+4σ2

= 4
√

210(∆t)2[µ4(∆t)2 + σ4(∆t)2(2H−1)]e2|µ|+4σ2
.

Since 2H − 1 > 0, we get that E(ξ1(k))2 = O(∆t)2. Similarly,
E(ξ2(k))2 = O(∆t)2 and according to Lemma 1

E
∣∣∣∣
|Z1(k) + ξ1(k) + Z2(k) + ξ2(k)|
|Z1(k) + ξ1(k)|+ |Z2(k) + ξ2(k)| −

|Z1(k) + Z2(k)|
|Z1(k)|+ |Z2(k)|

∣∣∣∣ =

= E
∣∣∣∣
|∆Xk + ∆Xk+1|
|∆Xk|+ |∆Xk+1| −

|∆BH
k + ∆BH

k+1|
|∆BH

k |+ |∆BH
k+1|

∣∣∣∣ = O(2−n)2/3.

Then

E
∣∣R1,n(X)−R1,n(BH)

∣∣

6 1
n− 1

n−2∑

k=0
E
∣∣∣∣
|∆Xk + ∆Xk+1|
|∆Xk|+ |∆Xk+1| −

|∆BH
k + ∆BH

k+1|
|BH

k |+ |∆BH
k+1|

∣∣∣∣ = O(2−n)2/3

and, consequently, R1,n(X) P−→ R1,n(BH) as n→∞.
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Let ζn := R1,n(X)−R1,n(BH). Then the Chebyshev’s inequality yields

P
(|ζn| > 2−n/3

)
6 2n/3E|ζn| 6 2−n/3

and

∞∑

n=1
P
(|ζn| > 2−n/3

)
6
∞∑

n=1
2−n/3 <∞.

According to the Borel–Cantelli lemma,

P
(

lim sup
n→∞

{|ζn| > 2−n/3
})

= 0

which implies that R1,n(X) a.s.→ R1,n(BH), n→∞.

The convergence Rp,n(BH) a.s.→ Λ1(H), n → ∞ is established in Bardet,
Surgailis (2010) and holds for H ∈ (0, 7/8) when p = 1 and H ∈ (0, 1) when
p = 2. Clearly, provided R1,n(X) a.s.→ R1,n(BH) and Rp,n(BH) a.s.→ Λ1(H),
n → ∞ it follows that R1,n(X) a.s.→ Λ1(H), n → ∞ which completes the
proof for the case p = 1. The proof for p = 2 follows analogously.

Table 2.1. Mean squared errors ·102.

Nsp n 100 500 1000
10 BH 1.0997 0.6383 0.3592

X 1.1000 0.5891 0.3916

50 BH 0.5043 0.2077 0.1537
X 0.5817 0.2300 0.1598

100 BH 0.3421 0.1781 0.1246
X 0.3398 0.1682 0.1257

Fig. 2.2 presents the graph of Λ2(H) together with the graph ofR2,100(X)
averaged over 50 sample paths, X being the fractional geometric Brownian
motion. Table 2.1 shows the comparison of mean squared errors ofR2,n(X)−
Λ2(H) andR2,n(BH)−Λ2(H) for the sample path lengths n = 100, 200, 500
and the numbers of sample paths Nsp = 20, 50, 100. The coefficients of the
fractional geometric Brownian motion were chosen as X0 = 1, µ = −0.3,
σ = 0.5.
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Fig. 2.2. Graphs of Λ2(H) and R2,100(X)

2.5. The convergence rate of the Gladyshev
estimator

In this section we define the modified Gladyshev’s estimator of the fBm
parameter H and derive the rate of convergence of it to its real value. To our
knowledge, this problem is new and interesting from the practical point of view.

To recall, for a real-valued process X = {Xt; t ∈ [0, 1]} taking values at
the points tnk , k = 0, . . . , Nn, the first order quadratic variation is defined as

V (1)
n (X, 2) =

Nn∑

k=1

(
∆Xn

k

)2
, ∆Xn

k = X
(
tnk
)−X(tnk−1

)
.

Let BH be the fractional Brownian motion with the Hurst index H . Set
tnk = k2−n, k = 1, . . . , 2n. It is known (see Gladyshev (1963)) that

2n(2H−1)V (1)
n

(
BH , 2

) a.s.−→ 1 as n→∞.

This result yields that

H̃n = 1
2 −

lnV (1)
n (BH , 2)
2n ln 2

is a strongly consistent estimator of H .
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Fig. 2.3. Graphs of
√
N−1
n lnNn and E

∣∣Ĥn −H
∣∣, H ∈ {0.55, 0.60, . . . , 0.95}

Let us define a modified Gladyshev’s estimator of the Hurst index H by

Ĥn =
(1

2 −
ln
[
V

(1)
n (BH , 2)

]

2 lnNn

)
1Cn ,

for a regular subdivision πn, where

Cn =
{
V (1)
n

(
BH , 2

)
> N−2

n

}
.

The estimate Ĥn is strongly consistent. Moreover, we can derive the rate of
convergence of it to H . This follows from the next theorem. This result is

illustrated by Fig. 2.3 which presents the graph of
√
N−1
n lnNn (the dotted

line) and those of E
∣∣Ĥn − H

∣∣ for H ∈ (0.55, 0.60, . . . , 0.95) against the

sample path lengths Nn ∈
{

2k + 1; k = 8, . . . , 14
}

. It can be seen that the

convergence rate is determined by the behavior of Ĥn for the values of H
which are close to 1, as the lines closest to the dotted line correspond to H =
0.9 and H = 0.95.

2.11 Theorem. Let BH , 1/2 < H < 1, be the fractional Brownian motion.
Ĥn is a strongly consistent estimator of the Hurst index H and the following
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rates of convergence hold:

∣∣Ĥn −H
∣∣ = O(

√
N−1
n lnNn

)
a.s. if

∞∑

n=1
N−2
n <∞ (2.6)

and

E
∣∣Ĥn −H

∣∣ = O(
√
N−1
n lnNn

)
. (2.7)

Proof of Theorem 2.11. First we have

Ĥn = H1Cn −
lnBn

2 lnNn
1Cn ,

where Bn = N2H−1
n V

(1)
n (BH , 2). Thus

|Ĥn −H| 6 H1Cn +
∣∣∣∣

lnBn
2 lnNn

∣∣∣∣1{Bn>N−2
n }

6 H1{Bn<N−1
n } −

lnBn
2 lnNn

1{N−2
n 6Bn<1} + lnBn

2 lnNn
1{Bn>1}.

Let (δn) be a sequence of positive numbers such that δn < 1 and δn ↓ 0.
The inequality − ln(1− x) 6 20x, 0 6 x 6 19/20, yields

(− lnBn)1{1−δn6Bn<1} =
(− ln

[
1− (1−Bn)

])
1{1−δn6Bn<1}

6 20(1−Bn)1{1−δn6Bn<1},

if δn 6 19/20. So, it follows that

− lnBn
2 lnNn

1{N−2
n 6Bn<1} 6 1{N−2

n 6Bn<1−δn} + 10 1−Bn
lnNn

1{1−δn6Bn<1}

6 1{N−2
n 6Bn<1−δn} + 10δn

lnNn
1{1−δn6Bn<1}. (2.8)

The inequality ln(1 + x) 6 x, x > 0, yields

(lnBn)1{Bn>1} =
(

ln
[
1 + (Bn − 1)

])
1{Bn>1} 6 (Bn − 1)1{Bn>1}.
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Thus

lnBn
2 lnNn

1{Bn>1} 6
Bn − 1
2 lnNn

1{16Bn61+δn} + Bn − 1
2 lnNn

1{Bn>1+δn}

6 δn
2 lnNn

1{16Bn61+δn} + Bn − 1
2 lnNn

1{Bn>1+δn}. (2.9)

Inequalities (2.8) and (2.9) imply that

∣∣Ĥn −H
∣∣ 6

(
2 + Bn − 1

2 lnNn

)
1{|Bn−1|>δn} + 10δn

lnNn
. (2.10)

To complete the proof it suffices to estimate the first term in the inequality
(2.10) by using the Hanson and Wright inequality (Hanson, Wright (1971)).
Note that N2H−1

n V
(1)
n
(
BH , 2

)
is the square of the Euclidean norm of an Nn-

dimensional Gaussian vector Xn with components

N2H−1
n ∆BH,n

k , 1 6 k 6 Nn.

Using a linear transformation ofXn one can get a new Gaussian vector Yn with
independent components. So there exist nonnegative real numbers
{λ1,n, . . . , λNn,Nn} and one Nn-dimensional Gaussian vector Yn such that
its components are independent standard Gaussian random variables and

N2H−1
n V (1)

n

(
BH , 2

)
=

Nn∑

j=1
λj,Nn

(
Y (j)
n

)2
.

Numbers {λ1,n, . . . , λNn,Nn} are the eigenvalues of the symmetricNn×Nn-
matrix (

N2H−1
n E

[
∆BH,n

j ∆BH,n
k

])
16j,k6Nn

.

With the arguments of Gine, Klein (1975) and Bégyn (2005) one can get the
inequality

P
(
N2H−1
n

∣∣V (1)
n

(
BH , 2

)−EV (1)
n

(
BH , 2

)∣∣ > ε
)
6 2 exp

(−Kε2Nn
)
, (2.11)

which follows directly from the Hanson and Wright inequality, where
0 < ε 6 1 and K is a positive constant. Set

δ2
n = 2 lnNn

KNn
.
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From the inequality (2.11) it follows that

P
(|Bn − 1| > δn

)
6 2
N2
n

. (2.12)

Obviously,

P
((

2 + Bn − 1
2 lnNn

)
1{|Bn−1|>δn} > 0

)
6 P

(|Bn − 1| > δn
)
6 2
N2
n

.

Under the conditions of the theorem, the Borel–Cantelli lemma yields

P
(

lim sup
n→∞

{(1
2 + Bn − 1

2 lnNn

)
1{|Bn−1|>δn} > 0

})
= 0,

i. e., (
2 + Bn − 1

2 lnNn

)
1{|Bn−1|>δn} = 0

for sufficiently large n. From the above results and the inequality (2.10) it fol-
lows that ∣∣Ĥn −H

∣∣ = O(
√
N−1
n lnNn

)
a.s.

which completes the proof of (2.6). Note that from the inequalities (2.10) and
(2.12) we get

E
∣∣Ĥn −H

∣∣ 6 2
N2
n

+ E
|Bn − 1|
2 lnNn

1{|Bn−1|>δn} + 10δn
lnNn

.

It remaints to estimate the second term on the right side of the previous in-
equality. Note that

E|Bn − 1|1{|Bn−1|>δn}

6 E1/2|Bn − 1|2
√

P
(|Bn − 1| > δn

)
6 2
Nn

E1/2(B2
n + 1

)

6 2
Nn

(
N2H−1/2
n E1/2

Nn∑

k=1

∣∣∆BH,n
k

∣∣4 + 1
)

6 2
Nn

(√
3N−1/2

n + 1
)
.
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Thus

E
∣∣Ĥn −H

∣∣ 6 2
N2
n

+
√

3N−1/2
n + 1

Nn lnNn
+ 10δn

lnNn
,

which concludes the proof of (2.7).

2.6. Conclusions of the second chapter

1. Having proved the Theorem 1 and Theorem 3, the asymptotics of quad-
ratic variations of the solution of the stochastic differential equation
(1.1) in case of regularly spaced observations of the process were ob-
tained. It was shown in Theorem 2 and Theorem 4 that the estimators
of the Hurst indexH originally obtained by Istas, Lang (1997) and Be-
nassi et al (1998) for the fractional Brownian motion remain strongly
consistent when the underlying process is the solution of the stochastic
integral equation which is not necessarily Gaussian.

2. Having proved the Theorem 6 and Theorem 8, the asymptotics of quad-
ratic variations of the solution of the stochastic differential equation
(1.1) in case of irregularly spaced observations of the process were
derived. It was shown in Theorem 7 that H̃n

dv1, the proposed estimator
of the Hurst index H based on the first order quadratic variations is
strongly consistent in case of irregularly spaced observations.

3. In Theorem 9 it was proved that the obtained estimators remain strongly
consistent if the solution of the stochastic differential equation is re-
placed with its Milstein approximation.

4. In Theorem 10 it was proved that the increment ratio statistic can be ap-
plied to estimate the Hurst index H of the fractional geometric Brow-
nian motion.

5. In Theorem 11 the rate of convergence of the modified Gladyshev es-
timator of the Hurst index H to its real value was derived.





3
Modelling of the estimators

The goal of this chapter is to compare the behavior of the estimators based
on quadratic variations with some of the other known estimators, namely the
naive and ordinary least squares Gladyshev and η-summing oscillation esti-
mators, the variogram estimator and the IR estimator. These estimators are
described in Section 3.2. Most of them were examined for Gaussian processes.
The models chosen for comparison of these estimators were the fractional
Ornstein-Uhlenbeck (O-U) process and the fractional geometric Brownian mo-
tion (gBm). The initial inference about the behavior of these estimators was
drawn for the O-U process which is Gaussian, while the gBm process was
used to check how the estimators behave in a non-Gaussian case.

In order to achieve that, a sufficient amount of sample paths of fBm is
required. These sample paths were generated using the circulant matrix em-
bedding method as described in Coeurjolly (2000) and the references therein.
Let n denote the length of the sample path. The circulant matrix embedding
method uses a fast Fourier transform which bypasses the matrix computa-
tions and therefore is sufficiently fast even for large values of n. 100 sam-
ple paths of the length n = 214 + 1 were generated for each value of H ∈
{0.55, 0.6, . . . , 0.95} on the unit interval t ∈ [0, 1].

The next step would be to use the generated fBm data to construct the
sample paths of the considered processes. However, it’s not always possible
to find and use the explicit solution of the considered stochastic differential

49
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equation, therefore this solution might need to be replaced with its time discrete
approximation. For a process Xt, its Milstein approximation at points tnk , k =
1, . . . , n is defined as

Xn
k = Xn

k−1+f(Xn
k−1)∆tk+g(Xn

k−1)∆BH
k +1

2 g(Xn
k−1)g′(Xn

k−1)
(
∆BH

k

)2
,

where g′ denotes the derivative of g. The fractional Ornstein-Uhlenbeck (O-U)
and the fractional geometric Brownian motion (gBm) processes are defined as

dXt = −µXt dt+ σ dBH
t , X0 = c, (O-U)

dXt = µXt dt+ σXt dB
H
t , X0 = c. (gBm)

The solutions of these equations are, respectively,

Xt = e−µt
(
c+ σ

∫ t

0
eµs dBH

s

)
and Xt = c exp

(
µt+ σBH

t

)
.

In fact, for the O-U process the Milstein approximation is reduced to the Euler
one due to g′(Xn

k−1) = (σ)′ = 0. The constants were chosen as c = 1, µ =
0.5, σ = 0.7 in the O-U case and c = 1, µ = 0.2, σ = 0.5 in the gBm case.
The error introduced by using these approximated sample paths was negligible
compared to the errors of the estimators themselves and will be ignored further
on. All computations were performed using the R software environment (R
Development Core Team (2009)).

3.1. Generation of the fractional Brownian motion

The algorithm to generate one sample path of the length n, using the cir-
culant matrix embedding method, is as follows:

• Choose M = 2p > 2(n− 1). Define the M -vector

V =
(
r(0), r(1), . . . ,r

(
M

2 − 1
)
, r

(
M

2

)
,

, r

(
M

2 − 1
)
, . . . , r(2), r(1)

)
,
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where

r(k) = 1
2n2H

[
|k + 1|2H − 2k2H + |k − 1|2H

]

is the autocovariance function of the fractional Gaussian noise.

• Compute W = (w1, . . . , wM ), the fast Fourier transformation of V .
All the coordinates of W must be non-negative. If this is not the case,
the value of p must be increased until this requirement is met.

• Generate Uj , Vj ∼ N (0, 1) for all 1 6 j < M
2 and let Z1 = U1,

ZM
2 +1 = V1,

Zj = 1√
2

(Uj + iVj) , ZM+2−j = 1√
2

(Uj − iVj) , 1 < j 6 M

2 .

Then, define the M -vector U as

Uk = √wkZk, k = 1, . . . , M.

• Compute Y as an inverse fast Fourier transformation of the complex
vector U and define X as

Xk = Xk−1 + Re(Yk), X0 = 0, k = 1, . . . , n− 1,

Re(Y ) denoting the real part of the complex variable Y .

The obtained vector X is the desired sample path of the fractional Brown-
ian motion with the Hurst index H .

3.2. Estimators

3.2.1. Discrete variation estimators

For a real-valued process X = {Xt; t ∈ [0, 1]}, we define the first and
second order quadratic variations as

V (1)
n (X, 2) =

n∑

k=1

(
∆(1)
k X

)2
, V (2)

n (X, 2) =
n−1∑

k=1

(
∆(2)
k X

)2
,
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where

∆(1)
k X = X(tnk)−X(tnk−1) , ∆(2)

k X = X(tnk+1)− 2X(tnk) +X(tnk−1) .

and tnk = k
n . LetX be the solution of (1.1). It is known (see Kubilius, Melichov

(2008) - Kubilius, Melichov (2010)) that

Ĥn
dv1 = 1

2 −
1

2 ln 2 ln V
(1)

2n (X, 2)
V

(1)
n (X, 2)

, Ĥn
dv2 = 1

2 −
1

2 ln 2 ln V
(2)

2n (X, 2)
V

(2)
n (X, 2)

are strongly consistent estimators of the Hurst index H , i.e.,

Ĥn
dv1 −H a.s.−→ 0 and Ĥn

dv2 −H a.s.−→ 0 as n→∞.

Here V (·)
2n (X, 2) corresponds to the quadratic variation of the whole sample

path while V (·)
n (X, 2) is the variation of the subset {Xk : k = 2j, 0 6 j 6

[n/2]}, [x] denotes the integer part of x.

3.2.2. Gladyshev and η-summing oscillation estimators

The following estimators were described in R. Norvaiša and D.M. Salopek
(2002, Norvaiša, Salopek (2002)). The ordinary least squares (OLS) Gladyshev
and η-summing oscillation estimators require a sample path of the length 2n +
1, n ∈ N, which dictated the length of our modeled sample paths. Define
ηM = {Nm = 2m : 1 6 m 6M} and let

s(m) =
Nm∑

i=1

[
X

(
i

Nm

)
−X

(
i− 1
Nm

)]2
.

The naive Gladyshev estimator of the Hurst index H is given by

ĤM
gn =

log
√
s(M)2−M

log 2−M ,

and the OLS Gladyshev estimator is given by

ĤM
go =

∑M
m=1 (zm − z̄)2

∑M
m=1 (zm − z̄)m

,

where zm = log2
√

2m/s(m) for m ∈ {1, . . . , M} and z̄ = M−1∑M
m=1 zm.
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For each m ∈ {1, . . . , M}, define

Q(m) =
Nm∑

i=1

[
max

tn
k
∈∆i,m

{X(tnk)} − min
tn
k
∈∆i,m

{X(tnk)}
]
,

where
∆i,m =

[
i− 1
Nm

,
i

Nm

]
.

The naive oscillation estimator is defined by

ĤM
osn = log2(NM/Q(M))

log2NM

and the OLS oscillation estimator is defined by

ĤM
oso =

∑M
m=1 (zm − z̄)2

∑M
m=1 (zm − z̄)Nm

where zm = log2
√
Nm/Q(m) and z̄ = M−1∑M

m=1 zm.

For M = 14 we simulate estimates defined above.

3.2.3. Variogram estimator

The variogram of the processX = {Xt, t ∈ [0, 1]} for the lag ` is defined
Chronopoulou, Viens (2010) as

V (`) = E
[
(Xt −Xt−`)2

]
.

In order to estimate the Hurst index H , we choose a set of lags, in our case, it
was {` = 2i; i = 0, . . . , 5}. Then Ĥn

var = b/2, where b is the slope of the
linear regression line of log(V (`)) against log(`).

3.2.4. Increment ratios estimator

This estimator was proposed by Bardet, Surgailis (2010). For the O-U
or gBm process X = {Xt; t ∈ [0, 1]} given at points tnk = k/n, k =
0, 1, . . . , n, the increment ratios (IR) estimator of H can be computed using
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the approximated formula

Ĥn
ir = 1

0.1468


 1
n− 2

n−2∑

k=1

∣∣∣∆(2)
k X + ∆(2)

k+1X
∣∣∣

∣∣∣∆(2)
k X

∣∣∣+
∣∣∣∆(2)

k+1X
∣∣∣
− 0.5174


 ,

where ∆(2)
k X = X(tnk+1)− 2X(tnk) +X(tnk−1).

3.3. The Ornstein-Uhlenbeck process

3.3.1. Dependance on the value of the Hurst index

The first goal of this section is to compare the behavior of these esti-
mators for different values of the Hurst index H . Table 3.1 presents the bi-
ases H − H = E(Ĥ − H) as well as the mean squared errors defined as
MSE(Ĥ) = E(Ĥ −H)2 for the sample path lengths of, respectively, 214 + 1
and 210 + 1 points. Figure B.1 (see Appendix) illustrates this further present-
ing the boxplots of the considered estimators for the length of sample paths
n = 214 + 1 points. Here and further in this section the figures related to the
estimators Ĥgn and Ĥgo are omitted, since their behavior does not significantly
differ from the behavior of Ĥosn and Ĥoso. The numbers printed in bold cor-
respond to the estimators that performed better than the others for the specific
value of H and the considered numeric characteristic.

It can be seen that the estimators Ĥdv1, Ĥvar, Ĥgn and Ĥosn exhibit in-
creases of the biases and the mean squared errors for larger values of H . Ĥgo

and Ĥoso seem to be less dependant on that, however, they tend to slightly un-
dervalue the Hurst index when it is close to 1. Ĥir tends to slightly undervalue
H when H < 3/4 and to overvalue it when H > 3/4; the most likely cause
of this is the numeric constants in the formula used for this estimator. The
behavior of Ĥdv2 does not change noticeably for different values of H .

Another interesting observation is the, comparatively, very low mean
squared errors of Ĥgn and Ĥosn which they display as long as the Hurst in-
dex is not too close to 1. However these estimators also possess the largest
bias. Ĥgo and Ĥoso, the OLS versions of these two estimators behave in a
completely different way – they have smaller biases which are comparable to
those of the other considered estimators, but this comes at the cost of heavily
increased MSE.
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Table 3.1. Comparison of the estimators for the O-U process.

H 0.55 0.7 0.8 0.95

MSE

dv1 0.008 0.005 0.008 0.020
dv2 0.015 0.011 0.011 0.010
var 0.007 0.009 0.014 0.024
gn 0.002 0.002 0.003 0.021
osn 0.004 0.004 0.005 0.025
go 0.038 0.037 0.048 0.050
oso 0.041 0.037 0.050 0.053
ir 0.022 0.019 0.019 0.022

H −H

dv1 0.000 0.001 -0.001 -0.009
dv2 0.000 0.001 -0.002 -0.001
var 0.000 -0.001 0.000 -0.012
gn 0.037 0.037 0.037 0.041
osn 0.060 0.060 0.060 0.063
go -0.013 -0.024 -0.019 -0.032
oso -0.004 -0.017 -0.009 -0.020
ir -0.019 -0.009 -0.001 0.028

(a) N = 214 + 1

H 0.55 0.7 0.8 0.95
dv1 0.027 0.024 0.026 0.030
dv2 0.050 0.054 0.050 0.044
var 0.029 0.031 0.038 0.040
gn 0.006 0.006 0.010 0.040
osn 0.010 0.011 0.015 0.048
go 0.092 0.061 0.071 0.068
oso 0.093 0.060 0.073 0.071
ir 0.074 0.067 0.069 0.077

dv1 0.000 -0.004 -0.001 -0.016
dv2 0.001 0.000 -0.002 0.008
var 0.000 -0.012 -0.007 -0.025
gn 0.051 0.052 0.052 0.062
osn 0.084 0.084 0.084 0.091
go -0.010 -0.035 -0.030 -0.044
oso 0.003 -0.023 -0.014 -0.028
ir -0.009 -0.004 -0.004 0.039

(b) N = 210 + 1

3.3.2. Dependance on the length of the sample path

The second goal of this section is to compare the behavior of these es-
timators for different lengths of sample paths as well as to illustrate how the
estimators’ variances fluctuate as the length of the sample paths is increased.
Table 3.2 shows the mean squared errors and the biases for the Hurst index
values of 0.65 and 0.85, respectively. Figure B.2 (see Appendix) presents the
boxplots of the estimators for H = 0.85.

The first obvious observation is that the bias of Ĥgn and Ĥosn increases
as the length of the sample paths is decreased. Ĥgo and Ĥoso do not share
this property, however their mean squared errors display only minor decreases
when longer sample paths are taken. The other estimators show a rather regular
decrease of their mean squared errors which is further illustrated by Figure
B.3 (see Appendix) presenting the plots of log(SD) against log(n) for H ∈
{0.55, 0.6, . . . , 0.95} where SD denotes the standard deviations.

Figure B.3 shows the rate at which the standard deviation decreases as the
sample path length is increased. It can be seen that this rate depends on the
value ofH for all the estimators except Ĥdv2 and Ĥir. The general trend is that
this rate is lower for higher values of H which is most notable for Ĥgn and
Ĥosn. On the other hand Ĥdv2 and Ĥir display no dependance of this kind.



56 3. MODELLING OF THE ESTIMATORS

Table 3.2. Comparison of the estimators for the O-U process for sample path lengths
N = 2k + 1.

k 8 10 12 14

MSE

dv1 0.053 0.025 0.014 0.007
dv2 0.102 0.055 0.027 0.013
var 0.067 0.033 0.018 0.009
gn 0.013 0.006 0.003 0.002
osn 0.021 0.011 0.006 0.004
go 0.084 0.063 0.049 0.039
oso 0.086 0.064 0.050 0.040
ir 0.172 0.079 0.037 0.018

H −H

dv1 -0.005 0.000 0.002 0.001
dv2 -0.016 0.000 0.001 0.000
var -0.021 -0.003 -0.001 0.001
gn 0.064 0.051 0.043 0.037
osn 0.105 0.084 0.070 0.060
go -0.036 -0.028 -0.021 -0.016
oso -0.017 -0.014 -0.011 -0.009
ir -0.043 -0.013 -0.014 -0.013

(a) H = 0.65

k 8 10 12 14
dv1 0.045 0.030 0.019 0.013
dv2 0.089 0.051 0.025 0.012
var 0.068 0.042 0.029 0.019
gn 0.028 0.015 0.009 0.005
osn 0.036 0.020 0.012 0.008
go 0.095 0.077 0.063 0.053
oso 0.102 0.082 0.067 0.057
ir 0.170 0.095 0.038 0.021

dv1 -0.016 -0.008 -0.005 -0.003
dv2 -0.015 0.005 -0.002 -0.001
var -0.038 -0.018 -0.010 -0.005
gn 0.070 0.054 0.044 0.037
osn 0.110 0.086 0.071 0.061
go -0.054 -0.043 -0.035 -0.028
oso -0.033 -0.027 -0.022 -0.018
ir -0.039 0.019 0.011 0.008

(b) H = 0.85

Also, if we consider the linear regression log(SD) ∼ log(n) for these two
estimators, its slope is−0.5003 for Ĥdv2 and−0.5013 for Ĥir, which suggests
that for both these estimators SD

(
Ĥ(·)

)
∼ O(n−1/2).

3.4. The geometric Brownian motion

3.4.1. Dependance on the value of the Hurst index

Table 3.3 presents the mean squared errors and the biases for the sample
path lengths of 214 +1 and 210 +1. Boxplots of these estimators for the sample
path length n = 214 + 1 can be found in Figure B.4 (see Appendix). It can
be seen that, for the non-Gaussian gBm process, the estimators Ĥgn and Ĥosn

display higher biases for all the values of H .

An interesting observation is that, in the case of the O-U process the mean
squared errors of Ĥgn and Ĥosn were the lowest of all the considered estima-
tors, while for the gBm model their mean squared errors surpassed those of
Ĥdv1, Ĥdv2 and Ĥvar.
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Table 3.3. Comparison of the estimators for the gBm process.

H 0.55 0.7 0.8 0.95

MSE

dv1 0.008 0.006 0.009 0.021
dv2 0.016 0.012 0.011 0.010
var 0.008 0.010 0.015 0.025
gn 0.032 0.030 0.034 0.049
osn 0.035 0.032 0.037 0.054
go 0.033 0.046 0.053 0.049
oso 0.035 0.049 0.056 0.053
ir 0.022 0.019 0.019 0.022

H −H

dv1 0.000 0.001 0.000 -0.006
dv2 0.000 0.001 -0.002 0.000
var 0.000 0.001 0.000 -0.009
gn 0.055 0.051 0.061 0.059
osn 0.080 0.076 0.086 0.082
go -0.014 -0.016 -0.021 -0.026
oso -0.003 -0.006 -0.011 -0.014
ir -0.019 -0.009 -0.001 0.028

(a) N = 214 + 1

H 0.55 0.7 0.8 0.95
dv1 0.030 0.026 0.029 0.030
dv2 0.054 0.054 0.055 0.046
var 0.030 0.037 0.040 0.041
gn 0.047 0.044 0.051 0.079
osn 0.053 0.048 0.058 0.088
go 0.055 0.072 0.080 0.066
oso 0.057 0.077 0.084 0.070
ir 0.074 0.067 0.069 0.077

dv1 -0.001 -0.001 0.000 -0.012
dv2 0.001 0.000 -0.002 0.007
var 0.000 -0.006 -0.008 -0.020
gn 0.077 0.072 0.086 0.086
osn 0.112 0.106 0.120 0.116
go -0.020 -0.027 -0.036 -0.038
oso -0.001 -0.009 -0.019 -0.020
ir -0.009 -0.005 -0.004 0.039

(b) N = 210 + 1

The behavior of Ĥdv2 and Ĥir does not display notable differences for
these two processes.

3.4.2. Dependance on the length of the sample path

Table 3.4 presents the mean squared errors and the biases for H = 0.65
and H = 0.85. Figure B.5 shows the boxplots of the estimators considered for
H = 0.85, while Figure B.6 presents the plots of log(SD) against log(n) (see
Appendix).

Compared to the O-U case the biases of Ĥgn and Ĥosn are higher for all
sample path lengths. The mean squared errors of Ĥgn, Ĥosn, Ĥgo and Ĥoso are
higher for all sample path lengths. In the case of relatively short sample paths
(28 − 210) and H > 3/4, the estimators Ĥgo and Ĥoso have at times severely
overestimated the Hurst index H with the estimated value being higher than
2. Those values were excluded from their boxplots. The slope of the linear
regression log(SD) ∼ log(n) is −0.5015 for Ĥdv2 and −0.5011 for Ĥir,
which does not differ significantly from the O-U case.
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Table 3.4. Comparison of the estimators for the gBm process for sample path lengths
N = 2k + 1.

k 8 10 12 14

MSE

dv1 0.052 0.028 0.016 0.007
dv2 0.103 0.065 0.028 0.013
var 0.073 0.036 0.020 0.011
gn 0.066 0.050 0.041 0.034
osn 0.075 0.056 0.044 0.037
go 2.411 0.097 0.061 0.048
oso 0.556 0.090 0.063 0.050
ir 0.172 0.079 0.037 0.018

H −H

dv1 -0.002 0.001 0.002 0.001
dv2 -0.020 -0.002 0.000 0.000
var -0.013 0.001 0.001 0.002
gn 0.093 0.074 0.062 0.054
osn 0.137 0.110 0.092 0.079
go 0.223 -0.009 -0.011 -0.010
oso 0.065 0.006 0.001 0.000
ir -0.043 -0.013 -0.014 -0.013

(a) H = 0.65

k 8 10 12 14
dv1 0.047 0.033 0.023 0.016
dv2 0.094 0.053 0.026 0.013
var 0.082 0.050 0.032 0.023
gn 0.082 0.059 0.046 0.037
osn 0.092 0.065 0.049 0.040
go 0.104 0.085 0.071 0.060
oso 0.109 0.090 0.075 0.064
ir 0.169 0.095 0.038 0.021

dv1 -0.005 -0.001 0.001 0.000
dv2 -0.016 0.003 -0.002 -0.001
var -0.025 -0.007 -0.002 0.001
gn 0.094 0.075 0.062 0.054
osn 0.136 0.108 0.091 0.078
go -0.038 -0.028 -0.022 -0.017
oso -0.011 -0.009 -0.006 -0.004
ir -0.039 0.019 0.011 0.008

(b) H = 0.85

3.5. Conclusions of the modelling

1. The estimators Ĥgn and Ĥosn, despite showing the least mean squared
errors in the O-U case, have also shown much higher biases than other
estimators considered in this section. This bias increases as the sample
path length is decreased but shows no dependance on the value of the
Hurst index H as long as H is not too close to 1. When H > 0.9,
this bias increases further. In the gBm case the mean squared errors of
these two estimators were greater than those of Ĥdv1, Ĥdv2 and Ĥvar.

2. The estimators Ĥgo and Ĥoso, the ordinary least squares versions of
the previous estimators, display totally different behavior - their bi-
ases are comparable with those of the other estimators. However, their
mean squared errors are considerably higher than those of other es-
timators and tend to decrease only slightly as the sample path length
is increased. Additionally, both of these estimators require the sample
path length to be equal to 2k + 1, k ∈ N, which means that, for sample
paths of different length, some of the observations must be truncated.

3. The estimators Ĥdv1 and Ĥvar behaved differently for "small" and
"large" values of H . As H ∈ (1/2, 3/4), they displayed the best char-
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acteristics while for higher values of H their performance was close to
or worse than that of other estimators. Ĥvar displayed increased biases
for shorter sample paths.

4. The characteristics of Ĥdv2 were slightly worse than that of Ĥdv1 and
Ĥvar for shorter sample paths and H < 3/4, and they were similar
or better for longer sample paths and H > 3/4. Also, it showed no
notable dependance of its behavior on the value of H . Ĥir displayed
such a dependance only for rather long sample paths, but its biases and
mean squared errors were higher. Having considered the linear regres-
sion log(SD) ∼ log(n) for these two estimators, the results suggest
that for both these estimators SD

(
Ĥ(·)

)
∼ O(n−1/2).

5. Calculation times for the estimators Ĥdv1, Ĥdv2 and Ĥosn were about
0.02s with 100 sample paths of the length N = 28 + 1 and about 0.4s
with 100 sample paths of the length N = 214 + 1. Calculation times
of Ĥgn were about twice lower and those of Ĥgo, Ĥoso and Ĥir were
2–5 times higher.





General conclusions

Having solved the tasks listed in the introduction the following resultes were
obtained:

1. Having proved the Theorems 1, 3, 6 and 8, the asymptotics of quad-
ratic variations of the solution of the stochastic differential equation
(1.1) were derived both in case of regularly and irregularly spaced ob-
servations.

2. In case of regularly spaced observations, in Theorem 2 and Theorem 4
it was proved that Ĥn

dv1 and Ĥn
dv2, the estimators of the Hurst index H

originally obtained by Istas, Lang (1997) and Benassi et al (1998) for
the fractional Brownian motion remain strongly consistent when the
underlying process is the solution of the stochastic differential equa-
tion. In case of irregularly spaced observations, in Theorem 7 it was
shown that H̃n

dv1, the proposed estimator of the Hurst index H based
on the first order quadratic variations is strongly consistent.

3. In Theorem 9 it was proved that the obtained estimators remain strongly
consistent if the solution of the stochastic differential equation is re-
placed with its Milstein approximation.
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4. In Theorem 10 it was proved that the increment ratio statistic can be ap-
plied to estimate the Hurst index H of the fractional geometric Brow-
nian motion.

5. In Theorem 11 the rate of convergence of the modified Gladyshev es-
timator of the Hurst index H to its real value was derived.

6. The obtained estimators were compared to some of the other known
estimators, namely the naive and ordinary least squares Gladyshev and
η-summing oscillation estimators, the variogram estimator and the IR
estimator. The results of the modelling study suggest that if the value
of the Hurst index is large (H > 3/4) or when the Hurst index is
estimated from a sufficiently long sample path (N > 210), the Ĥdv2
estimator performs best. If either of these assumptions is not present,
then Ĥdv1 and Ĥvar would likely provide a more precise estimate.
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Appendices

Appendix A. [R] source codes

Appendix A.1. Generation of the fractional Brownian motion

The function genFBM(H,N) generates a single sample path of the fBm with
the Hurst index H of the length N data points over the unit interval.

genFBM <- function(H,N) {
# M - length of the required vector of autocovariances
M <- 2^(ceil( 1 + log(N-1)/log(2) ))

# V is the M-vector of autocovariances of fGn
H2 <- 2*H
V <- c(0:(M/2), (M/2-1):1)
V <- 1/(2*N^(H2))*(abs(V-1)^(H2) - 2*V^(H2) + (V+1)^(H2))

# W is the fast Fourier transform of V
W <- Re(fft(V))

# We increase M until all coordinates of W are positive
while (any(W<=0) & (M<2^30)) {
M <- 2*M
V <- c(0:(M/2), (M/2-1):1)
V <- 1/(2*N^(H2))*(abs(V-1)^(H2) - 2*V^(H2) + (V+1)^(H2))
W <- Re(fft(V))
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}

# X and Y and iid Gaussian with mean 0 and variance 1/sqrt(2)
X <- rnorm(M, mean=0, sd=(1/sqrt(2)))
Y <- rnorm(M, mean=0, sd=(1/sqrt(2)))
Z <- vector(length=M)
Z[1] <- X[1]
Z[M/2+1] <- Y[1]
Z[c(2:(M/2))] <- X[c(2:(M/2))] + 1i*Y[c(2:(M/2))]
Z[M+2-c(2:(M/2))] <- X[c(2:(M/2))] - 1i*Y[c(2:(M/2))]
U <- sqrt(W)*Z

# X is the fast Fourier transform of U = sqrt(W) * ( X + iY )
X <- fft(U, inverse=T)

# The real part of the first N coordinates of X is the desired
# sample path, in this case, the fGn.
# We calculate the fBm sample path as cumulated sums of fGn.
BHinc <- c(0,Re(X[1:N]))/sqrt(M)
BH <- cumsum(BHinc)
return(BH[-length(BH)])
}

Appendix A.2. Calculation of the estimators

The following functions estimate the value of the Hurst index H of a single sam-
ple path.

fH1 calculates the Ĥn
dv1 estimate:

fH1 <- function(X) {
X2n <- X
dX2n <- X2n[-1] - X2n[-length(X2n)]
Xn <- X2n[-c(seq(2,length(X2n),2))]
dXn <- Xn[-1] - Xn[-length(Xn)]
V2n <- sum(dX2n^2)
Vn <- sum(dXn^2)
H <- 1/2 - 1/(2*log(2)) * log(V2n/Vn)
return(H)
}

fH2 calculates the Ĥn
dv2 estimate:

fH2 <- function(X) {
X2n <- X
dX2n <- X2n[-1] - X2n[-length(X2n)]
d2X2n <- dX2n[-1] - dX2n[-length(dX2n)]
Xn <- X2n[-c(seq(2,length(X2n),2))]
dXn <- Xn[-1] - Xn[-length(Xn)]
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d2Xn <- dXn[-1] - dXn[-length(dXn)]
V2n <- sum(d2X2n^2)
Vn <- sum(d2Xn^2)
H <- 1/2 - 1/(2*log(2)) * log(V2n/Vn)
return(H)
}

IR calculates the Ĥn
ir estimate:

IR <- function(X) {
H <- (mean(abs(diff(diff(X[-1])) + diff(diff(X[-length(X)])))/
(abs(diff(diff(X[-1]))) + abs(diff(diff(X[-length(X)])))))
- 0.5174)/0.1468
}

G_naive calculates the Ĥn
gn estimate:

G_naive <- function(X) {
m <- floor(log2(length(X)))
dX <- (X[-1] - X[-length(X)])^2
s2 <- sum(dX)
Hest <- log(sqrt(s2*2^(-m))) / log(2^(-m))
return(Hest)
}

G_OLS calculates the Ĥn
go estimate:

G_OLS <- function(X) {
m <- floor(log2(length(X)))
mseq <- c(1:m)
s2 <- vector(length=m)
xm <- vector(length=m)
for (m in mseq) {
Xseq <- X[seq(1,length(X),(2^(floor(log2(length(X)))-m)))]
s2[m] <- sum((Xseq[-1] - Xseq[-length(Xseq)])^2)
xm[m] <- log2(sqrt((2^m)/(s2[m])))
}
xavg <- mean(xm)
Hest <- sum((xm-xavg)^2) / sum((xm-xavg)*mseq)
return(Hest)
}

OS_naive calculates the Ĥn
osn estimate:

OS_naive <- function(X) {
M <- floor(log2(length(X)))
Q <- sum(pmax(X[-1],X[-length(X)]) - pmin(X[-1],X[-length(X)]))
Hest <- log2(2^M/Q) / log2(2^M)
return(Hest)
}
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OS_OLS calculates the Ĥn
oso estimate:

OS_OLS <- function(X) {
M <- floor(log2(length(X)))
nu <- 2^c(1:M)
xm <- vector(length=M)
for (k in c(1:M)) {
bsize <- (length(X)-1)/nu[k]
filt <- c(rep(c(TRUE,rep(FALSE,(bsize-1))),nu[k]),TRUE)
Y <- X[filt]
Q <- sum(pmax(Y[-1],Y[-length(Y)]) - pmin(Y[-1],Y[-length(Y)]))
xm[k] <- log2(nu[k]/Q)
}
xavg <- mean(xm)
Hest <- sum((xm-xavg)^2) / sum((xm-xavg)*log2(nu))
return(Hest)
}

Hvar calculates the Ĥn
var estimate:

Hvar <- function(X) {
lag <- 2^c(0:5)
V <- vector(length=length(lag))
for (n in lag) {
dX <- X[-c(1:n)]-X[-c((length(X)-n+1):length(X))]
V[log2(n)+1] <- mean(dX^2)
}
H <- lm(log(V)~log(lag))$coefficients[2]/2
names(H)<-NULL
return(H)
}
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Appendix B. Figures
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Fig. B.1. Boxplots for the O-U process, sample path length n = 214 + 1.
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Fig. B.2. Boxplots for the O-U process, H = 0.85, n = 2k, k = 8, . . . , 14.
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Fig. B.3. Dependance of log(SD) against log(n) for the O-U process,
H ∈ {0.55, 0.6, . . . , 0.95}.
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Fig. B.4. Boxplots for the B-S process, sample path length n = 214 + 1.
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Fig. B.5. Boxplots for the B-S process, H = 0.85, n = 2k, k = 8, . . . , 14.
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Fig. B.6. Dependance of log(SD) against log(n) for the B-S process,
H ∈ {0.55, 0.6, . . . , 0.95}.
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