

### VILNIAUS GEDIMINO TECHNIKOS UNIVERSITETAS STATYBOS FAKULTETAS METALINIŲ IR MEDINIŲ KONSTRUKCIJŲ KATEDRA

Ieva Misiūnaitė

## SANTVARŲ NELAKŠTINIŲ MAZGŲ SKAIČIAVIMO IR KONSTRAVIMO YPATUMAI

## DESIGN AND ESTIMATION OF WELDED TRUSS JOINTS BETWEEN SQUARE HOLLOW SECTIONS

Baigiamasis magistro darbas

Statinių konstrukcijos, 62402T107 Pastatų konstrukcijos Statybos inžinerija

Vilnius, 2008

| Vilniaus                                                            | Gedimino                                                                                   | Technikos |  | ISBN ISSN |  |  |  |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------|--|-----------|--|--|--|
| Universitetas                                                       |                                                                                            |           |  | Egz. sk   |  |  |  |
| <b>Statybos</b> fa                                                  | kultetas                                                                                   |           |  | Data      |  |  |  |
|                                                                     |                                                                                            |           |  |           |  |  |  |
| Statinių konstrukcijų studijų programos baigiamasis magistro darbas |                                                                                            |           |  |           |  |  |  |
| Santvarų nelakštinių mazgų skaičiavimo ir konstravimo ypatumai      |                                                                                            |           |  |           |  |  |  |
| Autorius Ie                                                         | Autorius <b>Ieva Misiūnaitė</b> Vadovas prof habil dr. <b>Audronis Kazimieras Kvedaras</b> |           |  |           |  |  |  |

### Kalba X lietuvių užsienio

### Anotacija

Baigiamajame magistro darbe nagrinėjami santvarinių konstrukcijų iš kvadratinių vamzdžių tiesioginio jungimo mazgų skaičiavimo ir konstravimo ypatumai. Analizuojama konstrukcinių elementų elgsena mazge ir jos sąlygojamas jungties irties pobūdis. Nagrinėjamos takumo linijos teorijos taikymo galimybės sudarant analitinius modelius. Pateikiami analitiniai modeliai, taikomi mazgų ašinės laikomosios galios skaičiavimo algoritmams sudaryti, pateikiamiems projektavimo norminiuose dokumentuose. Aprašomas mazgą sudarančių konstrukcinių elementų projektavimas pagal STR 2.05.08:2005 ir EN 1993-1-1 reikalavimus, bei mazgų ašinės laikomosios galios nustatymas pagal STR 2.05.08:2005 8-tą priedą, bei EN 1993-1-8.

Darbe atlikta skaitinė projektavimo normose pateikiamų santvarinių konstrukcijų tiesioginio jungimo mazgų ašinės laikomosios galios nustatymo lyginamoji analizė. Suprojektuota santvarinė konstrukcija, kurios skaičiuojamoji schema parinkta tokia, kad būtų išanalizuoti visi projektavimo normose pateikiami tiesioginio jungimo mazgų tipai. Įrąžoms konstrukciniuose elementuose nustatyti pasinaudota kompiuterine skaičiavimo programa *Staad.pro*. Konstrukcinių elementų elgsenos mazge analizei pasinaudota kompiuterine programa *CosmosWorks*. Ištirta pagrindinių skaičiavimo algoritmuose pateikiamų rodiklių įtaka mazgo laikomąjai galiai. Norint parinkti santvaros konstrukcinius elementus ir nustatyti mazgų skaičiuotinę ašinę laikomąją galią bei atlikti skaitinę analizę buvo pasinaudota kompiuterine programa *Microsoft Office Exel* sudarytais skaičiavimo algoritmais.

Darbą sudaro 5 dalys: įvadas, literatūros apžvalga, tiriamoji dalis, išvados ir siūlymai, literatūros sąrašas.

Darbo apimtis – 108 p. teksto be priedų, 72 iliustr., 52 lent., 28 bibliografiniai šaltiniai. Atskirai pridedami darbo priedai.

**Prasminiai žodžiai:** laikomoji galia, analitiniai modeliai, takumo linijos teorija, norminiai dokumentai, santvarų mazgai iš kvadratinių vamzdžių

Vilnius Gediminas Technical University

**Civil Engineering** faculty

ISBN ISSN Copies No. .....

Steel and timber structures department

Date ....-....

Building structures study programme master thesis.

Title: Design and estimation of welded truss joints between square hollow sections

Author Ieva Misiūnait

Academic supervisor prof.habil.dr. A. K. Kvedaras



### Annotation

This master thesis considers design and estimation of truss joints between square hollow sections. Behaviuor of joints and its failure modes analyzed. The posibility to apply the yield line theory for analytical models considered. Analytical models used for determining the design capacity of the joint formulae in design guids presented. Truss members design following STR 2.05.08:2005 and EN 1993-1-1 and joint design capacity calculation following STR 2.05.08:2008 8-th annex and EN 1993-1-8 presented.

It was made numerical convergence analysis between diferent design guidilines for estimating design capacity of the joint in this study. Truss structure designed, including all most commonly known joint types. Truss member loiding estimated using structural design and analysis software *Staad.Pro*. The behaviuor of the joint designed using finite element analysis software *Cosmos.Works*. Also the influence of governing joint parameters for the design capacity equations analysed. For truss structure design, capacity of the joint calculations and numerical analysis the calculation program was made using *Microsoft Office Exel* software .

Structure: introduction, literature review, research part, conclusions and suggestions, references.

Thesis consist of: 108 p. text without appendixes, 72 pictures, 52 tables, 28 bibliographical entries.

Appendixes included.

**Keywords:** capacity of the joint, analytical models, yield line theory, design guids, joints of square hollow sections

### TURINYS

| ĮVADA           | .S                                                                                        | 11       |
|-----------------|-------------------------------------------------------------------------------------------|----------|
| 1. S            | ANTVARŲ IŠ KVADRATINIŲ VAMZDŽIŲ MAZGŲ IRTIES POBŪDIS IR TYRIMO                            |          |
| METODAI.        |                                                                                           | 13       |
| 2. A            | NALITINIAI MODELIAI                                                                       | 17       |
| 2.1             | Takumo linijos modelis                                                                    | 17       |
| 2.1.1           | Takumo linijos modelis neatsižvelgiant į projektavimo normų reikalavimus                  | 18       |
| 2.1.2           | Takumo linijos modelio taikymas skaičiavimo algoritmams, pateikiamiems projektavi         | mo       |
| normose         |                                                                                           | 21       |
| 2.2             | Profiliuočio sienelės išsipūtimo arba vietinio klupumo irties modelis                     | 26       |
| 2.3             | Juostos išplėšiamosios šlyties modelis                                                    | 29       |
| 2.4             | Tinklelio elemento efektyviojo pločio modelis                                             | 30       |
| 2.5             | Juostos šlyjamosios irties modelis                                                        | 31       |
| 3. S            | ANTVAROS IŠ KVADRATINIU VAMZDŽIU MAZGU KONSTRUKCINIU ELEMEN                               | TU       |
| PROJEKTA        | VIMAS                                                                                     | 32       |
| 2 1             | Contronos iš laus drotiniu come džiu monou konstrukciniu slomentu preisletovimos no sel D | NT       |
| 5.1<br>1002 1 1 | Santvaros is kvadratinių vamzdzių mažgų konstrukcinių elementų projektavimas pagai E      | 20<br>20 |
| 2 1 1           | Skaroniāviu klasifikasija                                                                 |          |
| 3.1.1           | 1 Efektyviojo skersniūvio nustatymas                                                      |          |
| 3.1.2           | Ašinės jėgos veikiami elementai                                                           |          |
| 3.1.2           | Ašinės jegos ir lenkiamojo momento veikiami elementai                                     |          |
| 3.2             | Santyaros iš kvadratinių vamzdžių mazgų konstrukcinių elementų projektavimas pagal S      | TR       |
| 2.05.08.2       | 005                                                                                       | 40       |
| 3.2.1           | Ašinės jėgos veikiami elementai                                                           | 40       |
| 3.2.2           | Ašinės jėgos ir lenkiamojo momento veikiami elementai                                     | 40       |
| 4 0             |                                                                                           |          |
| 4. 5            | ANT VAROS IS KVADRATINIŲ VAMZDZIŲ MAZGŲ SKAICIUOTINES ASINES                              | 41       |
| LAIKOMO         | SIOS GALIOS NUSTATYMAS                                                                    | 41       |
| 4.1             | Santvaros iš kvadratinių vamzdžių mazgų skaičiuotinės ašinės laikomosios galios nustaty   | /mas     |
| pagl EN 1       | 1993–1–8                                                                                  | 41       |
| 4.1.1           | Elementų jungimas mazge                                                                   | 41       |
| 4.1.2           | Bendrieji reikalavimai projektuojant mazgus ir jų tinkamumo ribos                         | 42       |
| 4.1.3           | Santvaros iš kvadratinių vamzdžių mazgų skaičiuotinės ašinės laikomosios galios nust      | atymo    |
| algoritma       | i 44                                                                                      |          |
| 4.2             | Santvaros iš kvadratinių vamzdžių mazgų skaičiuotinės laikomosios galios nustatymas pa    | agal     |
| STR 2.05        | .08:2005 (8 priedą)                                                                       | 47       |

| 4.2.1    | Irties pobūdžiai ir mazgo laikomoji galia                                              | 47      |
|----------|----------------------------------------------------------------------------------------|---------|
| 4.2.2    | Mazgų tipai ir jų žymenys                                                              | 47      |
| 5. S     | ANTVAROS IŠ KVADRATINIŲ VAMZDŽIŲ MAZGŲ PROJEKTAVIMAS                                   | 51      |
| 5.1      | Santvaros konstrukcinių elementų parinkimas ir laikomosios galios nustatymas           |         |
| 5.1.1    | "Santvaros 1" konstrukcinių elementų parinkimas                                        |         |
| 5.1.2    | "Santvaros 2" konstrukcinių elementų parinkimas                                        | 61      |
| 5.2      | T, Y, X tipo mazgų ašinės laikomosios galios nustatymas                                |         |
| 5.3      | K ir N tipo mazgų laikomosios galios nustatymas                                        | 72      |
| 5.4      | KT tipo mazgų laikomosios galios nustatymas                                            | 76      |
| 6. S     | ANTVAROS IŠ KVADRATINIŲ VAMZDŽIŲ MAZGŲ ELGSENOS ANALIZĖ                                |         |
| 6.1      | Y tipo mazgo laikomosios galios juostos plastinės irties atveju lyginamoji analizė     |         |
| 6.2      | K su tarpu tipo mazgų laikomosios galios juostos plastinės irties atveju lyginamoji an | alizė88 |
| 6.3      | T, X, Y tipo mazgų laikomosios galios sienelės vietinio klupumo irties atveju lyginan  | noji    |
| analizė  | 92                                                                                     |         |
| 6.4      | Įtempių ir deformacijų pasiskirstymo santvaros juostoje, kaip Y tipo mazgo konstrukt   | ziniame |
| elemente | analizė                                                                                |         |
| 6.5      | Įtempių ir deformacijų pasiskirtymo santvaros juostoje, kaip K tipo mazgo konstrukci   | niame   |
| elemente | analizė                                                                                |         |
| LITER    | ATŪROS SĄRAŠAS                                                                         |         |
| 1 prie   | edas                                                                                   |         |
| 2 prie   | edas                                                                                   | 112     |
| 3 prie   | edas                                                                                   | 114     |
| 4 prie   | edas                                                                                   |         |
| 5 prie   | edas                                                                                   |         |
| 6 prie   | edas                                                                                   |         |
| 6 prie   | edas                                                                                   | 140     |
| 7 prie   | edas                                                                                   | 142     |
| 8 prie   | edas                                                                                   | 144     |
| 9 prie   | edas                                                                                   | 146     |
| PAVEIKSI | LŲ SĄRAŠAS                                                                             |         |
| 1 pav    | v. Mazgo pagrindiniai rodikliai                                                        |         |
| 2 pav    | <ul> <li>Deformacijų pasiskirstymas mazge</li> </ul>                                   | 13      |
| 3 pav    | v. Mazgų iš kvadratinių vamzdžių laikomosios galios nustatymo metodai                  | 14      |
| 4 pav    | v. Kvadrinių vamzdžių elementų mazgų irties pobūdžiai                                  | 16      |
| 5 pav    | <ul> <li>Konkurencingi plastinių lankstų sistemų modeliai</li> </ul>                   |         |
| 6 pav    | 7. Plokštelės deformavimosi schema, veikiant lenkiamajam momentui M                    |         |

| 7 pav.        | Deformacinė lenkiamojo momento kreivė                                                           | 21 |
|---------------|-------------------------------------------------------------------------------------------------|----|
| 8 pav.        | Takumo linijos sritis                                                                           | 22 |
| 9 pav.        | Itempių pasiskirstymas plokštelės storyje ribiniu atveju                                        | 22 |
| 10 pav.       | Įrąžų pasiskirstymas plokštelės plotyje                                                         | 22 |
| 11 pav.       | Takumo linijos teorijos interpretacija vienalytei plokštelei                                    | 23 |
| 12 pav.       | Takumo linijos teorijos taikymas tuščiaviduriam profiliuočiui                                   | 23 |
| 13 pav.       | Mazgo Y juostos viršaus irties modelis (skaičiais 1–5 pažymėtos takumo linijos)                 | 24 |
| 14 pav.       | Juostoje veikiančias įrąžas įvertinanti funkcija $f(n)$ , esant skirtingiems tinklelio          |    |
| elemento ir j | uostos pločių santykiams $\beta$                                                                | 26 |
| 15 pav.       | T, Y, X mazgo deformuota schema, kai rodiklis $\beta$ kinta ribose $0.85 \le \beta \le 1.0$     | 27 |
| 16 pav.       | Juostos šoninės sienelės klupumo irties schema                                                  | 27 |
| 17 pav.       | Juostos išplėšiamosios irties modelis                                                           | 29 |
| 18 pav.       | Tinklelio elemento irties sumažėjus efektyviajam pločiui modelis                                | 30 |
| 19 pav.       | Juostos šlyjamosios irties modelis                                                              | 31 |
| 20 pav.       | Europinės klupumo kreivės                                                                       | 38 |
| 21 pav.       | funkcija $\phi$                                                                                 | 38 |
| 22 pav.       | Tinkamumo ribos tarpui tarp tinklelio elementų                                                  | 43 |
| 23 pav.       | Galimi įražų pasiskirstymai mazge                                                               | 47 |
| 24 pav.       | K ir N tipo mazgų matmenų ir įrąžų žymenys                                                      | 48 |
| 25 pav.       | T ir X mazgų matmenų ir įrąžų žymenys                                                           | 48 |
| 26 pav.       | Analizuojamos santvaros skaičiuojamoji schema                                                   | 51 |
| 27 pav.       | Analizuojamos santvaros konstrukcinių elementų numeracija                                       | 52 |
| 28 pav.       | Lenkiamųjų momentų pasiskirstymo santvaros elementuose schema                                   | 52 |
| 29 pav.       | Ašinių jėgų pasiskirstymo santvaros elementuose schema                                          | 53 |
| 30 pav.       | Nagrinėjama santvaros dalis ir mazgai                                                           | 70 |
| 31 pav.       | Mazgo laikomosios galios rodiklinės $\gamma$ kreivės, esant rodiklio $\beta = 0,3125$ reikšmei, |    |
| nevertinant j | uostos įrąžų                                                                                    | 82 |
| 32 pav.       | Mazgo laikomosios galios rodiklinės $\gamma$ kreivės, esant rodiklio $\beta = 0,5$ reikšmei,    |    |
| nevertinant j | uostos įrąžų                                                                                    | 82 |
| 33 pav.       | Mazgo laikomosios galios rodiklinės $\gamma$ kreivės, esant rodiklio $\beta = 0,625$ reikšmei,  |    |
| nevertinant j | uostos įrąžų                                                                                    | 83 |
| 34 pav.       | Mazgo laikomosios galios rodiklinės $\gamma$ kreivės, esant rodiklio $\beta = 0,75$ reikšmei,   |    |
| nevertinant j | uostos įrąžų                                                                                    | 83 |
| 35 pav.       | Mazgo laikomosios galios rodiklinės $\gamma$ kreivės, esant rodiklio $\beta = 0,875$ reikšmei,  |    |
| nevertinant j | uostos įrąžų                                                                                    | 83 |
| 36 pav.       | Mazgo laikomosios galios rodiklinės $\beta$ kreivės, esant rodiklio $\gamma = 10$ reikšmei,     |    |
| nevertinant j | uostos įrąžų                                                                                    | 85 |

| 37 pav.              | Mazgo laikomosios galios rodiklinės $\gamma$ kreivės, esant rodiklio $\beta = 0,3125$ reikšmei,         |
|----------------------|---------------------------------------------------------------------------------------------------------|
| įvertinant juost     | os įrąžas                                                                                               |
| 38 pav.              | Mazgo laikomosios galios rodiklinės $\gamma$ kreivės, esant rodiklio $\beta = 0,5$ reikšmei, įvertinant |
| juostos įrąžas       | 86                                                                                                      |
| 39 pav.              | Mazgo laikomosios galios rodiklinės $\gamma$ kreivės, esant rodiklio $\beta = 0,625$ reikšmei,          |
| įvertinant juost     | os įrąžas                                                                                               |
| 40 pav.              | Mazgo laikomosios galios rodiklinės $\gamma$ kreivės, esant rodiklio $\beta = 0,75$ reikšmei,           |
| įvertinant juost     | os įrąžas                                                                                               |
| 41 pav.              | Mazgo laikomosios galios rodiklinės $\gamma$ kreivės, esant rodiklio $\beta = 0,875$ reikšmei,          |
| įvertinant juost     | os įrąžas                                                                                               |
| 42 pav.              | Mazgo laikomosios galios rodiklinės $\beta$ kreivės, esant rodiklio $\gamma = 10$ reikšmei, įvertinant  |
| juostos įrąžas       | 87                                                                                                      |
| 43 pav.              | K tipo mazgo laikomosios galios rodiklinės $\gamma$ kreivės, esant rodiklio                             |
| $\beta = 0,3125$ rei | kšmei, nevertinant juostos įrąžų                                                                        |
| 44 pav.              | K tipo mazgo laikomosios galios rodiklinės $\gamma$ kreivės, esant rodiklio $\beta = 0,5$ reikšmei,     |
| nevertinant juo      | stos įrąžų                                                                                              |
| 45 pav.              | K tipo mazgo laikomosios galios rodiklinės $\gamma$ kreivės, esant rodiklio $\beta = 0,625$ reikšmei,   |
| nevertinant juo      | stos įrąžų                                                                                              |
| 46 pav.              | K tipo mazgo laikomosios galios rodiklinės $\gamma$ kreivės, esant rodiklio $\beta = 0,75$ reikšmei,    |
| nevertinant juo      | stos įrąžų                                                                                              |
| 47 pav.              | K tipo mazgo laikomosios galios rodiklinės $\beta$ kreivės, esant rodiklio $\gamma = 10$ reikšmei,      |
| neįvertinant juo     | ostos įrąžų                                                                                             |
| 48 pav.              | K tipo mazgo laikomosios galios rodiklinės $\gamma$ kreivės, esant rodiklio                             |
| $\beta = 0,3125$ rei | kšmei, įvertinant juostos įrąžas90                                                                      |
| 49 pav.              | K tipo mazgo laikomosios galios rodiklinės $\gamma$ kreivės, esant rodiklio $\beta = 0,5$ reikšmei,     |
| įvertinant juost     | os įrąžas                                                                                               |
| 50 pav.              | K tipo mazgo laikomosios galios rodiklinės $\gamma$ kreivės, esant rodiklio $\beta = 0,625$ reikšmei,   |
| įvertinant juost     | os įrąžas                                                                                               |
| 51 pav.              | K tipo mazgo laikomosios galios rodiklinės $\gamma$ kreivės, esant rodiklio $\beta = 0,75$ reikšmei,    |
| įvertinant juost     | os įrąžas91                                                                                             |
| 52 pav.              | K tipo mazgo laikomosios galios rodiklinės $\beta$ kreivės, esant rodiklio $\gamma = 10$ reikšmei,      |
| įvertinant juost     | os įrąžas                                                                                               |
| 53 pav.              | Y tipo mazgo laikomųjų galių sienelės klupumo irties atveju priklausomybė nuo santvaros                 |
| juostos profiliu     | iočio plonasieniškumo, esant rodiklio $\beta = 0,3125$ reikšmei                                         |
|                      |                                                                                                         |

| 54 pav.                | Y tipo mazgo laikomųjų galių sienelės klupumo irties atveju priklausomybė nuo     | santvaros |
|------------------------|-----------------------------------------------------------------------------------|-----------|
| juostos profiliu       | očio plonasieniškumo, esant rodiklio $\beta = 0,5$ reikšmei                       |           |
| 55 pav.                | Y tipo mazgo laikomųjų galių sienelės klupumo irties atveju priklausomybė nuo     | santvaros |
| juostos profiliu       | očio plonasieniškumo, esant rodiklio $\beta = 0,625$ reikšmei                     |           |
| 56 pav.                | Y tipo mazgo laikomųjų galių sienelės klupumo irties atveju priklausomybė nuo     | santvaros |
| juostos profiliu       | očio plonasieniškumo, esant rodiklio $\beta = 0,75$ reikšmei                      |           |
| 57 pav.                | Y tipo mazgo laikomųjų galių sienelės klupumo irties atveju priklausomybė nuo     | santvaros |
| juostos profiliu       | očio plonasieniškumo, esant rodiklio $\beta = 0,875$ reikšmei                     | 94        |
| 58 pav.                | Y tipo mazgo laikomųjų galių sienelės klupumo irties atveju priklausomybė nuo     | santvaros |
| juostos profiliu       | očio plonasieniškumo, esant rodiklio $\beta = 1,0$ reikšmei                       | 94        |
| 59 pav.                | Y tipo mazgo laikomųjų galių sienelės klupumo irties atveju rodiklinės β kreivė   | s, esant  |
| rodiklio $\gamma = 10$ | reikšmei                                                                          |           |
| 60 pav.                | Įtempių deformacinės kreivės vamzdžio juostoje                                    | 96        |
| 61 pav.                | Įtempių deformacinės kreivės vamzdžio sienelėje                                   | 96        |
| 62 pav.                | Santykinių deformacijų rodiklinės plonasieniškumo kreivės, esant rodiklio         |           |
| $\beta = 0,75$ reikšr  | nei                                                                               |           |
|                        | 97                                                                                |           |
| 63 pav.                | Santykinių deformacijų rodiklinės plonasieniškumo kreivės, esant rodiklio         |           |
| $\beta = 0,875$ reiks  | mei                                                                               |           |
|                        | 97                                                                                |           |
| 64 pav.                | Santykinių deformacijų rodiklinės plonasieniškumo kreivės, esant rodiklio         |           |
| $\beta = 1,0$ reikšmo  | еі                                                                                |           |
|                        | 98                                                                                |           |
| 65 pav.                | K tipo mazgo deformuota schema                                                    |           |
| 66 pav.                | Įtempių deformacinės kreivės profiliuočio juostoje                                |           |
| 67 pav.                | Įtempių deformacinės kreivės profiliuočio sienelėje                               |           |
| 68 pav.                | Įtempių rodiklinės $\gamma$ kreivės, kai rodiklis $\beta = 0,5$                   |           |
| 69 pav.                | Įtempių rodiklinės $\gamma$ kreivės, kai rodiklis $\beta = 0,75$                  |           |
| 70 pav.                | Santykinių deformacijų rodiklinės $\gamma$ kreivės, kai rodiklis $\beta = 0,3125$ |           |
| 71 pav.                | Santykinių deformacijų rodiklinės $\gamma$ kreivės, kai rodiklis $\beta = 0,5$    |           |
| 72 pav.                | Santykinių deformacijų rodiklinės $\gamma$ kreivės, kai rodiklis $\beta = 0,625$  |           |
| 73 pav.                | Santykinių deformacijų rodiklinės $\gamma$ kreivės, kai rodiklis $\beta = 0,75$   |           |
| LENTELIU SAI           | RAŠAS                                                                             |           |
| 1. lentelė.            | Kvadratinių vamzdžių santvarų tiesioginio jungimo mazgų tipai                     |           |
| 3.1 lentelė            | Analitiniai metodai pagal skerspjūvių klases                                      |           |
| 3.2 lentelė            | Skerspjūvio klasės nustatymas                                                     |           |

| 3.3 lentelė.       | Efektyvusis plotis $b_{eff}$ 4 klasės plokščiuose gniuždomuose kvadratinio vamzdžio     |
|--------------------|-----------------------------------------------------------------------------------------|
| elementuose [5]    | 36                                                                                      |
| 3.4 lentelė.       | Netobulumo pataisos koeficientai kvadratinių vamzdžių klupumo kreivėms                  |
| 3.5 lentelė.       | Lenkiamojo momento diagramos formos koeficientas $\beta_M$ [7]                          |
| 4.1 lentelė.       | Juostos ir tinklelio elementų iš kvadratinių vamzdžių mazgų tinkamumo ribos [7]43       |
| 4.2 lentelė.       | Papildomos sąlygos algoritmų mazgų ašinės laikomosios galios nustatymui naudojimui      |
| [7]                |                                                                                         |
| 4.3 lentelė.       | T, Y arba X tipo mazgų ašinės laikomosios galios nustatymo algoritmai [7]44             |
| 4.4 lentelė.       | K su tarpu ir N su tarpu tipo mazgų ašinės laikomosios galios nustatymo algoritmai [7]. |
| 4.5 lentelė.       | K su užlaida ir N su užlaida tipo mazgų ašinės laikomosios galios nustatymo algoritmai  |
| [7]                |                                                                                         |
| 4.6 lentelė.       | K su tarpu ir N su tarpu mazgų ašinės laikomosios galios nustatymo algoritmai [19]50    |
| 4.7 lentelė.       | T, Y arba X tipo mazgų ašinės laikomosios galios nustatymo algoritmai [19]51            |
| 5.1 lentelė.       | "Santvaros 1" apatinės juostos elementų skerspjūvio parinkimas pagal veikiančią įrąžą.  |
| 5.2 lentelė.       | "Santvaros 1" apatinės juostos elementų laikomosios galios patikrinimas53               |
| 5.3 lentelė.       | "Santvaros 1" viršutinės juostos elementų skerspjūvio parinkimas pagal veikiančią       |
| įrąžą              |                                                                                         |
| 5.4 lentelė.       | "Santvaros 1" viršutinės juostos elementų laikomosios galios patikrinimas54             |
| pirmasis itera     | cinis skaičiavimas                                                                      |
| 5.5 lentelė.       | "Santvaros 1" viršutinės juostos elemento laikomosios galios patikrinimas55             |
| n – asis iterae    | cinis skaičiavimas                                                                      |
| 5.6 lentelė.       | "Santvaros 1" tinklelio elementų skerspjūvio parinkimas pagal veikiančią įrąžą55        |
| 5.7 lentelė.       | Pirmuoju iteraciniu skaičiavimu gautų "Santvaros 1" tinklelio elementų laikomosios      |
| galios patikrinima | ns                                                                                      |
| 5.8 lentelė.       | N-uoju iteraciniu skaičiavimu gautų "Santvaros 1" tinklelio elementų laikomosios        |
| galios patikrinima | ns                                                                                      |
| 5.9 lentelė.       | "Santvaros 1" statramsčių elementų skerspjūvio parinkimas pagal veikiančią įrąžą59      |
| 5.10 lentelė.      | Pirmuoju iteraciniu skaičiavimu gautų "Santvaros 1" statramsčių elementų laikomosios    |
| galios patikrinima | ns60                                                                                    |
| 5.11 lentelė.      | N-tuoju iteraciniu skaičiavimu gautų "Santvaros 2" statramsčių elementų laikomosios     |
| galios patikrinima | ns                                                                                      |
| 5.12 lentelė.      | "Santvaros 2" apatinės juostos elementų parinkimas pagal veikiančią įrąžą61             |
| 5.13 lentelė.      | "Santvaros 2" apatinės juostos elementų laikomosios galios skaičiavimo61                |
| ir tikrinimo p     | irmasis iteracinis skaičiavimas61                                                       |
| 5.14 lentelė.      | "Santvaros 2" apatinės juostos elementų laikomosios galios skaičiavimo                  |
| ir tikrinimo r     | -asis iteracinis skaičiavimas                                                           |

| 5.15 lentelė.       | "Santvaros 2" viršutinės juostos elementų parinkimas pagal veikiančią įrąžą       | 62    |
|---------------------|-----------------------------------------------------------------------------------|-------|
| 5.16 lentelė.       | "Santvaros 2" viršutinės juostos elementų laikomosios galios skaičiavimo          | 63    |
| ir tikrinimo p      | irmasis iteracinis skaičiavimas                                                   | 63    |
| 5.17 lentelė.       | "Santvaros 2" viršutinės juostos elementų laikomosios galios skaičiavimo          | 63    |
| ir tikrinimo n      | -asis iteracinis skaičiavimas                                                     | 63    |
| 5.18 lentelė.       | "Santvaros 2" tinklelio elementų parinkimas pagal veikiančią įrąžą                | 64    |
| 5.19 lentelė.       | "Santvaros 2" tinklelio elementų laikomosios galios nustatymo ir tikrinimo pirma  | sis   |
| iteracinis skaičiav | imas                                                                              | 66    |
| 5.20 lentelė.       | "Santvaros 2" tinklelio elementų laikomosios galios nustatymo ir tikrinimo n-asis |       |
| iteracinis skaičiav | imas                                                                              | 66    |
| 5.21 lentelė.       | "Santvaros 2" statramsčių elementų parinkimas pagal veikiančią įrąžą              | 68    |
| 5.22 lentelė.       | "Santvaros 2" statramsčių elementų laikomosios galios nustatymo ir tikrinimo pir  | masis |
| iteracinis skaičiav | imas                                                                              | 69    |
| 5.23 lentelė.       | "Santavaros 1" 4-tojo mazgo ašinės laikomosiso galios nustatymas                  | 71    |
| 5.24 lentelė.       | " Santvaros 2" 4-tojo mazgo tinkamumo sąlygos                                     | 71    |
| 5.25 lentelė.       | "Santvaros 2" 4-tojo mazgo ašinės laikomosiso galios nustatymas                   | 72    |
| 5.26 lentelė.       | " Santvaros 1" 1-ojo mazgo svarbiausieji rodikliai laikomosios galios skaičiavimu | ıi73  |
| 5.27 lentelė.       | " Santvaros 1" 1-ojo mazgo laikomosios galios nustatymas                          | 74    |
| 5.28 lentelė.       | " Santvaros 2" 1-ojo mazgo svarbiausieji rodikliai laikomosios galios skaičiavimu | ıi74  |
| 5.29 lentelė.       | "Santvaros 2" 1-ojo mazgo tinkamumo ribos                                         | 74    |
| 5.30 lentelė.       | "Santvaros 2" 1-ojo mazgo laikomosios galios nustatymas                           | 75    |
| 5.31 lentelė.       | "Santvaros 1" 6-ojo mazgo laikomosios galios nustatymas                           | 77    |
| 5.32 lentelė.       | " Santvaros 2" 6-ojo mazgo svarbiausieji rodikliai laikomosios galios skaičiavimu | ıi77  |
| 5.33 lentelė.       | " Santvaros 2" 6-ojo mazgo svarbiausieji rodikliai laikomosios galios skaičiavimu | ıi,   |
| prokeltuojant KT    | tipo mazgą su tarpu                                                               | 78    |
| 5.34 lentelė.       | " Santvaros 2" 6-ojo mazgo svarbiausieji rodikliai laikomosios galios skaičiavimu | ıi,   |
| prokeltuojant KT    | tipo mazgą su užlaida                                                             | 78    |
| 5.35 lentelė.       | "Santvaros 2" 6-ojo mazgo tinkamumo sąlygos                                       | 79    |
| 5.36 lentelė.       | "Santvaros 2" 6-ojo mazgo tinkamumo sąlygos (antrasis iteracinis skaičiavimas).   | 79    |
| 5.37 lentelė.       | "Santvaros 2" 6-ojo mazgo laikomosios galios nustatymas                           | 80    |
| 5.38 lentelė.       | "Santvaros 1" mazgų projektavimo suvestinė                                        | 80    |
| 5.39 lentelė.       | "Santvaros 2" mazgų projektavimo suvestinė                                        | 81    |

### ĮVADAS

Tuščiaviduriai profiliuočiai yra lanksčiai taikomi elementai plieno konstrukcijose. Taip pat dėl nesudėtingo perdirbimo proceso yra palankūs elementai aplinkosaugos atžvilgiu. Dėl nesudėtingos šių profiliuočių skerspjūvio formos ir gerų mechaninių savybių jų panaudojimas, projektuojant plienines konstrukcijas, leidžia išvengti sudėtingų skaičiavimų ir pasiekti reikiamą laikomąją galią.

Santvarinėse konstrukcijose tuščiavidurių profiliuočių panaudojimas, dėl jų didelės klumpamosios galios, leidžia projektuoti didesnių tarpatramių statinius. Dėl gero uždaro profilio konstrukcijų sukamojo standumo, santvarios, kaip ir pavieniai tuščiaviduriai profiliuočiai pasižymi pakankama laikomąja galia sukamajam išklupimui.

Tiesioginio jungimo mazgų konstravimas santvarinėse konstrukcijose yra daug paprastesnis ir efektyvesnis nei panaudojant mazginius lakštus.

Santvarinių konstrukcijų mazgai priimami kaip tariamai lankstiniai, o tinklelio elementai projektuojami tik kaip veikiami ašinių jėgų. Atsižvelgiant į tai, kokie yra santvaros juostos ir tinklelio elementų matmenys, mazgo standumas gali būti įvertintas sumažinant tinklelio elementų klumpamąjį ilgį. Skersinės jėgos santvaros juostoje tarpe tarp tinklelio elementų sukelia lenkimo momentus, dėl to santvaros juosta turi būti tikrinama kaip gniuždomasis lenkiamasis elementas (žr. 3.1.3). Skaičiuojant santvaros gniuždomųjų konstrukcinių elementų laikomąją galią, plonasieniai vamzdžiai yra praktiškesnis pasirinkimas, tačiau tikrinant mazgo laikomąją galią, plonasienio vamzdžio plati juosta yra mažiau efektyvi nei storasienio – siaura.

Mazgų projektavimo algoritmai iš dalies remiasi bandymų rezultatais. Sprendžiant mazgų laikomosios galios tikrinimo uždavinius, naudojantis minėtais algoritmais, labai svarbu, kad juostų ir tinklelio elementų iš kvadratinių vamzdžių mazgai tenkintų tinkamumo ribas (žr. 4.1 lentelę).

Tuščiavidurių profiliuočių santvarų mazgų tipai pateikiami 1 lentelėje, o matmenų žymenys 1 paveiksle.



### 1 pav. Mazgo pagrindiniai rodikliai

Svarbiausieji nagrinėjami rodikliai:

- ✓ tinklelio elemento ir juostos skerspjūvio pločių santykis :  $\eta = \beta = \frac{b_1}{b_0}$  arba  $\beta = \frac{\sum_{i=1}^{m} b_i}{m \cdot b_0}$ ;
- ✓ juostos skerspjūvio pločio ir dvigubo sienelės storio santykis:  $\gamma = \frac{b_0}{2 \cdot t_0}$ ;
- ✓ tarpo tarp tinklelio elemetų ir juostos skerspjūvio sienelės storio santykis:  $g' = \frac{g}{t_0}$ .
- 1. lentelė. Kvadratinių vamzdžių santvarų tiesioginio jungimo mazgų tipai



Atsižvelgiant į kvadratinių vamzdžių įvairius geometrinius rodiklius ir elementų jungimo variacijas, būtina aptarti nemažai mazgų irties pobūdžių.

Elementai mazge išorinių jėgų veikiami sąveikauja, vyksta kompleksinis jėgų persiskirstymas, kurio įtaka pasireiškia deformacijų forma (žr. 2 pav.).

Plieninių konstrukcijų projektavimo norminiuose dokumentuose suformuluoti algoritmai tipinių mazgų skaičiavimui yra analitinių metodų ir bandymais gautų konstantų samplaika. Tuo remiantis vienas darbo tikslų yra išsiaiškinti analitinius modelius, kuriais grindžiami norminiuose dokementuose pateikiami skaičiavimo algoritmai ir ar tikrai pasirinktos analitinės metodikos tiksliai aprašo elementų elgsenos mazge ypatumus ir jų sąlygojamą irties pobūdį. Kadangi skaičiavimo metodikos pateikiamos norminiuose dokementuose remiasi svarbiausiųjų rodiklių reikšmėmis, tiesiogiai sietinomis su santvaros elementų matmenimis, svarbu nustatyti jų įtaką mazgo laikomąjai galiai ir poveikio ribas.



2 pav. Deformacijų pasiskirstymas mazge

Šiuo metu Lietuvoje santvaras ir jų nelakštinius mazgus galima projektuoti remiantis, tiek STR 2.05.08:2005 [20] ir STR 2.05.08:2005 8 – ojo priedo [19], tiek ir EN 1993-1-1 [6] ir EN 1993-1-8 [7] nuostatomis, todėl tikslinga atlikti šių metodikų lyginamają analyzę. Be to ateityje Lituvoje įsigalios tik [6] ir [7] dokumentai, todėl svarbu susipažinti su juose pateikiamų metodikų pagrindiniais principais. Lietuvoje šiuo metu geriau žinomos Rytų Europos šalyse paplitusios terijos taikomos santvaros mazgų elgsenai aprašyti [19], kadangi [6] ir [7] metodikos yra paremtos Vakarų Europos mokslininkų darbais, tikslinga išsiaiškinti kokiomis teorijomis ir prielaidomis jos buvo formuluojamos, ar yra sąsaja tarp abiejų metodikų analitinio pagrindimo.

### 1. SANTVARŲ IŠ KVADRATINIŲ VAMZDŽIŲ MAZGŲ IRTIES POBŪDIS IR TYRIMO METODAI

Paprasčiausiu būdu, plieninių elementų laikomoji galia gali būti nustatoma metodais pateikiamais 3 pav.:

- ribinių apkrovų metodas (5)
- deformacijų metodai (2) ir (3)

• vizualios irties pradžios metodas (4)



3 pav. Mazgų iš kvadratinių vamzdžių laikomosios galios nustatymo metodai

čia:

- 1 tamprumo riba;
- 2 deformacijų riba;
- 3 liekamųjų deformacijų riba;
- 4 irties pradžia;
- 5 ribinė apkrova.

Ribinės apkrovos metodas yra plačiausiai taikomas tuščiavidurių profiliuočių mazgams, veikiamiems gniuždymo apkrovos ir yra svarbiausias nustatant laikomąja galią, kadangi nėra visuotinio susitarimo dėl laikomosios galios nustatymo, įvertinant netiesinę elgseną. Tačiau ribinė apkrova yra pasiekiama tik po pernelyg didelių deformacijų (pav. T, Y ir X mazguose), todėl skaičiuojant laikomąją galią netiesiogiai įvertinama deformacijų riba. Tai daroma dėl dviejų priežasčių:

- 1) kad išvengti dviejų patikrinimų: mazgo laikomosios galios ir mazgo standumo;
- norint išvengti didelių deformacijų, o kita vertus, su atitinkama atsarga įvertinti tempiamųjų elementų mazge mažesnę laikomąją galią, pasinaudojant to paties stiprumo gniuždomojo elemento laikomąja galia.

Pagal tai kokių yra apkrovos variantų, mazgo ir jį sudarančių elementų rodiklių, gali būti skiriami charakteringi irties pobūdžiai (žr. 4 pav.).

- A. Plastinė juostos irtis arba juostos plastifikacija (juostos skerspjūvio plastinė irtis)
- B. Juostos šoninės sienelės irtis, išsipūtimas arba vietinio klupumo irtis, tinklelio elemente veikiant gniuždymo įrąžai;
- C. Juostos išplėšimas, tinklelio elemente veikiant tempimo įrąžai arba praspaudimas tinklelio elemente veikiant gniuždymo įrąžai;

- D. Tempiamojo tinklelio elemento nutraukimas (kai tinklelio elemento efektyvusis plotis yra pastebimai per mažas, tinklelio elemento profiliuotis nutraukiamas arba nutraukiama suvirinimo siūlė);
- E. Gniuždomojo tinklelio elemento vietinio klupumo irtis (įvardijama, kaip irtis dėl efektyviojo pločio sumažėjimo);
- F. Juostos šlyjamoji irtis;
- G. Juostos tuščiavidurio profiliuočio vietinio klupumo irtis už tempiamojo tinklelio elemento.



Forma G: juostos lokalinis išklupimas

4 pav. Kvadrinių vamzdžių elementų mazgų irties pobūdžiai

Dažniausiai mazgo irtis įvyksta pasireiškiant kompleksiniam minėtų irties pobūdžių atvejui. Juostos plastifikacija – dažniausiai pasitaikanti irtis (pobūdis A) mazguose su tarpu tarp tinklelio elementų, esant mažai arba vidutinei rodiklio  $\beta$  reikšmei (2 pav.). Kai rodiklis  $\beta$  patenka į 0,6 – 0,8 ribas, tai mazgo irtis (pobūdis A) pasireiškia kartu su juostos sienelės išklupimu (pobūdis B) arba veikiant tempimo įražai tinklelio elemente, tiklelio elemento irtimi (pobūdis C), šis pobūdis (pobūdis A) ypač dažnai pasitaiko, esant juostos vamzdžio jungčiai su plonasieniu tinklelio elemento vamzdžiu. Irties pobūdis pasireiškiant vietiniam klupumui (pobūdis D) dažniausiai sutinkamas mazguose su persidengiančiais tinklelio elementais. Juostos šlyjamoji irtis (pobūdis F) pasireiškia mazguose su tarpu tarp tinklelio elementų kai rodiklio  $\beta$  reikšmė artima 1,0. Vietinio klupumo irtis (formos F ir G) charakteringa jungtims, kurias sudaro liauni elementai ir priklauso nuo  $\frac{b_0}{t_0}$  santykio rodiklio  $\gamma$ . Suvirinimo siūlės irties galima išvengti užtikrinus, kad jos laikomoji galia bus didesnė nei mazgo.

gana ous didesne nei mazgo.

### 2. ANALITINIAI MODELIAI

Skaičiuojant mazgus analitiniai modeliai naudojami elementų elgsenai jungtyje aprašyti ir pagrindiniams veikianties rodikliams nustatyti. Modelis, kuris įvertintų visus veikiančius rodiklius būtų per daug sudėtingas, todėl naudojami idealizuoti ir supaprastinti modeliai, kuriuose įvertinami tik pagrindiniai, didžiausią įtaką turintys rodikliai, mazgo laikomajai galiai nustatyti, atsižvelgiant į elementų sudarančių jungtį elgseną. Toks analitinis modeliavimas, pagrįstas eksperimentais, leido suformuluoti pusiau empirines formules skaičiuojant mazgų laikomąją galią.

### 2.1 Takumo linijos modelis

Takumo linijos modelis yra plačiai naudojamas skaičiuojant kvadratinių vamzdžių mazgus. Mazgams, kuriuose tinklelio elemento ir juostos pločių santykis, t.y., rodiklis  $\beta$  kinta ribose tarp mažos ir vidutinės, mazgo laikomoji galia gali būti skaičiuojama pasinaudojant supaprastintu takumo linijos metodu. Šiuo metodu sudarytos skaičiavimo metodikos [1] panaudotos rekomendacijų formulavimui [7] ir [4], skaičiuojant mazgų laikomąją galią. T tipo mazgų laikomosios galios nustatymo algoritmai yra teoriniai, o K tipo mazgų labiau remiasi eksperimentiniais rezultatais.

Daugkartinių skaičiavimų metu buvo patebėta, kad naudojant supaprastintą takumo linijos modelį skaičiuojant T, Y arba X tipo mazgus, kai rodiklis  $\beta \le 0.85$  (žr. 5 pav.), gauti rezultatai labai nežymiai skiriasi nuo tų, kai skaičiavimams naudojami daug sudėtingesni modeliai. Atsižvelgiant į tai, kad supaprastintame takumo linijos modelyje neįvertinami membraniniai įtempiai ir sudėtingas įtempių būvis, taip nepakankamai įvertinant tikrąją ribinę laikomąją galią. Skaičiuojant T, Y ir X tipo mazgus yra įvedama plieno stiprio pagal takumo ribą reikšmė tam, kad išvengtume didelių deformacijų projektavimo metu. Skaičiuojant K ir N tipo mazgų laikomąja galią membraninis poveikis yra įvertinamas pusiau empiriniu būdu.

[7] projektavimo normose pateikiamos rekomendacijos tiesioginio jungimo virintinių mazgų skaičiavimui remiasi skaičiavimų naudojantis takumo linijos teorija.

Įvertinant juostos plastifikaciją T, Y, X tipo mazguose yra pateikiama viena formulė vardinei ir skaičiuotinei laikomąjai galiai nustatyti. Tuo tarpu K, N tipo mazgams vardinė laikomoji galia yra 10% didesnė nei skaičiuotinė (8.9/1.1, konstanta 8.9 laikomosios galios formulėje [7]). Proejektavimo normose laikomosios galios skaičiavimas apribotas mazgo ir jį sudarančių elementų matmenimis bei pagrindiniais rodikliais.

# 2.1.1 Takumo linijos modelis neatsižvelgiant į projektavimo normų reikalavimus

Klasikinė takumo linijos teorija gali būti patobulinta į skaičiavimus įtraukiant šlyjamuosius ir membraninius įtempius. Visa laikomoji galia gali būt užrašyta kaip atskirų takumo linijų inicijuojamų laikomojų galių suma.

[15] pateikiama takumo linijos teorijos modifikaciją, įvertinant vienaašį įtempių būvį plastiniame lankste ir šlyjamųjų įtempių korekciją į vienaašį įtempių būvį.

K ir T tipo mazguose vykstant juostos paviršiaus plastifikacijai takumo linijos dvipusio linkio vietoje laikomoji galia priimama veiksnia visose rodiklio  $\beta$  reikšmių robose, t.y.,  $0 < \beta < 1$ . Mazgo laikomoji galia remiantis čia aprašomu metodu, traktuojama kaip suma šlyjamosios galios skerspjūvio pločio vienete padaugintos iš takumo linijos ilgio ir laikomosios galios briaunos (briaunų) vietoje.

Šlyjamoji galia ilgio (skerspjūvio pločio) vienete  $q_p$ , gali būti užrašyta taip [16]:

$$\frac{q_p}{q_{p0}} = \frac{t_0}{g}, \ q_{p0} = \frac{f_{y0}}{\sqrt{3}} t_0,$$
(2.1)

čia:  $t_0$  – santvaros juostos vamzdžio sienelės storis, g – tarpas tarp plastinių lankstų,  $q_{p0}$  – juostos paviršiaus grynoji šlytis,  $f_{y0}$  – santvaros juostos vamzdžio sienelės ašinis takumo stipris plastinio lanksto vietoje.

Šlyjamuosius įtempius išreiškus šlyjamaja galia, gauname išraiška [16]:

$$\frac{q_p}{q_{p0}} = \frac{1}{\sqrt{1 + (g/t_0)^2}},$$
(2.2)

Deformacijos metu juostoje susidariusių linkių (briaunų) vietoje laikomoji galia gali būti užrašyta taip [16]:

$$N_{kc} = \pi f_{y0} t_0^2 \frac{1}{\sqrt[4]{(2g_l / t_0)^2 + 3.43}} \sqrt{\frac{b_0}{t_0} - 1}, \qquad (2.3)$$

čia:  $N_{kc}$  – laikomoji galia briaunos vietoje ("Knife Edge Capacity"), skersinės briaunos ruožas, plotyje  $b_i$ , suvirinimo su juosta vietoje, kurios vamzdžio sienelės storis  $t_0$ , plotis  $b_0$ ,  $g_i$  – tarpas tarp plastinių lankstų išilgine kryptimi,  $g_i = \frac{1}{2} (b_0 - t_0 - b_1 - [2\sqrt{2a}])$ , a – suvirinimo siūlės statinis.

Pilnai išpildytuose mazguose ( $\beta = 1,0$ ) vertikali šlyjamosios jėgos dedamoji  $q_N$  gali būti nukrauta nuo silpniausiojo elemento: min{tinklelio elemento profiliuočio sienelės storis  $t_i \sin \theta_i$ , siūlės statinis,a, juostos profiliuočio (briaunos) sienelės storis  $t_{0w}$ }, kur  $\theta_i$  – kampas tarp juostos ir tinklelio elemento. Kai mazgo elementų skaičiuojamieji plieno stipriai pagal takumo ribą nevienodi, aukščiau pateikti storiai turi būti padauginti iš atitinkamos skaičiuojamojo stiprio pagal takumo ribą reikšmės  $f_{ydi}$ :

$$q_{N}(\beta = 1.0) = \min\{t_{0w} \cdot f_{yd0}, a \cdot f_{yWd}, t_{i} \cdot f_{ydi} \cdot \sin\theta_{i}\}, \qquad (2.4)$$

Mazge skersine kryptimi atsivėrusių plastinių lankstų laikomoji galia yra pakoreguojama perskaičiuojant membraninius įtempius,  $\Phi$ , įvertinant ašinius įtempius,  $f_0$ , juostoje [16]:

$$q_{pm} = \left[1 - \left(f_0 / f_{y0}\right)^2\right] q_p = \Phi q_p,$$
(2.5)

Daroma prielaida, kad plastiniai lankstai atsiveria suvirinimo siūlių vietoje – vienas suvirinimo siūlės išorėje besiribojančioje su juostos sienele, kitas siūlės išorėje besiribojančioje su tinklelio elementų sumažėjimu, sąlygojamas siaurų tarpų laikomaja galia, sugretinant tinklelio elemento plonasienio profiliuočio sienelių storį su juostos sienelės storiu. Kadangi tolygiai išskirstyta šlytis  $q_p$ , turi būti perduota nuo vienos plokštelės ašies į kitos plokštelės ašį, yra galimybė, kad tinklelio elemento sienelės sumažėjusi lenkiamoji galia yra mažesnė nei reikalinga šlyties perdavimui nuo siūlės į tinklelio elemento sienelės ašinę liniją. Todėl išskirstyta šlyjamoji galia formulėje (2),  $q_p$ , turi būti papildomai koreguojama, atsižvelgiant į efektyviojo tarpo sumažėjimą. 12 paveiksle pavaizduoti du konkurencingi juostos plastifikacijos modeliai. Schema (a) – juostos plastifikacija išilginiame ruože, schema (b) – paviršiaus plastifikacija skersiniame tarpe tarp tinklelio elementų profiliuočių sienelių. Plastinių lankstų sistemos netobulumas tinklelio elementų vamzdžių kampuose priimamas, kaip šalutinis veiksnys skaičiuojant mazgo laikomąją galią.



5 pav. Konkurencingi plastinių lankstų sistemų modeliai

Įvertinus membraninių įtempių sumažėjimą tinklelio elemento ir juostos linkiuose ir sulyginus išorinių ir vidinių jėgų darbą ( $W_e, W_i$ ) plastinių lankstų sistemos modelyje, šlyjamoji galia  $q_l$ , išilginio tarpo ruože,  $g_l$ , remiantis anksčiau užrašytomis išraiškomis gali būti išreikšta taip [16]:

$$\frac{q_l}{q_{p0}} = \frac{g_l}{t_0} \frac{3}{2} \left[ \sqrt{1 + \frac{4}{3} \left(\frac{t_0}{g_l}\right)^2 \left(1 + \frac{1}{2} \left(\frac{t_i}{t_0}\right)^2\right) - 1} \right] = \frac{t_0}{g_l} \left(1 + \frac{1}{2} \left(\frac{t_i}{t_0}\right)^2\right), \quad (2.6)$$

Šlyjamoji galia K tipo mazgo tarpe tarp tinklelio elementu,  $g_0$ , gali būti nustatyta analogišku būdu. Membraninių įtempių sumažėjimas,  $\Phi$ , iš formulės (2.5) įtraukiamas į laikomosios galios skaičiavimą juostos sienelės linkio vietoje, tokiu būdu šlyjamoji galia,  $q_t$ , skersiniame ruože tarp tinklelio elementų profiliuočių sienelių gali būti užrašyta taip [16]:

$$\frac{q_t}{q_{p0}} = \frac{g_t}{t_0} \sin^2 \theta_i \frac{3}{2} \left[ \sqrt{1 + \frac{4}{3} \left(\frac{t_0}{g_t}\right)^2 \left(\Phi + \left(\frac{t_i}{t_0}\right)^2\right) \frac{1}{\sin^2 \theta_i}} - 1 \right] = \frac{t_0}{g_t} \left(1 + \left(\frac{t_i}{t_0}\right)^2\right), \quad (2.7)$$

Jei išraiškos (2.6) ir (2.7) dešinioji pusė yra mažesnė nei išraiškos (2.2), tuomet efektyvusis tarpo sumažėjimas nuleme mazgo laikomąją galią.

Visa T tipo mazgo laikomoji galia,  $N_q$ , yra suma dviejų dydžių: briaunos laikomosios galios  $N_{kc}$  ir mažiausios iš išskirstytųjų laikomųjų galių reikšmių – min $\{q_p, q_l, q_N\}$  padaugintos iš viso takumo linijo ilgio  $2l_l$  (arba dvigubo tinklelio elemento aukščio,  $h_i$ ).

Visa K tipo mazgo laikomoji galia  $N_q$  yra trijų dydžių suma: pusės briaunos laikomosios galios,  $\frac{1}{2}N_{kc}$ ; skersinio ruožo laikomosios galios,t.y. mažiausios iš išskirstytųjų laikomųjų galių reikšmių – min $\{q_p, q_t, q_N\}$  padaugintos iš skersinio takumo linijo ilgio,  $b_0$ ; išilginių ruožų laikomosios galios, t.y. mažiausios iš išskirstytųjų laikomųjų galių reikšmių – min $\{q_p, q_t, q_N\}$  padaugintos iš viso klumpamojo ilgio  $2l_l(=2h_i / \sin \theta_i + g_t)$ . Vertikali įrąžos tinklelio elemente  $N_i$ 

dedamoji, užrašoma atsižvelgiant į mazgo geometriją, padauginant iš  $\sin \theta_i$ , kur  $\theta_i$  – posvyrio kampas tarp tinklelio elemento ir juostos.

# 2.1.2 Takumo linijos modelio taikymas skaičiavimo algoritmams, pateikiamiems projektavimo normose

Takumo linijos modelio taikymas skaičiavimo algoritmų pateikiamų [7] sudarymui pagrįstas lygybe tarp išorinių ir vidinių jėgų darbo. Vidinių jėgų darbas plastinių lankstų sistemoje, tai energija, sukaupta vykstant juostos plastifikacijai.

Pasinaudojant plokštelės modeliu, schematiškai deformavimosi pobūdį galimą būtų pavaizduoti taip:

1. Plokštelės deformacija yra inicijuojama lenkiamojo momento M:



6 pav. Plokštelės deformavimosi schema, veikiant lenkiamajam momentui M

2. Plokštelės deformavimo procesą išreiškia momento kitimo grafikas, *Prantlio diagramos* pavidalu :



7 pav. Deformacinė lenkiamojo momento kreivė

Diagramos ribojamą absoliučiai plastinę sritį galime traktuoti kaip plastinę energiją plokštelės linkio (takumo) linijoje ir lygią kreivės ribojamam plotui ABCD:

$$U = S_{ABCD} = \int M(\theta) d\theta \cong M_p \theta , \qquad (2.8)$$

3. Kai plastinės deformacijos pasiekia vidurinįjį sluoksnį (kuriame praeina plokštelės ašinės linijos), plokštelės laikomoji galia išsenka – plastinės deformacijos ima didėti nekliudomai ir neribotai, įtempiai visoje plokštelėje prilygsta ±f<sub>y</sub>, o lenkimo momentas – savo ribinei reikšmei M<sub>p</sub>, toje vietoje plokštelėje atsiveria plastinis lankstas.



8 pav. Takumo linijos sritis



9 pav. Itempių pasiskirstymas plokštelės storyje ribiniu atveju

4. Plastinį lenkiamąjį momentą tikslinga užrašyti paskirstytą plokštelės plotyje:



10 pav. Įrąžų pasiskirstymas plokštelės plotyje

$$m_p = F_p \cdot \frac{t}{2} = \frac{f_y t^2}{4} \Longrightarrow M_p = m_p \cdot w$$
(2.9)

čia: w – plokštelės plotis.

5. Pasinaudodami virtualaus darbo principu, kuris teigia, kad keleto veiksnių (apkrovų pokyčių) bendra pasekmė (įrąža, įtempis, deformacija, poslinkis ir kt.) yra lygi pasekmių, kurias sukelia kievienas atskiras veiksnys, sumai. Naudodamiesi šiuo principu galime

užrašyti pusiausvyros sąlygą tarp išorinių jėgų darbo esant poslinkiui  $\Delta$  ir vidinių jėgų darbo esant kampiniam poslinkiu  $\theta_i$  plokštelėje:

$$\sum P_i \Delta_i = \sum u_i \theta_i , \qquad (2.10)$$



11 pav. Takumo linijos teorijos interpretacija vienalytei plokštelei

Kadangi virtualaus darbo principas galioja kartu su poslinkių mažumo prielaida, kuri teigia, kad visų apkrauto kūno taškų poslinkiai yra tiek maži (palyginus su kūno matmenimis), kad rašydami statinės pusiausvyros sąlygas jų galime nepaisyti, t.y. tas sąlygas galime rašyti pagal nedeformuoto kūno geometriją, tada:

$$\theta_i = \frac{\Delta_i}{l} , \qquad (2.11)$$

Išnagrinėtą takumo linijos modelį plokštelei galime pritaikyti vamzdiniam skerspjūviui.



12 pav. Takumo linijos teorijos taikymas tuščiaviduriam profiliuočiui

Remiantis teoremomis:

- Didelių apribojimų teorema, kuri teigia, kad apkrova pasirinktame modelyje visada turi būti didesnė arba lygi tikrajai maksimaliai apkrovai;
- Mažų apribojimų teorema, kuri teigia, kad apkrova, kuri sukelia lenkiamąjį momentą, kuris yra pusiausvyros būsenoje ir niekuomet nepasieks ribinės reikšmės M<sub>p</sub> yra mažesnė nei ribinė apkrova;

• Vientisumo teorema, kuri teigia, kad jei didelių ir mažų apribojimų teoremos pateikia tą patį atsakymą, vadinasi konstrukcinis elementas yra ribinėje stadijoje.

Irties modelis turi tenkinti šias stadijas:

- Pusiausvyros stadija: plastiniai lankstai tenkina statinės pusiausvyros sąlygas;
- Stabilumo stadija: ribiniu atveju susiformuoja reikiamas skaičius plastinių lankstų, kad būtų pažeista stabilumo sąlyga;
- Plastinė stadija: lenkiamojo momento reikšmė bet kuriame konstrukcijos taške negali pasiekti plastinės laikomosios galios.

Didelių apribojimų teorema apima pusiausvyros ir stabilumo stadijas. Mažų apribojimų teorema apima pusiausvyros ir plastinę stadijas.

Remiantis minėtomis teoremomis, išnagrinėkime Y tipo mazgo juostos paviršiaus (tariamos plokštelės) irties modelį (13 pav.).



13 pav. Mazgo Y juostos viršaus irties modelis (skaičiais 1–5 pažymėtos takumo linijos)

Taigi vidinis plastinių lankstų sistemos (ilgis  $l_i$  ir posūkio kampas  $\varphi_i$ ) darbas pagal (2.9 ir 2.10) formules bus lygus takumo linijų energijai, užrašytai taip [22]:

$$E = \sum l_i \cdot \varphi_i \cdot m_p , \qquad (2.12)$$

Plokštumos posvyrio kampas  $\varphi_i$  remiantis poslinkių mažumo principu užrašomas pagal trikampio ABC geometriją (13 pav.), tada energiją kiekvienos iš penkių takumo linijų (13 pav.) galime užrašyti taip:

takumo linija-1: 
$$2b_0 \frac{2\delta}{(b_0 - b_i)\cot\alpha} \cdot m_p = \frac{4\tan\alpha}{1 - \beta} \cdot \delta \cdot m_p$$
, (2.13)

takumo linija-2: 
$$2b_i \frac{2\delta}{(b_0 - b_i)\cot\alpha} \cdot m_p = \frac{4b_i \tan\alpha}{b_0(1 - \beta)} = \frac{4\tan\alpha}{1 - \beta} \beta \cdot \delta \cdot m_p$$
, (2.14)

takumo linija-3: 
$$2\left(\frac{h_i}{\sin\theta_i} + 2\frac{b_0 - b_i}{2}\cot\alpha\right)\frac{2\delta}{b_0 - b_i} \cdot m_p = \left(\frac{4\eta}{(1 - \beta)\sin\theta_i} + 4\cot\alpha\right) \cdot \delta \cdot m_p,$$
 (2.15)

čia:  $\eta = \frac{h_i}{b_0}$  – tinklelio elemento skerspjūvio aukščio ir juostos skerspjūvio pločio santykis.

takumo linija-4: 
$$2\frac{h_i}{\sin\theta_i} \cdot \frac{2\delta}{b_0 - b_i} \cdot m_p = \frac{4\eta}{(1 - \beta)\sin\theta_i} \cdot \delta \cdot m_p$$
, (2.16)

takumo linija-5: 
$$4l_5 \left( \frac{\delta}{l_5 \cdot \tan \alpha} + \frac{\delta}{l_5 \cdot \cot \alpha} \right) \cdot m_p = 4 \left( \tan \alpha + \cot \alpha \right) \cdot \delta \cdot m_p,$$
 (2.17)

Žinodami, kad pagal (2.9) išraišką:  $m_p = \frac{f_y t_o^2}{4}$ , visa energija bus lygi:

$$E = \frac{8 \cdot m_p \cdot \delta}{(1-\beta)} \left( \tan \alpha + \frac{(1-\beta)}{\tan \alpha} + \frac{\eta}{\sin \theta_i} \right) = \frac{f_y t_0^2}{(1-\beta)} \left( \frac{2\eta}{\sin \theta_i} + \frac{2\tan \alpha + 2\frac{(1-\beta)}{\tan \alpha}}{\tan \alpha} \right) \cdot \delta, \qquad (2.18)$$

Pasinaudoję matematinėmis nelygybėmis pažymėtą išraiškos dalį galime užrašyti taip:

$$2\frac{\left(\tan^{2}\alpha + \sqrt{1-\beta}\right)}{\tan\alpha} \ge 2\left(\frac{2\tan\alpha \cdot \sqrt{1-\beta}}{\tan\alpha}\right) \cong 4\sqrt{1-\beta} , \qquad (2.18.1)$$

Iš pusiausvyros sąlygos:

$$\frac{N_{i,Ed}}{\sin\theta_i} \mathscr{I} = \frac{f_y t_0^2}{(1-\beta)} \left( \frac{2\eta}{\sin\theta_i} + 4\sqrt{1-\beta} \right) \mathscr{I} , \qquad (2.19)$$

Tuomet remiantis didelių apribojimų teorema, galime užrašyti mazgo laikomosios galios sąlygą:

$$\frac{N_{i,Ed}}{\sin \theta_i} \le N_{i,Rd} \Longrightarrow N_{i,Ed} \le N_{i,Rd} \cdot \sin \theta_i, \qquad (2.20)$$

Mazgo laikomoji galia iš (2.19 ir 2.20) formulių yra lygi:

$$N_{i,Rd} = \frac{f_{y0}t_0^2}{(1-\beta)\sin\theta_i} \left(\frac{2\eta}{\sin\theta_i} + 4\sqrt{1-\beta}\right),$$
 (2.21)

Projektavimo normose gautoji išraiška padauginta iš funkcijos f(n), kuria įvertinamos, santvaros juostos įšrąžos, kadangi iki šiol buvo įvertinti tik juostos profiliuočio matmenys ir tinklelio elemento įrąža.

Funkcija f(n) lygi [6]:

$$f(n) = 1,3 - \frac{0,4\sigma_0}{f_{y0}\beta} \le 1.0, \qquad (2.22)$$

čia:  $\sigma_0$  – didžiausi gniuždymo įtempiai juostoje, priklausantys nuo ašinių jėgų ir lenkiamojo momento;  $n \equiv \frac{\sigma_0}{f_{y0}}$  – santykiniai įtempiai juostoje (2.9 pav.) [6]:

$$n = \left(\frac{N_{0,Ed}}{A_0 \cdot f_{yo}} + \frac{M_{0,Ed}}{W_0 \cdot f_{y0}}\right),$$
(2.23)

čia:  $A_0$  – santvaros juostos elemento skerspjūvio plotas;  $N_{0,Ed}$  – ašinė jėga juostoje;  $W_0$  – juostos elemento atsparumo momentas;  $M_{0,Ed}$  – lenkiamasis momentas juostoje.



Juostoje veikiančias įrąžas įvertinanti funkcija f(n), esant skirtingiems tinklelio elemento ir 14 pav. juostos pločių santykiams  $\beta$ 

Kaip matyti iš 14 paveikslo funkcija f(n) tiesine priklausomybe įvertinamos juostos įrąžos. Did . . :....

Didėjant rodiklio 
$$\beta$$
 reikšmei, mazgo irties pobūdis kinta, iš (2.21) išraiškos matyti, kad kai

$$\beta \to 1,0; N_{i,Rd} = \frac{f_{y0}t_0^2}{[(1-\beta)\to 0]\sin\theta_i} \left(\frac{2\eta}{\sin\theta_i} + 4\sqrt{1-\beta}\right)$$
 išraiška netenka prasmės, todėl priimama,

kad ji tikslinga, kai  $\beta \le 0.85$ .

### 2.2 Profiliuočio sienelės išsipūtimo arba vietinio klupumo irties modelis

T, Y, X mazguose kai rodiklid  $\beta$  kinta ribose  $0.85 \le \beta \le 1.0$  irtis gali įvykti, tiek dėl juostos plastifikacijos, tiek ir dėl juostos sienelės klupumo.



15 pav. T, Y, X mazgo deformuota schema, kai rodiklis  $\beta$  kinta ribose  $0.85 \le \beta \le 1.0$ 

Darome prielaidą, kad kai rodiklis  $\beta$  įgyja reikšmę – 1,0, mazgo irtis įvyks dėl juostos sienelės klupumo. Irties schema pateikiama 16 paveiksle.



16 pav. Juostos šoninės sienelės klupumo irties schema

16 paveiksle matome, kad įtempiai juostos paviršiuje pasiskirsto ilgyje  $l = \frac{h_i}{\sin \theta_i} + 5t_0$  tada mazgo laikomoji galia apskaičiuojama taip:

$$N_i = f_b \cdot t_0 \cdot 2l \cdot \frac{1}{\sin \theta_i} = f_b \cdot t_0 \cdot \left(\frac{2h_i}{\sin \theta_i} + 10t_0\right) \frac{1}{\sin \theta_i}, \qquad (2.24)$$

čia:  $f_b$  – įtempiai juostoje, kadangi laikomosios galios reikšmė skaičiuojama ribiniu atveju, tai veikiant tempimo įrąžai  $f_b = f_{y0}$ ,kai juostos elementas gniuždomasis įvertinama lokalinio išklupimo galimybė, todėl  $f_b = \chi f_{y0}$  (T, Y tipo mazgams),  $f_b = 0.8\chi(\sin\theta_i)f_{y0}$  (X tipo mazgams), kur  $\chi$  – klupumo koeficientas, taigi  $f_b$  – kritiniai klupumo įtempiai, kurie yra juostos liaunio funkcija  $f\left(\frac{h_0}{t_0}\right)$ .

[7] pateikiama tokia klupumo koeficiento priklausomybė nuo elemento sąlyginio liaunio:

$$\chi = \frac{1}{\phi + \sqrt{\phi^2 - (\overline{\lambda})^2}}, \qquad (2.25)$$

čia:  $\phi$ , kvadratinė sąlyginio liaunio funkcija:

$$\phi = 0, 5 \cdot \left[ 1 + \alpha \left( \overline{\lambda} - 0.2 \right) + \left( \overline{\lambda} \right)^2 \right], \qquad (2.26)$$

Kur  $\alpha$  – pataisos koeficientas, priklausantis nuo klupumo kreivės [7].

Tada sąlyginio liaunio išraišką galima užrašyti pasinaudojus tokiu algortmu:

Juostos sienelėje išskiriamas elementas (16 pav.), priimamas kaip strypas įtvirtintas dvipusiu lankstu, tada galime pasinaudoti *Oilerio formule* kritinės jėgos reikšmei nustatyti:

$$F_{cr} = \frac{\pi^2 EI}{\left(\mu L_{cr}\right)^2},$$
 (2.27)

čia:  $\mu$  – srypo galų įtvirtinimo sąlygų koeficientas, abipusio lankstinio įtvirtinimo atveju  $\mu$  = 1,0; E – elemento medžiagos tamprumo modulis;  $L_{cr}$  – kritinis elemento ilgis.

Kritinį įtempį galime išreikšti strypinio elemento kritinės jėgos ir skerspjūvio ploto santykiu. Kai galioja *Oilerio formulė* (2.27), šis įtempis (pasinaudojus inercijos momento išraiška  $I = A \cdot i^2$ ) bus lygus:

$$\sigma_{cr} = \frac{F_{cr}}{A} = \frac{\pi^2 EI}{A(\mu L_{cr})^2} = \frac{\pi^2 E \cdot \hat{A} \cdot i^2}{\hat{A}(\mu L_{cr})^2} = \frac{\pi^2 E}{\left(\frac{\mu L_{cr}}{i}\right)^2},$$
(2.28)

Įvedame strypo rodiklį – liaunį:

$$\lambda = \frac{\mu L_{cr}}{i}, \qquad (2.29)$$

Į (2.28) išraišką įstatę išraišką (2.27) gauname kritinio įtempio šraišką, priklausančią nuo liaunio:

$$\sigma_{cr} = \frac{\pi^2 EI}{\lambda^2},\tag{2.30}$$

*Oilerio formulė* galioja tik proporcingo deformavimo atveju: ji išvesta, remiantis proporcingo (tampraus) deformavimo įlinkių kreivės lygtimi su proporcingumo koeficientu iš *Huko dėsnio –* tamprumo moduliu E. Kol galioja *Huko dėsnis* tol galioja ir *Oilerio formulė* kritinei jėgai skaičiuoti. Taigi, *Oilerio formulė* galioja tol, kol kritinis įtempis neviršija takumo ribos įtempio:

$$\sigma_{cr} \le f_{y} \,, \tag{2.31}$$

Dabar galime apibrėžti strypus, kurių kritinę jėgą leistina skaičiuoti Oilerio formule, į (2.31) sąlygą įrašę (2.30) reikšmę :

$$\frac{\pi^2 E}{\lambda^2} \le f_y \Longrightarrow \lambda \ge \pi \sqrt{\frac{E}{f_y}} \equiv \overline{\lambda}$$
(2.32)

Tampraus strypo sąlyginis liaunis  $\overline{\lambda}$  priklauso tik nuos strypo medžiagos savybių:

$$\overline{\lambda} = \frac{\lambda}{\pi} \sqrt{\frac{f_y}{E}}, \qquad (2.33)$$

Pasinaudoję anksčiau išvestomis priklausomybėmis sąlyginio liaunio išraišką pritaikykim nagrinėjamam elementui:

$$\overline{\lambda} = \frac{\lambda}{\pi} \sqrt{\frac{f_y}{E}} \equiv \sqrt{\frac{f_{y0}}{\sigma_{cr}}} = \sqrt{\frac{Af_{y0}}{F_{cr}} \cdot \sin \theta_i}} = \frac{L_{cr}}{\pi \cdot i} \sqrt{\frac{f_{y0}}{E(\sin \theta_i)}}, \qquad (2.34)$$

Elemento kritinis ilgis bus lygus:

$$L_{cr} = h_0 - 2t_0 \,, \tag{2.35}$$

Inercijos spindulio išraiška nagrinėjamam elementui (elemento inercijos momentui išreikšti išskiriamas jo ploto elementas, kurio padėtis (atstumas nuo x ašies) yra y, o matmenys dy ir *db* ):

$$i = \sqrt{I/A} = \sqrt{\left[\int_{A} y^2 dA = \int_{-t_0/2}^{t_0/2} db \cdot y dy\right]} / dbt_0 = \frac{1}{\sqrt{12}} t_0 = \frac{1}{3,46} t_0, \qquad (2.36)$$

Tada sąlyginio liaunio išraiška gaunama (2.35) ir (2.36) sąlygas įrašius į (2.34):

$$\overline{\lambda} = \frac{(h_0 - 2t_0)}{\pi \cdot \frac{1}{3,46} t_0} \sqrt{\frac{f_{yo}}{E(\sin\theta_i)}} = 3,46 \left(\frac{h_0}{t_0} - 2\right) \sqrt{\frac{f_{yo}}{E(\sin\theta_i)}} \frac{1}{\pi},$$
(2.37)

### 2.3 Juostos išplėšiamosios šlyties modelis

Šis modelis skirtas mazgo elementų elgsenai aprašyti, kai tinklelio elemente veikia tempimo įrąža, o santvaros juostoje sąlygojami tangentiniai įtempiai – grynoji šlytis. Ribinėje būsenoje pasireiškia juostos irtis – išplėšimas.



17 pav. Juostos išplėšiamosios irties modelis

Pasinaudojant išraiška (2.1) galime užrašyti išskirstytą šlyjamają galią juostos paviršiuje (storyje  $t_0$ ):

$$q_{yl} = \frac{f_{y0}t_0}{\sqrt{3}}$$

Tada iš 17 paveikslo, matome kad ilgis kuriame pasireiškia šlytis gali būti užrašytas remiantis mazgo matmenimis [22]:

$$l = 2\frac{h_i}{\sin\theta_i} + 2b_{ep}, \qquad (2.38)$$

Iš mazgo laikomosios galios sąlygos (2.20) mazgo laikomoji galia:

$$N_i \sin \theta_i = q_{ly} l \Longrightarrow N_i = \frac{f_{y0}}{\sqrt{3}} t_0 \left( \frac{2h_i}{\sin \theta_i} + 2b_{ep} \right) \frac{1}{\sin \theta_i}, \qquad (2.39)$$

Įvertinus standumo kitimą tuščiavidurio profiliuočio perimetre, visas perimetras negali būti priimamas absoliučiai efektyviu. Efektyviojo išplėšiamosios šlyties pločio reikšmė  $b_{ep}$  buvo nustatyta ekperimentų metu ir yra lygi:

$$b_{ep} = \frac{10t_0 \cdot b_i}{b_0} \le b_i \Longrightarrow b_{ep} = 10t_0 \cdot \beta, \qquad (2.40)$$

### 2.4 Tinklelio elemento efektyviojo pločio modelis

Anksčiau aprašytas išplėšiamosios šlyties modelis gali būti priskiriamas mazgams su plonasieniais tinklelio elemento profiliuočiais; mazgams, kuriuose tinklelio elemento vamzdžio sienelė traktuojama, kaip sąlyginai stora, tinklelio elemento efektyvusis plotis gali tapti kritiniu. Mazgo laikomosios galios išraiška gali būti nustatoma pasinaudojant išplėšiamosios šlyties analitiniu modeliu, tik jis turi būti paremtas tinklelio elemento matmenimis ir medžiagos savybėmis.



18 pav. Tinklelio elemento irties sumažėjus efektyviajam pločiui modelis

Ilgis, kuriame gali pasireikšti takumo įtempiai bus lygus (2.13 pav.) [22]:

$$l = h_i - 2t_i + b_{eff} , (2.41)$$

Tada mazgo laikomosios galios sąlyga bus:

$$N_{i,Rd} = f_{yi} \cdot t_i \cdot 2l = f_{yi} \cdot t_i \left( 2h_i - 4t_i + 2b_{eff} \right), \tag{2.42}$$

Efektyviojo pločio išraiška gauta eksperimentų metu ir yra lygi:

$$b_{eff} = \frac{10t_0^2 \cdot b_i \cdot f_{y0}}{b_0 \cdot t_i \cdot f_{yi}} \le b_i, \qquad (2.43)$$

Kaip matome tinklelio elemento efektyviojo pločio išraišką galima gauti koreguojant pagal juostos profiliuočio matmenis ir medžiagos rodiklius, kadangi šis modelis taikomas tuomet, kai įtempiai tinklelio elemente sąlygoja mazgo irtį:

$$A_{0,eff}f_{y0} \le A_{i,eff}f_{yi} \Longrightarrow b_{ep}t_0 \cdot f_{y0} \le b_{eff} \cdot t_i \cdot f_{yi} \Longrightarrow b_{eff} = \frac{b_{ep} \cdot t_0 \cdot f_{y0}}{t_i \cdot f_{yi}},$$
(2.44)

čia:  $A_{0,eff}$  – efektyvusis juostos vamzdžio plotas;  $f_{y0}$  – ribiniai plieno takumo įtempiai juostoje;  $A_{i,eff}$  – efektyvusis tinklelio elemento vamzdžio plotas;  $f_{yi}$  – ribiniai plieno takumo įtempiai tinklelio elemente.

Išraiška (2.44) yra tapati išraiškai (2.43).

### 2.5 Juostos šlyjamosios irties modelis

Juostos šlyjamoji galia gali būti nustatyta analitiniu būdu, pasinaudojant plastinės analizės pagrindinėmis formulėmis.

Šlyjamosios galios reikšmė apskaičiuojama iš sąlygos [22]:



19 pav. Juostos šlyjamosios irties modelis

Plotas juostos šininėje sienelėje, kuriame pasireškia šlytis:

$$A_{v} = 2h_{0}t_{0}$$
 (2.46)

T, X, Y tipo mazgams laikomosios galios reikšmė bus lygi:

$$N_{i,Rd} = \frac{f_{yo}A_v}{\sqrt{3}\sin\theta_i},\tag{2.47}$$

N ir K tipo mazgams sąlyga (2.46), papildoma, pasinaudojant mažų tarpų analize, juostos profiliuočio viršutinės juostos dalimi, išnaudojama efektyviam šlyties perdavimui [22]:

$$A_{v} = (2h_{0} + \alpha b_{0})t_{0}$$
(2.48)

čia:  $\alpha = f(g / t_0)$  funkcija [6]:

$$a = \sqrt{\frac{1}{1 + \frac{4g^2}{3t_0^2}}},$$
 (2.49)

Skaičiuojant K ir N tipo mazgus su tarpu tarp tinklelio elementų papildomai tikrinama laikomoji galia tarpo zonoje:

$$N_{0,gap,Sd} \le (A_0 - A_v) f_{y0} + A_v \cdot f_{y0} \sqrt{1 - \left(\frac{V_{Sd}}{V_{pl}}\right)^2} , \qquad (2.50)$$

Likusioji skerspjūvio dalis perima ašinius įtempius, sąlygoje (2.50) pirmasis sumos narys, antrasis narys įvertina juostos plastinės laikomosios galios sumažėjimą dėl skersinės jėgos. Paprastai šios sąveikos skaičiavimams gali būti naudojamas *Von–Mizeso kriterijus*.

## 3. SANTVAROS IŠ KVADRATINIŲ VAMZDŽIŲ MAZGŲ KONSTRUKCINIŲ ELEMENTŲ PROJEKTAVIMAS

Kaip jau išsiaiškinome, šiuo metu projektavimo normose pateikiamos formulės mazgų laikomajai galiai nustatyti yra pusiau empirinės. Tai reiškia, kad svarbiausieji rodikliai buvo nustatyti remiantis supaprastintais analitiniais modeliais, o galutinė formuluotė gauta įvertinus papildomas kostantas, gautas atlikus daugkartinių bandymų statistinę analizę. Dėl galimų skirtingų mazgo irties pobūdžių ir jų kombinacijų, laikomoji galia skaičiuojama su tam tikra atsarga, įvedant atsargos koeficientus ( $\gamma$ ).

## 3.1 Santvaros iš kvadratinių vamzdžių mazgų konstrukcinių elementų projektavimas pagal EN 1993–1–1

Tam, kad gerai perprastume mazgo elgseną, pirmiausia reikia gerai žinoti jo sudėtinių elementų, kaip pavienių konstrukcijų elgseną. Nagrinėjamus santvarų virintinius mazgus sudaro šie konstrukciniai elementai:

- santvaros juosta, veikiama ašinės jėgos ir lenkiamojo momento;
- santvaros tinklelio elementai, veikiami tik ašinės jėgos.

EC3 normose pateikiami net keli projektavimo variantai konstrukciniams elementams, suskirstant juos į klases.

### 3.1.1 Skerspjūvių klasifikacija

Skerspjūvių klasifikacija atliekama tam, kad nustatytume skerspjūvio laikomosios ir sukamosios galios reikšmę, lygią jo lokalinei klumpamajai galiai.

EC3 normose skerspjūviai skirstomi į keturias klases. Konstrukciją (nagrinėjamuoju atveju mazgą) gali sudaryti skirtingų skerspjūvių klasių elementai. To paties profiliuočio elementai (juostos ir sienelės) taip pat gali priklausyti skirtingoms skerspjūvių klasėms. Skerspjūvio klasė yra nustatoma įvertinant elemento liaunį ir įtempių būvį. Pavienio vamzdinio profiliuočio skerspjūvio klasės skiriamos įvertinant lenkiamuosius arba/ir gniuždomuosius elementus.

1 klasė: Skerspjūviai, kuriuose gali susiformuoti plastinis lankstas, esant sukamajai galiai, reikalingai atlikti plastinę analizę, nesumažėjant laikomajai gliai.

2 klasė: Skerspjūviai, kuriuose gali būti pasiekta ribinė lenkiamojo momento reikšmė (plastinis lenkimo momentas (plastinio lanksto foramvimosi pradžia), tačiau sukamoji galia nepakankama dėl galimo vietinio klupumo.

**3 klasė:** Skerspjūviai, kuriuose lenkiamasis momentas kraštiniuose sluoksniuose gali pasiekti vardinę plieno stiprio pagal takumo ribą reikšmę, tačiau vietinis klupumas gali sąlygoti plastinės lenkiamosios galios sumažėjimą.

**4 klasė:** Skerspjūviai, kuriuose taikomi papildomi reikalavimai vietiniam klupumui, skaičiuojant lenkiamąją arba gniuždomąją galią, t.y. skerspjūviai su klumpamąja dalimi.

Bendra konstrukcinio elemento klasė nustatoma pagal struktūrinio gniuždomojo elemento aukščiausią vertę. Skerspjūvio klasė priklauso nuo gniuždomosios dalies pločio ir storio santykio (3.2 lentelė).

Elementą veikiančių apkrovų ir laikomosios galios reikšmės visuomet gali būti skaičiuojamos taikant tamprumo teoriją, tačiau reikia papildomai įvertinti vietinio klupumo galimybę. Plastinė teorija taikoma nustatant 1 klasės elementų apkrovas bei 1 ir 2 klasių elementų laikomosios galios reikšmes. Tam, kad palengvintume skerspjūvio skaičiavimus, apkrovų reikšmes galima nustatyti pagal metodą priskiriamą jo aukščiausios klasės elementui.

Konstrukcinių gniuždomųjų ir lenkiamųjų elementų, priskiriamų 4 klasei, tikrinimo uždaviniai remiasi efektyviojo skerspjūvio ploto sąvoka. Tokių elementų laikomoji galia nustatoma įvertinant tik efektyvųjį skerspjūvio plotą.

Skerspjūvio laikomosios galios skaičiavimą pagal plastinės analizės principus galima atlikti tuomet, kai skerpjūvio elemento, kuriame susidaro plastinis lankstas, sukamosios galios reikšmė ne mažesnė nei reikalinga plastinio lanksto vietoje.

Vienalyčiame elemente sukamoji galia plastinio lanksto vietoje bus pakankama, jei plastinio lanksto vietoje elementas tenkina 1 klasės reikalavimus.

Plastinė analizė gali būti atliekama tuo atveju kai įvertinamas tikrasis įtempių ir deformacijų pasiskirtymas skerspjūvyje įtraukiant bendrą galimo vietinio ir bendrojo elemento klupumo poveikį. 3.1 lentelė. Analitiniai metodai pagal skerspjūvių klases

| Skerspjūvio klasė | Laikomosio galios<br>nustatymo metodas                | Poveikių (apkrovų)<br>nustatymo metodas | Įtempimų<br>pasiskirstymas ribiniu<br>atveju |
|-------------------|-------------------------------------------------------|-----------------------------------------|----------------------------------------------|
| 1 klasė           | Plastinė analizė                                      | Plastinė analizė                        | fy                                           |
| 2 klasė           | Plastinė analizė                                      | Plastinė analizė                        | fy<br>t                                      |
| 3 klasė           | Tamprioji analizė                                     | Tamprioji analizė                       | fy                                           |
| 4 klasė           | Analizė įevrtinant<br>efektyvųjį skerspjūvio<br>plotą | Tamprioji analizė                       | fy 0,5beff                                   |

### 3.2 lentelė. Skerspjūvio klasės nustatymas

| b             | )          |             |                  | Skersp | jūvio kl | asė  |      |      |      |      |      |       |       |       |      |
|---------------|------------|-------------|------------------|--------|----------|------|------|------|------|------|------|-------|-------|-------|------|
|               |            |             |                  | 1      |          |      | 2    |      |      | 3    |      |       |       |       |      |
| Įtempių būvis | Poveikis   | Skerspjūvio | $f_y$            | 235    | 275      | 355  | 460  | 235  | 275  | 355  | 460  | 235   | 275   | 355   | 460  |
|               |            | elementas   | $\frac{N}{mm^2}$ |        |          |      |      |      |      |      |      |       |       |       |      |
|               | Gniuždymas | Juosta      | b/t              | 36,0   | 33,3     | 29,3 | 25,3 | 41,0 | 37,9 | 33,4 | 29,3 | 45,0  | 41,6  | 36,6  | 32,2 |
|               | Lenkimas   | Sienelė     | h/t              | 75,0   | 69,3     | 61,1 | 53,6 | 86,0 | 79,5 | 70,0 | 61,5 | 127,0 | 117,3 | 103,3 | 90,8 |

Čia:  $f_v$  – plieno stipris pagal takumo ribą.

Ribines reikšmes plienui, kurios nepateiktos lentelėje galima nustatyti stulpelio 235 N/mm<sup>2</sup> reikšmes dauginant iš pataisos koeficiento  $\varepsilon$ :

$$\varepsilon = \sqrt{\frac{235}{f_y}} \; .$$

Skerspjūvio klasė lenkiamajai ir gniuždymajai tuščiavidurio profiliuočio sienelei gali būti nustatoma remiantis [6] reikalavimais, nustatant gniuždomosios sienelės skerspjūvio klasę su tam tikra atsarga.

### 3.1.1.1 Efektyviojo skerspjūvio nustatymas

Pločio pataisos koeficientas  $\rho$  4 klasės kvadratinių vamzdžių skerspjūviams nustatomas remiantis [6] reikalavimais:

$$\rho = 1, \text{ kai } \overline{\lambda}_p \le 0,673, \qquad (3.1)$$

$$\rho = \frac{\overline{\lambda}_p - 0.22}{\overline{\lambda}_p^2}, \text{ kai } \overline{\lambda}_p > 0.673, \qquad (3.2)$$

Sąlyginis liaunis lenkiamajai 4 klasės profiliuočio sienelei skaičiuojamas remiantis reikalavimais pateikiamais [6]. Sąlyginio liaunio reikšmė gniuždomajai sienelei arba juostai gali būti apskaičiuojama pagal sąlygą [5]:

$$\bar{\lambda}_{p} = \sqrt{\frac{f_{y}}{\sigma_{cr}}} = \frac{\frac{b_{1}}{t}}{56.8 \cdot \varepsilon}, \qquad (3.3)$$

čia: t – vamzdžio sienelės storis;  $\sigma_{cr}$  – klumpamasis įtempis;  $b_1 = b - 3t$ ; juostos/ sienelės skaičiuojamsis plotis/aukštis;  $\varepsilon$  – redukcijos koeficientas,  $\varepsilon = \sqrt{\frac{235}{f_y}}$ ;  $f_y$  – vardinė plieno stiprio

reikšmė pagal takumo ribą.

3.3 lentelė. Efektyvusis plotis  $b_{eff}$  4 klasės plokščiuose gniuždomuose kvadratinio vamzdžio elementuose [5]

| Įtempių pasiskirstymas (gniuždymas)                     | Efektyvusis plotis $b_{eff}$                                  |  |  |  |
|---------------------------------------------------------|---------------------------------------------------------------|--|--|--|
| $+\sigma$ $+\sigma$ $+\sigma$ $+\sigma$ $b_{1}$ $b_{2}$ | $b_{eff} = \rho b_1$ $b_{e1} = 0,5b_{eff}$ $b_{e2} = 0,5beff$ |  |  |  |

### 3.1.2 Ašinės jėgos veikiami elementai

Skaičiuojant tempiamąjį elementą, į liaunį visiškai neatsižvelgiama. Tempiamieji vamzdžiai gali būti efektyviau išnaudojami nei atitinkami kiti profiliuočiai, kadangi tokių vamzdžių jungtys yra paprastesnės ir stipresnės. Tikrinant tempiamojo vamzdžio stiprį, turi būti tenkinama sąlyga [6]:

$$N_{Sd} \le N_{t,Rd} , \qquad (3.4)$$

čia:  $N_{Sd}$  – skaičiuotinė tempimo ašinės jėgos reikšmė;  $N_{t,Rd}$  – tempiamojo elemento ašinės laikomosios galios skaičiuotinė reikšmė.

Skaičiuotinė tempiamojo elemento laikomosios galios reikšmė yra mažesnioji iš šių reikšmių [6]:
$$N_{t,Rd} = A \frac{f_y}{\gamma_{M0}},\tag{3.5}$$

$$N_{t,Rd} = 0.9A_{net} \frac{f_u}{\gamma_{M2}},$$
 (3.6)

čia:  $A_{net}$  – grynasis (neto) skerspjūvio plotas (gaunamas iš bendro skerspjūvio ploto atmetus skylių skerspjūvio plotus);  $f_u$  – vardinis plieno stipris pagal stiprumo ribą.

Vertinant konstrukcijos pasiduodamumą, turi būti tikrinama sąlyga [6]:

$$0.9 \frac{A_{net}}{A} \ge \frac{f_y}{f_u} \frac{\gamma_{M2}}{\gamma_{M0}}, \qquad (3.7)$$

Sąlyga (3.6) taikoma jungčių skaičiavimams.

Tikrinant gniuždomojo vamzdžio laikomaja galią, turi būti tenkinama sąlyga [6]:

$$N_{Ed} \le N_{c,Rd} , \qquad (3.8)$$

čia:  $N_{Ed}$  – skaičiuotinė gniuždymo ašinės jėgos reikšmė;  $N_{c,Rd}$  – gniuždomojo elemento laikomosios galios skaičiuotinė reikšmė, nustatoma pagal skerspjūvio klases:

$$N_{c,Rd} = N_{pl,Rd} = A \frac{f_y}{\gamma_{M0}}, 1, 2 \text{ ir } 3 \text{ klasės skerspjūviams},$$
(3.9)

$$N_{c,Rd} = A_{eff} \frac{f_y}{\gamma_{M1}}, 4 \text{ klasės skerspjūviams},$$
 (3.10)

čia:  $A_{eff}$  – efektyvus skerspjūvio plotas, veikiant ašinei gniuždymo jėgai.

#### 3.1.3 Ašinės jėgos ir lenkiamojo momento veikiami elementai

Tuščiavidurio profiliuočio gniuždomosios ir lenkiamosios sienelės klasė priklauso nuo įtempių pasiskirstymo. Praktiškai skerspjūvio klasę nustatyti yra paprasčiau pagal gniuždomuosius elementus (sienelę arba juostą).

Konstrukciniai elementai iš vamzdžių veikiami ašinės gniuždymo jėgos ir lenkiamojo momento turi tenkinti poveikių sąveikos sąlygą [6]:

$$\frac{N_{Ed}}{N_{b,Rd}} + \frac{k_y \cdot M_{y,Ed}}{M_{y,Rd}} + \frac{k_z \cdot M_{z,Ed}}{M_{z,Rd}} \le 1,$$
(3.11)

Kvadratiniams vamzdžiams sąlygą (3.11) galime supaprastinti ir užrašyti taip:

$$\frac{N_{Ed}}{N_{b,Rd}} + \frac{k \cdot M_{Ed}}{M_{Rd}} \le 1,$$
(3.11.1)

čia:  $N_{b,Rd}$  – klumpamosios galios reikšmė, nustatoma iš sąlygos [6]:

$$N_{b,Rd} = \chi_{\min} \cdot \beta_A \cdot A \frac{f_y}{\gamma_{M1}}, \qquad (3.12)$$

čia: pataisos koeficientas  $\beta_A = \frac{A_{eff}}{A} - 4$  klasės skerspjūviams; 1,2,3 klasės skerspjūviams  $\beta_A = 1,0$ ;  $\chi_{min}$  – mažiausia klupumo koeficiento reikšmė (apie y (plokštumoje) arba z (iš plokštumos) ašis. Klupumo koeficiento ir sąlyginio liaunio priklausomybė aprašoma klupumo kreive.



20 pav. Europinės klupumo kreivės

Karštai valcuotų vamzdžių klupumas charakterizuojamas kreive "a" (S 460 klasės plienui "a<sub>0</sub>"), šaltai formuotų vamzdžių – kreive "c".

Kadangi kvadratiniai vamzdžiai yra simetrinio skerspjūvio, tai jų nagrinėjimas plokštumoje ir iš plokštumos supaprastėja. Skaičiuojama viena klupumo koeficiento reikšmė pagal sąlygą [6]:

$$\chi = \frac{1}{\phi + \sqrt{\phi^2 - (\bar{\lambda})^2}} \le 1, 0, \qquad (3.13)$$

čia:  $\phi$  – sąlyginio liaunio kvadratinė funkcija [6]:

$$\phi = 0, 5 \left[ 1 + \alpha \left( \overline{\lambda} - 0, 2 \right) + \left( \overline{\lambda} \right)^2 \right], \qquad (3.14)$$



21 pav. funkcija  $\phi$ 

Skerspjūvių klupumo kreivės yra koreguojamos įvedant netobulumo pataisos koeficientą  $\alpha$ .

| Klupumo kreivė      | a <sub>0</sub> | a    | с    |
|---------------------|----------------|------|------|
| Netobulumų pataisos | 0.13           | 0.21 | 0.49 |
| koeficientas        |                |      |      |

3.4 lentelė. Netobulumo pataisos koeficientai kvadratinių vamzdžių klupumo kreivėms

Skaičiuotinės lenkiamosios galios reikšmės nustatomos iš sąlygų:

$$M_{Rd} = W_{pl} \frac{f_y}{\gamma_{M1}}, 1 \text{ ir } 2 \text{ klasių skerspjūviams}$$
 (3.15)

$$M_{Rd} = W_{el} \frac{f_y}{\gamma_{M1}}$$
, 3 klasės skerspjūviams (3.16)

$$M_{Rd} = W_{eff} \frac{f_y}{\gamma_{M1}}$$
, 4 klasės skerspjūviams (3.17)

Koeficinetas k sąlygoje (3.11.1) nustatomas taip [5]:

$$k = 1 - \frac{\mu \cdot N_{Sd}}{\chi \cdot A \cdot f_y}, \qquad (3.18)$$

čia:  $\chi$  – klupumo koeficientas;  $\mu$  – apkrovos redukcijos koeficientas, apskaičiuojamas:

$$\mu = \lambda \left( 2\beta_M - 4 \right) + \frac{W_{pl} - W_y}{W_y} \le 0.9, 1 \text{ ir } 2 \text{ klasių skerspjūviams}$$
(3.19)

$$\mu = \lambda (2\beta_M - 4) \le 0.9, 3 \text{ ir } 4 \text{ klasių skerspjūviams}$$
(3.20)

 $\beta_M$  – ekvivalentinis momento tolygumo koeficientas, kuris priklauso nuo lenkiamojo momento diagramos formos (3.1.4 lentelė).

| 3.5 lentelė. | Lenkiamojo momento | diagramos forme | os koeficientas | $\beta_M$ [7] |
|--------------|--------------------|-----------------|-----------------|---------------|
|--------------|--------------------|-----------------|-----------------|---------------|

| Apkrovimo schema                                      | Lenkiamojo momento diagrama | Ekvivalentinis momento tolygumo<br>koeficientas        |
|-------------------------------------------------------|-----------------------------|--------------------------------------------------------|
| Lenkimo momentas veikiantis<br>elemento galuose       |                             | $\beta_{M,\psi} = 1, 8 - 0, 7\psi$ $-1 \le \psi \le 1$ |
| Tolygiai išskirstyta apkrova<br>visame elemnto ilgyje | Mq                          | $\beta_{MQ} = 1,3$                                     |
| Sutelkta apkrova veikianti<br>elemento viduryje       | Mq                          | $\beta_{MQ} = 1,4$                                     |



## 3.2 Santvaros iš kvadratinių vamzdžių mazgų konstrukcinių elementų projektavimas pagal STR 2.05.08:2005

Kitaip nei pagal EC3 reikalavimus STR 2.05.08 nerasite skerspjūvių klasių – skerspjūvių veikiančiųjų rodiklių reikšmės nustatomos pagal takumo ribą. Skaičiavimai žinoma supaprastėja, bet sumažėja tikslumas.

#### 3.2.1 Ašinės jėgos veikiami elementai

Tinklelio elementai projektuojami, tik kaip ašinę jėgą perimantys elementai, nevertinant nykstamai mažų lokalinių lenkiamojo momento įrąžų juose.

Tikrinant tempiamojo ar gniuždomojo elemento skerspjūvio laikomąją galią, turi būti tenkinama sąlyga [20]:

$$\frac{N_{Ed}}{N_{pl,Rd}} \le 1,0,$$
 (3.21)

čia:  $N_{Ed}$  – skaičiuotinė ašinės jęgos reikšmė;  $N_{pl,Rd}$  – skaičiuotinė ašinės jėgos veikiamo skerspjūvio laikomosios galios reikšmė apskaičiuojama taip [20]:

$$N_{pl,Rd} = A_{net} f_{y,d} \gamma_c , \qquad (3.22)$$

čia:  $A_{net}$  – grynasis (neto) skerspjūvio plotas,  $f_{y,d}$  – skaičiuotinis plieno stipris pagal takumo ribą.

#### 3.2.2 Ašinės jėgos ir lenkiamojo momento veikiami elementai

Santvaros juosta priimama kaip ašinės jėgos ir lenkiamojo momento veikiamas elementas. Parenkant santvaros juostos skerspjūvį sprendžiamas pastovumo tikrinimo uždavinys.

Gniuždomųjų lenkiamųjų elementų, pastovumas momento veikimo plokštumoje, sutampančioje su simetrijos plokštuma, tikrinamas pagal formulę [20]:

$$\frac{N_{Ed}}{N_{NM,c,Rd}} \le 1,0$$
, (3.23)

čia:  $N_{NM,c,Rd}$  – skaičiuotinė gniuždomo – lenkiamo elemento laikomoji galia lenkimo plokštumoje apskaičiuojama pagal formulę [20]:

$$N_{NM,c,Rd} = \varphi_e A f_{y,d} \gamma_c , \qquad (3.24)$$

čia:  $\varphi_e$  – gniuždomojo lenkiamojo elemento klupumo koeficientas nustatomas pagal [20], A priedo, A.2 lentelę, atsižvelgiant į santykinį lyginamąjį ekscentricitetą  $e_{rel,eff}$ , kuris nustatomas pagal formulę [20]:

$$e_{rel,eff} = k_{shape} e_{rel}, \qquad (3.25)$$

čia:  $k_{shape}$  – skerspjūvio formos koeficientas, kvadratiniam skerspjūviui, 1,0. Tokiu būdu yra įvertinamas lenkimo momentas, veikiantis santvaros juostoje;  $e_{rel} = \frac{eA}{W_e}$  – santykinis ekscentricitetas

(čia:  $e = \frac{M_{Ed}}{N_{Ed}}$  – ekscentricitetas;  $W_c$  – atsparumo momentas labiausiai gniuždomojo krašto atžvilgiu).

## 4. SANTVAROS IŠ KVADRATINIŲ VAMZDŽIŲ MAZGŲ SKAIČIUOTINĖS AŠINĖS LAIKOMOSIOS GALIOS NUSTATYMAS

## 4.1 Santvaros iš kvadratinių vamzdžių mazgų skaičiuotinės ašinės laikomosios galios nustatymas pagl EN 1993–1–8

#### 4.1.1 Elementų jungimas mazge

Paprasčiausia projektuoti mazgus, kai tinklelio elementų skerspjūvių ir juostos skerspjūvio ašys kertasi viename taške, t.y. elementai mazge jungiami centriškai. Tačiau toks elementų jungimas labai apriboja jų skerspjūvių sortimentą, todėl EN 1993–1–8 normose pateikiami reiklavimai ekscentriškai jungiamų elementų mazgams.

Ekscentriciteto reikšmė teigiama, kai tinklelio elementų neutraliosios ašys kertasi žemiau juostos neutraliosios ašies, o neigiama, kai tinklelio elementų neutraliosios ašys kertasi virš juostos neutraliosios ašies.

Ekscentriciteto ir tarpo tarp tinklelio elementų reikšmes galima apskaičiuoti iš sąlygų (4.1) ir (4.2) [5]:

$$e = \left(\frac{h_1}{2\sin\theta_1} + \frac{h_2}{2\sin\theta_2} + g\right) \frac{\sin\theta_1\sin\theta_2}{\sin(\theta_1 + \theta_2)} - \frac{h_0}{2}, \qquad (4.1)$$

$$g = \left(e + \frac{h_0}{2}\right) \frac{\sin\left(\theta_1 + \theta_2\right)}{\sin\theta_1 \sin\theta_1} - \frac{h_1}{2\sin\theta_1} - \frac{h_2}{2\sin\theta_2},$$
(4.2)

čia:  $\theta_i$  – tinklelio elemento posvyrio kampas;  $h_i$  – tinklelio elemento skerspjūvio aukštis;  $h_0$  – juostos elemento skerspjūvio aukštis.

Skaičiuotinės tinklelio elementų ir juostų ašinės jėgos neturi viršyti skaičiuotinės elementų laikomosios galios, nustatytos pagal [7] (žr. 3.1). Kadangi mazgai dažniausiai priimami tariamai lankstiniai, tinklelio elementų skaičiuotinė laikomoji galia skaičiuojama tik ašinių jėgų poveikiui. Skaičiuojant mazgo laikomąją galią lenkiamojo momento poveikio vertinti nereikia, kai tenkinama sąlyga:

$$-0.55h_0 \le e \le 0.25h_0, \tag{4.3}$$

Kai ši sąlyga netenkinama turi būti įvertinami lenkiamieji momentai sukelti ekscentriško elementų jungimo mazge.

#### 4.1.2 Bendrieji reikalavimai projektuojant mazgus ir jų tinkamumo ribos

Santvarų mazgai gali būti skirstomi į dvi pagrindines grupes: su tarpu ir su užlaida. Santvarų, kuriose tinklelio elementai jungiami su tarpu gamyba paprastesnė, kadangi tinklelio elementą galima iškarto nupjauti suprojektuotu kampu, su numatytomis paklaidų vertėmis. Santvarose, kuriose tinklelio elementai ir juostos projektuojami iš tokio paties skerspjūvio vamzdžių, sąlygojami dideli ekscentricitetai, kurie sukelia lenkiamuosius momentus juostoje. Tinklelio elementus jungiant su tarpu turi būti tikrinama šlyjamoji mazgo galia.

Santvarų, kuriose tinklelio elementai jungiami su užlaida gamyba sudėtingesnė, kadangi tinklelio elementą reikia pjauti dviem skirtingais kampais, paklaidų galimybė labiau apribota nei mazguose su tarpu. Kita vertus mazgo laikomoji galia yra didesnė ir galima išvengti ekscentriciteto pasirenkant reikiamą užlaidos plotį. Mazguose su užlaida turi būti gana didelė užlaida, kad tinklelio elementų jungtis būtų pakankama reikiamai šlyčiai iš vieno tinklelio elemento į kitą perduoti. Bet kuriuo atveju užlaida turi būti ne mažesnė kaip 25 % [7]. Jei persidengiantys tinklelio elementai yra skirtingo storio ir/arba stiprumo klasių, kitą elementą turi dengti mažiausios  $t_i f_{yi}$  vertės elementas [7]. Jei persidengiantys tinklelio elementas turi dengti platesnyjį [7].

Mazge jungiamų elementų galai turi būti paruošti taip, kad jų skerspjūvio forma nebūtų pakitusi [5].

Mažiausias leistinas tinklelio elementų posvyrio kampas yra 30° [7]. Projektuojant santvarų mazgus smailų kampų vertėtų vengti, kadangi smailiojo kampo vietoje labai pasunkėja suvirinimo galimybė. Easnt smailiam tinklelio elemento posvyrio kampui net menkiausias įtrūkis vamzdžio paruošimo metu (pjaunant) gali peraugti į didelius plyšius mazge. Jei elementų jungimo mazge kampas  $\theta_i$  mažesnis nei 60° tinklelio elemento galai turi būti nusklembti [5]. Norint užtikrinti, kad mazguose su tarpu jo pakanka tinkamoms virintinėms siūlėms sudaryti, tarpas tarp ramsčių

elementų turėtų būti ne mažesnis kaip  $(t_1 + t_2)$ [7]. Kad būtų užtikrinta juostos laikomoji galia plastinių deformacijų atsiradimui turi būti tenkinama sąlygą [5]  $g_a \ge 1.5t_0$  ( $g_a$  – tarpas tarp suvirinimo siūlių galų):



22 pav. Tinkamumo ribos tarpui tarp tinklelio elementų

Tarpas tarp suvirinimo siūlių galų gali būti apskaičiuojamas pagal sąlygą [5]:

$$g_a = g - 2L = g - \tan(90 - \theta_1)t_1 - \tan(90 - \theta_2)t_2, \qquad (4.4)$$

Elementų gniuždomosios dalys turi tenkinti 1 arba 2 klasių reikalavimus (žr. 3.1.1) pagal grynojo lenkimo sąlygas [7].

Jei mazgų geometrija atitinka 4.1 lentelėje nurodytas tinkamumo ribas, tinklelio ir juostos elementų iš tuščiavidurių profiliuočių virintinių tiesioginio jungimo mazgų skaičiuotinė laikomoji galia gali būti nustatoma taikant 4.3–4.5lentelių nuostatas.

Kai mazgai atitinka 4.1 lentelėje nurodytas tinkamumo ribas, reikia įvertinti tik atitinkamoje lentelėje nurodytus projektavimo kriterijus. Skaičiuotinė jungties laikomoji galia turi būti laikoma lygia mažiausiajai reikšmei pagal visus taikytinus kriterijus.

Kai mazgai neatitinka 4.1 lentelėje nurodytų tinkamumo ribų, mazgo laikomoji galia turi būti skaičiuojama, įvertinant visus minėtus irties pobūdžius (r. 2 pav.). Be to, reikia atsižvelgti į mazgų sukamojo standumo sukeliamus antrinius momentus.

| Mazgo rodikliai $[i=1 \text{ arba } 2, j=uždengiamaisis tinklelio elementas]$ |                                                                                      |                                                                |                    |                                                 |                                                                                                                |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Mazgo tipas                                                                   | $b_i$                                                                                | $b_i / t_i$                                                    |                    | h/t                                             | Tarpas arba                                                                                                    |
|                                                                               | $b_0$                                                                                | Gniuždymas                                                     | Tempimas           | $\mathcal{D}_0 \neq \mathcal{U}_0$              | užlaida $b_i / b_j$                                                                                            |
| T, Y arba X                                                                   | $\frac{b_i}{b_0} \ge 0,25$                                                           | h / t < 35                                                     | $b_i / t_i \le 35$ | $\leq 35$<br>ir<br>$\leq 41\sqrt{235 / f_{yi}}$ | _                                                                                                              |
| K su tarpu<br>N su tarpu                                                      | $\frac{b_i}{b_0} \ge 0.35$<br>ir<br>$\frac{b_i}{b_0} \ge 0.1 + 0.01 \frac{b_0}{t_0}$ | $\frac{b_i + b_i \le 55}{\text{ir}} \le 41\sqrt{235 / f_{yi}}$ |                    | $\leq 35$<br>ir<br>$\leq 41\sqrt{235 / f_{yi}}$ | $g / b_0 \ge 0, 5(1 - \beta)$<br>Bet $\le 1, 5(1 - \beta)^{1}$<br>Ir ne mažesnis<br>kaip:<br>$g \ge t_1 + t_2$ |

4.1 lentelė. Juostos ir tinklelio elementų iš kvadratinių vamzdžių mazgų tinkamumo ribos [7]

| K su užlaida<br>N su užlaida                                                                            | $\frac{b_i}{b_0} \ge 0,25$  | $\leq 36\sqrt{235 / f_{yi}}$ |                | $\leq 41\sqrt{235/f_{yi}}$ | $\lambda_{ov} \ge 25\% \text{, bet}$ $\lambda_{ov} \le 100\%^{2} \text{ ir}$ $b_i / b_j \ge 0.75$ |
|---------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------|----------------|----------------------------|---------------------------------------------------------------------------------------------------|
| Jei g / b <sub>0</sub>                                                                                  | $> 1,5(1-\beta)$ ir $g/b_0$ | $t_0 > t_1 + t_2$ , mazgas   | laikomas dviem | atskirais T arba Y         | tipo mazgais.                                                                                     |
| Užlaida gali būti padidinama, kad uždengiamojo tinklelio elemento apatinė dalis galėtų būti privirinama |                             |                              |                |                            |                                                                                                   |
| prie juostos                                                                                            |                             |                              |                |                            |                                                                                                   |

4.2 lentelė. Papildomos sąlygos algoritmų mazgų ašinės laikomosios galios nustatymui naudojimui [7]

| Tinklelio elemnto tipas | Mazgo tipas                   | Mazgo rodikliai                          |                    |
|-------------------------|-------------------------------|------------------------------------------|--------------------|
| Kvadratinis vamzdis     | T, Y arba X                   | $\beta \le 0.85$                         | $b_0 / t_0 \ge 10$ |
|                         | K su tarpu arba N su<br>tarpu | $0.6 \le \frac{b_1 + b_2}{2b_1} \le 1.3$ | $b_0 / t_0 \ge 15$ |

Kai mazgai tenkina 4.2 lentelėje nurodytas tinkamumo ribas, reikia įvertinti tik juostos viršaus irtį ir tinklelio elemento irtį dėl sumažėjusio efektyviojo pločio. Skaičiuotinė ašinė laikomoji galia turi būti laikoma lygia mažesniajai reikšmei pagal tuos abu kriterijus [7].

# 4.1.3 Santvaros iš kvadratinių vamzdžių mazgų skaičiuotinės ašinės laikomosios galios nustatymo algoritmai

Kvadratinių vamzdžių virintinių mazgų skaičiuotinės ašinės laikomosios galios skaičiavimo algoritmus galima būtu suskirstyti į grupes pagal mazgo tipą:

- skaičiavimo algoritmai T, Y arba X tipo mazgų ašinės laikomosios galios nustatymui (4.3lentelė);
- skaičiavimo algoritmai K, N ir KT tipo mazgų su tarpu ašinės laikomosios galios nustatymui (4.4 lentelė);
- skaičiavimo algoritmai K, N ir KT tipo mazgų su užlaida ašinės laikomosios galios nustatymui (4.5 lentelė).

| Mazgo tipas                   | Skaičiuotinė laikomoji galia                                                                                                           |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| T,Y ir X mazgai               | <b>Juostos viršaus irtis</b> $\beta \le 0.85$                                                                                          |
|                               | $N_{i,Rd} = \frac{f_y \cdot t_0^2}{(1-\beta)\sin\theta_i} \left(\frac{2\eta}{\sin\theta_i} + 4\sqrt{1-\beta}\right) k_n / \gamma_{M5}$ |
| h <sub>i</sub>                | Juostos šoninės sienelės klupumas                                                                                                      |
| N <sub>i</sub> b <sub>i</sub> | $\beta = 1.0^{1}$                                                                                                                      |
| $\theta_1$                    | $N_{i,Rd} = \frac{f_b t_0}{\sin \theta_i} \left(\frac{2h_i}{\sin \theta_i} + 10t_0\right) / \gamma_{M5}$                               |
|                               | <b>Tinklelio elemento irtis</b> $\beta \ge 0.85$                                                                                       |
|                               |                                                                                                                                        |
| 44                            |                                                                                                                                        |

4.3 lentelė. T, Y arba X tipo mazgų ašinės laikomosios galios nustatymo algoritmai [7]

$$N_{i,Rd} = f_y t_i \left(2h_i - 4t_i + 2b_{eff}\right) / \gamma_{M5}$$
**Praspaudžiamoji/išplėšiamoji juostos irtis**

$$0.85 \le \beta \le (1 - 1/\gamma)$$

$$N_{i,Rd} = \frac{f_{y0} t_0}{\sqrt{3} \sin \theta_i} \left(\frac{2h_i}{\sin \theta_i} + 2b_{e,p}\right) / \gamma_{M5}$$

čia:  $\beta = \frac{b_i}{b_0}$  – tinklelio elemento ir juostos skerspjūvių pločių satykis;  $\eta = \frac{h_i}{b_0} = \beta$  – tinklelio elemento skerspjūvio aukščio ir juostos skerspjūvio pločio santykis;  $\gamma = 0,5b_0/t_0$  –rodiklis, priklausantis nuo juostos skerspjūvio pločio ir vamzdžio sienelės storio santykio;  $f_b$  – didžiausia klupumo įtempių reikšmė juostoje, kai juosta tempiama  $f_b = f_{y0}$ ,kai juosta gniuždoma:  $f_b = \chi f_{y0}$  (T ir Y mazgams);  $f_b = 0.8\chi f_{y0} \sin \theta_i$  (X mazgams);  $\chi$  – klupumo koeficientas (žr. 3.1.3), gaunamas pagal [6], taikant atitinkamą klupumo kreivę ir sąlyginį liaunį  $\overline{\lambda}$ , apskaičuojamą pagal (2.37) formulę;  $b_{eff}$  – efektyvusis tinklelio elemento plotis apskaičuojamas pagal (2.43) sąlygą;  $b_{ep}$  – juostos įrąžas įvertinančios funkcijos f(n) (žr. 2.1.1.2, 2.9 pav.):

kai n > 0 (gniuždymas) :  $k_n = 1, 3 - \frac{0, 4n}{\beta} \le 1, 0$  (n - santykinius įtempius įvertinantis koeficientas, apskaičiuojamas pagal sąlygą 2.23; kai  $n \le 0$  (tempimas) :  $k_n = 1, 0$ .

1) Kai  $0,85 \le \beta \le 1,0$ , taikoma tiesinė interpoliacija tarp juostos viršaus irties, su  $\beta = 0,85$ , vertės ir juostos šoninės sienelės irties, su  $\beta = 1,0$  pagrindinės vertės.

$$N_{i,Rd(\beta=1)} + \left(N_{i,Rd(\beta=0.85)} - N_{i,Rd(\beta=1)}\right) (1-\beta) / \Delta\beta , \qquad (4.5)$$

4.4 lentelė. K su tarpu ir N su tarpu tipo mazgų ašinės laikomosios galios nustatymo algoritmai [7]

| Mazgo tipas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Skaičiuotinė laikomoji galia                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K ir N mazgai su tarpu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Juostos viršaus irtis                                                                                                                                         |
| $\begin{array}{c} \mathbf{b}_{1} \\ \mathbf{b}_{1} \\ \mathbf{b}_{1} \\ \mathbf{b}_{1} \\ \mathbf{b}_{2} \\ \mathbf{b}$ | $N_{i,Rd} = \frac{8.9f_y \cdot t_0^2}{\sin \theta_i} \left( \frac{\sum_{i=1}^m b_i + \sum_{i=1}^m h_i}{2m \cdot b_0} \right) k_n \sqrt{\gamma} / \gamma_{M5}$ |
| $ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Juostos šlyjamoji irtis                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $N_{i,Rd} = \frac{f_{y0}A_v}{\sqrt{3}\sin\theta_i} / \gamma_{M5};$                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $V_{pl,Rd} = \frac{f_{yo}A_{v}}{\sqrt{3}\gamma_{vo}};$                                                                                                        |

$$V_{Ed} = N_{i,Ed} \sin \theta_i;$$

Kai  $V_{Ed} > 0.5 V_{pl Rd}$ , skaičiuojame:

45

$$N_{0,Rd} = \left[ \left( A_0 - A_v \right) f_{y0} + A_v f_{y0} \sqrt{1 - \left( V_{Ed} / V_{pl,Rd} \right)^2} \right] / \gamma_{MS}$$

$$\frac{\text{Tinklelio elemento irtis}}{N_{i,Rd} = f_{yi} t_i \left( 2h_i - 4t_i + b_i + 2b_{eff} \right) / \gamma_{MS}}$$

$$\frac{Praspaudžiamoji/išplėšiamoji juostos irtis}{\beta \le \left( 1 - 1 / \gamma \right)}$$

$$N_{i,Rd} = \frac{f_{y0} t_0}{\sqrt{3} \sin \theta_i} \left( \frac{2h_i}{\sin \theta_i} + b_i + 2b_{ep} \right) / \gamma_{MS}$$

čia:  $A_v -$ šlytį perimantis juostos skerspjūvio plotas  $A_v = (2h_0 + \alpha \cdot b_0)t_0$ ; (žr. 2.5);  $\alpha = \sqrt{\frac{1}{1 + \frac{4g^2}{3t_0^2}}}$ 

| funkcija $f\left(\frac{g}{t_0}\right)$ (žr.2.5).       |                                                                                                                |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 4.5 lentelė. K su užlaida ir N su užlaida tipo mazgų a | šinės laikomosios galios nustatymo algoritmai [7]                                                              |
| Mazgo tipas                                            | Skaičiuotinė laikomoji galia                                                                                   |
| K ir N mazgai su užlaida                               | <b>Tinklelio elemento irtis</b> $25\% \le \lambda_{ov} < 50\%$                                                 |
|                                                        | $N_{i,Rd} = f_{yi}t_i \left( b_{eff} + b_{e,ov} + \frac{\lambda_{ov}}{50} (2h_i - 4t_i) \right) / \gamma_{M5}$ |
| N <sub>1</sub> A                                       | <b>Tinklelio elemento irtis</b> $50\% \le \lambda_{ov} < 80\%$                                                 |
| θι                                                     | $N_{i,Rd} = f_{yi} t_i \left( b_{eff} + b_{e,ov} + (2h_i - 4t_i) \right) / \gamma_{M5}$                        |
|                                                        | <b>Tinklelio elemento irtis</b> $\lambda_{ov} \ge 80\%$                                                        |
|                                                        | $N_{i,Rd} = f_{yi}t_i(b_i + b_{e,ov} + (2h_i - 4t_i)) / \gamma_{M5}$                                           |

čia: rodiklis  $b_{e,ov} = \frac{10f_{yj}t_j}{b_j / t_j f_{yi}t_i} b_i \le b_i$ ; mazgo rodikliai i = 1 arba 2, j - uždengiamasis tinklelio

elementas.

KT mazgai projektuojami pagal tas pačias sąlygas, kaip ir K tipo mazgai, tačiau papildomai turi būti užtikrinta, kad tinklelio elementų vertikalių įrąžų suma yra mažesnė nei mazgo ašinė galia. Juostos standumas vertikialia kryptimi yra nedidelis todel pateiktos sąlygos yra svarbios. Atitinkamiems įrąžų variantams pateikiamos sąlygos 4.6 ir 4.7:



23 pav. Galimi įražų pasiskirstymai mazge

$$a)N_{2,Rd}\sin\theta_2 \ge N_{1,Ed}\sin\theta_1 + N_{3,Ed}\sin\theta_3, \qquad (4.6)$$

$$b)N_{1,Rd}\sin\theta_1 \ge N_{2,Ed}\sin\theta_2 + N_{3,Ed}\sin\theta_3, \qquad (4.7)$$

#### 4.2 Santvaros iš kvadratinių vamzdžių mazgų skaičiuotinės laikomosios galios nustatymas pagal STR 2.05.08:2005 (8 priedą)

#### 4.2.1 Irties pobūdžiai ir mazgo laikomoji galia

Pagal STR 2.05.08:2005 8–ojo priedo reikomendacijas mazgų laikomąją galią nulemia tik dalis 2 skyriuje paminėtų irties pobūdžių:

A plastinė juostos irtis (žr. 4 pav.), ir tikrinama santvaros juostos profiliuočio juostos, besiliečiančios su tinklelio elementu, laikomoji galia praspaudimui (išplėšimui);

B Juostos vamzdžio sienelės išsipūtimas arba vietinis klupumas, tinklelio elemente veikiant gniuždymo įrąžai (žr. 4 pav.), ir tikrinamas juostos šoninės sienelės (lygiagrečios mazgo plokštumai) laikomoji galia gniuždomojo elemento prijungimo vietoje;

D Tempiamo tinklelio elemento nutraukimas (kai tinklelio elemento efektyvusis plotis yra pastebimai per mažas, tinklelio elemento profiliuotis nutraukiamas arba nutraukiama suvirinimo siūlė) (žr. 4 pav.), ir tikrinama:

- ✓ tinklelio elemento laikomoji galia jungimo prie juostos srityje;
- ✓ virintinių siūlių, jungiančių tinklelio elementą prie juostos, laikomoji galia.

#### 4.2.2 Mazgų tipai ir jų žymenys

Santvarų iš kvadratinių vamzdžių pagrindiniai mazgų tipai, jų matmenų ir įrąžų žymenys pateikti 24–25 pav.



24 pav. K ir N tipo mazgų matmenų ir įrąžų žymenys



25 pav. T ir X mazgų matmenų ir įrąžų žymenys

K ir N tipo mazgams, kai  $b_i / b_0 \le 0.9$  ir  $g / c_i \le 0.25$ , juostos praspaudžiamoji (išplėšiamoji) laikomoji galia tikrinama kiekvieno prijungiamojo elemento vietoje pagal (4.8) išraišką [19]:

$$N_{i,Rd} = \frac{\gamma_c \gamma_1 \gamma_0 f_{y,d} t_0^2 (b+g+\sqrt{2b_0 a})}{(0,4+1,8g/c_{1(2)}) a \sin \theta_{1(2)}},$$
(4.8)

čia:  $N_{1(2)}$  – ašinė jėga prijungiamajame elemente;  $M_{1(2)}$  – lenkiamasisis momentas prijungiamajame elemente mazgo plokštumoje, sutampančiame su juostos lentyna pjūvyje (momento dėl mazgų standumo galima nevertinti);  $\gamma_c$  – darbo sąlygų koeficientas pagal [20] 4.1 lentelę;  $\gamma_1$  – įrąžos ženklo prijungiamajame elemente įtakos koeficientas imamas lygus 1,2 tempiamajam elementui ir 1,0 – kitais atvejais;  $\gamma_0$  – juostoje veikiančios ašinės jėgos įtakos koeficientas, nustatomas pagal (4.9) formulę, jei juosta gniuždoma ir  $|N_0|/(A_0 f_{y,d}) > 0,5$ . Kitais atvejais  $\gamma_0 = 1,0$ ;

$$\gamma_0 = 1,5 - \left| N_{Ed,0} \right| / (A_0 f_{y,d}), \qquad (4.9)$$

 $N_{Ed,0}$  – ašinė jėga santvaros juostoje, veikianti tempiamojo tinklelio elemento pusėje;  $A_0$  – santvaros juostos skerspjūvio plotas;  $f_{y,d}$  – santvaros juostos plieno skaičiuojamasis stipris pagal takumo ribą;  $t_0$  – santvaros juostos vamzdžio sienelės storis;  $c_{1(2)}$  – prijungiamojo elemento ir juostos susikirtimo linijos ilgis juostos ašies kryptimi, lygus  $h_{1(2)}/\sin\theta_{1(2)}$ ; g – pusė atstumo tarp tinklelio elementų;  $a = (b_0 - b_{1(2)})/2$ ;  $\theta_{1(2)}$  – tinklelio elemento prijungimo prie juostos kampas.

X ir T pavidalo mazguose (žr. 24 pav.), taip pat K ir N mazguose, kai  $c/b_{I(2)} > 0,25$ , juostos laikomoji praspaudimo galia skaičiuojama pagal formulę:

$$\left|N_{1(2)}\right| + \frac{1.7\left|M_{1(2)}\right|}{h_{1(2)}} \le \frac{\gamma_c \gamma_1 \gamma_0 f_{y,d} t_0^2 (c + \sqrt{2b_0 a})}{a \sin \theta_{1(2)}},\tag{4.10}$$

Juostos sienelės laikomoji galia mazgo plokštumoje, gniuždomojo tinklelio elemento prijungimo vietoje, kai  $b_{1(2)}/b_0 > 0.85$ , tikrinamas pagal formulę:

$$N_{Ed,i} \le 2\gamma_c \gamma_l k f_{y,d} t_0 h_{l(2)} / \sin^2 \theta_i, \qquad (4.11)$$

čia:  $\gamma_t$  – koeficientas, įvertinantis juostos plonasieniškumą, kai  $h_0/t_0 \ge 25$ , imamas lygus 0,8, kitais atvejais 1,0; k – koeficientas, atsižvelgiant į juostos plonasieniškumą ir skaičiuotinį plieno stiprį pagal takumo ribą  $f_{y,d}$ , imamas pagal pateiktas tris sritis apibrėžiančias formules:

kai 
$$\frac{h_0}{t_0} < 2,45 \cdot 10^{-4} \cdot f_{yd}^2 - 0,2 \cdot f_{yd} + 81,8$$
  
 $k = 1;$ 
(4.12)

kai, 3, 34 \cdot 10<sup>-4</sup> \cdot  $f_{yd}^2$  - 0, 291 \cdot  $f_{yd}$  + 110 >  $\frac{h_0}{t_0} \ge 2, 45 \cdot 10^{-4} \cdot f_{yd}^2$  - 0, 2 \cdot  $f_{yd}$  + 81, 8

$$k = 0,9 + 670 \left(\frac{t_0}{h_0}\right)^2 - 170 \frac{f_{yd}}{E},$$
(4.13)

kai 
$$\frac{h_0}{t_0} \ge 3,34 \cdot 10^{-4} \cdot f_{yd}^2 - 0,291 \cdot f_{yd} + 110$$

$$k = \frac{3.6 \cdot E}{f_{yd}} \left(\frac{t_0}{h_0}\right)^2,\tag{4.14}$$

Formule (4.11) įvertinamas galimas mazgo laikomosios galios netekimas dėl juostos šoninės sienelės klupumo, esant gana dideliems  $b_{1(2)}/b_0$  santykiams (kai praspaudimas apsunkintas). Koeficientas *k* įvertina galimą juostos sienutės ruožo, kaip gniuždomos plokštelės, laikomosios galios sumažėjimą tamprioje arba tampriai plastinėje zonoje ( $k = \sigma_{cr}/f_{y,d}$ , čia  $\sigma_{cr}$  – kritiniai įtempiai). Plienui, kurio  $f_{y,d} \le 400$  MPa ir kai santykis  $h_0/t_0 \le 40$ , k = 1,0.

Tinklelio elemento laikomoji galia jo prijungimo prie juostos srityje turi būti tikrinama:

K ir N mazguose, kai kampas tarp tinklelio ir juostos  $\alpha = 40 - 50^{\circ}$  pagal formulę [19]:

$$\left| N_{1(2)} \right| + \frac{0.5 \left| M_{1(2)} \right|}{h_{1(2)}} \le \frac{\gamma_c \gamma_1 k f_{yd,1(2)} A_{1(2)}}{1 + 0.013 b_0 / t_0}, \qquad (4.17)$$

čia: k – nustatomas pagal 4.12 – 4.14 išraiškas, pakeičiant juostos charakteristikas tinklelio elemento charakteristikomis ( $b_0$  – į didesnįjį iš  $b_{1(2)}$  ir  $h_{1(2)}$ ,  $t_0$  į  $t_{1(2)}$ ;  $f_{y,d}$  į  $f_{yd,1(2)}$ );  $f_{yd1(2)t}$  – atitinkamo tinklelio elemento skaičiuojamasis plieno stipris pagal takumo ribą;  $A_{1(2)}$  – atitinkamo tinklelio elemento skerspjūvio plotas;  $t_{1(2)}$  – atitinkamo tinklelio elemento sienelės storis, stačiakampio skerspjūvio tinklelio elementams dešinę formulės pusę reikia padauginti iš daugiklio  $\frac{2}{2}\left(1+\frac{1}{1+k}-\frac{1}{k}\right);$ 

$$\overline{3}\left(1+\frac{1+b_{1(2)}}{1+b_{1(2)}}\right)$$

T, X, Y mazguose, pagal formulę [20]:

$$\left|N_{1(2)}\right| + \frac{0.5\left|M_{1(2)}\right|}{h_{1(2)}} \le \frac{\gamma_c \gamma_1 k f_{yd,1(2)} A_{1(2)}}{\left[1 + 0.01(3 + 5b_{1(2)} / b_0 - 0.1h_{1(2)} / t_{1(2)})b_0 / t_0\right] \sin \theta_{1(2)}},$$
(4.18)

Išraiškoje (4.7) formulė apskrituose skliausteliuose neturi būti mažesnė nei 0. Skaičiuojant stačiakampio skerspjūvio tinklelio elementus, dešinė (4.7) formulės pusė turi būti dauginama iš daugiklio  $\frac{2}{1+b_{1(2)}/h_{1(2)}}$ .

Tolesnės analizės supaprastinimui mazgų skaičiavimo algoritmų pagal [19] reikalavimus žymenis pervedame į atitinkamus pagal [7]. Tada K ir N tipo mazgų su tarpu ašinės laikomosios galios skaičiavimas pateikiamas 4.6 lentelėje, o T, Y, X tipo mazgų ašinės laikomosios galios skaičiavimas 4.7 lentelėje.

| Mazgo tipas                       | Skaičiuotinė laikomoji galia                                                                                                                                                 |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K ir N mazgai su tarpu            | Juostos viršaus irtis, kai $\beta \le 0,9$ ir $\frac{g \cdot \sin \theta_i}{2b_i} \le 0,25$                                                                                  |
| $b_1$ $N_1$ $g$ $N_2$ $b_2$ $b_2$ | $N_{i,Rd} = \frac{\gamma_c \gamma_1 \gamma_0 f_{y,d} t_0^2 (\frac{2\eta}{\sin \theta_i} + g + 2\sqrt{1-\beta})}{(0,4+0,9g \cdot \sin \theta_i / b_i)(1-\beta)\sin \theta_i}$ |
| θ2                                | Juostos viršaus irtis, kai $\beta \le 0.9$ ir                                                                                                                                |
|                                   | $\frac{g \cdot \sin \theta_i}{2b_i} > 0,25$                                                                                                                                  |
|                                   | $N_{i,Rd} \leq \frac{\gamma_c \gamma_1 \gamma_0 f_{y,d} t_0^2 (\frac{2\eta}{\sin \theta_i} + 2\sqrt{1-\beta})}{(1-\beta) \cdot \sin \theta_i}$                               |
|                                   | Tinklelio elemento irtis                                                                                                                                                     |

4.6 lentelė. K su tarpu ir N su tarpu mazgų ašinės laikomosios galios nustatymo algoritmai [19]

| $N_{i,Rd} = \frac{\gamma_c \gamma_1 k f_{yd,i} A_i}{1 + 0,013 b_0 / t_0}$ |
|---------------------------------------------------------------------------|
|                                                                           |

| 4.7 lentelė. T, Y arba X tipo mazgų ašinės laikomo | osios galios nustatymo algoritmai [19]                                                                                                         |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Mazgo tipas                                        | Skaičiuotinė laikomoji galia                                                                                                                   |
| T,Y ir X mazgai                                    | Juostos viršaus irtis                                                                                                                          |
| t h <sub>i</sub>                                   | $N_{i,Rd} \leq \frac{\gamma_c \gamma_1 \gamma_0 f_{y,d} t_0^2 (\frac{2\eta}{\sin \theta_i} + 2\sqrt{1-\beta})}{(1-\beta) \cdot \sin \theta_i}$ |
| N <sub>I</sub>                                     | Juostos šoninės sienelės klupumas                                                                                                              |
|                                                    | $\beta > 0,85$                                                                                                                                 |
|                                                    | $N_{i,Rd} = 2\gamma_c \gamma_t k f_{y,d} t_0 h_i / \sin^2 \theta_i$                                                                            |
|                                                    | Tinklelio elemento irtis                                                                                                                       |
|                                                    | $N = \frac{\gamma_c \gamma_1 k f_{yd,1(2)} A_i}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$                                                       |
|                                                    | $[1+0,01(3+5\beta-0,1h_i/t_i)b_0/t_0]\sin\theta_i$                                                                                             |

### 5. SANTVAROS IŠ KVADRATINIŲ VAMZDŽIŲ MAZGŲ PROJEKTAVIMAS

Plokščiųjų santvarų modeliavimui buvo pasinaudota kompiuterine programa *Staad.Pro.* Santvaros skaičiuojamoji schema peteikta 26 paveiksle. Schema priimta, tokia, kad galima būtų aptarti visus nagrinėjamuose norminiuose dokumentuose pateikiamus, plokščiųjų santvarų virintinių mazgų tipus.



26 pav. Analizuojamos santvaros skaičiuojamoji schema

Įrąžos santvaros elementuose gautos nuo dviejų apkrovos atmainų derinio,t.y.: konstrukcijų savojo svorio ir nekonstrukcinių elementų (stogo dangos) savojo svorio su daliniu poveikio

patikimumo koeficientu  $\gamma_Q = 1,35$  ir sniego apkrovos Vilniaus rajone [21] (1 priedo 1 lentelė) su daliniu poveikio patikimumo koeficientu  $\gamma_Q = 1,3$ .

Apkrovos vykdant iteracinius mazgų skaičiavimus nebuvo keičiamos.

Santvaros konstrukcinių elementų parinkimui ir mazgų skaičiuotinės ašinės laikomosios galios nustatymui, bei skaitinei analizei atlikti buvo pasinaudota kompiuterine programa *Microsoft Office Exel* sudarytais skaičiavimo algoritmais, įvertinant visas anksčiau aptartas mazgų konstravimo ir skaičiavimo sąlygas. Primama, kad "Santvara 1" – projektuojama pagal STR 2.05.08:2005 nuostatas,o "Santvara 2" – pagal EN 1993-1-1.

# 5.1 Santvaros konstrukcinių elementų parinkimas ir laikomosios galios nustatymas

Santvaros konstrukcinių elementų numeracija pateikiama 27 paveiksle.



27 pav. Analizuojamos santvaros konstrukcinių elementų numeracija

Santvaros konstrukcinių elementų skerspjūvių pirminiam parinkimui pasinaudojame ribinio liaunio sąlyga, programiškai parinkti ir priimti, tolesniuose skaičiavimuose naudojami skerspjūviai pateikiami 1 priedo 1.1-1.8 lentelėse.

Įrąžų pasiskirstymo santvaros elementuose nuo pasirinkto apkrovų derinio schemos pateikiamos 28 ir 29 paveiksluose:



28 pav. Lenkiamųjų momentų pasiskirstymo santvaros elementuose schema



29 pav. Ašinių jėgų pasiskirstymo santvaros elementuose schema

Irąžų suvestinės pateikiamos 1 priedo 1.9-1.10 lentelėse.

#### 5.1.1 "Santvaros 1" konstrukcinių elementų parinkimas

Santvaros apatinės juostos elementai priimami kaip tempiamieji elementai. Elementų skerspjūviai parenkami pagal [20], jų laikomoji galia tikrinama pagal 3.2.1 poskyryje pateiktas sąlygas, kompiuterine programa tikrinamų ir priimamų santvaros apatinės juostos elementų skaičiavimo rezultatai pateikiami 5.1 lentelėje.

| 5.1 lentelė. "Santvaros 1" apatinės juostos elementų skerspjūvio parinkimas pagal veikia | nčią įrąžą |
|------------------------------------------------------------------------------------------|------------|
|------------------------------------------------------------------------------------------|------------|

|         |                |                      | Apatin               |             |                   |             | Skerspiūvio    |       |        |
|---------|----------------|----------------------|----------------------|-------------|-------------------|-------------|----------------|-------|--------|
| Eleme   | nto Nr.        | N <sub>Ed</sub> , kN | f <sub>y</sub> , MPa | γм          | $A_{net,d}, cm^2$ | Skerspjūvis | $A_d$ , $cm^2$ | i, cm | klasė  |
| 1       | Tempimas       | -335,898             | 275                  | 1,1         | 13,436 120x120x3  |             | 13,81          | 4,760 | 4klasė |
| 2       | Tempimas       | -678,049             | 275                  | 1,1         | 27,122            | 100x100x8   | 27,24          | 3,67  | 1klasė |
| 3       | Tempimas       | -751,275             | 275                  | 1,1         | 30,051            | 120x120x7.1 | 30,33          | 4,53  | 1klasė |
| 4       | Tempimas       | -751,275             | 275                  | 1,1         | 30,051            | 120x120x7.1 | 30,33          | 4,53  | 1klasė |
| 5       | Tempimas       | -678,049             | 275                  | 1,1         | 27,122            | 100x100x8   | 27,24          | 3,67  | 1klasė |
| 6       | Tempimas       | -335,898             | 275                  | 1,1         | 13,436            | 120x120x3   | 13,81          | 4,76  | 4klasė |
| Pri     | imamas skers   | pjūvis, paga         | ıl maksimal          | ią gniuždyn | no įrąžą          | 120x120x7.1 | 30,33          | 4,53  | 1klasė |
| Palygi  | name pagal m   |                      |                      |             |                   |             |                |       |        |
| su prie | š tai parinktu | pagal liaun          | io sąlygą ir         | 140x140x6   | 31,23             | 5,43        |                |       |        |
| santva  | ros juostos sk | erspjūvį.            |                      |             |                   |             |                |       | 1klasė |

Kaip matome iš 5.1 lentelėje pateiktų skaičiavimo rezultatų, pagal apatinėje juostoje veikiančią įrąžą, reikiamas juostos skerspjūvis yra 120x120x7.1 vamzdis,tačiau jis netenkina priimto ribinio liaunio sąlygos, todėl tolesniuose skaičiavimuose naudojamas skerspjūvis priimtas pagal liaunio sąlygą – 140x140x6 vamzdis (lentelėse gelsva spalva pažymėtos įvesties eilutes).

5.2 lentelė. "Santvaros 1" apatinės juostos elementų laikomosios galios patikrinimas

| N <sub>t,Rd</sub> ,<br>kN | $N_{Ed}/N_{t,Rd}$ | $\begin{array}{l} N_{Ed} / N_{NM,c,Rd} < \\ = 1,0 \end{array}$ | Ekonomiškumo<br>rodiklis | Ekonomiškumo sąlyga |
|---------------------------|-------------------|----------------------------------------------------------------|--------------------------|---------------------|
| 780,75                    | 0,962             | Sąlyga<br>tenkinama                                            | 3,78%                    | Sąlyga tenkinama    |

Kaip matome iš 5.2 lenetelėje pateiktų rezultatų santvaros apatinės juostos elementų laikomoji galia yra pakankama, skaičiavimams užteko vieno iteracinio žingsnio.

Santvaros viršutinės juostos elementai priimami kaip gniuždomieji lenkiamieji elementai, jų programinio skaičiavimo rezultatai pateikiami 5.3 lentelėje.

|                                  |                     | Skerspjūvio          |                      |                  |                  |             |                |       |        |
|----------------------------------|---------------------|----------------------|----------------------|------------------|------------------|-------------|----------------|-------|--------|
| Elemento Nr.                     |                     | N <sub>Ed</sub> , kN | f <sub>y</sub> , MPa | $\gamma_{\rm M}$ | $A_{net,d}, m^2$ | Skerspjūvis | $A_d$ , $cm^2$ | I, CM | klasė  |
| 7                                | Gniuždymas          | 4,543                | 275                  | 1,1              | 0,182            | 40x40x2     | 2,94           | 1,54  | 1klasė |
| 8                                | Gniuždymas          | 553,199              | 275                  | 1,1              | 22,128           | 100x100x6.3 | 22,25          | 3,76  | 1klasė |
| 9                                | Gniuždymas          | 553,069              | 275                  | 1,1              | 22,123           | 100x100x6.3 | 22,25          | 3,76  | 1klasė |
| 10                               | Gniuždymas          | 745,462              | 275                  | 1,1              | 29,818           | 120x120x7.1 | 30,33          | 4,53  | 1klasė |
| 11                               | Gniuždymas          | 745,416              | 275                  | 1,1              | 29,817           | 120x120x7.1 | 30,33          | 4,53  | 1klasė |
| 12                               | Gniuždymas          | 725,523              | 275                  | 1,1              | 29,021           | 140x140x5.6 | 29,3           | 5,45  | 1klasė |
| 13                               | Gniuždymas          | 725,523              | 275                  | 1,1              | 29,021           | 140x140x5.6 | 29,3           | 5,45  | 1klasė |
| 14                               | Gniuždymas          | 745,416              | 275                  | 1,1              | 29,817           | 120x120x7.1 | 30,33          | 4,53  | 1klasė |
| 15                               | Gniuždymas          | 745,462              | 275                  | 1,1              | 29,818           | 120x120x7.1 | 30,33          | 4,53  | 1klasė |
| 16                               | Gniuždymas          | 553,069              | 275                  | 1,1              | 22,123           | 100x100x6.3 | 22,25          | 3,76  | 1klasė |
| 17                               | Gniuždymas          | 553,199              | 275                  | 1,1              | 22,128           | 100x100x6.3 | 22,25          | 3,76  | 1klasė |
| 18                               | Gniuždymas          | 4,543                | 275                  | 1,1              | 0,182            | 40x40x2     | 2,94           | 1,54  | 1klasė |
| Priimamas s                      | kerspjūvis, pagal m | aksimalia            | ą gniužd             | ymo              | įrąžą            | 120x120x7.1 | 30,33          | 4,53  | 1klasė |
| Palyginame pag<br>prieš tai pari | 27,29               | 4,58                 | 1klasė               |                  |                  |             |                |       |        |
| Priartėji                        | imo būdu parenkan   | ne reikian           | ną skersp            | ojūvį            |                  | 120x120x7.1 | 30,33          | 4,53  | 1klasė |

5.3 lentelė. "Santvaros 1" viršutinės juostos elementų skerspjūvio parinkimas pagal veikiančią įrąžą

Santvaros viršutinės juostos elemento laikomosios galios tikrinimo uždavinio rezultatai

pateikiami 5.4 lentelėje.

5.4 lentelė. "Santvaros 1" viršutinės juostos elementų laikomosios galios patikrinimas

pirmasis iteracinis skaičiavimas

|                                        |                               | Pirmasis itera                              | cinis skaičiavima                    | ıs                       |                          |        |
|----------------------------------------|-------------------------------|---------------------------------------------|--------------------------------------|--------------------------|--------------------------|--------|
| i <sub>x</sub> =i <sub>y</sub> ,<br>cm | $l_{x,eff} = l_{y,eff},$<br>m | $\lambda_x = \lambda_y$                     | W <sub>el</sub> ,<br>cm <sup>3</sup> | N <sub>Ed</sub> ,<br>kN  | M <sub>Ed</sub> ,<br>kNm |        |
| 4,53                                   | 3,010                         | 66                                          | 103,9                                | 745,462                  | 10,688                   |        |
| e,<br>m                                | e <sub>rel</sub> ,<br>m       | $\mathbf{k}_{shape}$                        | e <sub>rel,eff</sub> ,<br>m          | $\lambda_{\mathrm{sal}}$ | φ <sub>e</sub>           | γc     |
| 0,014                                  | 0,391                         | 1                                           | 0,391                                | 2,293                    | 0,652                    | 1      |
| N <sub>NM,c,Rd</sub> ,<br>kN           | $N_{Ed}/N_{NM,c,Rd}$          | N <sub>Ed</sub> /N <sub>NM,c,Rd</sub> <=1,0 | Ekonomiškumo<br>rodiklis             | Ekono                    | miškumo s                | sąlyga |
| 494,41                                 | 1,508                         | Sąlyga<br>netenkinama                       | 50,78%                               | Sąlyg                    | ga netenkir              | iama   |

Kaip matome pirmuoju iteraciniu skaičiavimu priimto viršutinės juostos elemento laikomoji galia nepakankama, programa galima atlikti papildomus iteracinius skaičiavimus, papildomoje 5.3 lentelės įvesties eilutėje pasirenkant vamzdinius profiliuočius, pagal sortimentą (programoje įvestas vamzdžių sortimentas pagal LST EN 10219).

Atlikus tam tikrą skaičių iteracinių žingsnių, priimamas reikiamas vamzdinis – 140x140x8, kuris tenkina 5.4 lentelėje pateiktas elemento laikomosios galios sąlygas.

 5.5 lentelė. "Santvaros 1" viršutinės juostos elemento laikomosios galios patikrinimas n – asis iteracinis skaičiavimas

|                                        |                               | n-tasis iterac                              | inis skaičiavimas                    | 5                        |                          |        |
|----------------------------------------|-------------------------------|---------------------------------------------|--------------------------------------|--------------------------|--------------------------|--------|
| i <sub>x</sub> =i <sub>y</sub> ,<br>cm | $l_{x,eff} = l_{y,eff},$<br>m | $\lambda_x = \lambda_y$                     | W <sub>el</sub> ,<br>cm <sup>3</sup> | N <sub>Ed</sub> ,<br>kN  | M <sub>Ed</sub> ,<br>kNm |        |
| 5,3                                    | 3,010                         | 57                                          | 161                                  | 745,462                  | 10,688                   |        |
| e,<br>m                                | e <sub>rel</sub> ,<br>m       | $\mathbf{k}_{shape}$                        | e <sub>rel,eff</sub> ,<br>m          | $\lambda_{\mathrm{sal}}$ | φ <sub>e</sub>           | γc     |
| 0,014                                  | 0,243                         | 1                                           | 0,243                                | 1,960                    | 0,750                    | 1      |
| N <sub>NM,c,Rd</sub> ,<br>kN           | $N_{Ed}/N_{NM,c,Rd}$          | N <sub>Ed</sub> /N <sub>NM,c,Rd</sub> <=1,0 | Ekonomiškumo<br>rodiklis             | Ekono                    | miškumo s                | sąlyga |
| 751,07                                 | 0,993                         | Sąlyga tenkinama                            | 0,75%                                | Sąly                     | ga tenkina               | ıma    |

Tinklelio elementai priimami kaip ašinės jėgos veikiami elementai,tempiamajame tinklelio elemente laikomoji galia nustatoma pagal elemento stiprumo sąlygas, gniuždomajame – įvertinama klumpamoji galia. Elementų parinkimas ir jų laikomosios galios patikrinimas atliekamas kompiuterine programa. Pirmojo iteracinio skaičiavimo rezultatai pateikiami 5.6 ir 5.7 lentelėse.

| 5.6 lentelė. | "Santvaros 1" | ' tinklelio | elementų | skerspjūvio | parinkimas paga | l veikiančią įrąžą |
|--------------|---------------|-------------|----------|-------------|-----------------|--------------------|
|--------------|---------------|-------------|----------|-------------|-----------------|--------------------|

|                                                                                                                                        | Tinklelio elementai |                      |                      |       |                  |             |                |       |        |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|----------------------|-------|------------------|-------------|----------------|-------|--------|--|--|--|--|
| Elemento<br>Nr.                                                                                                                        |                     | N <sub>Ed</sub> , kN | f <sub>y</sub> , MPa | γм    | $A_{net,d}, m^2$ | Skerspjūvis | $A_d$ , $cm^2$ | i, cm | klasė  |  |  |  |  |
| 19                                                                                                                                     | Gniuždymas          | 430,148              | 275                  | 1,1   | 17,206           | 120x120x4   | 18,15          | 4,710 | 1klasė |  |  |  |  |
| 20                                                                                                                                     | Tempimas            | -275,575             | 275                  | 1,1   | 11,023           | 100x100x3   | 11,41          | 3,94  | 1klasė |  |  |  |  |
| 21                                                                                                                                     | Gniuždymas          | 180,885              | 275                  | 1,1   | 7,235            | 80x80x2.5   | 7,59           | 3,15  | 4klasė |  |  |  |  |
| 22                                                                                                                                     | Tempimas            | -88,372              | 275                  | 1,1   | 3,535            | 40x40x2.5   | 3,59           | 1,51  | 1klasė |  |  |  |  |
| 23                                                                                                                                     | Gniuždymas          | 16,031               | 275                  | 1,1   | 0,641            | 40x40x2     | 2,94           | 1,54  | 1klasė |  |  |  |  |
| 24                                                                                                                                     | Gniuždymas          | 45,852               | 275                  | 1,1   | 1,834            | 40x40x2     | 2,94           | 1,54  | 1klasė |  |  |  |  |
| 25                                                                                                                                     | Gniuždymas          | 45,852               | 275                  | 1,1   | 1,834            | 40x40x2     | 2,94           | 1,54  | 1klasė |  |  |  |  |
| 26                                                                                                                                     | Gniuždymas          | 16,031               | 275                  | 1,1   | 0,641            | 40x40x2     | 2,94           | 1,54  | 1klasė |  |  |  |  |
| 27                                                                                                                                     | Tempimas            | -88,372              | 275                  | 1,1   | 3,535            | 40x40x2.5   | 3,59           | 1,51  | 1klasė |  |  |  |  |
| 28                                                                                                                                     | Gniuždymas          | 180,885              | 275                  | 1,1   | 7,235            | 80x80x2.5   | 7,59           | 3,15  | 4klasė |  |  |  |  |
| 29                                                                                                                                     | Tempimas            | -275,575             | 275                  | 1,1   | 11,023           | 100x100x3   | 11,41          | 3,94  | 1klasė |  |  |  |  |
| 30                                                                                                                                     | Gniuždymas          | 430,148              | 275                  | 1,1   | 17,206           | 120x120x4   | 18,15          | 4,71  | 1klasė |  |  |  |  |
| Sk                                                                                                                                     | erspjūvis, pagal r  | naksimalią g         | niuždymo             | įrąžą |                  | 120x120x4   | 18,15          | 4,71  | 1klasė |  |  |  |  |
| Palyginame pagal maksimalią apkrovą apskaičiuotą skerspjūvį su prieš tai parinktu pagal liaunio sąlygą ir priimame reikiamą skerspjūvį |                     |                      |                      |       |                  |             |                |       |        |  |  |  |  |

| 19 | 120x120x4 | 18,15 | 4,71 | 1klasė |
|----|-----------|-------|------|--------|
| 20 | 100x100x3 | 11,41 | 3,94 | 2klasė |

| 21                             | 80x80x2.5 | 7,59  | 3,15 | 2klasė  |
|--------------------------------|-----------|-------|------|---------|
| 22                             | 80x80x5   | 14,36 | 3,03 | 1klasė  |
| 23                             | 80x80x4   | 11,75 | 3,07 | 1klasė  |
| 24                             | 80x80x4   | 11,75 | 3,07 | 1 klasė |
| 25                             | 80x80x4   | 11,75 | 3,07 | 1 klasė |
| 26                             | 80x80x4   | 11,75 | 3,07 | 1 klasė |
| 27                             | 80x80x5   | 14,36 | 3,03 | 1 klasė |
| 28                             | 80x80x2.5 | 7,59  | 3,15 | 2klasė  |
| 29                             | 100x100x3 | 11,41 | 3,94 | 2klasė  |
| 30                             | 120x120x4 | 18,15 | 4,71 | 1klasė  |
| n-tasis iteracinis skaičiavima | IS        |       |      |         |
| 19                             | 120x120x6 | 26,43 | 4,61 | 1klasė  |
| 20                             | 100x100x3 | 11,41 | 2,67 | 2klasė  |
| 21                             | 80x80x5   | 14,36 | 3,79 | 1klasė  |
| 22                             | 50x50x3   | 5,41  | 2,67 | 1klasė  |
| 23                             | 50x50x3   | 5,41  | 3,03 | 1klasė  |
| 24                             | 50x50x3   | 5,41  | 3,03 | 1klasė  |
| 25                             | 50x50x3   | 5,41  | 3,03 | 1klasė  |
| 26                             | 50x50x3   | 5,41  | 3,03 | 1klasė  |
| 27                             | 50x50x3   | 5,41  | 2,67 | 1klasė  |
| 28                             | 80x80x5   | 14,36 | 3,79 | 1klasė  |
| 29                             | 100x100x3 | 11,41 | 2,67 | 2klasė  |
| 30                             | 120x120x6 | 26,43 | 4,61 | 1klasė  |

Antrojoje 5.6 lentelės dalyje įvesties eilutėje pateikiami n – tuoju iteraciniu skaičiavimu priimti skerspjūviai, kurių tikrinimo uždavinio skaičiavimo rezultatai pateikiami 5.7 lentelėje.

|              | Pirmas iteracinis skaičiavimas         |                                               |                         |       |                 |                   |                         |                          |       |                 |                                               |                                  |                                        |                           |                        |                                                      |
|--------------|----------------------------------------|-----------------------------------------------|-------------------------|-------|-----------------|-------------------|-------------------------|--------------------------|-------|-----------------|-----------------------------------------------|----------------------------------|----------------------------------------|---------------------------|------------------------|------------------------------------------------------|
| Elemento Nr. | i <sub>x</sub> =i <sub>y</sub> ,<br>cm | l <sub>x,eff</sub> ≡l <sub>y,eff</sub> ,<br>m | $\lambda_x = \lambda_y$ | α     | $\lambda_{u,c}$ | Liaunio<br>sąlyga | N <sub>Ed</sub> ,<br>kN | $\lambda_{\mathrm{sal}}$ | φ     | γ <sub>M1</sub> | N <sub>b,Rd</sub> (N <sub>t,Rd</sub> ),<br>kN | N <sub>Ed</sub> /N <sub>Rd</sub> | N <sub>Ed</sub> /N <sub>Rd</sub> <=1,0 | Ekonomišku<br>mo rodiklis | Ekonomiškumo<br>sąlyag | Laikomosios<br>galios<br>išnaudojimo<br>koeficientas |
| 19           | 4,61                                   | 3,096                                         | 67                      | 1,125 | 112             | λ<λu,c            | 430,148                 | 2,317                    | 0,766 | 1               | 382,19                                        | 1,125                            | Sąlyga netenkinama                     | 12,55%                    | Sąlyga netenkinama     | 112,55%                                              |
| 20           | 3,94                                   | 3,096                                         | 79                      | 0,878 | 127             | λ<λu,c            | -275,58                 | 2,711                    | 0,000 | 1               | 313,78                                        | 0,878                            | Sąlyga tenkinama                       | 12,17%                    | Sąlyga netenkinama     | 87,83%                                               |
| 21           | 3,15                                   | 3,368                                         | 107                     | 1,847 | 69              | λ>λu,c            | 180,885                 | 3,689                    | 0,469 | 1               | 97,93                                         | 1,847                            | Sąlyga netenkinama                     | 84,72%                    | Sąlyga netenkinama     | 184,72%                                              |
| 22           | 3,03                                   | 3,368                                         | 111                     | 0,500 | 150             | λ<λu,c            | -88,372                 | 3,835                    | 0,000 | 1               | 394,90                                        | 0,224                            | Sąlyga tenkinama                       | 77,62%                    | Sąlyga netenkinama     | 22,38%                                               |
| 23           | 3,07                                   | 3,656                                         | 119                     | 0,500 | 150             | λ<λu,c            | 16,031                  | 4,109                    | 0,400 | 1               | 129,38                                        | 0,124                            | Sąlyga tenkinama                       | 87,61%                    | Sąlyga netenkinama     | 12,39%                                               |
| 24           | 3,07                                   | 3,656                                         | 119                     | 0,500 | 150             | λ<λu,c            | 45,852                  | 4,109                    | 0,400 | 1               | 129,38                                        | 0,354                            | Sąlyga tenkinama                       | 64,56%                    | Sąlyga netenkinama     | 35,44%                                               |
| 25           | 3,07                                   | 3,656                                         | 119                     | 0,500 | 150             | λ<λu,c            | 45,852                  | 4,109                    | 0,400 | 1               | 129,38                                        | 0,354                            | Sąlyga tenkinama                       | 64,56%                    | Sąlyga netenkinama     | 35,44%                                               |
| 26           | 3,07                                   | 3,656                                         | 119                     | 0,500 | 150             | λ<λu,c            | 16,031                  | 4,109                    | 0,400 | 1               | 129,38                                        | 0,124                            | Sąlyga tenkinama                       | 87,61%                    | Sąlyga netenkinama     | 12,39%                                               |
| 27           | 3,03                                   | 3,368                                         | 111                     | 0,500 | 150             | λ<λu,c            | -88,372                 | 3,835                    | 0,000 | 1               | 394,90                                        | 0,224                            | Sąlyga tenkinama                       | 77,62%                    | Sąlyga netenkinama     | 22,38%                                               |
| 28           | 3,15                                   | 3,368                                         | 107                     | 1,847 | 69              | λ>λu,c            | 180,885                 | 3,689                    | 0,469 | 1               | 97,93                                         | 1,847                            | Sąlyga netenkinama                     | 84,72%                    | Sąlyga netenkinama     | 184,72%                                              |
| - 29         | 3,94                                   | 3,096                                         | 79                      | 0,878 | 127             | λ<λu,c            | -275,58                 | 2,711                    | 0,000 | 1               | 313,78                                        | 0,878                            | Sąlyga tenkinama                       | 12,17%                    | Sąlyga netenkinama     | 87,83%                                               |
| 30           | 4,71                                   | 3,096                                         | 66                      | 1,115 | 113             | λ<λu,c            | 430,148                 | 2,268                    | 0,773 | 1               | 385,90                                        | 1,115                            | Sąlyga netenkinama                     | 11,47%                    | Sąlyga netenkinama     | 111,47%                                              |

5.7 lentelė. Pirmuoju iteraciniu skaičiavimu gautų "Santvaros 1" tinklelio elementų laikomosios galios patikrinimas

Kaip matome iš 5.7 lentelėje pateiktų skaičiavimų rezultatų tinklelio elementų, kuriuose veikia didžiausios gniuždymo įrąžos laikomoji galia nepakankama. Kadangi programa yra perskaičiuojamas ribinis laiunis, tai vykdant tolesnius iteracinius skaičiavimus, galima pakoreguoti net tik tuos elementų skerspjūvius, kurių laikomoji galia yra per maža, bet ir tuos, kurių laikomoji galia yra pakankama, tačiau, dėl skaičiavimų pradžioje pasirinkto ribinio liaunio reikšmės programa reikalauja didesnio profiliuočio, tai svarbu vertinant ekonomiškumo sąlygą ( ekonomiškumo sąlyga tenkinama tuomet kai ekonomiškumo rodiklis  $\leq 10$  %).

|              | n-tasis iteracinis skaičiavimas       |                                               |                         |       |                 |                   |                         |                          |       |     |                                               |                                  |                                        |                           |                        |                                                      |
|--------------|---------------------------------------|-----------------------------------------------|-------------------------|-------|-----------------|-------------------|-------------------------|--------------------------|-------|-----|-----------------------------------------------|----------------------------------|----------------------------------------|---------------------------|------------------------|------------------------------------------------------|
| Elemento Nr. | i <sub>x</sub> =i <sub>y,</sub><br>cm | l <sub>x,eff</sub> =l <sub>y,eff</sub> ,<br>m | $\lambda_x = \lambda_y$ | α     | $\lambda_{u,c}$ | Liaunio<br>sąlyga | N <sub>Ed</sub> ,<br>kN | $\lambda_{\mathrm{sal}}$ | φ     | γм1 | N <sub>b,Rd</sub> (N <sub>t,Rd</sub> ),<br>kN | N <sub>Ed</sub> /N <sub>Rd</sub> | N <sub>Ed</sub> /N <sub>Rd</sub> <=1,0 | Ekonomišku<br>mo rodiklis | Ekonomiškumo<br>sąlyag | Laikomosios<br>galios<br>išnaudojimo<br>koeficientas |
| 19           | 4,61                                  | 3,096                                         | 67                      | 0,773 | 134             | λ<λu,c            | 430,148                 | 2,317                    | 0,766 | 1   | 556,55                                        | 0,773                            | Sąlyga tenkinama                       | 22,71%                    | Sąlyga netenkinama     | 77,29%                                               |
| 20           | 2,67                                  | 3,096                                         | 116                     | 0,878 | 127             | λ<λu,c            | -275,58                 | 4,001                    | 0,000 | 1   | 313,78                                        | 0,878                            | Sąlyga tenkinama                       | 12,17%                    | Sąlyga netenkinama     | 87,83%                                               |
| 21           | 3,79                                  | 3,368                                         | 89                      | 0,976 | 121             | λ<λu,c            | 180,885                 | 3,066                    | 0,469 | 1   | 185,27                                        | 0,976                            | Sąlyga tenkinama                       | 2,37%                     | Sąlyga tenkinama       | 97,63%                                               |
| 22           | 2,67                                  | 3,368                                         | 126                     | 0,594 | 144             | λ<λu,c            | -88,372                 | 4,352                    | 0,000 | 1   | 148,78                                        | 0,594                            | Sąlyga tenkinama                       | 40,60%                    | Sąlyga netenkinama     | 59,40%                                               |
| 23           | 3,03                                  | 3,656                                         | 121                     | 0,500 | 150             | λ<λu,c            | 16,031                  | 4,163                    | 0,400 | 1   | 59,57                                         | 0,269                            | Sąlyga tenkinama                       | 73,09%                    | Sąlyga netenkinama     | 26,91%                                               |
| 24           | 3,03                                  | 3,656                                         | 121                     | 0,770 | 134             | λ<λu,c            | 45,852                  | 4,163                    | 0,400 | 1   | 59,57                                         | 0,770                            | Sąlyga tenkinama                       | 23,03%                    | Sąlyga netenkinama     | 76,97%                                               |
| 25           | 3,03                                  | 3,656                                         | 121                     | 0,770 | 134             | λ<λu,c            | 45,852                  | 4,163                    | 0,400 | 1   | 59,57                                         | 0,770                            | Sąlyga tenkinama                       | 23,03%                    | Sąlyga netenkinama     | 76,97%                                               |
| 26           | 3,03                                  | 3,656                                         | 121                     | 0,500 | 150             | λ<λu,c            | 16,031                  | 4,163                    | 0,400 | 1   | 59,57                                         | 0,269                            | Sąlyga tenkinama                       | 73,09%                    | Sąlyga netenkinama     | 26,91%                                               |
| 27           | 2,67                                  | 3,368                                         | 126                     | 0,594 | 144             | λ<λu,c            | -88,372                 | 4,352                    | 0,000 | 1   | 148,78                                        | 0,594                            | Sąlyga tenkinama                       | 40,60%                    | Sąlyga netenkinama     | 59,40%                                               |
| 28           | 3,79                                  | 3,368                                         | 89                      | 0,976 | 121             | λ<λu,c            | 180,885                 | 3,066                    | 0,469 | 1   | 185,27                                        | 0,976                            | Sąlyga tenkinama                       | 2,37%                     | Sąlyga tenkinama       | 97,63%                                               |
| 29           | 2,67                                  | 3,096                                         | 116                     | 0,878 | 127             | λ<λu,c            | -275,58                 | 4,001                    | 0,000 | 1   | 313,78                                        | 0,878                            | Sąlyga tenkinama                       | 12,17%                    | Sąlyga netenkinama     | 87,83%                                               |
| 30           | 4,61                                  | 3,096                                         | 67                      | 0,765 | 134             | λ<λu,c            | 430,148                 | 2,317                    | 0,773 | 1   | 561,95                                        | 0,765                            | Sąlyga tenkinama                       | 23,45%                    | Sąlyga netenkinama     | 76,55%                                               |

5.8 lentelė. N-uoju iteraciniu skaičiavimu gautų "Santvaros 1" tinklelio elementų laikomosios galios patikrinimas

Taip pat kaip ir tinklelio elementai parenkami ir statramsčių elementai. Jų pirmojo iteracinio skaičiavimo rezultatai pateikiami 5.9-5.10 lentelėse.

| Elemento<br>Nr. |            | N <sub>Ed</sub> , kN | f <sub>y</sub> , MPa | γм  | $A_{net,d}, m^2$ | Skerspjūvis | $A_d$ , $cm^2$ | i, cm | Skerspjūvio<br>klasė |
|-----------------|------------|----------------------|----------------------|-----|------------------|-------------|----------------|-------|----------------------|
| 31              | Gniuždymas | 20,784               | 275                  | 1,1 | 0,831            | 40x40x2     | 2,94           | 1,540 | 1klasė               |
| 32              | Gniuždymas | 46,035               | 275                  | 1,1 | 1,841            | 40x40x2     | 2,94           | 1,54  | 1klasė               |
| 33              | Gniuždymas | 47,173               | 275                  | 1,1 | 1,887            | 40x40x2     | 2,94           | 1,54  | 1 klasė              |
| 34              | Tempimas   | -72,553              | 275                  | 1,1 | 2,902            | 40x40x2     | 2,94           | 1,54  | 1 klasė              |
| 35              | Gniuždymas | 47,173               | 275                  | 1,1 | 1,887            | 40x40x2     | 2,94           | 1,54  | 1 klasė              |
| 36              | Gniuždymas | 46,035               | 275                  | 1,1 | 1,841            | 40x40x2     | 2,94           | 1,54  | 1 klasė              |
| 37              | 1,54       | 1klasė               |                      |     |                  |             |                |       |                      |
| S               | 1,54       | 1klasė               |                      |     |                  |             |                |       |                      |

5.9 lentelė. "Santvaros 1" statramsčių elementų skerspjūvio parinkimas pagal veikiančią įrąžą

Palyginame pagal maksimalią apkrovą apskaičiuotą skerspjūvį su prieš tai parinktu pagal liaunio sąlygą ir priimame reikiamą skerspjūvį

| 31                              | 50x50x3 | 5,41  | 1,9  | 1klasė |
|---------------------------------|---------|-------|------|--------|
| 32                              | 50x50x3 | 5,41  | 1,9  | 1klasė |
| 33                              | 60x60x4 | 8,55  | 2,26 | 1klasė |
| 34                              | 70x70x4 | 10,15 | 2,67 | 1klasė |
| 35                              | 60x60x4 | 8,55  | 2,26 | 1klasė |
| 36                              | 50x50x3 | 5,41  | 1,9  | 1klasė |
| 37                              | 50x50x3 | 5,41  | 1,9  | 1klasė |
| Antrasis iteracinis skaičiavima | as      |       |      |        |
| 31                              | 40x40x2 | 5,41  | 1,54 | 1klasė |
| 32                              | 50x50x3 | 5,41  | 1,9  | 1klasė |
| 33                              | 50x50x3 | 8,55  | 1,9  | 1klasė |
| 34                              | 50x50x3 | 10,15 | 1,9  | 1klasė |
| 35                              | 50x50x3 | 8,55  | 1,9  | 1klasė |
| 36                              | 50x50x3 | 5,41  | 1,9  | 1klasė |
| 37                              | 40x40x2 | 5,41  | 1,54 | 1klasė |

|              | Pirmas iteracinis skaičiavimas         |                                               |                                |       |                 |                   |                         |                 |       |     |                                               |                                  |                         |                           |                        |                                                      |
|--------------|----------------------------------------|-----------------------------------------------|--------------------------------|-------|-----------------|-------------------|-------------------------|-----------------|-------|-----|-----------------------------------------------|----------------------------------|-------------------------|---------------------------|------------------------|------------------------------------------------------|
| Elemento Nr. | i <sub>x</sub> =i <sub>y</sub> ,<br>cm | l <sub>x,eff</sub> =l <sub>y,eff</sub> ,<br>m | λ <sub>x</sub> =λ <sub>y</sub> | α     | $\lambda_{u,c}$ | Liaunio<br>sąlyga | N <sub>Ed</sub> ,<br>kN | $\lambda_{sal}$ | φ     | γм1 | N <sub>b,Rd</sub> (N <sub>t,Rd</sub> ),<br>kN | N <sub>Ed</sub> /N <sub>Rd</sub> | $N_{Ed}/N_{Rd} \ll 1.0$ | Ekonomišku<br>mo rodiklis | Ekonomiškumo<br>sąlyag | Laikomosios<br>galios<br>išnaudojimo<br>koeficientas |
| 31           | 1,9                                    | 1,650                                         | 87                             | 0,500 | 150             | λ<λu,c            | 20,784                  | 2,996           | 0,604 | 1   | 89,83                                         | 0,231                            | Sąlyga tenkinama        | 76,86%                    | Sąlyga netenkinama     | 23,14%                                               |
| 32           | 1,9                                    | 2,025                                         | 107                            | 0,657 | 141             | λ<λu,c            | 46,035                  | 3,677           | 0,471 | 1   | 70,11                                         | 0,657                            | Sąlyga tenkinama        | 34,34%                    | Sąlyga netenkinama     | 65,66%                                               |
| 33           | 2,26                                   | 2,400                                         | 106                            | 0,500 | 150             | λ<λu,c            | 47,173                  | 3,664           | 0,474 | 1   | 111,35                                        | 0,424                            | Sąlyga tenkinama        | 57,63%                    | Sąlyga netenkinama     | 42,37%                                               |
| 34           | 2,67                                   | 2,775                                         | 104                            | 0,500 | 150             | λ<λu,c            | -72,553                 | 3,586           | 0,000 | 1   | 279,13                                        | 0,260                            | Sąlyga tenkinama        | 74,01%                    | Sąlyga netenkinama     | 25,99%                                               |
| 35           | 2,26                                   | 2,400                                         | 106                            | 0,500 | 150             | λ<λu,c            | 47,173                  | 3,664           | 0,474 | 1   | 111,35                                        | 0,424                            | Sąlyga tenkinama        | 57,63%                    | Sąlyga netenkinama     | 42,37%                                               |
| 36           | 1,9                                    | 2,025                                         | 107                            | 0,657 | 141             | λ<λu,c            | 46,035                  | 3,677           | 0,471 | 1   | 70,11                                         | 0,657                            | Sąlyga tenkinama        | 34,34%                    | Sąlyga netenkinama     | 65,66%                                               |
| 37           | 1,9                                    | 1,650                                         | 87                             | 0,500 | 150             | λ<λu,c            | 20,784                  | 2,996           | 0,604 | 1   | 89,83                                         | 0,231                            | Sąlyga tenkinama        | 76,86%                    | Sąlyga netenkinama     | 23,14%                                               |

5.10 lentelė. Pirmuoju iteraciniu skaičiavimu gautų "Santvaros 1" statramsčių elementų laikomosios galios patikrinimas

5.11 lentelė. N-tuoju iteraciniu skaičiavimu gautų "Santvaros 1" statramsčių elementų laikomosios galios patikrinimas

| n-tasis iteracinis skaičiavimas |                                        |                                               |                                |       |                 |                   |                         |                 |       |     |                                               |                                  |                                        |                           |                        |                                                      |
|---------------------------------|----------------------------------------|-----------------------------------------------|--------------------------------|-------|-----------------|-------------------|-------------------------|-----------------|-------|-----|-----------------------------------------------|----------------------------------|----------------------------------------|---------------------------|------------------------|------------------------------------------------------|
| Elemento<br>Nr                  | i <sub>x</sub> =i <sub>y</sub> ,<br>cm | l <sub>x,eff</sub> =l <sub>y,eff</sub> ,<br>m | λ <sub>x</sub> =λ <sub>y</sub> | α     | $\lambda_{u,c}$ | Liaunio<br>sąlyga | N <sub>Ed</sub> ,<br>kN | $\lambda_{sal}$ | φ     | γм1 | N <sub>b,Rd</sub> (N <sub>t,Rd</sub> ),<br>kN | N <sub>Ed</sub> /N <sub>Rd</sub> | N <sub>Ed</sub> /N <sub>Rd</sub> <=1,0 | Ekonomišku<br>mo rodiklis | Ekonomiškumo<br>sąlyag | Laikomosios<br>galios<br>išnaudojimo<br>koeficientas |
| 3                               | 1 1,54                                 | 1,650                                         | 107                            | 0,500 | 150             | λ<λu,c            | 20,784                  | 3,697           | 0,468 | 1   | 69,60                                         | 0,299                            | Sąlyga tenkinama                       | 70,14%                    | Sąlyga netenkinama     | 29,86%                                               |
| 32                              | 2 1,9                                  | 2,025                                         | 107                            | 0,657 | 141             | λ<λu,c            | 46,035                  | 3,677           | 0,471 | 1   | 70,11                                         | 0,657                            | Sąlyga tenkinama                       | 34,34%                    | Sąlyga netenkinama     | 65,66%                                               |
| 3.                              | 3 1,9                                  | 2,400                                         | 126                            | 0,551 | 147             | λ<λu,c            | 47,173                  | 4,358           | 0,364 | 1   | 85,62                                         | 0,551                            | Sąlyga tenkinama                       | 44,90%                    | Sąlyga netenkinama     | 55,10%                                               |
| 34                              | 4 1,9                                  | 2,775                                         | 146                            | 0,500 | 150             | λ<λu,c            | -72,553                 | 5,039           | 0,000 | 1   | 279,13                                        | 0,260                            | Sąlyga tenkinama                       | 74,01%                    | Sąlyga netenkinama     | 25,99%                                               |
| 3:                              | 5 1,9                                  | 2,400                                         | 126                            | 0,551 | 147             | λ<λu,c            | 47,173                  | 4,358           | 0,364 | 1   | 85,62                                         | 0,551                            | Sąlyga tenkinama                       | 44,90%                    | Sąlyga netenkinama     | 55,10%                                               |
| 3                               | 6 1,9                                  | 2,025                                         | 107                            | 0,657 | 141             | λ<λu,c            | 46,035                  | 3,677           | 0,471 | 1   | 70,11                                         | 0,657                            | Sąlyga tenkinama                       | 34,34%                    | Sąlyga netenkinama     | 65,66%                                               |
| 3'                              | 7 1,54                                 | 1,650                                         | 107                            | 0,500 | 150             | λ<λu,c            | 20,784                  | 3,697           | 0,468 | 1   | 69,60                                         | 0,299                            | Sąlyga tenkinama                       | 70,14%                    | Sąlyga netenkinama     | 29,86%                                               |

Iš 5.10 lentelėje pateiktų skaičiavimo rezultatų matyti, kad visų santvaros statramsčių elementų laikomoji galia yra pakankama, tačiau iteracinių skaičiavimo 5.9 lentelės ivesties eilutėje galime pakoreguoti vamzdinius profiliuočius, kad pasiekti didesnį ekonomiškumą. Mažesnių profiliuočių parinkti negalima dėl liaunio sąlygos, kadangi santvaros statramsčių elementų ekonomiškumo rodiklis labai mažas, galima bandyti skaičiuoti tokia santvarą be šių elementų. Nereikia pamiršti, kad tuomet padidės santvaros viršutinės juostos elementų skaičiuojamasis ilgis, ir gali tekti priimti didesnio skerspjūvio profiliuotį šiems santvaros elementų skaičiuoti tokia santvaros viršutinės juostos elementų skaičiuojamasis ilgis, ir gali tekti priimti

Tinklelio elementų profiliuočiai neunifikuojami, priimami mažiausi skerspjūviai pagal laikomosios galios ir ribinio liaunio sąlygas.

#### 5.1.2 "Santvaros 2" konstrukcinių elementų parinkimas

Kaip ir ankstesniame poskyryje santvaros konstrukciniai elementai parenkami ir tikrinami ta pačia kompiuterine programa, tik šiuo atveju vadovaujantis 3.1 skyriuje pateiktomis sąlygomis, santvaros apatinės juostos elementų skaičiavimų rezultatai pateikiami 5.12 lentelėje.

|                                 |                                               |                                          | Skerenjūvio                          |                                 |                  |             |                |         |        |
|---------------------------------|-----------------------------------------------|------------------------------------------|--------------------------------------|---------------------------------|------------------|-------------|----------------|---------|--------|
| Elemento<br>Nr.                 |                                               | N <sub>Ed</sub> , kN                     | f <sub>y</sub> , MPa                 | γ <sub>M1</sub>                 | $A_{net,d}, m^2$ | Skerspjūvis | $A_d$ , $cm^2$ | i, cm   | klasė  |
| 1                               | Tempimas                                      | -345,117                                 | 275                                  | 1                               | 12,550           | 110x110x3   | 12,61          | 4,350   | 3klasė |
| 2                               | Tempimas                                      | -693,943                                 | 275                                  | 1                               | 25,234           | 140x140x5   | 26,36          | 5,48    | 1klasė |
| 3                               | Tempimas                                      | -767,239                                 | 275                                  | 27,900                          | 150x150x5        | 28,36       | 5,89           | 1klasė  |        |
| 4                               | Tempimas                                      | -767,239                                 | 275                                  | 27,900                          | 150x150x5        | 28,36       | 5,89           | 1klasė  |        |
| 5                               | Tempimas                                      | -693,943                                 | 275                                  | 1                               | 25,234           | 140x140x5   | 26,36          | 5,48    | 1klasė |
| 6                               | Tempimas                                      | -345,117                                 | 275                                  | 1                               | 12,550           | 110x110x3   | 12,61          | 4,35    | 3klasė |
| Priimam                         | as skerspjūvi                                 | is, pagal m<br>įrąžą                     | aksimalia                            | ą gni                           | uždymo           | 150x150x5   | 28,36          | 5,89    | 1klasė |
| Palygina<br>skerspjūv<br>priima | ame pagal m<br>vį su prieš tai<br>me reikiamą | aksimalią a<br>i parinktu p<br>santvaros | apkrovą a<br>bagal liau<br>juostos s | aičiuotą<br>sąlygą ir<br>pjūvį. | 150x150x5        | 28,36       | 5,89           | 1 klasė |        |
| Priartė                         | jimo būdu pa                                  | arenkame r                               | eikiamą s                            | spjūvį:                         | 150x150x5        | 28,36       | 5,89           | 1klasė  |        |

5.12 lentelė. "Santvaros 2" apatinės juostos elementų parinkimas pagal veikiančią įrąžą

Santvaros apatinės juostos elementų laikomoji galia skaičiuojama pagal 3.5 formulę ir tikrinama 3.4 sąlyga, pirmojo iteracinio skaičiavimo rezultatai pateikiami 5.13 lentelėje.

5.13 lentelė. "Santvaros 2" apatinės juostos elementų laikomosios galios skaičiavimo

ir tikrinimo pirmasis iteracinis skaičiavimas

| Pradiniai duomenys                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |          |              |          |                  |  |  |  |  |  |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|----------|--------------|----------|------------------|--|--|--|--|--|--|--|
| i <sub>x</sub> =i <sub>y</sub> ,<br>cm | $ \begin{array}{c c} i_x=i_y, \\ cm \end{array}  \begin{array}{c c} l_{x,eff}=l_{y,eff}, \\ m \end{array}  \lambda_x=\lambda_y \end{array}  \begin{array}{c c} W_{el}, \\ cm^3 \end{array}  \begin{array}{c c} W_{pl}, \\ cm^3 \end{array}  \begin{array}{c c} W_{pl}, \\ cm^3 \end{array}  \begin{array}{c c} W_{Ed}, \\ kNm \end{array}  \begin{array}{c c} M_{y,Ed}, \\ kNm \end{array}  \begin{array}{c c} M_{z,Ed}, \\ kNm \end{array}  \begin{array}{c c} M_{z,Ed}, \\ kNm \end{array} $ |           |           |          |              |          |                  |  |  |  |  |  |  |  |
| 5,89                                   | 5,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92        | 130,9     | 153      | -767,239     | 0,000    | -0,207           |  |  |  |  |  |  |  |
|                                        | Tikrir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | name sant | tvaros ap | oatinę j | uostą tempin | nui paga | l sąlygą:        |  |  |  |  |  |  |  |
| N <sub>t Pd</sub> =                    | $= \mathbf{A} \cdot \mathbf{f}_{v} / \gamma_{MO} =$                                                                                                                                                                                                                                                                                                                                                                                                                                            | 779 90    | kN        | NE       | d∕N+ ₽d≤1    | 0.98     | Salvga tenkinama |  |  |  |  |  |  |  |

Kaip matome iš 5.13 lentelėje pateiktų rezultatų užteko vieno iteracinio žingsnio, kad parinktas profiliuotis tenkintų laikomosios galios sąlygą, tačiau, kaip buvo minėta, geriau pasirinkti storasienį profiliuotį su siauresne lentyna, todėl atliekame pakartotinius skaičiavimus ir parenkame 120x120x8 profiliuotį, skaičiavimo rezultatai pateikiami 5.14 lentelėje.

5.14 lentelė. "Santvaros 2" apatinės juostos elementų laikomosios galios skaičiavimo ir tikrinimo n-asis iteracinis skaičiavimas

| Pradiniai duomenys                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |       |          |       |        |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-------|----------|-------|--------|--|--|--|--|--|--|--|
| i <sub>x</sub> =i <sub>y</sub> ,<br>cm                                                                                    | $\begin{array}{c c} i_x=i_y, \\ cm \end{array}  \begin{array}{c c} l_{x,eff}=l_{y,eff}, \\ m \end{array}  \begin{array}{c c} \lambda_x=\lambda_y \end{array}  \begin{array}{c c} W_{el}, \\ cm^3 \end{array}  \begin{array}{c c} W_{pl}, \\ cm^3 \end{array}  \begin{array}{c c} N_{Ed}, & kN \end{array}  \begin{array}{c c} M_{y,Ed}, \\ kNm \end{array}  \begin{array}{c c} M_{z,Ed}, & kNm \end{array}$ |     |       |       |          |       |        |  |  |  |  |  |  |  |
| 4,49                                                                                                                      | 5,400                                                                                                                                                                                                                                                                                                                                                                                                       | 120 | 112,8 | 137,8 | -767,239 | 0,000 | -0,207 |  |  |  |  |  |  |  |
|                                                                                                                           | Tikriname santvaros apatinę juostą tempimui pagal sąlygą:                                                                                                                                                                                                                                                                                                                                                   |     |       |       |          |       |        |  |  |  |  |  |  |  |
| $N_{t,p,d} = A \cdot f_{t/\gamma_{M0}} = 925.10 \text{ kN} \text{ N}_{Ed}/N_{t,p,d} \leq 1 0.83 \text{ Salvga tenkinama}$ |                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |       |          |       |        |  |  |  |  |  |  |  |

Pagal 3.12 formulę skaičiuojame santvaros viršutinės juostos elementų laikomąją galią, priimdami juos kaip gniuždomuosius lenkiamuosius elementus, ir tikriname poveikių sąveikos sąlyga – 3.11. Kompiuterine programa atliktų skaičiavimų rezultatai pateikiami 5.15-5.16 lentelėse. 5.15 lentelė. "Santvaros 2" viršutinės juostos elementų parinkimas pagal veikiančią įrąžą

| Elemento Nr.                      |                                                     | N <sub>Ed</sub> , kN                   | f <sub>v</sub> , MPa | γ <sub>M1</sub> | $A_{net,d}, m^2$ | Skerspjūvis | $A_d$ , $cm^2$ | i, cm | Skerspjūvio<br>klasė |
|-----------------------------------|-----------------------------------------------------|----------------------------------------|----------------------|-----------------|------------------|-------------|----------------|-------|----------------------|
| 7                                 | Gniuždymas                                          | 1,961                                  | 275                  | 1               | 0,071            | 40x40x2     | 2,94           | 1,54  | 1klasė               |
| 8                                 | Gniuždymas                                          | 565,004                                | 275                  | 1               | 20,546           | 140x140x4   | 21,35          | 5,52  | 2klasė               |
| 9                                 | Gniuždymas                                          | 564,496                                | 275                  | 1               | 20,527           | 140x140x4   | 21,35          | 5,52  | 2klasė               |
| 10                                | 28,36                                               | 5,89                                   | 1klasė               |                 |                  |             |                |       |                      |
| 11                                | Gniuždymas                                          | 761,969                                | 275                  | 1               | 27,708           | 150x150x5   | 28,36          | 5,89  | 1klasė               |
| 12                                | Gniuždymas                                          | 742,771                                | 275                  | 1               | 27,010           | 100x100x8   | 27,24          | 3,67  | 1klasė               |
| 13                                | Gniuždymas                                          | 742,771                                | 275                  | 1               | 27,010           | 100x100x8   | 27,24          | 3,67  | 1klasė               |
| 14                                | Gniuždymas                                          | 761,969                                | 275                  | 1               | 27,708           | 150x150x5   | 28,36          | 5,89  | 1klasė               |
| 15                                | Gniuždymas                                          | 761,996                                | 275                  | 1               | 27,709           | 150x150x5   | 28,36          | 5,89  | 1klasė               |
| 16                                | Gniuždymas                                          | 564,496                                | 275                  | 1               | 20,527           | 140x140x4   | 21,35          | 5,52  | 2klasė               |
| 17                                | Gniuždymas                                          | 565,004                                | 275                  | 1               | 20,546           | 140x140x4   | 21,35          | 5,52  | 2klasė               |
| 18                                | Gniuždymas                                          | 1,961                                  | 275                  | 1               | 0,071            | 40x40x2     | 2,94           | 1,54  | 1klasė               |
| Priimamas sk                      | erspjūvis, paga                                     | al maksim                              | alią gniu            | ždyı            | no įrąžą         | 150x150x5   | 28,36          | 5,89  | 1klasė               |
| Palyginame pa<br>su prieš tai par | gal maksimaliq<br>inktu pagal liau<br>santvaros juo | apkrovą a<br>unio sąlyg<br>ostos skers | 150x150x5            | 28,36           | 5,89             | 1klasė      |                |       |                      |
| Priartėji                         | mo būdu paren                                       | kame reik                              | iamą skei            | rspji           | ūvį:             | 150x150x5   | 28,36          | 5,89  | 1klasė               |

| 5.16 lentelė.    | "Santvaros 2"   | viršutinės juostos | elementų la | ikomosios g | galios skaičiavimo |
|------------------|-----------------|--------------------|-------------|-------------|--------------------|
| ir tikrinimo pir | masis iteracini | s skaičiavimas     |             |             |                    |

|                                        |                                               | Ι                      | Pradiniai                            | duomen                               | ys                      |                            |                              | м<br>20 т                | lz(kNm)                  |                          |                          |            | <sub>-20</sub> |
|----------------------------------------|-----------------------------------------------|------------------------|--------------------------------------|--------------------------------------|-------------------------|----------------------------|------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|----------------|
| i <sub>x</sub> ≕i <sub>y</sub> ,<br>cm | l <sub>x,eff</sub> =l <sub>y,eff</sub> ,<br>m | λ_x=λ_y                | W <sub>el</sub> ,<br>cm <sup>3</sup> | W <sub>pl</sub> ,<br>cm <sup>3</sup> | N <sub>Ed</sub> ,<br>kN | M <sub>y.Ed</sub> ,<br>kNm | M <sub>z.Ed</sub> ,<br>kNm   | 10 -                     | 1.4                      |                          | 1 5 1                    |            | 8.81-10        |
| 5,89                                   | 2,709                                         | 46                     | 130,9                                | 153                                  | 762,00                  | 0,000                      | 11,412                       | 7                        |                          | 1                        | 2                        |            | 3.01           |
|                                        |                                               | S                      | aičiuojan                            | nieji dydž                           | žiai                    |                            |                              |                          |                          |                          |                          |            |                |
| $\lambda_{sal}$                        | χ                                             | N <sub>b,Rd</sub> , kN | M <sub>y.Ed</sub> ,<br>kNm           | M <sub>z.Ed</sub> ,<br>kNm           | ky                      | kz                         | $\mu_y$                      | 10 -                     |                          |                          | -0.1                     |            | -10            |
| 0,5298                                 | 0,8262                                        | 644,34                 | 42,08                                | 42,08                                | 0,0000                  | 1,5000                     | 0,0000                       | 20 -                     |                          |                          |                          |            | =20            |
| $\mu_z$                                | $\beta_{My}$                                  | $\beta_{Mz}$           | $\beta_{M.\psi}$                     | $\beta_{MQ}$                         | M <sub>Q</sub> , kNm    | ∆M, kNn                    | M <sub>Q,real</sub> ,<br>kNm | M <sub>y1</sub> ,<br>kNm | M <sub>y2</sub> ,<br>kNm | M <sub>z1</sub> ,<br>kNm | M <sub>z2</sub> ,<br>kNm | $\psi_{y}$ | ψz             |
| -0,7626                                | 0,0000                                        | 1,2803                 | 1,2590                               | 1,3000                               | 10,1050                 | 19,5000                    | -8,1                         | 0                        | 0                        | 11,4                     | 8,81                     | 0          | 0,7728         |
| Tikrinan                               | ne poveikių                                   | į sąveikos             | sąlygą (                             | 3,11.1):                             | 1,59                    | Sąlyga ne                  | etenkinama                   |                          |                          |                          |                          |            |                |

Remiantis 3.5 lentele, turime įvertinti lenkiamojo momento diagramos formos koeficientus, tai iš kompiuterine programa *Staad.pro* gautų įrąžų nustatymo rezultatų į susivestą programą atikeliame nagrinėjamo elemento lenkiamųjų momentų diagramą ir įvesties eilutėse įvedame reikiamus duomenis, kad programa galėtų vykdyti tolesnius skaičiavimus. Iš 5.16 lentelėje pateiktų skaičiavimo rezultatų matome, kad 5.15 lentelėje priimto profiliuočio pagal veikiančią įrąža laikomoji galia yra nepakankama, todėl turime atlikti pakartotinius skaičiavimus. N-tuoju iteraciniu skaičiavimu pasirinkto 160x160x8 profiliuočio laikomosios galios skaičiavimo ir tikrinimo rezultatai pateikiami 5.17 lentelėje.

5.17 lentelė. "Santvaros 2" viršutinės juostos elementų laikomosios galios skaičiavimo ir tikrinimo n-asis iteracinis skaičiavimas

|                                  |                                          | F                      | Pradiniai          | duomen              | ys                |              |                       | <sup>20</sup> ∠   | z(kNm)            |                   |                   |    | ۲ <sup>20</sup> |
|----------------------------------|------------------------------------------|------------------------|--------------------|---------------------|-------------------|--------------|-----------------------|-------------------|-------------------|-------------------|-------------------|----|-----------------|
| i <sub>x</sub> =i <sub>y</sub> , | l <sub>x,eff</sub> =l <sub>y,eff</sub> , | λ =λ                   | W <sub>el</sub> ,  | W <sub>pl</sub> ,   | N <sub>Ed</sub> , | $M_{y.Ed}$ , | M <sub>z.Ed</sub> ,   | 10                | 1.4               |                   |                   | 8  | 81-10           |
| cm                               | m                                        | N <sub>X</sub> Ny      | cm <sup>3</sup>    | cm <sup>3</sup>     | kN                | kNm          | kNm                   | 10                |                   |                   |                   |    |                 |
| 6,12                             | 2,709                                    | 44                     | 217,7              | 260,1               | 761,996           | 0,000        | 11,412                | 7                 |                   | 1.(               | 51                |    | 8               |
|                                  |                                          | Sa                     | aičiuojan          | nieji dydž          | žiai              |              |                       |                   |                   | 1                 | 2                 | 3  | 3.01            |
|                                  |                                          |                        | $M_{y.Ed}\text{,}$ | M <sub>z.Ed</sub> , | k                 | k            |                       | 10 -              |                   | -8                | .1                |    | -10             |
| $\lambda_{sal}$                  | χ                                        | N <sub>b,Rd</sub> , kN | kNm                | kNm                 | ку                | ĸz           | μу                    |                   |                   |                   |                   |    |                 |
| 0,5099                           | 0,8375                                   | 1069,51                | 71,53              | 71,53               | 0,0000            | 1,5000       | 0,0000                | 20 -              |                   |                   |                   |    | -20             |
|                                  | ß                                        | ß                      | ß                  | ß                   | M. kNm            | M LND        | M <sub>Q,real</sub> , | M <sub>y1</sub> , | M <sub>y2</sub> , | M <sub>z1</sub> , | M <sub>z2</sub> , |    |                 |
| μz                               | РМу                                      | Рмz                    | РМ.ψ               | рмү                 | IVIQ, KINIII      | MVI, KINII   | kNm                   | kNm               | kNm               | kNm               | kNm               | Ψy | Ψz              |
| -0,7329                          | 0,0000                                   | 1,2813                 | 1,2590             | 1,3000              | 4,4050            | 8,1000       | -8,1                  | 0                 | 0                 | 11,4              | 8,81              | 0  | 0,7728          |
| Tikrinam                         | ne poveikiu                              | saveikos               | salvga (           | 3.11.1):            | 0.95              | Salvga t     | enkinama              |                   |                   |                   |                   |    |                 |

Atlikus skaičiavimus matome, kad taikant [6] metodiką santvaros viršutinės juostos profiliuočio laikomoji galia gauta mažesnė nei pagal [20] metodiką nors santvarų elementuose veikiančios įrąžos beveik vienodos (žr. 2 priedą). Taip yra todėl, kad [20] metodikoje klupumo koeficientu mažinama tik klumpamoji galia,o pats klupumo koeficientas esant mažoms ekscentriteto reikšmėme praktiškai neįvertina lenkiamojo momento, kuris jei pažiūrėsime 5.17 lentelėje pateiktus skaičiavimus daro stiprų poveiki laikomosios galios reikšmei.

Santvaros tinklelio elementai projektuojami tik kaip ašinę jėgą perimantys elementai, jų laikomosios galios skaičiavimas atliekamas pagal 3.1.2 poskyryje pateiktas nuostatas. Programa

atlikto skerspjūvio parinkimo pirmojo ir n-ojo iteracinio skaičiavimo rezultatai pateikiami 5.18 lentelėje. Priimtų profiliuočių laikomosios galios nustatymo ir tikrinimo rezultatai pateikaimi 5.19-5.20 lentelėse.

|           | Tinklelio elementai |                                 |                           |           |                         |                           |                      |          |                      |  |  |  |
|-----------|---------------------|---------------------------------|---------------------------|-----------|-------------------------|---------------------------|----------------------|----------|----------------------|--|--|--|
| Elemento  |                     |                                 |                           |           |                         |                           |                      |          | cı :- :              |  |  |  |
| Nr.       |                     | N kN                            | f MPa                     | o/        | $\Lambda = m^2$         | Skorenjūvie               | $\Lambda \cdot cm^2$ | i cm     | Skerspjuvio<br>klasė |  |  |  |
| 19        | Gniuždymas          | $1N_{Ed}$ , KIN                 | $1_{\rm y}$ , WI a        | ΥM        | $A_{\text{net,d}}, \Pi$ | 00x00x5                   | $A_d$ , cm           | 2 /20    | 1klasė               |  |  |  |
| 20        | Tempimes            | 278 402                         | 275                       | 1         | 10,198                  | 90x90x3                   | 10,50                | 2,430    | 1klasė               |  |  |  |
| 20        | Cniuždumos          | 197 200                         | 275                       | 1         | 6 202                   | 70x70x4                   | 6.04                 | 2,07     | Aklasó               |  |  |  |
| 21        | Tompimos            | <u>107,200</u><br><u>88.002</u> | 275                       | 1         | 2,226                   | 90x90x2                   | 2 50                 | 3,30     | 4Klase               |  |  |  |
| 22        | Cniuždumos          | -00,995                         | 40x40x2.3                 | 2.04      | 1,51                    | 1klasė                    |                      |          |                      |  |  |  |
| 23        | Gniuždymas          | 13,44                           | $\frac{40x40x2}{40x40x2}$ | 2,94      | 1,54                    | 1klasė                    |                      |          |                      |  |  |  |
| 25        | Gniuždymas          | 43,673                          | 40x40x2                   | 2,94      | 1,54                    | 1klasė                    |                      |          |                      |  |  |  |
| 26        | Gniuždymas          | 15 44                           | 0.561                     | 40x40x2   | 2,94                    | 1,54                      | 1klasė               |          |                      |  |  |  |
| 23        | Tempimas            | -88 00/                         | 3 236                     | 40x40x2 5 | 3 59                    | 1,54                      | 1klasė               |          |                      |  |  |  |
| 28        | Gniuždymas          | 187 208                         | 275                       | 1         | 6.808                   | 90x90x2.5                 | 6.94                 | 3.58     | Aklasė               |  |  |  |
| 20        | Tempimas            | 278 /03                         | 275                       | 1         | 10.127                  | $\frac{90x90x2}{70x70x4}$ | 10.15                | 2.67     | -Klase<br>1klasė     |  |  |  |
| 30        | Cniuždumos          | -270,493                        | 275                       | 1         | 16,127                  | 70x70x4                   | 16.26                | 2,07     | 1klasė               |  |  |  |
| Ske       | rsnjūvis nagal n    | 443,433<br>naksimalia (         | 90x90x5                   | 16.36     | 2 / 2                   | 1 klasė                   |                      |          |                      |  |  |  |
|           | ispjuvis, pagai ii  |                                 | Sinazayin                 | 0 քլ      | <i>ન્</i> ટ્રન્         | 9029023                   | 10,50                | 5,45     | IKIASC               |  |  |  |
| Palyginam | ie pagal maksim     | alią apkrova                    | ą apskaiči                | uota      | ą skerspjūvį            | su prieš tai pa           | rinktu pag           | al liaun | io sąlygą ir         |  |  |  |
|           |                     |                                 | priimame                  | rei       | klamą skers             | pjuvį                     |                      |          |                      |  |  |  |
|           |                     | 19                              |                           |           |                         | 90x90x5                   | 16,36                | 3,43     | 1klasė               |  |  |  |
|           |                     | 20                              |                           |           |                         | 70x70x4                   | 10,15                | 2,67     | 1 klasė              |  |  |  |
|           |                     | 21                              |                           |           |                         | 90x90x2                   | 6,94                 | 3,58     | 4klasė               |  |  |  |
|           |                     | 22                              |                           |           |                         | 70x70x4                   | 10,15                | 2,67     | 1 klasė              |  |  |  |
|           |                     | 23                              |                           |           |                         | 80x80x5                   | 14,36                | 3,03     | 1 klasė              |  |  |  |
|           |                     | 24                              |                           |           |                         | 80x80x5                   | 14,36                | 3,03     | 1klasė               |  |  |  |
|           |                     | 25                              |                           |           |                         | 80x80x5                   | 14,36                | 3,03     | 1klasė               |  |  |  |
|           |                     | 26                              |                           |           |                         | 80x80x5                   | 14,36                | 3,03     | 1klasė               |  |  |  |
|           |                     | 27                              |                           |           |                         | 70x70x4                   | 10,15                | 2,67     | 1klasė               |  |  |  |
|           |                     | 28                              |                           |           |                         | 90x90x2                   | 6,94                 | 3,58     | 4klasė               |  |  |  |
|           |                     | 29                              |                           |           |                         | 70x70x4                   | 10,15                | 2,67     | 1klasė               |  |  |  |
|           |                     | 30                              |                           |           |                         | 90x90x5                   | 16,36                | 3,43     | 1klasė               |  |  |  |
|           |                     | -                               | N-tasis ite               | erac      | inis skaičia            | vimas                     |                      |          |                      |  |  |  |
|           |                     | 19                              |                           |           |                         | 120x120x6                 | 26,43                | 4,61     | 1klasė               |  |  |  |
|           |                     | 20                              |                           |           |                         | 70x70x4                   | 10,15                | 2,67     | 1klasė               |  |  |  |
|           |                     | 21                              |                           |           |                         | 90x90x5                   | 16,36                | 3,43     | 1klasė               |  |  |  |
|           |                     | 22                              | 70x70x4                   | 10,15     | 2,67                    | 1klasė                    |                      |          |                      |  |  |  |
|           |                     | 23                              | 80x80x5                   | 14,36     | 3,03                    | 1klasė                    |                      |          |                      |  |  |  |
|           |                     | 24                              |                           |           |                         | 80x80x5                   | 14,36                | 3,03     | 1klasė               |  |  |  |
|           |                     | 25                              |                           |           |                         | 80x80x5                   | 14,36                | 3,03     | 1klasė               |  |  |  |
|           |                     | 26                              |                           | 80x80x5   | 14,36                   | 3,03                      | 1klasė               |          |                      |  |  |  |
|           |                     | 27                              |                           |           |                         | 70x70x4                   | 10,15                | 2,67     | 1klasė               |  |  |  |

5.18 lentelė. "Santvaros 2" tinklelio elementų parinkimas pagal veikiančią įrąžą

| 28 | 90x90x5   | 16,36 | 3,43 | 1klasė |
|----|-----------|-------|------|--------|
| 29 | 70x70x4   | 10,15 | 2,67 | 1klasė |
| 30 | 120x120x6 | 26,43 | 4,61 | 1klasė |

| Elemento Nr. | i <sub>x</sub> =i <sub>y</sub> ,<br>cm | l <sub>x,eff</sub> =l <sub>y,eff</sub> ,<br>m | $\lambda_x = \lambda_y$ | N <sub>ed</sub> ,<br>kN | $\lambda_{\mathrm{sal}}$ | χ     | Ύм1 | N <sub>b,Rd</sub> (N <sub>t,Rd</sub> ),<br>kN | N <sub>Ed</sub> /N <sub>Rd</sub> | N <sub>Ed</sub> /N <sub>Rd</sub> <=1,0 | Ekonomiškumo<br>rodiklis | Ekonomiškumo<br>sąlyag | Laikomosios<br>galios<br>išnaudojimo<br>koeficientas |
|--------------|----------------------------------------|-----------------------------------------------|-------------------------|-------------------------|--------------------------|-------|-----|-----------------------------------------------|----------------------------------|----------------------------------------|--------------------------|------------------------|------------------------------------------------------|
| 19           | 3,43                                   | 2,903                                         | 85                      | 445,433                 | 0,975                    | 0,555 | 1   | 249,57                                        | 1,785                            | Sąlyga netenkinama                     | 78,48%                   | Sąlyga netenkinama     | 178,48%                                              |
| 20           | 2,67                                   | 2,903                                         | 109                     | -278,493                | 1,252                    | 0,000 | 1   | 279,13                                        | 0,998                            | Sąlyga tenkinama                       | 0,23%                    | Sąlyga tenkinama       | 99,77%                                               |
| 21           | 3,58                                   | 3,158                                         | 88                      | 187,208                 | 1,016                    | 0,531 | 1   | 101,29                                        | 1,848                            | Sąlyga netenkinama                     | 84,82%                   | Sąlyga netenkinama     | 184,82%                                              |
| 22           | 2,67                                   | 3,158                                         | 118                     | -88,993                 | 1,362                    | 0,000 | 1   | 279,13                                        | 0,319                            | Sąlyga tenkinama                       | 68,12%                   | Sąlyga netenkinama     | 31,88%                                               |
| 23           | 3,03                                   | 3,428                                         | 113                     | 15,44                   | 1,303                    | 0,388 | 1   | 153,05                                        | 0,101                            | Sąlyga tenkinama                       | 89,91%                   | Sąlyga netenkinama     | 10,09%                                               |
| 24           | 3,03                                   | 3,428                                         | 113                     | 43,673                  | 1,303                    | 0,388 | 1   | 153,05                                        | 0,285                            | Sąlyga tenkinama                       | 71,46%                   | Sąlyga netenkinama     | 28,54%                                               |
| 25           | 3,03                                   | 3,428                                         | 113                     | 43,673                  | 1,303                    | 0,388 | 1   | 153,05                                        | 0,285                            | Sąlyga tenkinama                       | 71,46%                   | Sąlyga netenkinama     | 28,54%                                               |
| 26           | 3,03                                   | 3,428                                         | 113                     | 15,44                   | 1,303                    | 0,388 | 1   | 153,05                                        | 0,101                            | Sąlyga tenkinama                       | 89,91%                   | Sąlyga netenkinama     | 10,09%                                               |
| 27           | 2,67                                   | 3,158                                         | 118                     | -88,994                 | 1,362                    | 0,000 | 1   | 279,13                                        | 0,319                            | Sąlyga tenkinama                       | 68,12%                   | Sąlyga netenkinama     | 31,88%                                               |
| 28           | 3,58                                   | 3,158                                         | 88                      | 187,208                 | 1,016                    | 0,531 | 1   | 101,29                                        | 1,848                            | Sąlyga netenkinama                     | 84,82%                   | Sąlyga netenkinama     | 184,82%                                              |
| 29           | 2,67                                   | 2,903                                         | 109                     | -278,493                | 1,252                    | 0,000 | 1   | 279,13                                        | 0,998                            | Sąlyga tenkinama                       | 0,23%                    | Sąlyga tenkinama       | 99,77%                                               |
| 30           | 3,43                                   | 2,903                                         | 85                      | 445,433                 | 0,975                    | 0,555 | 1   | 249,57                                        | 1,785                            | Sąlyga netenkinama                     | 78,48%                   | Sąlyga netenkinama     | 178,48%                                              |

5.19 lentelė. "Santvaros 2" tinklelio elementų laikomosios galios nustatymo ir tikrinimo pirmasis iteracinis skaičiavimas

5.20 lentelė. "Santvaros 2" tinklelio elementų laikomosios galios nustatymo ir tikrinimo n-asis iteracinis skaičiavimas

| Elemento Nr. | i <sub>x</sub> =i <sub>y</sub> ,<br>cm | l <sub>x,eff</sub> =l <sub>y,eff</sub> ,<br>m | λ <sub>x</sub> =λ <sub>y</sub> | N <sub>Ed</sub> ,<br>kN | $\lambda_{\text{sal}}$ | χ     | γмı | N <sub>b,Rd</sub> (N <sub>t,Rd</sub> ),<br>kN | N <sub>Ed</sub> /N <sub>Rd</sub> | N <sub>Ed</sub> /N <sub>Rd</sub> <=1,0 | Ekonomiškumo<br>rodiklis | Ekonomiškumo<br>sąlyag | Laikomosios<br>galios<br>išnaudojimo<br>koeficientas |
|--------------|----------------------------------------|-----------------------------------------------|--------------------------------|-------------------------|------------------------|-------|-----|-----------------------------------------------|----------------------------------|----------------------------------------|--------------------------|------------------------|------------------------------------------------------|
| 19           | 4,61                                   | 2,903                                         | 63                             | 445,433                 | 0,725                  | 0,709 | 1   | 515,33                                        | 0,864                            | Sąlyga tenkinama                       | 13,56%                   | Sąlyga netenkinama     | 86,44%                                               |
| 20           | 2,67                                   | 2,903                                         | 109                            | -278,493                | 1,252                  | 0,000 | 1   | 279,13                                        | 0,998                            | Sąlyga tenkinama                       | 0,23%                    | Sąlyga tenkinama       | 99,77%                                               |
| 21           | 3,43                                   | 3,158                                         | 92                             | 187,208                 | 1,060                  | 0,506 | 1   | 227,53                                        | 0,823                            | Sąlyga tenkinama                       | 17,72%                   | Sąlyga netenkinama     | 82,28%                                               |

| -  | •    |       |     |          |       |       |   |        |       |                  |        |                    |        |
|----|------|-------|-----|----------|-------|-------|---|--------|-------|------------------|--------|--------------------|--------|
| 22 | 2,67 | 3,158 | 118 | -88,993  | 1,362 | 0,000 | 1 | 279,13 | 0,319 | Sąlyga tenkinama | 68,12% | Sąlyga netenkinama | 31,88% |
| 23 | 3,03 | 3,428 | 113 | 15,44    | 1,303 | 0,388 | 1 | 153,05 | 0,101 | Sąlyga tenkinama | 89,91% | Sąlyga netenkinama | 10,09% |
| 24 | 3,03 | 3,428 | 113 | 43,673   | 1,303 | 0,388 | 1 | 153,05 | 0,285 | Sąlyga tenkinama | 71,46% | Sąlyga netenkinama | 28,54% |
| 25 | 3,03 | 3,428 | 113 | 43,673   | 1,303 | 0,388 | 1 | 153,05 | 0,285 | Sąlyga tenkinama | 71,46% | Sąlyga netenkinama | 28,54% |
| 26 | 3,03 | 3,428 | 113 | 15,44    | 1,303 | 0,388 | 1 | 153,05 | 0,101 | Sąlyga tenkinama | 89,91% | Sąlyga netenkinama | 10,09% |
| 27 | 2,67 | 3,158 | 118 | -88,994  | 1,362 | 0,000 | 1 | 279,13 | 0,319 | Sąlyga tenkinama | 68,12% | Sąlyga netenkinama | 31,88% |
| 28 | 3,43 | 3,158 | 92  | 187,208  | 1,060 | 0,506 | 1 | 227,53 | 0,823 | Sąlyga tenkinama | 17,72% | Sąlyga netenkinama | 82,28% |
| 29 | 2,67 | 2,903 | 109 | -278,493 | 1,252 | 0,000 | 1 | 279,13 | 0,998 | Sąlyga tenkinama | 0,23%  | Sąlyga tenkinama   | 99,77% |
| 30 | 4,61 | 2,903 | 63  | 445,433  | 0,725 | 0,709 | 1 | 515,33 | 0,864 | Sąlyga tenkinama | 13,56% | Salyga netenkinama | 86,44% |

Iš 5.19 lentelėje pateiktų skaičiavimų rezultatų matome, kad 19, 21 ir 28, 30 tinklelio elementų laikomoji galia nepakankama, todėl 5.18 lentelėje n-ojo iteracinio skaičiavimo dalyje įvesties eilutėje pakoreaguojame minėtuosius skerspjūvius. Daugelio 5.20 lentelėje pateikiamų profiliuočių nedidelis išnaudojimo koeficientas, tačiau dėl priimto ribinio laiunio negalime skerspjūvių mažinti, kadangi EN 1993-1-1 projektavimo normose kitaip nei STR 2.05.08:2005 nenumatytas pataisos koeficientas  $\alpha$ .

Taip pat atliekamas ir santvaros statramsčių elementų parinkimas, pirmojo iteracinio skaičiavimo rezultatai pateikiami 5.21 ir 5.22 lentelėse.

|                                                                        | Statramsčių elementai                        |                     |       |            |                 |             |                  |       |             |  |  |
|------------------------------------------------------------------------|----------------------------------------------|---------------------|-------|------------|-----------------|-------------|------------------|-------|-------------|--|--|
| Elemento<br>Nr.                                                        |                                              | N <sub>-</sub> . kN | f MPa | 0 <b>1</b> | $\Lambda = m^2$ | Skarenjūvis | $\Lambda = cm^2$ | i cm  | Skerspjūvio |  |  |
| 31                                                                     | Gniuždymas                                   | 19,01               | 275   | үм<br>1    | 0,691           | 40x40x2     | 2,94             | 1,540 | 1klasė      |  |  |
| 32                                                                     | Gniuždymas                                   | 42,614              | 275   | 1          | 1,550           | 40x40x2     | 2,94             | 1,54  | 1klasė      |  |  |
| 33                                                                     | Gniuždymas                                   | 48,599              | 275   | 1          | 1,767           | 40x40x2     | 2,94             | 1,54  | 1klasė      |  |  |
| 34                                                                     | Tempimas                                     | -68,981             | 275   | 1          | 2,508           | 40x40x2     | 2,94             | 1,54  | 1klasė      |  |  |
| 35                                                                     | Gniuždymas                                   | 48,599              | 275   | 1          | 1,767           | 40x40x2     | 2,94             | 1,54  | 1klasė      |  |  |
| 36                                                                     | Gniuždymas                                   | 42,614              | 275   | 1          | 1,550           | 40x40x2     | 2,94             | 1,54  | 1klasė      |  |  |
| 37                                                                     | 37 Gniuždymas 19,01 275 1 0,691 40x40x2 2,94 |                     |       |            |                 |             |                  |       | 1klasė      |  |  |
| Skerspjūvis, pagal maksimalią gniuždymo įrąžą 40x40x2 2,94 1,54 1klase |                                              |                     |       |            |                 |             |                  |       |             |  |  |

5.21 lentelė. "Santvaros 2" statramsčių elementų parinkimas pagal veikiančią įrąžą

Palyginame pagal maksimalią apkrovą apskaičiuotą skerspjūvį su prieš tai parinktu pagal liaunio sąlygą ir priimame reikiamą skerspjūvį

| 31 | 50x50x3 | 5,41  | 1,9  | 1klasė |
|----|---------|-------|------|--------|
| 32 | 50x50x3 | 5,41  | 1,9  | 1klasė |
| 33 | 60x60x4 | 8,55  | 2,26 | 1klasė |
| 34 | 70x70x4 | 10,15 | 2,67 | 1klasė |
| 35 | 60x60x4 | 8,55  | 2,26 | 1klasė |
| 36 | 50x50x3 | 5,41  | 1,9  | 1klasė |
| 37 | 50x50x3 | 5,41  | 1,9  | 1klasė |

| Elemento Nr. | i <sub>x</sub> =i <sub>y</sub> ,<br>cm | l <sub>x,eff</sub> =l <sub>y,eff</sub> , m | λ <sub>x</sub> =λ <sub>y</sub> | N <sub>Ed</sub> ,<br>kN | $\lambda_{sal}$ | χ     | γм1 | N <sub>b,Rd</sub> (N <sub>t,Rd</sub> ),<br>kN | N <sub>Ed</sub> /N <sub>Rd</sub> | N <sub>Ed</sub> /N <sub>Rd</sub> <=1,0 | Ekonomiškumo<br>rodiklis | Ekonomiškumo<br>sąlyag | Laikomosios<br>galios<br>išnaudojimo<br>koeficientas |
|--------------|----------------------------------------|--------------------------------------------|--------------------------------|-------------------------|-----------------|-------|-----|-----------------------------------------------|----------------------------------|----------------------------------------|--------------------------|------------------------|------------------------------------------------------|
| 31           | 1,9                                    | 1,650                                      | 87                             | 19,01                   | 1,000           | 0,540 | 1   | 80,30                                         | 0,237                            | Sąlyga tenkinama                       | 76,33%                   | Sąlyga netenkinama     | 23,67%                                               |
| 32           | 1,9                                    | 2,025                                      | 107                            | 42,614                  | 1,228           | 0,421 | 1   | 62,60                                         | 0,681                            | Sąlyga tenkinama                       | 31,93%                   | Sąlyga netenkinama     | 68,07%                                               |
| 33           | 2,26                                   | 2,400                                      | 106                            | 48,599                  | 1,223           | 0,423 | 1   | 99,42                                         | 0,489                            | Sąlyga tenkinama                       | 51,12%                   | Sąlyga netenkinama     | 48,88%                                               |
| 34           | 2,67                                   | 2,775                                      | 104                            | -68,98                  | 1,197           | 0,000 | 1   | 279,13                                        | 0,247                            | Sąlyga tenkinama                       | 75,29%                   | Sąlyga netenkinama     | 24,71%                                               |
| 35           | 2,26                                   | 2,400                                      | 106                            | 48,599                  | 1,223           | 0,423 | 1   | 99,42                                         | 0,489                            | Sąlyga tenkinama                       | 51,12%                   | Sąlyga netenkinama     | 48,88%                                               |
| 36           | 1,9                                    | 2,025                                      | 107                            | 42,614                  | 1,228           | 0,421 | 1   | 62,60                                         | 0,681                            | Sąlyga tenkinama                       | 31,93%                   | Sąlyga netenkinama     | 68,07%                                               |
| 37           | 1,9                                    | 1,650                                      | 87                             | 19,01                   | 1,000           | 0,540 | 1   | 80,30                                         | 0,237                            | Sąlyga tenkinama                       | 76,33%                   | Sąlyga netenkinama     | 23,67%                                               |

5.22 lentelė. "Santvaros 2" statramsčių elementų laikomosios galios nustatymo ir tikrinimo pirmasis iteracinis skaičiavimas

Kaip ir tinklelio elementų parinkimo atveju, statramsčių profiliuočiai nėra pilnai išnaudojami. Jei atliktume santvaros optimizavimą, tai yra galimybė, kad statramsčių elementai nėra reikalingi, bet pagrindinis darbo tikslas yra išanalizuoti santvaros mazgus ir norint gauti KT tipo mazgą turime įvesti, kad ir nelabai efektyvius, statramsčių elementus.

#### 5.2 T, Y, X tipo mazgų ašinės laikomosios galios nustatymas

Kadangi pasirinkta santvarinė konstrukcija yra simetrinė, tai tolesniuose tyrimuose nagrinėsime tik 29 paveiksle pavaizduotą dalį.



30 pav. Nagrinėjama santvaros dalis ir mazgai

Mazgai 2 ir 4 priklauso T tipo mazgams, remiantis 4.2 poskyryje pateiktomis nuostatomis išnagrinėsime 4-tojo mazgo laikomosios galios nustatymo algoritmą ir palyginsime su pateiktuoju 4.1 poskyryje ("Santvaros 1" 2-ojo mazgo projektavimo rezultatai pateikti 3 priede, "Santvaros 2" – 4 priede).

Mazgą sudarančių santvaros elementų numeriai, matmenys ir reikiami dydžiai pateikiami 3 priedo 11 lentelėje.

11 lentelėje įvesties eilutėse įvedami mazgą sudarančių santvaros elementų numeriai, tuomet programa išveda profiliuočius, jų matmenis ir veikiančias įrąžas. Taip pat turime įvesti, su kuria santvaros juosta viršutine ar apatine norime skaičiuoti tinklelio elemento jungtį, tada programa pateikia tinklelio elemento posvyrio kampą.

Galima išskirti pagrindinius rodiklius, nuo kurių priklauso mazgo ašinė laikomoji galia, 4-tojo mazgo pagrindiniai rodikliai, laikomosios galios nustatymui pagal [19], pateikiami 3 priedo 12 lentelėje.

Mazgo laikomoji galia nustatoma pagal 4.6 lentelėje pateiktus skaičiavimo algoritmus, programa atliktų skaičiavimų rezultatai pateikiami 5.23 lentelėje.

| Mazgo tipas               | Projektinė laiko                  | mosios galios reikšmė kN                                |  |  |  |
|---------------------------|-----------------------------------|---------------------------------------------------------|--|--|--|
| T,X,Y mazgas su tarpu     | I IOJEKINE Iaiko                  | mosios ganos reiksnie, kiv                              |  |  |  |
| h <sub>i</sub>            | Juosto<br>(praspat                | s paviršiaus irtis<br>ıdimas/išplėšimas)                |  |  |  |
| Ni                        |                                   | β1≤0,9                                                  |  |  |  |
| bi                        |                                   | g/c1≤0,25                                               |  |  |  |
| θι                        | N <sub>1.Rd</sub> , kN            | 47.71                                                   |  |  |  |
|                           | Juostos šoninės sienelės klupimas |                                                         |  |  |  |
|                           |                                   | β1≤0,85                                                 |  |  |  |
| b <sub>0</sub>            | N <sub>1.Rd</sub> , kN            | Sąlygos tikrinti nereikia                               |  |  |  |
| Ϋ́Υ Ι΄ Ι΄                 | R                                 | amsčio irtis                                            |  |  |  |
|                           | k                                 | 1                                                       |  |  |  |
|                           | N <sub>1.Rd</sub> , kN            | 87.83                                                   |  |  |  |
| Mažiausia laikamaii galia | Juostos paviršiaus                |                                                         |  |  |  |
| Maziausia laikomoji gana: | irtis                             | Tikriname sąlygą: N <sub>i.Ed</sub> <n<sub>i.Rd</n<sub> |  |  |  |
| N1.Rd, kN                 | 47.71                             | Sąlyga tenkinama                                        |  |  |  |

5.23 lentelė. "Santavaros 1" 4-tojo mazgo ašinės laikomosiso galios nustatymas

Iš 5.23 lentelėje pateiktų skaičiavimo rezultatų matome, kad pavojingiausias 4-tojo mazgo irties pobūdis yra juostos viršaus irtis, laikomosios galios pakankamumo sąlyga tenkinama, vadinasi iš pasirinktų profiliuočių mazgą suprojektuoti galima.

Suprojektuokime tą patį mazgą "Santvarai 2". Mazgo elementų matmenysi pateikiami 4 priedo 26 lentelėje.

Tikriname 4-tojo mazgo tinkamumo sąlygas pagal 4.1 ir 4.2 lentelėse pateikiamus reikalavimus. 5.24 lentelė. "Santvaros 2" 4-tojo mazgo tinkamumo sąlygos

| Mazgo tipas                    |                |             |                                                                                                               |          | Т                                                                                                      |  |                  |  |  |
|--------------------------------|----------------|-------------|---------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------|--|------------------|--|--|
| $b_i/b_0$                      | Tinklelio el.  | $b_1/b_0 =$ | 0.38                                                                                                          |          | ≥0,25                                                                                                  |  | Sąlyga tenkinama |  |  |
| Culi X I                       | T:1-1-1:1      | 1. /4 —     | 1.5                                                                                                           |          | ≤35                                                                                                    |  | Sąlyga tenkinama |  |  |
| Gniuzdymas                     | l'inklelio el. | $b_1/t_1 =$ | 15                                                                                                            | <u> </u> | $1\sqrt{235/fyi} = 37.90$                                                                              |  | Sąlyga tenkinama |  |  |
| Tempimas                       | Tinklelio el.  | $b_1/t_1 =$ | 15.00                                                                                                         |          | ≤35                                                                                                    |  | Sąlyga tenkinama |  |  |
| h <sub>o</sub> /t <sub>o</sub> | luostos el     | $h_0/t_0 =$ | 20                                                                                                            |          | ≤35                                                                                                    |  | Sąlyga tenkinama |  |  |
| 00/00                          | 5005005 01.    | 00/0        | 20                                                                                                            | <u> </u> | ≤41√235/fyi= 37.90                                                                                     |  | Sąlyga tenkinama |  |  |
|                                |                |             | Papilo                                                                                                        | domos    | sąlygos                                                                                                |  |                  |  |  |
| β=                             | 0.275          | <u>&lt;</u> | 0,85                                                                                                          |          | Galima įvertinti tik juostos paviršiaus irtį ir<br>tinklelio elemento irtį dėl sumažęjusio efektyviojo |  |                  |  |  |
|                                | 0.375          |             |                                                                                                               |          |                                                                                                        |  | pločio           |  |  |
| $b_0/t_0 =$                    | 20             | ≥10         | Galima įvertinti tik juostos paviršiaus irtį ir tinklelio elemento irtį<br>dėl sumažęjusio efektyviojo pločio |          |                                                                                                        |  |                  |  |  |

Nagrinėjamas mazgas tenkina ne tik 4.1 lentelėje, bet ir 4.2 lentelėje pateikiamas sąlygas, taigi pakanka patikrinti šio mazgo galimą irtį dėl juostos plastifikacijos ir dėl tinklelio elemento efektyviojo pločio sumažėjimo. Mazgo laikomosios galios nustatymo ir pakankamumo tikrinimo rezultatai pateikiami 5.25 lentelėje.

| Mazgo tipas                |                      | Ska              | aičiuotinė laikomoji galia                                    |  |  |
|----------------------------|----------------------|------------------|---------------------------------------------------------------|--|--|
| T,X,Y mazgas               | β                    | 0,375            |                                                               |  |  |
|                            | 0,3                  | 75               | Juostos paviršiaus irtis, β≤0,85                              |  |  |
|                            | n                    | 0,756            |                                                               |  |  |
|                            | k <sub>n</sub>       | 0,49             | 54,60                                                         |  |  |
|                            | β                    | 1                | Juostos šoninės sienelės klupimas,                            |  |  |
|                            |                      | λ                | β=1,0                                                         |  |  |
|                            | f <sub>b</sub> , MPa | 0,719            | Nevertiname                                                   |  |  |
| <u></u>                    |                      | χ                | N <sub>i,Rd</sub> , kN                                        |  |  |
| a tini                     | 196,09               | 0,713            | 315,66                                                        |  |  |
| Ni                         | b <sub>eff</sub> , m |                  | Tinklelio elemento irtis, β≥0,85                              |  |  |
| θ                          |                      |                  | Nevertiname                                                   |  |  |
|                            | 0,0                  | 60               | N <sub>i,Rd</sub> , kN                                        |  |  |
|                            |                      |                  | 246,4                                                         |  |  |
|                            | γ                    | 10,00            | Juostos išplėšiamoji/praspaudžiamoji<br>irtis, 0,85≤β≤(1-1/γ) |  |  |
|                            | b <sub>ep</sub> ,    | m                | Nevertiname                                                   |  |  |
|                            | 0.0                  | )3               | N <sub>i,Rd</sub> , kN                                        |  |  |
|                            | 0,0                  | 15               | 230,09                                                        |  |  |
|                            | Juos                 | stos             | Tikriname sąlygą: N <sub>i.Ed</sub> <n<sub>i.Rd</n<sub>       |  |  |
| Mažiausia laikomoji galia: | paviršia<br>β≤0      | us irtis,<br>,85 | Sąlyga tenkinama                                              |  |  |

5.25 lentelė. "Santvaros 2" 4-tojo mazgo ašinės laikomosiso galios nustatymas

Iš programa atliktų skaičiavimo rezultatų matome, kad mazgo laikomoji galia yra pakankama. 5.25 lentelėje matome, kad vienintelė sąlygą, kurią reikėjo vertinti projektuojant pasirinktąjį mazgą yra juostos viršaus irtis, nors kitos sąlygos nevertinamos,tačiau laikomųjų galių vertės išvestos, jos daug didesnės nei nagrinėjamoji, juostos plastifikacijos atveju. Galime daryti išvadą, kad juostos laikomosios galios skaičiavimo atvejų apribojimas yra tikslingas ir tikslus, nes vertindami tik vieną sąlyga iš galimų keturių sutaupome laiko.

Netikslinga būtų lyginti "Santvaros 1" ir "Santvaros 2" 4-tojo mazgo laikomosios galios vertes, kadangi mazgą sudarantys elementai yra nevienodų matmenų, kas sąlygoja skirtingus veikiančiuosius rodiklius, kurių įtaka laikomosios galios nustatymui juostos plastifikacijos atveju nagrinėjama 6 skyriuje. Tačiau akivaizdu, kad esant nepakankamai mazgo laikomajai galiai abiem aptartais atvejais mazgo irtį sąlygotų profiliuočio juostos plastifikacija.

#### 5.3 K ir N tipo mazgų laikomosios galios nustatymas

Nagrinėjamoje santvaros dalyje (žr. 29 pav.) K tipo mazgams priklauso 1, 3 ir 5 mazgai. Išnagrinėsime 1-ojo mazgo laikomosios galios nustatymo algoritmus ("Santvaros 1" 3-ojo ir 5-ojo mazgų projektavimas pateiktas 3 priede, "Santvaros 2" - 4 priede). Kaip ir anksčiau aptartu 4-ojo
mazgo atveju, 1-ojo mazgo projektavimas pagal 4.2 poskyryje pateiktas nuostatas atliekamas kompiuterine programa. Nagrinėjamojo mazgo konstrukcinių elementų reikiami duomenys gaunami įvesties eilutėse įrašius elementų numerius,o posvyrio kampas įvedus, kad tinklelio elementai jungiami prie viršutinės santvaros juostos. "Santvaros 1" 1-ojo mazgo skaičiavimui reikiami duomenys pateikti 3 priedo 17 lentelėje.

Kadangi [19] metodikoje nenumatomas K tipo mazgo su užlaida projektavimas, tai turime sukonstruoti mazgą su tarpu tarp tinklelio elementų. Nagrinėjamosios santvaros modelyje priimama, kad tinklelio elementai prie santvaros juostų jungiami centriškai, todėl veikiančiųjų rodiklių lentelėje 5.26 tikrinama ar galima sukonstruoti tokį mazgą, jei ne tuomet pateikiama kokių matmenų turėtų būti santvaros juosta, kad galima būtų tinklelio elementus jungti centriškai, arba yra numatomas ekscentricitetas, nekeičiant pasirinktų santvaros konstrukcinių elementų prifiliuočių. Programoje minimalaus tarpo tarp tinklelio elementų sąlyga yra tapati pateiktai [7] normose, kadangi [19] nėra jokių reikalavimų šiam rodikliui.

Nagrinėjamuoju atveju projektuojame ekscentriškai jungiamų tinklelio elementų mazgą, priimdami programos siūlomas ekscentriciteto ir tarpo tarp tinklelio elementų vertes (žr. 5.26 lentelę).

| Mazgo geometrinės sąlygos    |                              |                                |                                 |               |                   |                       |  |  |
|------------------------------|------------------------------|--------------------------------|---------------------------------|---------------|-------------------|-----------------------|--|--|
| e                            | 2g <sub>min</sub> , m        | 2g                             | h <sub>0, rek</sub> , m         | $g/c_1$       | $g/c_2$           | e <sub>reik</sub> , m |  |  |
| 0.005                        | 0.0090                       | 0.0096                         | 0.140                           | 0.022         | 0.033             | 0.005                 |  |  |
| $\eta_1 = \beta_1 = b_1/b_0$ | $\eta_2 = \beta_2 = b_2/b_0$ | $c_1 = h_1 / sin \theta_1$ , m | $c_2 = h_2 / \sin \theta_2$ , m | <b>γ</b> 1(1) | γ <sub>1(2)</sub> | $\gamma_0$            |  |  |
| 0.857                        | 0.714                        | 0.215                          | 0.144                           | 1             | 1.2               | 0.998                 |  |  |

5.26 lentelė. "Santvaros 1" 1-ojo mazgo svarbiausieji rodikliai laikomosios galios skaičiavimui

Kadangi pagal 4.2 poskyryje pateikiamas nuostatas K tipo mazgai projektuojami, kiekviename tinklelio elemente, veikiančių įrąžų poveikiui, tai 5.27 lentelėje išvesties eilutėse pateikiamos kiekvieno tinklelio elemento apkrovos poveikį atitinkančios mazgo laikomosios galios vertės, iš kurių kiekvienai nagrinėjamai mazgo irčiai išvedama pavojingiausia, o iš pastarųjų ir pati pavojingiausioji.

| 5.27 lentelė. | " Santvaros | 1" 1-ojo | mazgo laiko | omosios g | galios nustatymas |
|---------------|-------------|----------|-------------|-----------|-------------------|
|---------------|-------------|----------|-------------|-----------|-------------------|

| Mazgo tipas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Skaičiuotinė laikomosios galios reikšmė, kN     |                                                         |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------|--|--|
| K,N mazgas su tarpu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |                                                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Juostos viršaus irtis (praspaudimas/išplėšimas) |                                                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | β1≤0,9                                          | β2≤0,9                                                  |  |  |
| $b_1$ $N_1$ $g$ $N_2$ $b_2$ $b_2$ $b_2$ $b_2$ $b_2$ $b_2$ $b_2$ $b_2$ $b_3$ $b_4$ $b_4$ $b_5$ $b_5$ $b_6$ $b_7$ $b_8$ | g/c1≤0,25                                       | g/c2≤0,25                                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N <sub>1.Rd</sub> , kN                          | 1773,68                                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N <sub>2.Rd</sub> , kN                          | 674,69                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 674,69                                          | Pavojingiausia įrąža                                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tinklelio                                       | o elemento irtis                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | k                                               | 1                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N <sub>1.Rd</sub> , kN                          | sąlyga nevertinama                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N <sub>2.Rd</sub> , kN                          | 278,86                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 278,86                                          | Pavojingiausia įrąža                                    |  |  |
| Mažiausia laikomoji galia:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tinklelio elemento irtis                        | Tikriname sąlygą: N <sub>i.Ed</sub> <n<sub>i.Rd</n<sub> |  |  |
| N2.Rd, kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 278,86                                          | Sąlyga tenkinama                                        |  |  |

Iš 5.27 lentelėje pateikiamų duomenų matyti, kad 1-ajam mazgui pavojingiausia yra tempiamojo tinklelio elemento irties galimybė, iš pasirinktų profiliuočių sukonstruoto mazgo laikomoji galia yra pakankama.

Kaip ir 4-tojo mazgo atvejų projektuojant 1-ąjį mazgą pagal 4.1 pskyryje pateiktas nuostatas tikrinamos 4.1 ir 4.2 lentelėse pateiktos mazgo tinkamumo sąlygos. "Santvaros 2" 1-ojo mazgo laikomosios galios nustatymui reikiami konstrukcinių elementų dydžiai pateikiami 4 priedo 31 lentelėje, svarbiausieji rodikliai – 5.28, o tinkamumo ribų įvertinimas – 5.29 lentelėje.

5.28 lentelė. "Santvaros 2" 1-ojo mazgo svarbiausieji rodikliai laikomosios galios skaičiavimui

|                      |         | g                 |                                     |                      | g                | >=g <sub>min</sub> |                  |  |
|----------------------|---------|-------------------|-------------------------------------|----------------------|------------------|--------------------|------------------|--|
| g <sub>min</sub> , m | 0.010   | 0.052             | Sąlyga tenkinama                    |                      |                  |                    | ama              |  |
|                      |         | Kad būtų ten      | kinama 3.28                         |                      |                  |                    |                  |  |
| e, m                 | 0.0000  | sąly              | ga:                                 | -0.088               | $\leq e \leq$    | 0.04               | Sąlyga tenkinama |  |
| g <sub>a</sub>       | 0.0385  | Tikriname sąlygą: |                                     | g <sub>a</sub> >1,51 | t <sub>0</sub> = | 0.01               | Sąlyga tenkinama |  |
| β                    | 0.5938  |                   |                                     |                      |                  |                    |                  |  |
| γ                    | 10.00   |                   | Reikia tikrinti juostą praspaudimui |                      |                  |                    |                  |  |
| n                    | 0.6772  | k <sub>n</sub>    | 0.8438                              | ≤1                   |                  |                    |                  |  |
| TY /                 | 001 + 1 | · · · · · 1       | 1                                   | 1 1 1                | •                | • 1                | · TZ /           |  |

Iš 5.28 lentelės išvesties duomenų matome, kad galime suprojektuoti K tipo mazgą su tarpu, kuriame tinklelio elementai centriškai jungiami prie sanvaros juostos, kadangi tarpą nusakantis rodiklis tenkina jam keliamas mazgo tinkamumo ribas (žr. 5.29 lentelę).

5.29 lentelė. "Santvaros 2" 1-ojo mazgo tinkamumo ribos

| Mazgo tipas                    | K su tarpu                                                |            |       |                                |                    |  |  |
|--------------------------------|-----------------------------------------------------------|------------|-------|--------------------------------|--------------------|--|--|
| b <sub>i</sub> /b <sub>0</sub> | $1 \text{ tipldalia al}  \mathbf{b} / \mathbf{b} = -0.75$ |            | ≥0,35 | Sąlyga tenkinama               |                    |  |  |
|                                | i tilikiello el.                                          | $D_1/D_0-$ | 0.75  | $\geq 0,1+0,01\cdot b0/t0=0.3$ | 0 Sąlyga tenkinama |  |  |

|                                  | •                |                         | •                                                                                                             |                                              |       |                                  |
|----------------------------------|------------------|-------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------|----------------------------------|
|                                  | 2 tinklolio al   | h /h —                  | 0.429                                                                                                         | ≥0,35                                        |       | Sąlyga tenkinama                 |
|                                  | 2 tilikiello el. | $0_2/0_0$ —             | 0.438                                                                                                         | ≥0,1+0,01·b0/t0=                             | 0.30  | Sąlyga tenkinama                 |
|                                  | 1 tinklelio el   | $h_t/t_t =$             | 20                                                                                                            | ≤35                                          |       | Sąlyga tenkinama                 |
| Cniudumas                        | i unkieno er.    | 0]/t]-                  | 20                                                                                                            | ≤41√235/fyi=                                 | 37.90 | Sąlyga tenkinama                 |
| Ginudymas                        | 2 tinklelio el   | $h_{\rm c}/t_{\rm c} =$ | 17.5                                                                                                          | ≤35                                          | -     | Tinklelio elementas tempiamas    |
|                                  | 2 thikieno er.   | $U_2/U_2$               | 17.5                                                                                                          | ≤41√235/fyi=                                 | 37.90 | Tinklelio elementas tempiamas    |
| Tempimas                         | 1 tinklelio el.  | $b_1/t_1 =$             | 20.00                                                                                                         | ≤35                                          |       | Tinklelio elementas gniuždomasis |
|                                  | 2 tinklelio el.  | $b_2/t_2 =$             | 17.50                                                                                                         | ≤35                                          |       | Sąlyga tenkinama                 |
| h //                             |                  | 1. /4 —                 | 20                                                                                                            | ≤35                                          |       | Sąlyga tenkinama                 |
| $U_0/t_0$                        | juosios ei.      | $U_0/U_0-$              | 20                                                                                                            | ≤41√235/fyi=                                 | 37.90 | Sąlyga tenkinama                 |
| Tarnas                           | $q/h_0 =$        |                         | 0.326                                                                                                         | ≥0,5(1-β)=                                   | 0.203 | Sąlyga tenkinama                 |
| Tarpas                           | £/00             |                         | 0.520                                                                                                         | ≤1,5(1 <b>-</b> β)=                          | 0.609 | Sąlyga tenkinama                 |
|                                  |                  |                         | Pa                                                                                                            | pildomos sąlygos                             |       |                                  |
| β                                | ≤0,6             | ir                      | ≤1,3                                                                                                          | Reikia tikrinti visus galimus irties atvejus |       |                                  |
| b <sub>0</sub> /t <sub>0</sub> = | 20               | ≥15                     | Galima įvertinti tik juostos paviršiaus irtį ir tinklelio elemento irtį<br>dėl sumažęjusio efektyviojo pločio |                                              |       |                                  |

Matome, kad šiuo atveju kitaip nei projektuojant 4-tąjį mazgą reikia tikrinti visus galimus mazgo irties atvejus, nes viena iš papildomų sąlygų yra netenkinama.

5.30 lentelė. "Santvaros 2" 1-ojo mazgo laikomosios galios nustatymas

| Mazgo tipas                   | Skojživotinė la          | ikomosios galios raikšma kN  |
|-------------------------------|--------------------------|------------------------------|
| K,N mazgas su tarpu           | Skalciuotille la         | ikomosios ganos teiksme, kiv |
| $t_1$                         | Juos                     | tos paviršiaus irtis         |
| b <sub>1</sub> N <sub>1</sub> | N <sub>1.Rd</sub> , kN   | 443.80                       |
|                               | N <sub>2.Rd</sub> , kN   | 386.08                       |
| $\theta_1$ $\theta_2$         | 443.80                   | Pavojingiausia įrąža         |
|                               | Juo                      | stos šlyjamoji irtis         |
|                               | V <sub>pl.Rd</sub> , kN  | 433.19                       |
|                               | V <sub>Ed</sub> , kN     | 249.08                       |
|                               | A <sub>v</sub> , m       | 0.0027                       |
|                               | α                        | 0.1316                       |
|                               | $V_{Ed} > 0.5 V_{pl.Rd}$ | Reikia skaičiuoti N0,Rd      |
|                               | N <sub>0.Rd</sub> , kN   | 1140.66                      |
|                               |                          |                              |
|                               | N1.Rd, kN                | 1318.57                      |
|                               | Tink                     | lelio elemento irtis         |
|                               | b <sub>eff1</sub> ,m     | 0.080                        |
|                               | b <sub>eff2</sub> ,m     | 0.07                         |
|                               |                          | Tempiamų tinklelio           |
|                               | N <sub>1.Rd</sub> , kN   | elementų nėra, irtis neįvyks |
|                               | N <sub>2.Rd</sub> , kN   | 290.4                        |

|                            | 290.4                  | Pavojingiausia įrąža                                    |
|----------------------------|------------------------|---------------------------------------------------------|
|                            | Juostos išplėši        | amoji/praspaudžiamoji irtis                             |
|                            | b <sub>ep1</sub> ,m    | 0.060                                                   |
|                            | b <sub>ep2</sub> ,m    | 0.035                                                   |
|                            | γ                      | 10                                                      |
|                            |                        |                                                         |
|                            | N <sub>1.Rd</sub> , kN | 833.02                                                  |
|                            | N <sub>2.Rd</sub> , kN | 379.03                                                  |
|                            | 379.03                 | Pavojingiausia įrąža                                    |
| Mažiausia laikomoji galia: | Tinklelio              |                                                         |
|                            | elemento irtis         | Tikriname sąlygą: N <sub>i.Ed</sub> <n<sub>i.Rd</n<sub> |
| N2.Rd, kN                  | 290.40                 | Sąlyga tenkinama                                        |

Matome, kad kaip ir "Santvaros 1" taip ir "Santvaros 2" 1-ojo mazgo irtį sąlygotų tempiamo tinklelio elemento irtis, tačiau kaip ir 4-ojo mazgo atveju detalesnės lyginamosios laikomųjų galių analizės atlikti negalima, kadangi netikslinga būtų lyginti skaičiavimo rezultatus, kūrių pagridiniai parametrai skirtingi.

#### 5.4 KT tipo mazgų laikomosios galios nustatymas

KT tipo mazgai yra patys sudėtingiausi, juos sunku suprojektuoti, be to, kaip buvo pastebėta, projektuojant santvaros statramsčių elementus, jie nėra labai efektyvūs, todėl geriau jei galima šių elementų nenaudoti, taip išvengiant KT tipo mazgų. [19] nepateikiami nurodymai šių mazgų projektavimui, todėl norint atlikti šių mazgų projektavimą buvo pasinaudota [7] nuorodomis, kad šie mazgai projektuojami, taip pat kaip ir K tipo mazgai tik įvertinant 4.6 ir 4.7 sąlygas. 29 paveiksle pateiktos nagrinėjamos santvaros dalies KT tipo mazgams priklauso 6 ir 7 mazgai. Atliksime 6-ojo mazgo projektavimą (7-ojo mazgo projektavimas peteikiamas 4 priede).

"Santvaros 1" 6-ojo mazgo laikomosios galios skaičiavimui reikalingi duomenys pateikiami 3 priedo 24 lentelėje, mazgo pagrindiniai rodikliai – 3 priedo 25 lentelėje.

3 priedo 25 lentelėje pateikiamuose rodikliuose 1-uoju tinklelio elementu priimamas 20-tasis elementas, o antruoju – 21-asis. Atitinkamai tarpo tarp tinklelio elementų ir ekscentriciteto žymenyse, *1* žymimas statramsčio ir 20-ojo tinklelio elemento sudaromas tarpas ar ekscentricitetas, o *2* žymimas statramsčio ir 21-ojo tinklelio elemento sudaromas tarpas ar ekscentricitetas.

Kaip ir 1-ojo mazgo atveju, 6-asis mazgas "Santvaroje 1" projektuojamas ekscentriškai jungiant tinklelio elementus prie santvaros juostos priimant minimalius tarpus tarp tinklelio elementų.

| Mazgo tipas                | Įrąžų pusiausvyros sąlyga KT mazgui                       |                                                |                                       |  |  |  |
|----------------------------|-----------------------------------------------------------|------------------------------------------------|---------------------------------------|--|--|--|
| Mazgo upas                 | Sąlyga tenkinama                                          |                                                |                                       |  |  |  |
| KT mazgas                  | Skaičiuot                                                 | inė laikomosios galios rei                     | kšmė, kN                              |  |  |  |
|                            | Juostos virš                                              | Juostos viršaus irtis (praspaudimas/išplėšimas |                                       |  |  |  |
|                            | β1≤0,9                                                    | β2≤0,9                                         | β3≤0,9                                |  |  |  |
|                            | g1/c1≤0,25                                                | g2/c2≤0,25                                     |                                       |  |  |  |
|                            | g1/c3≤0,25                                                | g2/c3≤0,25                                     |                                       |  |  |  |
|                            | N <sub>1.Rd</sub> , kN                                    | 468.07                                         |                                       |  |  |  |
| × A                        | N <sub>2.Rd</sub> , kN                                    | 196.90                                         |                                       |  |  |  |
|                            | N <sub>3.Rd</sub> , kN                                    | 65.06                                          |                                       |  |  |  |
| Non Non With               | 196.90 Pavojingiausia įrąža                               |                                                |                                       |  |  |  |
|                            | Tinklelio elemento irtis                                  |                                                |                                       |  |  |  |
|                            | k 1                                                       |                                                |                                       |  |  |  |
|                            | N <sub>1.Rd</sub> , kN                                    | 262.63                                         |                                       |  |  |  |
|                            |                                                           | Elementas gniuždon                             | nasis,sąlyga                          |  |  |  |
|                            | $N_{2.Rd}$ , kN                                           | nevertinan                                     | na                                    |  |  |  |
|                            |                                                           | Elementas gniuždon                             | nasis salvoa                          |  |  |  |
|                            | N <sub>3 Rd</sub> , kN                                    | nevertinan                                     | na                                    |  |  |  |
|                            | 262.63                                                    | Pavojingiausia                                 | . įrąža                               |  |  |  |
| Mažiausia laikomoji galia: | Juostos<br>viršaus irtis<br>(praspaudimas<br>/išplėšimas) | Tikriname sąlygą:                              | N <sub>i.Ed</sub> <n<sub>i.Rd</n<sub> |  |  |  |
| N2.Rd, kN                  | 196.90                                                    | Sąlyga tenkin                                  | iama                                  |  |  |  |

5.31 lentelė. "Santvaros 1" 6-ojo mazgo laikomosios galios nustatymas

Iš 5.31 lentelėje pateiktų skaičiavimo rezultatų matyti, kad pavojingiausia 6-ajam mazgui yra juostos paviršiaus irtis nuo 21-mame elemente veikiančios gniuždymo irąžos, tačiau mazgo laikomoji galia yra pakankama.

Projektuojame "Santvaros 2" 6-ąjį mazgą pagal 4.1 poskyryje pateiktus reikalavimus. Mazgo laikomajai galiai nustatyti reikiami parametrai pateikti 4 priedo 42 lentelėje, o svarbiausieji rodikliai 5.32 lentelėje.

| 5.32 lentelė. | " Santvaros 2" | <sup>6</sup> -ojo mazgo | svarbiausieji ro | dikliai laikomosios | galios skaičiavimui |
|---------------|----------------|-------------------------|------------------|---------------------|---------------------|
|---------------|----------------|-------------------------|------------------|---------------------|---------------------|

| K                    | T      | g                                   | q     | $g \ge g_{min}$                       |                                       |                  |                  |  |
|----------------------|--------|-------------------------------------|-------|---------------------------------------|---------------------------------------|------------------|------------------|--|
| g <sub>min</sub> , m | 0.007  | -                                   | 0.007 | Tinklelio elementai mazge persidengia |                                       |                  |                  |  |
| g <sub>min</sub> , m | 0.008  | - 0.029                             |       | Т                                     | Tinklelio elementai mazge persidengia |                  |                  |  |
|                      |        | Kad būtu tenkinama 3.28             |       |                                       |                                       |                  |                  |  |
| e <sub>1</sub> , m   | 0.000  | sąlyga:                             |       | -0.066                                | ≤e≤                                   | 0.03             | Sąlyga tenkinama |  |
|                      |        | Kad būtų tenkinama 3.28             |       |                                       |                                       |                  |                  |  |
| e <sub>2</sub> , m   | 0.000  | sąlyga:                             |       | -0.066                                | ≤e≤                                   | 0.03             | Sąlyga tenkinama |  |
| $\mathbf{g}_{a1}$    | -      | Tikriname sąlygą:                   |       | g <sub>a</sub> >1,51                  | t <sub>0</sub> =                      | 0.01             | Sąlyga tenkinama |  |
| g <sub>a2</sub>      | -      | Tikriname sąlygą:                   |       | $g_a>1,5t_0=$ 0.01 Sąlyga tenkinama   |                                       | Sąlyga tenkinama |                  |  |
| β                    | 0.5833 | Reikia tikrinti juostą praspaudimui |       |                                       |                                       |                  |                  |  |

| γ | 7.50   |                |        |    |
|---|--------|----------------|--------|----|
| n | 0.3839 | k <sub>n</sub> | 1.0000 | ≤1 |

Iš 5.32 lentelėje pateiktų duomenų matome, kad jungiant tinklelio elementus centriškai prie santvaros juostos KT tipo mazgo su tarpu suprojektuoti negalime, pabandykime suprojektuoti KT tipo mazgą su tarpu jungiant tinklelio elementus su tam tikru ekscentricitetu, priimant minimalias tarpo tarp tinklelio elementų reikšmes.

5.33 lentelė. " Santvaros 2" 6-ojo mazgo svarbiausieji rodikliai laikomosios galios skaičiavimui, prokeltuojant KT tipo mazgą su tarpu

| KT su                | ı tarpu | g               | q      |                       |                  |                    | g>=g <sub>min</sub> |  |  |
|----------------------|---------|-----------------|--------|-----------------------|------------------|--------------------|---------------------|--|--|
| g <sub>min</sub> , m | 0.007   | 0.017           | -      |                       |                  | Sąly               | ga tenkinama        |  |  |
| g <sub>min</sub> , m | 0.008   | 0.017           | -      |                       | Salyga tenkinama |                    |                     |  |  |
|                      |         | Kad būtų tenkin |        |                       |                  |                    |                     |  |  |
| e <sub>1</sub> , m   | 0.019   | sąlyga:         | -0.066 | ≤e≤                   | 0.03             | Sąlyga tenkinama   |                     |  |  |
|                      |         | Kad būtų tenkin |        |                       |                  |                    |                     |  |  |
| e <sub>2</sub> , m   | 0.046   | sąlyga:         | -0.066 | ≤e≤                   | 0.03             | Sąlyga netenkinama |                     |  |  |
| g <sub>a1</sub>      | 0.0120  | Tikriname sa    | ąlygą: | g <sub>a</sub> >1,5   | $t_0 =$          | 0.01               | Sąlyga tenkinama    |  |  |
| g <sub>a2</sub>      | 0.0120  | Tikriname sa    | ąlygą: | $g_a > 1,5t_0 = 0.01$ |                  |                    | Sąlyga tenkinama    |  |  |
| β                    | 0.5833  |                 | Pail   | rio tikrinti i        | iu osta i        | ragnau             | dimui               |  |  |
| γ                    | 7.50    |                 |        |                       | juostą j         | Jiaspau            |                     |  |  |
| n                    | 0.3839  | k <sub>n</sub>  | 1.0000 |                       |                  |                    | <u>≤</u> 1          |  |  |

Iš 5.33 lentelėje pateikiamų duomenų matome, kad KT tipo mazgo su tarpu suprojektuoti neglalime, kadangi netenkinama minimalių ekscentricitetų sąlygą, vadinasi norint projketuoti tokį mazgą reiktų įvertinti lenkiamuosius momentus, susidariusius dėl ekscentriško tinklelio elementų jungimo mazge. Kadangi [7] pateikia ir KT mazgų su užlaida laikomosios galios skaičiavimo algoritmus, tai galime išvengti lenkiamųjų momentų vertinimo, priimdami, kad "Santvaros 2" 6-ąjį mazgą projaktuosime su užlaida. 5.34 lentelėje pateikiami svarbiausieji rodikliai mazgo projektavimui.

5.34 lentelė. " Santvaros 2" 6-ojo mazgo svarbiausieji rodikliai laikomosios galios skaičiavimui, prokeltuojant KT tipo mazgą su užlaida

|                      |        | g               | q                                   |                     |                  | g>                   | -g <sub>min</sub>    |  |  |  |
|----------------------|--------|-----------------|-------------------------------------|---------------------|------------------|----------------------|----------------------|--|--|--|
| g <sub>min</sub> , m | 0.008  | -               | 0.028                               | -                   | Finkleli         | o elementa           | ai mazge persidengia |  |  |  |
| g <sub>min</sub> , m | 0.009  | -               | 0.039                               |                     | Finkleli         | ai mazge persidengia |                      |  |  |  |
|                      |        | Kad būtų tenkin | ama 3.28                            |                     |                  |                      |                      |  |  |  |
| e <sub>1</sub> , m   | -0.009 | sąlyga:         | -0.066                              | ≤e≤                 | 0.03             | Sąlyga tenkinama     |                      |  |  |  |
|                      |        | Kad būtų tenkin |                                     |                     |                  |                      |                      |  |  |  |
| e <sub>2</sub> , m   | 0.000  | sąlyga:         | -0.066                              | ≤e≤                 | 0.03             | Sąlyga tenkinama     |                      |  |  |  |
| $g_{a1}$             | -      | Tikriname sa    | lygą:                               | g <sub>a</sub> >1,5 | t <sub>0</sub> = | 0.012                | Sąlyga tenkinama     |  |  |  |
| $g_{a2}$             | -      | Tikriname sa    | ılygą:                              | g <sub>a</sub> >1,5 | t <sub>0</sub> = | 0.012                | Sąlyga tenkinama     |  |  |  |
| β                    | 0.6389 |                 | Polkie tikrinti juosta prograudimui |                     |                  |                      |                      |  |  |  |
| γ                    | 7.50   |                 | Ke                                  |                     | juosią           | praspauun            | 11µ1                 |  |  |  |

| n 0.3839 $k_n$ 1.0000 $\leq 1$ | n | 0.3839 | $\mathbf{k}_{\mathbf{n}}$ | 1.0000 | ≤1 |
|--------------------------------|---|--------|---------------------------|--------|----|
|--------------------------------|---|--------|---------------------------|--------|----|

| Mazgo tipas                    |                    | K s                  | u užlaida, [       | i=1 arba 2, j= ι | ıždengia                       | amasis elementas]                |
|--------------------------------|--------------------|----------------------|--------------------|------------------|--------------------------------|----------------------------------|
|                                | 1 tinklelio el.    | $b_1/b_0 =$          | 0.58               | ≥0,25            |                                | Sąlyga tenkinama                 |
| $b_i/b_0$                      | 2 tinklelio el.    | $b_2/b_0 =$          | 0.750              | ≥0,25            |                                | Sąlyga tenkinama                 |
|                                | 3 tinklelio el.    | $b_3/b_0 =$          | 0.417              | ≥0,25            |                                | Sąlyga tenkinama                 |
|                                | 1 tinklelio el.    | $b_1/t_1 =$          | 17.5               | ≤36√235/fyi=     | 33.28                          | Tinklelio elementas tempiamas    |
| Gniudymas                      | 2 tinklelio el.    | $b_2/t_2 =$          | 18.0               | ≤36√235/fyi=     | 33.28                          | Sąlyga tenkinama                 |
|                                | 3 tinklelio el.    | $b_3/t_3 =$          | 16.7               | ≤36√235/fyi=     | 33.28                          | Sąlyga tenkinama                 |
| Tempimas                       | 1 tinklelio el.    | $b_1/t_1 =$          | 17.50              | ≤35              |                                | Sąlyga tenkinama                 |
|                                | 2 tinklelio el.    | $b_2/t_2 =$          | 18.00              | <br>≤35 T:       |                                | Tinklelio elementas gniuždomasis |
|                                | 3 tinklelio el.    | $b_3/t_3 =$          | 16.67              | ≤35              |                                | Tinklelio elementas gniuždomasis |
| b <sub>0</sub> /t <sub>0</sub> | juostos el.        | $b_0/t_0 =$          | 15                 | ≤41√235/fyi=     | 37.90                          | Sąlyga tenkinama                 |
|                                | 1 tinklelio el.    | $f_{1y} \cdot t_1$   | 1100               | bj               | b <sub>i</sub> /b <sub>i</sub> | ≤0,75                            |
| $b_i/b_j$                      | 2 tinklelio el.    | $f_{2y} \cdot t_2$   | 1375               | bj               | 0.71                           | Sąlyga netenkinama               |
|                                | 3 tinklelio el.    | $f_{2y} {\cdot} t_3$ | 825                | bi               | 0.56                           | Sąlyga netenkinama               |
| Užlaida                        | q <sub>1</sub> , m | e <sub>1</sub> , m   | 2                  | 25.00%           | ≥25%                           | Sąlyga tenkinama                 |
| Uzialua                        | 0.028              | -0.017               | $\Lambda_{\rm OV}$ | 23.0070          | ≤100%                          | Sąlyga tenkinama                 |
| Užlaida                        | q <sub>2</sub> , m | e <sub>1</sub> , m   | λ                  | 25.00%           | ≥25%                           | Sąlyga tenkinama                 |
| Ozialda                        | 0.032              | -0.003               | 10 <sub>0V</sub>   | 25.0070          | <100%                          | Salyga tenkinama                 |

| C 2 C 1 / 1. | <b>O</b> (            | · ·   |          | . 1        | 1       |
|--------------|-----------------------|-------|----------|------------|---------|
| 1 11 lentele | Santvaros 7"          | 6-010 | mazon    | tinkamumo  | Salvoos |
| J.JJ Iontolo | $_{,,0}$ and $_{105}$ | 0-010 | mazgo    | unikamunio | Sarygus |
|              | ,,                    | 5     | <u> </u> |            |         |

Iš 5.35 matome, kad netenkinama uždengiamojo ir uždengiančiojo elementų skerspjūvio pločių santykio sąlyga, šiuo atveju nėra kitos išeities kaip tik keisti statramsčio elemento profiliuočio matmenis, antrajam iteraciniam skaičiavimui, 32-ajam elementui priskiriame 70x70x4 matmenų profiliuotį.

5.36 lentelė. "Santvaros 2" 6-ojo mazgo tinkamumo sąlygos (antrasis iteracinis skaičiavimas)

| Mazgo tipas                    |                    | K sı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ı užlaida, [i      | =1 arba 2, j= u | ždengia                        | masis elementas]                 |
|--------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|--------------------------------|----------------------------------|
|                                | 1 tinklelio el.    | $b_1/b_0 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.58               | ≥0,25           |                                | Sąlyga tenkinama                 |
| $b_i/b_0$                      | 2 tinklelio el.    | $b_2/b_0 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.750              | ≥0,25           |                                | Sąlyga tenkinama                 |
|                                | 3 tinklelio el.    | K su užlaida, [i=1 arba 2.         nklelio el. $b_1/b_0 =$ $0.58$ $\geq$ nklelio el. $b_2/b_0 =$ $0.750$ $\geq$ inklelio el. $b_3/b_0 =$ $0.583$ $\geq$ inklelio el. $b_3/b_0 =$ $0.583$ $\geq$ inklelio el. $b_1/t_1 =$ $17.5$ $\leq 36\sqrt{235/}$ inklelio el. $b_2/t_2 =$ $18.0$ $\leq 36\sqrt{235/}$ inklelio el. $b_3/t_3 =$ $17.5$ $\leq 36\sqrt{235/}$ inklelio el. $b_3/t_3 =$ $17.50$ $\leq$ inklelio el. $b_1/t_1 =$ $17.50$ $\leq$ inklelio el. $b_2/t_2 =$ $18.00$ $\leq$ inklelio el. $b_3/t_3 =$ $17.50$ $\leq$ inklelio el. $b_1/t_1 =$ $17.50$ $\leq$ inklelio el. $b_1/t_1 =$ $17.50$ $\leq$ inklelio el. $f_{1y}$ ·t_1 $1100$ bj         inklelio el. $f_{2y}$ ·t_2 $1375$ bj         inklelio el. $f_{2y}$ ·t_3 $1100$ bi | ≥0,25              |                 | Sąlyga tenkinama               |                                  |
|                                | 1 tinklelio el.    | $b_1/t_1 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.5               | ≤36√235/fyi=    | 33.28                          | Tinklelio elementas tempiamas    |
| Gniudymas                      | 2 tinklelio el.    | $b_2/t_2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.0               | ≤36√235/fyi=    | 33.28                          | Sąlyga tenkinama                 |
| T                              | 3 tinklelio el.    | $b_3/t_3 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.5               | ≤36√235/fyi=    | 33.28                          | Sąlyga tenkinama                 |
| Tempimas                       | 1 tinklelio el.    | $b_1/t_1 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.50              | <u>≤</u> 35     |                                | Sąlyga tenkinama                 |
|                                | 2 tinklelio el.    | $b_2/t_2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.00              | ≤35             |                                | Tinklelio elementas gniuždomasis |
|                                | 3 tinklelio el.    | $b_3/t_3 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.50              | ≤35             |                                | Tinklelio elementas gniuždomasis |
| b <sub>0</sub> /t <sub>0</sub> | juostos el.        | $b_0/t_0 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15                 | ≤41√235/fyi=    | 37.90                          | Sąlyga tenkinama                 |
|                                | 1 tinklelio el.    | $f_{1y} {\cdot} t_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1100               | bj              | b <sub>i</sub> /b <sub>i</sub> | ≥0,75                            |
| $b_i/b_j$                      | 2 tinklelio el.    | $f_{2y} {\cdot} t_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1375               | bj              | 1.00                           | Sąlyga tenkinama                 |
|                                | 3 tinklelio el.    | $f_{2y} {\cdot} t_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1100               | bi              | 0.78                           | Sąlyga tenkinama                 |
| Užlaida                        | q <sub>1</sub> , m | e <sub>1</sub> , m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\lambda_{\rm ov}$ | 25.00%          | ≥25%                           | Sąlyga tenkinama                 |

|         | 0.028              | -0.009             |                    |        | ≤100% | Sąlyga tenkinama |
|---------|--------------------|--------------------|--------------------|--------|-------|------------------|
| Užlaida | q <sub>2</sub> , m | e <sub>1</sub> , m | 2                  | 30.36% | ≥25%  | Sąlyga tenkinama |
|         | 0.039              | 0.000              | $\lambda_{\rm ov}$ |        | ≤100% | Sąlyga tenkinama |

5.37 lentelė. "Santvaros 2" 6-ojo mazgo laikomosios galios nustatymas

| Mazza tinas                | Papildomo                                         | s sąlygos KT mazgui                                     |  |  |  |  |  |
|----------------------------|---------------------------------------------------|---------------------------------------------------------|--|--|--|--|--|
| Mazgo upas                 | Sąly                                              | vga tenkinama                                           |  |  |  |  |  |
| KT mazgas su užlaida       | Skaičiuotinė laikomosios galios reikšmė, kN       |                                                         |  |  |  |  |  |
|                            | Tinklelio eleme                                   | ento irtis, 25%≤λ₀v<50%                                 |  |  |  |  |  |
|                            | N <sub>i.Rd</sub> , kN                            | 189.20                                                  |  |  |  |  |  |
| ्रा                        | b <sub>eff</sub> , m                              | 0.070                                                   |  |  |  |  |  |
|                            | b <sub>e,ov</sub> , m                             | 0.040                                                   |  |  |  |  |  |
| Nisa Nisa                  | Tinklelio eleme                                   | ento irtis, 50%≤λ₀v<80%                                 |  |  |  |  |  |
| Nin V                      | N <sub>i.Rd</sub> , kN                            | -                                                       |  |  |  |  |  |
|                            | b <sub>eff</sub> , m                              | 0.070                                                   |  |  |  |  |  |
|                            | b <sub>e,ov</sub> , m                             | 0.040                                                   |  |  |  |  |  |
| Nard PHPI                  | Tinklelio elemento irtis, $\lambda_{ov} \ge 80\%$ |                                                         |  |  |  |  |  |
| 10                         | N <sub>i.Rd</sub> , kN                            | -                                                       |  |  |  |  |  |
|                            | b <sub>eff</sub> ,m                               | 0.070                                                   |  |  |  |  |  |
|                            | b <sub>e,ov</sub> , m                             | 0.040                                                   |  |  |  |  |  |
| Mažiausia laikamaii galiat |                                                   | Tikriname sąlygą: N <sub>i.Ed</sub> <n<sub>i.Rd</n<sub> |  |  |  |  |  |
| 189.20                     | Tinklelio elemento<br>irtis, 25%≤λov<50%          | Sąlyga tenkinama                                        |  |  |  |  |  |

KT mazgų su užlaida laikomosios galios nustatyme, analizuojama tik uždengiančiojo elemento laikomoji galia bei papildomos sąlygos [7].

5.38 ir 5.39 lentelėse pateikiama "Santvaros 1" ir "Santvaros 2" mazgų projektavimo suvestinė.5.38 lentelė. "Santvaros 1" mazgų projektavimo suvestinė

| Mazgo<br>Nr. | Mazgo<br>tipas | Veikiančios<br>įrąžos (kN) | Mazgo ašinė<br>laikomoji galia<br>(kN) | Pavojingiausia<br>irties forma<br>Tarpas (užlaida)<br>tarp tinklelio<br>elementų (m) |                | Ekscentricitetas<br>(m) | Laikomosios<br>galios išnaudoji<br>koeficientas |
|--------------|----------------|----------------------------|----------------------------------------|--------------------------------------------------------------------------------------|----------------|-------------------------|-------------------------------------------------|
| 1            | K              | 275,575                    | 278,86                                 | Tinklelio<br>elemento irtis                                                          | 0,0096         | 0,005                   | 0,988                                           |
| 2            | Y              | 46,035                     | 57,84                                  | Juostos<br>plastifikacija                                                            | -              | 0                       | 0,796                                           |
| 3            | K              | 88,372                     | 132,22                                 | Tinklelio<br>elemento irtis                                                          | 0,008          | -0,02                   | 0,668                                           |
| 4            | Y              | 47,173                     | 47,71                                  | Juostos<br>plastifikacija                                                            | -              | 0                       | 0,989                                           |
| 5            | K              | 45,852                     | 131,4                                  | Juostos<br>plastifikacija                                                            | 0,006          | -0,029                  | 0,349                                           |
| 6            | KT             | 180,885                    | 196,6                                  | Juostos<br>plastifikacija                                                            | 0,006/0,008    | 0,0194/0,0196           | 0,920                                           |
| 7            | KT             | 47,173                     | 65,06                                  | Juostos<br>plastifikacija                                                            | -0,0036/0,0038 | 0,006/0,006             | 0,725                                           |

| Mazgo<br>Nr. | Mazgo<br>tipas   | Veikiančios<br>įrąžos (kN) | Mazgo ašinė<br>laikomoji galia<br>(kN) | Pavojingiausia<br>irties forma | Tarpas (užlaida)<br>tarp tinklelio<br>elementų (m) | Ekscentricitetas<br>(m) | Laikomosios<br>galios išnaudoji<br>koeficientas |
|--------------|------------------|----------------------------|----------------------------------------|--------------------------------|----------------------------------------------------|-------------------------|-------------------------------------------------|
| 1            | K su tarpu       | 278,493                    | 290,4                                  | Tinklelio<br>elemento irtis    | 0,052                                              | 0                       | 0,959                                           |
| 2            | Y                | 42,614                     | 82,94                                  | Juostos<br>plastifikacija      | -                                                  | 0                       | 0,514                                           |
| 3            | K su tarpu       | 187,208                    | 267,8                                  | Tinklelio<br>elemento irtis    | 0,066                                              | 0                       | 0,699                                           |
| 4            | Y                | 48,599                     | 54,6                                   | Juostos<br>plastifikacija      | -                                                  | 0                       | 0,890                                           |
| 5            | K su tarpu       | 43,673                     | 279                                    | Juostos<br>plastifikacija      | 0,058                                              | 0                       | 0,157                                           |
| 6            | KT su<br>užlaida | 42,614                     | 189,2                                  | Tinklelio<br>elemento irtis    | 0,028/0,039                                        | -0,009/0                | 0,225                                           |
| 7            | KT su<br>užlaida | 48,599                     | 160,91                                 | Tinklelio<br>elemento irtis    | 0,025/0,031                                        | -0,005/0                | 0,302                                           |

5.39 lentelė. "Santvaros 2" mazgų projektavimo suvestinė

Iš lentelėse pateikiamų mazgų projektavimo rezultatų matyti, kad mazgai suprojektuoti pagal [19] efektyvesni nei pagal [7] laikomosios galios ir veikiančios įrąžos atžvilgiu. Tai galima paaiškinti, tuo, kad "Santvaros 1" profiliuočių matmenys mažesni nei "Santvaros 2", bei tuo, kad KT tipo mazgų su užlaida laikomoji galia gaunama didesnė nei projektuojant tokius mazgus su tarpu.

## 6. SANTVAROS IŠ KVADRATINIŲ VAMZDŽIŲ MAZGŲ ELGSENOS ANALIZĖ

Esant skirtingiems anksčiau suprojektuotų santvarinių konstrukcijų elementų matmenims, kurie daro poveikį svarbiausiems rodiklius, mazgo laikomosios galios nustatymo algoritmuose, netikslinga buvo atlikti lyginamąją analizę.

Lyginamajai analizei pasirinktos tik svarbiausių rodiklių reikšmės. Juostos profiliuočio plonasieniškumą charakterizuojantis parametras  $\gamma$ , kinta 160x160 matmenų vamzdžio, LST EN 10219 standartu paremto sortimento, pateikiamų reikšmių ribose. Rodiklio  $\beta$  priklausančio nuo juostos ir tinklelio elemento pločių santykio reikšmės gaunamos, atitinkamai pasirinkus santvaros juostai prifiliuotį 160x160x6, o tinklelio elementams, atitinkamas pagal charakteringas šio rodiklio reikšmes. Lyginamosios analizės nepriklausomu lyginamuoju dydžiu priimamos 2.1.1 poskyryje aprašytu metodu gaunamos mazgo laikomosios galios reikšmės.

# 6.1 Y tipo mazgo laikomosios galios juostos plastinės irties atveju lyginamoji analizė

Y tipo mazgo laikomosios galios juostos plastinės irties atveju skaitinės lyginamosios analizės rezultatai pateikiami 5 priede. Analizė atliekama dviem etapais, skaičiuojant mazgo laikomąją galią

nevertinant santvaros juostos įrąžų įtakos, pagal [7] išreiškiamos koeficientu  $k_n$ , o pagal [19] -  $\gamma_0$  ir ją įvertinant.

Pirmosios analizės atveju gatų mazgo laikomųjų galių priklausomybės nuo rodiklio  $\gamma$ , esant atitinkamam santvaros juostos ir tinklelio elemento skerspjūvių pločių santykiui, rodikliui -  $\beta$  pateikiamos 31-35 paveiksluose.



31 pav. Mazgo laikomosios galios rodiklinės  $\gamma$  kreivės, esant rodiklio  $\beta = 0,3125$  reikšmei, nevertinant juostos įrąžų



32 pav. Mazgo laikomosios galios rodiklinės  $\gamma$  kreivės, esant rodiklio  $\beta = 0,5$  reikšmei, nevertinant juostos įrąžų



33 pav. Mazgo laikomosios galios rodiklinės  $\gamma$  kreivės, esant rodiklio  $\beta = 0,625$  reikšmei, nevertinant juostos įrąžų



34 pav. Mazgo laikomosios galios rodiklinės  $\gamma$  kreivės, esant rodiklio  $\beta = 0,75$  reikšmei, nevertinant juostos įrąžų



35 pav. Mazgo laikomosios galios rodiklinės  $\gamma$  kreivės, esant rodiklio  $\beta = 0,875$  reikšmei, nevertinant juostos įrąžų

Kaip, kad galima buvo numanyti nepriklausomai nuo rodiklio  $\beta$  reikšmės mazgo laikomoji galia juostos plastifikacijos atveju didėja mažėjant rodiklio  $\gamma$  reikšmei. Tai nesunku paaiškinti, kadangi kuo mažesnė parametro  $\gamma$  reikšmė tuo storesnė tuščiavidurio profiliuočio sienelė, tuo sunkiau ji deformuojasi, vadinasi tikslinga, kad laikomoji galia mažėja.

Matome, kad laikomosios galios skaičiuojamos pagal [7] pateikiamus algoritmus ir pagal analitinį metodą korealiacija yra gan gera ypač didėjant rodiklio  $\beta$  reikšmei, tai taip pat gan tikslinga, kadangi kuo mažesnės rodiklio  $\beta$  reikšmė tuo siauresnė tinklelio elemento profiliuočio juosta, tuo mažesnė juostos paviršiaus plastifikacijos galimybė, kadangi griaučiau gali įvykti juostos praspaudžiamoji ar išplėšiamoji irtis.

35 paveiksle pateiktame juostos laikomųjų galių pasiskirstyme matome, kad pakinta kreivės charakteris, tai galimo sienelės klupumo įtaka, kadangi esant pateiktai rodiklio  $\beta$  reikšmei reikėtų įvertinti ir šią irties formą.

Matome, kad nepaisant tokio paties kreivės charakterio laikomųjų galių apskaičiuotų pagal [19] reikšmės nekorealiuoja su apskaičiuotomis pagal [7] ir analitinį metodus. Jei atkreiptume dėmesį į tai, kad laikomųjų galių santykis apskaičiuotų pagal [7] ir pagal [19] yra pastovus (žr. 5 priedą). Tai galima paaiškinti išanalizavus laikomosios galios skaičiavimo algoritmus.

$$a)N_{i,Rd} = \frac{f_y \cdot t_0^2}{(1-\beta)\sin\theta_i} \left(\frac{2\eta}{\sin\theta_i} + 4\sqrt{1-\beta}\right) k_n / \gamma_{M5} \quad b)N_{i,Rd} \le \frac{\gamma_c \gamma_1 \gamma_0 f_{y,d} t_0^2 (\frac{2\eta}{\sin\theta_i} + 2\sqrt{1-\beta})}{(1-\beta) \cdot \sin\theta_i}$$

čia: išraiška a) [7] pateikiamas mazgo laikomosios galios nustatymo algoritmas; išraiška b) [19] pateikiamas mazgo laikomosios galios nustatymo algoritmas.

Matome, kad nepaisant papildomų koeficientų, be to šios analizės metu koeficientai įvertinantys įrąžas santvaros juostoje nevertinami, algoritmai skiriasi tik viena konstanta prie šaknies ženklo, išraiškoje b ji 2 kartus mažesnė. Galima manyti, kad skaičiavimo algoritmai buvo išvesti remiantis ta pačia takumo linijos teorijos modifikacija aprašyta 2.1.2 poskyryje. Jei išraiškoje 2.18.1 rašydami nelygybę išprastintume daugiklius-2, kas matematikoje iš tiesų nagalima, gautume išraišką-b. Tačiau jei priimsime, kad analitinis metodas aprašytas 2.1.1 yra analizės pagrindas, tai teisinga būtų išraiška-a.



36 pav. Mazgo laikomosios galios rodiklinės  $\beta$  kreivės, esant rodiklio  $\gamma = 10$  reikšmei, nevertinant juostos įrąžų

Pagal 36 paveiksle pateikiamas kreives matome, kad geriausia laikomųjų galių korealiacija kai rodiklio  $\beta$  reikšmė kinta ribose tarp 0,45-0,77.

Paveiksluose 37 – 41 pavaizduotos kreivės charakterizuojančios mazgo laikomosios galios priklausomybę nuo rodiklio  $\gamma$ , įvertinant santvaros juostos įrąžas.



37 pav. Mazgo laikomosios galios rodiklinės  $\gamma$  kreivės, esant rodiklio  $\beta = 0,3125$  reikšmei, įvertinant juostos įrąžas



38 pav. Mazgo laikomosios galios rodiklinės  $\gamma$  kreivės, esant rodiklio  $\beta = 0,5$  reikšmei, įvertinant juostos įrąžas



39 pav. Mazgo laikomosios galios rodiklinės  $\gamma$  kreivės, esant rodiklio  $\beta = 0,625$  reikšmei, įvertinant juostos įrąžas



40 pav. Mazgo laikomosios galios rodiklinės  $\gamma$  kreivės, esant rodiklio  $\beta = 0,75$  reikšmei, įvertinant juostos įrąžas



41 pav. Mazgo laikomosios galios rodiklinės  $\gamma$  kreivės, esant rodiklio  $\beta = 0,875$  reikšmei, įvertinant juostos įrąžas

Matome, kad įvertinus santvaros juostos įrąžas, korealiacija tarp laikomosios galios skaičiavimo pagal [7] ir analitiniu metodu pagerėjo. Nors analitiniame skaičiavimo algoritme nėra tiesiogiai vertinamos santvaros elemente veikiančios įrąžos, tačiau skaičiavimo algoritmas pagrįstas santvaros juostos elemento charakteristikomis. Iš 38-40 paveikslų matome, kad pagal [7] nuostatus atliktų laikomųjų galių reikšmės yra mažesnės nei pagal analitinį metoda, tai įrodo, kad koeficiento  $k_n$  įvedimas laikomąjai galiai suteikią tam tikrą atsargą lyginant su analitiu metodu.



42 pav. Mazgo laikomosios galios rodiklinės  $\beta$  kreivės, esant rodiklio  $\gamma = 10$  reikšmei, įvertinant juostos įrąžas

Iš 42 paveikslo matyti, kad irąžas santvaros juostoje įvertinančio koeficiento įvedimas praplėtė kreivių gautų mazgo laikomąją galią skaičiuojant pagal [7] ir analitiniu metudu korealiacijos ribas.

# 6.2 K su tarpu tipo mazgų laikomosios galios juostos plastinės irties atveju lyginamoji analizė

Kaip ir Y tipo mazgui, K tipo mazgo laikomųjų galių analizė buvo atliekama priklausomai nuo rodiklių  $\gamma$  ir  $\beta$ , analizės pagrindu priimant analitiniu metodu gautas laikomosios galios reikšmes.



43 pav. K tipo mazgo laikomosios galios rodiklinės  $\gamma$  kreivės, esant rodiklio  $\beta = 0,3125$  reikšmei, nevertinant juostos įrąžų



44 pav. K tipo mazgo laikomosios galios rodiklinės  $\gamma$  kreivės, esant rodiklio  $\beta = 0,5$  reikšmei, nevertinant juostos įrąžų



45 pav. K tipo mazgo laikomosios galios rodiklinės  $\gamma$  kreivės, esant rodiklio  $\beta = 0,625$  reikšmei, nevertinant juostos įrąžų



46 pav. K tipo mazgo laikomosios galios rodiklinės  $\gamma$  kreivės, esant rodiklio  $\beta = 0,75$  reikšmei, nevertinant juostos įrąžų

Šuo atveju sudėtingiau įvertinti, kuris skaičiavimo algoritmas yra tikslesnis, kadangi tiek pagal [19], tiek pagal [7] gautų rezultatų kreivės pavidalo išraiška panašiai korealiuoja su analitiniu metodu. Jei panagrinėtume pačius skaičiavimo metodus, nors abu šiuo atveju yra pusiau empiriniai, kadangi yra įvesta bandymų metu gautų pataisos skaitinių reikšmių, tačiau [19] pateikiamas skaičiavimo metodas apima dagiau mazgą charakterizuojančių dydžių. Palygine 4.6 ir 4.7 lentelėse pateikiamas mazgo laikomosios galios nustatymo išraiškas galime daryti prielaidą, kad jos išvestos remiantis ta pačia 2.1.2 poskyryje pateikiama takumo linijos teorijos modifikacija. Neapaisant 4.6 lentelėje pateikiamos laikomosios galios iraiškos papildymo konstantomis, ji yra tokia pati kaip 4.7 tik papildyta tarpo tarp tinkelio elementų reikšme, kuri apribojama santykiu:  $\frac{g \cdot \sin \theta_i}{2b} \le 0.25$ , kai

santykis viršyja 0,25 reikšmę 4.6 lentelėje pateikiamas skaičiavimo algoritmas įgyja 4.7 lentelėje pateikiamą pavidalą.

Iš 6 priede pateikiamų skaitinių analizės rezultatų matome, kad esant mažesnei rodiklio β reikšmei mazgo laikomosios galios reikšmė gauta skaičiuojant pagal [7] yra didesnė nei pagal [19], kas atsižvelgiant į mazgo deformavimosi charakterį (žr. 6.4) nėra tikslinga.



47 pav. K tipo mazgo laikomosios galios rodiklinės  $\beta$  kreivės, esant rodiklio  $\gamma = 10$  reikšmei, neįvertinant juostos įrąžų

Iš 47 paveikslo matyti, kad pagal [7] skaičiuojama laikomoji galia tiesiogiai priklauso nuo rodiklio β. Kreivių gautų pagal [19] ir skaičiavimo analitiniu metodu charakteris panašus, iš ko galime daryti prielaidą, kad yra sąsaja tarp skaičiavimo algoritmams naudojamų analitinių modelių.

Paveiksluose 48-52 pateikiama pakartotinė K su tarpu mazgo lyginamoji analizė, tik šiuo atveju įvertinus santvaros juostos įrąžų įtaką.



48 pav. K tipo mazgo laikomosios galios rodiklinės  $\gamma$  kreivės, esant rodiklio  $\beta = 0,3125$  reikšmei, įvertinant juostos įrąžas



49 pav. K tipo mazgo laikomosios galios rodiklinės  $\gamma$  kreivės, esant rodiklio  $\beta = 0,5$  reikšmei, įvertinant juostos įrąžas



50 pav. K tipo mazgo laikomosios galios rodiklinės  $\gamma$  kreivės, esant rodiklio  $\beta = 0,625$  reikšmei, įvertinant juostos įrąžas



51 pav. K tipo mazgo laikomosios galios rodiklinės  $\gamma$  kreivės, esant rodiklio  $\beta = 0,75$  reikšmei, įvertinant juostos įrąžas



52 pav. K tipo mazgo laikomosios galios rodiklinės  $\beta$  kreivės, esant rodiklio  $\gamma = 10$  reikšmei, įvertinant juostos įrąžas

Iš 48-51 paveikslų matome, kad įvertinus santvaros juostos įrąžas korealiacija tarp [7] ir analitiniu metodu gautų rezultatų pastebimai pagerėjo. Iš to galime daryti išvadą, kad bandymų rezultatais remiantis atliktos skaičiavimo algoritmo pataisos turi didelią įtaką skaičiavimo rezultatų tikslumui. Nepaisant to, kad bandymo rezultatais gautų skaitinių ir funkcinių reikšmių įvedimas mažina skaičiavimo algoritmo analitinį pagristumą, jos yra tikslingos, kadangi remiantis netiesine santvaros elemento elgsena mazge (žr. 6.5 poskyrį), analitinis skaičiavimo modelis būtų sunkiai pritaikomas naudojimui.

Pagal [19] gautų rezultatų sumažėjusią korealiaciją su analitiniu metodu gautomis reikšmėmis, galime paaiškinti, tuo, kad [19] pateikiamoje santvaros juostos įražų funkcijoje atsižvelgiama, tik į ašinę jėgą, neįvertinant tikrojo gniuždomojo lenkiamojo elemento darbo.

#### 6.3 T, X, Y tipo mazgų laikomosios galios sienelės vietinio klupumo irties atveju lyginamoji analizė

Remiantis rodikliais  $\beta$  ir  $\gamma$  atlikta laikomųjų galių skaičuojamų pagal [7] ir [19] pateikiamus algoritmus lyginamoji analizė, skaitiniai analizės rezultatai pateikiami 6 priede. Nors skaičiavimo algoritmai tiesiogiai nepriklauso nuo minėtų rodiklių reikšmių, tačiau skaičiavimo algoritmų naudojimo ribos apibrėžiamos būtent šių rodiklių reikšmėmis. Negalima paneigti to, kad profiliuočio plonasieniškumas yra pagrindinis veiksnys darantis poveikį sienelės klupumui, todėl ištirti laikomosios galios priklausomybę nuo rodiklio  $\gamma$  yra tikslinga.



53 pav. Y tipo mazgo laikomųjų galių sienelės klupumo irties atveju priklausomybė nuo santvaros juostos profiliuočio plonasieniškumo, esant rodiklio  $\beta = 0.3125$  reikšmei



54 pav. Y tipo mazgo laikomųjų galių sienelės klupumo irties atveju priklausomybė nuo santvaros juostos profiliuočio plonasieniškumo, esant rodiklio  $\beta = 0,5$  reikšmei



55 pav. Y tipo mazgo laikomųjų galių sienelės klupumo irties atveju priklausomybė nuo santvaros juostos profiliuočio plonasieniškumo, esant rodiklio  $\beta = 0,625$  reikšmei



56 pav. Y tipo mazgo laikomųjų galių sienelės klupumo irties atveju priklausomybė nuo santvaros juostos profiliuočio plonasieniškumo, esant rodiklio  $\beta = 0,75$  reikšmei



57 pav. Y tipo mazgo laikomųjų galių sienelės klupumo irties atveju priklausomybė nuo santvaros juostos profiliuočio plonasieniškumo, esant rodiklio  $\beta = 0.875$  reikšmei



58 pav. Y tipo mazgo laikomųjų galių sienelės klupumo irties atveju priklausomybė nuo santvaros juostos profiliuočio plonasieniškumo, esant rodiklio  $\beta = 1,0$  reikšmei



59 pav. Y tipo mazgo laikomųjų galių sienelės klupumo irties atveju rodiklinės  $\beta$  kreivės, esant rodiklio  $\gamma = 10$  reikšmei

Iš 53-58 paveikslų matyti, kad kreivė gauta pagal [19] atliktus skaičiavimo rezultatus yra artima tiesei, iš to galime daryti išvadą, kad laikomosios galios reikšmė nežymiai priklauso nuo tuščiavidurio profiliuočio plonasieniškumo, kas nėra tikslinga.

Iš 6 priede pateikiamų lyginamosios analizės skaitinių rezultatų matyti, kad kai santvaros juostos elementas gali būti traktuojamas kaip plonasienis profiliuotis, jo laikomoji galia skaičiuojant pagal [7] gauta nuo 50 iki 20 % mažesnė nei skaičiuojant pagal [19], o esant storasieniam prifiliuočiui rezultatai priešingi, kas parodo skaičiavimo algoritmo pagal [19] neatitikima elemento elgsenos mazge ypatumams (žr. 6.5 poskyrį).

Iš 59 paveikslo matome, kad rodiklio įtaka laikomųjų galių skaičiavimui yra tiesinė, ir jo įtaka laikomosios galios vertėms yra tokia pati, kadangi ji algoritmuose išreiškiama daugikliu:  $2b_i / \sin \theta_i$ .

#### 6.4 Įtempių ir deformacijų pasiskirstymo santvaros juostoje, kaip Y tipo mazgo konstrukciniame elemente analizė

Atlikus Y tipo mazgų elgsenos analizę, baigtinių elementų kompiuterine programa *Cosmos.Works*, ir pažvelgus į mazgo deformuotą schemą (žr. 65 paveikslą) kyla klausimas ar tikslinga sienelės klupumą vertinti tik kai rodiklis  $\beta$  pasiekia reikšmę lygią 1,0 [7]. Tuo remiantis buvo atlikta mazgo elementų elgsenos analizė rodiklį  $\beta$  priimant svarbiausiu ir kintant ribose nuo 0,75 iki 1,0.

Analizei priimta mazgo skaičiuojamoji schema pateikta 7 priede, įrąžos santvaros juostos elemente nevertinamos, o apkrovos reikšmė tinklelio elemente analizės metu nekeičiama. Santvaros juostos vamzdinio elemento sienelės ir juostos elgseną charakterizuojančios įtempių deformacinės kreivės pateikiamos 60-61 paveiksluose.



60 pav. Įtempių deformacinės kreivės vamzdžio juostoje



61 pav. Įtempių deformacinės kreivės vamzdžio sienelėje

Iš 60 paveikslo matyti, kad kuo rodiklio  $\beta$  reikšmė mažesnė, tuo sudėtingesnis įtempių ir deformacijų pasiskirstymas juostoje. Kreivės, kai rodiklis  $\beta = 0,75$ , dalyje kol pasiekiama 0,0025 santykinės deformacijos reikšmė įtempiai stipriai atsilieka nuo deformacijų, tai parodo, kad esant storasieniam santvaros profiliuočiui juostos paviršius deformuojasi nekintant apkrovimui – plastiškai. Esant plonasieniam santvaros juostos profiliuočiui jo itempimų ir deformacijų pasiskirstymas artimas tampraus kūno tiesiškam įtempių ir deformacijų pasiskirstymui, kreivės dalis tarp 0,0025 ir 0,0035 santykinės deformacijos reikšmių. Kita vertus ši kreivės dalis remiantis idealiai tamprios – plastinės medžiagos savibių modeliu, gali būti traktuojama kaip tiesiškai stiprėjanti. Kreivės dalis tarp 0,002 ir 0,0025 santykinių deformacijų reikšmių galėtų būti traktuojama kaip liekamosios deformacijos juostoje.

Kreivės gautos esant rodiklio  $\beta$  reikšmei 0,875 ir 1,0 artimos *Prantlio diagramai* tampriai plastiniam kūnui. Iš 60 paveikle pateikiamų kreivių pavidalo, galime daryti išvadą, kad tuščiavidurio profiliuočio juostos plastinės irties atveju mazgo laikomosios galios nustatymo algoritmams būtų tikslinga taikyti netiesinės analizės principus. Taip pat remiantis šiomis diagramomis galime teigti, kad pagal [7] profiliuočių skirstymas į klases ir laikomosios galios skaičiavimas pagal plastinės analizės principus, gerokai praplečia elemento darbo apimtis.

Iš 61 paveikslo matome, kad profiliuočio sienelės įtempių ir deformacijų diagrama esant parametro  $\beta$  reikšmei lygiai 0,75 panaši į juostos, tačiau deformacijos mažesnės, todėl analizuojant profiliuočio kaip vientiso elemento elgseną galime teigti, kad juostos plastinė irtis yra labiau tikėtina nei sienelės klupumas.

Paveiksluose 62-64 pateikiamos santykinių deformacijų profiliuočio juostoje ir sienelėje profiliuočio plonasieniškumo rodiklinės kreivės.



62 pav. Santykinių deformacijų rodiklinės plonasieniškumo kreivės, esant rodiklio  $\beta = 0,75$  reikšmei



63 pav. Santykinių deformacijų rodiklinės plonasieniškumo kreivės, esant rodiklio  $\beta = 0,875$  reikšmei



64 pav. Santykinių deformacijų rodiklinės plonasieniškumo kreivės, esant rodiklio  $\beta = 1,0$  reikšmei

Iš pateiktų diagramų matyti, kad mazgo laikomosios galios apribojimas rodiklio  $\beta$  reikšmėmis yra tikslingas, kai jo vertė 0,75 profiliuočio sienelės klupumo irties galimybės tikrinimas neturi prasmės, kadangi santykinės deformacijos juostoje ženkliai didesnės nei sienelėje. Kai rodiklio  $\beta$  reikšmės kinta nuo 0,875 iki 1,0 yra tikymybė, kad juostos plastifikacija, gali pasireikšti kartu su sienelės klupumu, priklausomai nuo profiliuočio plonasieniškumo, skirtumas tarp santykinių deformacijų deformacijų gali siekti tik 4 % (žr. 7 priedo 71 lentelę).

# 6.5 Įtempių ir deformacijų pasiskirtymo santvaros juostoje, kaip K tipo mazgo konstrukciniame elemente analizė

Kaip ir Y tipo mazgo atveju atlikta įtempių ir deformacijų pasiskirstymo santvaros juostos tuščiavidurio profiliuočio struktūriniuose elementuose: juostoje ir sienelėje analizė. Analizei buvo pasinaudota kompiuterine programa *Cosmos.Works*, mazgo skaičiuojamoji schema pateikta 8 priede. Dėl vizualiai didelių profiliuočio struktūrinių elementų deformacijų (žr. 65 pav.), analizuojama ar tikslinga nustatant mazgo minimalią laikomają galią neatsižvelgti į sienelės klupumą (žr. 4.4 lentelę).



65 pav. K tipo mazgo deformuota schema



66 pav. Įtempių deformacinės kreivės profiliuočio juostoje



67 pav. Įtempių deformacinės kreivės profiliuočio sienelėje

Iš 66 paveikslo matome, kad kai santvaros juostos elementas priskiriamas plonasieniui profiliuočiui, jo įtempių ir deformacijų pasiskirstymas tiesinis. Storasienio profiliuočio atveju deformacijos stipriai atsilieka nuo įtempių. Kadangi storasieniai profiliuočiai priklauso 1 arba 2 klasėms pagal [6], remiantis kreivių pavidalu tikslinga, kad laikomosios galios nustatymui remiamasi plastine analize.

Vamzdžio sienelės itempių deformacinės kreivės artimesnės *Prandlio diagramai*. Staigiai krintanti dalis, kuri sąlygotų trapią elemento irtį nėra charakteringa, kadangi rodiklio  $\gamma = 16$ , reikšmė, gaunama, kai profiliuotis priklauso 4 klasei, t.y skerspjūviams su klumpamaja dalimi, šios reikšmės taikymas analizei nėra visiškai tikslingas, kadangi šios klasės profiliuočių naudojimas konstruojant mazgus yra apribotas mazgo tinkamumo sąlygomis.

66 ir 67 paveiksluose pateikiamos diagramos patvirtina tiklingą plastinės analizės panaudojimą mazgo laikomosios galios nustatymo algoritmuose (žr. 4.1 lentelę).



68 pav. Įtempių rodiklinės  $\gamma$  kreivės, kai rodiklis  $\beta = 0.5$ 



69 pav. Įtempių rodiklinės  $\gamma$  kreivės, kai rodiklis  $\beta = 0,75$ 

Paveiksluose  $\sigma_{c,t.el,j}$  – įtempiai gniuždomajame tinklelio elemente kontakto su juosta vietoje,  $\sigma_{c,t.el}$  – maksimalūs įtempiai gniuždomajame tinklelio elemente.

Iš 68 ir 69 paveiksluose pateikiamų įtempių rodiklinių plonasieniškumo kreivių matome, kad tinklelio elemento irtis K tupo mazge yra tiek pat tikėtina kaip ir juostos plastinė irtis. Remiantis šiomis diagramomis galime teigti, kad tikslinga neatsižvelgti į sienelės klupumo ir tinklelio elemento vietinio klupumo irties atvejus, kai nustatoma 4.1 lentelės salygas tenkinančių mazgų laikomoji galia.



70 pav. Santykinių deformacijų rodiklinės  $\gamma$  kreivės, kai rodiklis  $\beta = 0,3125$ 



71 pav. Santykinių deformacijų rodiklinės  $\gamma$  kreivės, kai rodiklis  $\beta = 0.5$ 



72 pav. Santykinių deformacijų rodiklinės  $\gamma$  kreivės, kai rodiklis  $\beta = 0,625$ 



73 pav. Santykinių deformacijų rodiklinės  $\gamma$  kreivės, kai rodiklis  $\beta = 0,75$ 

70-73 paveiksluose pateiktos santykinių deformacijų rodiklinės γ kreivės profiliuočio juostoje ir sienelėje tik patvirtina, tai, kad sienelės klupumo vertinimas, skaičiuojant K tipo mazgo laikomąją galią, yra betikslis. Iš 8 priede pateikiamos skaitinės analizės rezultatų matyti, kad deformacijos profiliuočio juostoje, nepaisant jo plonasieniškumo, daugiau nei 50% didesnės nei sienelėje.

### IŠVADOS IR PASIŪLYMAI

- Darbe išnagrinėti plieninių vamzdinių santvarų nelakštinių mazgų skaičiavimo ir konstravimo ypatumai palyginus santvaras, suprojektuotas pagal EN 1993-1-1 [6] ir EN 1993-1-8 [7] bei STR 2.05.08:2005 [20] ir 2.05.08:2005 8 – tą priedą [19].
- 2. Palyginus "Santvaros 1", suprojektuotos remiantis [20] ir [19] pateikiamomis nuostatomis, plieno sąnaudos gautos 14 % mažesnės nei "Santvaros 2", suprojektuotos pagal [6] ir [7] nuostatas. Analizei santvarų elementai parinkti tik pagal laikomąją galią. Tokį plieno sąnaudų skirtumą sąlygojo galimybė pagal [20] parinkti mažesnius profiliuočius. Be to [20] metodika esant mažoms lenkiamojo momento reikšmėms, klupumo koeficientu  $\varphi_e$ gniuždomųjų lenkiamųjų elementų laikomąją galią sumažina mažiau, nei [6] metodika.
- 3. Atlikus santvarų iš kvadratinių plieninių vamzdžių skaitinę analizę, mazgai suprojektuoti pagal [19] nuostatas, gauti efektyvesni nei suprojektuoti pagal [7]. Tačiau, atlikus atskirų mazgo irties pobūdžių lyginamąją analizę, skaičiavimo algoritmų, pateikiamų [19], patikimumas kelia abejonių, nes, pavyzdžiui, Y tipo mazgų laikomosios galios skaičiavimo juostos plastinės irties atveju rezultatai yra daugiau nei 50 % mažesni nei gautieji analitiniu skaičiavimu, kurie gan gerai korealiuoja su skaičiavimais pagal [7]. Šis nesutapimas sietinas su [19] perpus mažesne konstanta lyginant su [6], nors pats skaičiavimo algoritmas abiem atvejais yra beveik tapatus. Nustatant Y tipo mazgų laikomąją galią, jei atsižvelgti į santvaros juostos įrąžas laikomųjų galių korealiacija lyginant su analitinio skaičiavimo rezultatais pagerėja.

Paprastai sunku atlikti K tipo mazgų laikomosios galios juostos plastinės irties atvejui analizę, kadangi skaičiavimo algoritmai yra pusiau empiriniai, tačiau jei taikyti analitinį skaičiavimo metodą, vis tiek gaunama geresnė korealiacija tarp analitinių ir K tipo mazgų laikomosios galios skaičiavimo pagal [7] rezultatų. Jei neatsižvelgti į santvaros juostos įrąžų poveikį skirtumas tarp skaičiavimo rezultatų pagal [19] ir [7] kinta 3 – 30 % ribose, o atsižvelgus į tas įrąžas, šis kitimas jau yra 8 – 43 % ribose.

4. Kadangi atliktos baigtinių elementų metodu analizės metu gautas skirtumas tarp profiliuočio ties mazgo centru juostos ir sienelės santykinių deformacijų svyruoja 4 – 22 % ribose priklausomai nuo profiliuočio plonasieniškumo, profiliuočio juostos plastinės ir sienelės klumpamosios irties vertinimą iš tiesų tikslinga atlikti tik tuomet, kai santvaros juostos ir tinklelio vamzdžių pločių santykio rodiklio β reikšmė yra didesnė nei 0,85. 5. Nors santvaras projektuoti pagal [6] ir [7] trunka ilgiau, tačiau algoritmai elementų laikomajai galiai nustatyti yra aiškesni, labiau susieti su gerai žinomais plieninių konstrukcijų elgsenos dėsniais nei [19] ir juose yra mažiau nevisai pagristai nustatytų koeficientų. Mazgų projektavimo galimybės pagal [7] yra platesnės, kadangi sudėtingų mazgų, tokių kaip KT tipo, esant nepakankamai laikomajai galiai, mazgą su tarpu galima suprojektuoti su užlaida, taip išvengiant būtinybės santvaros profiliuočių skerspjūvius didinti ir jų efektyvumą mažinti.

### LITERATŪROS SĄRAŠAS

1. *CIDECT – Design Guide for Ractangular Hollow Sections (RHS) Joints under Predominantly Static Loading.* Germany, 1992, ISBN 3-88585-975-0.

2. Coa J.J, Packer J.A., Yang G.J. 1998. Yield line analysis of RHS connections with axial loads. *Journal of Constructional Steel Research*. 48, 1-25 p.

3. Coutie, M.G.; Davies, G. 1993. Tubular Structures V. London

4. *Design of SHS welded joints*. [online] Corus Tubes, CT16 [cited 15 August 2005]. Available from internet:

http://www.civl.port.ac.uk/britishsteel/pdfs/td393.pdf.

5. Design Handbook for Rautaruukki Hollow Sections. Rautaruukii metrorm. ISBN 952-5010-47-3

6. *Eurocode 3: Design of Steel Structures- Part 1.1: General -General Rules and Rules for Buildings.* Brussels, 2003. 90 p.

7. Eurokodas 3: Plieninių konstrukcijų projektavimas. 1-8 dalis. Mazgų projektavimas. Vilnius, 2007. 141 p.

8. Hancock G.J., Knoen, Y.B., Bernard E.S. 1994. Strength Design Curves for Thin-Walled Sections Undergoing Destortional Buckling. *Journal of Constructional Steel Research*. 31 (2-3), 169-186 p.

9. Hiriyur B.K.J., Schafter B.W. 2004. Yield-line analysis of cold-formed steel members. *International Journal of Steel Structures*. Aug. 2004.

10. Koskimaeki, M.; Niemi, E. 1989. Finite Element Studies on the Behavior of Rectangular Hollow Section K-joins. *Tubular Structures, 3-rd International Symposium, Finland*, p. 260-274.

11. Liu, D. K.; Yu, Y.; Wardenier J. 1998a. Effect of boundary conditions and chord preload on the strength of RHS uniplanar gap K- joint. *Tubular structures, 8-th International Symposium, Singapore*, p. 231-238.

12. Munro J., DaFonseca A.M.A. 1978. Yield line method by finite elements and linear programing. *The Structural Engineer*. (2) 56B 37-44 p.

13. Niemi E. 1989. Beahavior of Rectangular Hollow Section K-Joints at Low Temperatures. *Tubular Structures, 3rd International Symposium, Finland.* 19-27 p.

14. Packer, J.A. Theoretical behavior and analysis of welded steel joints with RHS chords. *CIDECT, Final Report 5U-78/19*.

15. Partanen, T. 1991. On convergence of yield line Theory and Nonlinear FEM results in plate Structures, *Tubular Structures, 4th International Symposium, Delft*, p. 313-323.

16. Partanen t., T. Bjork 1993. On Convergence of Yield Line Theory And Experimental Test Capacity of RHS K- and T- Joints [Tubular Structures V. Edited by M.G. County and G. Davies]. London, 774 p. ISBN:0419187707.

17. Rasmussen K.J.R., Teng F., Young B. 1993. Tests of K-Joints in Stainless Steel Square Hollow Sections. *Tubular Structures*, 5<sup>th</sup> International Symposium, Nottingham, 373-381 p.

18. Sarada, S.; Fleischer, O.; Puthli, R. (2002). Initial study on the static strength of thin – walled Rectangular Hollow Section (RHS) K – joint with gap. *The 12-th International Offshore and Polar Engineering Conference Kitakyushu, Japan*, p. 26-33.

19. STR 2.05.08:200. 8 priedas. Praktinio taikymo vadovas. Jungčių skaičiavimas ir reikalavimai konstrukcijoms projektuoti. Vilnius, 2005 57 p.

20. STR 2.05.08:2005. Plieninių konstrukcijų projektavimas. Pagrindinės nuostatos. Vilnius, 2005 106 p.

21. STR 2.05.04:2003. Poveikiai ir apkrovos. Vilnius, 2003 50 p.

22. The Behaviuor and design of Welded Connections between Rectangular Hollow Sections Under Predominantly Static Loading. [online] Tubular Structures [cited 21 March 2008] Available from internet:

http://kuleuven.be/bwk/materials/Teaching/master/wg13/10300.htm.

23. Wardenier, J. 1982. Hollow section joints. Delft University Press, Delft.

24. Wardenier, J.; Giddings, T.W. The strength and behavior of statically loaded connections in structural hollow sections, *CIDECT Monograph No 6, 1986*.

25. Wardenier, J.; Stark, J.W.B. (1980). The static strength of welded lattice girder joints in structural, hollow sections, *ECSC Report*.

26. Zhang Z., Niemi E. 1991. Studies of the Behavior of RHS Gap K – Joints by Non-Linear FEM. *Tubular Structures*, 5<sup>th</sup> International Symposium, London, p. 364-372.

27. Zhao X-L, Hancock G.J. 1991. A Theoretical Analysis of Plastic Moment Capacity of an Inclined Yield Line under Axial Force. *Thin-walled Structures*. 15 (3) 185-207 p.

28. Zhao X-L, Hancock G.J. 1991. T-joints in Rectangular Hollow Sections Subjected to Combined Actions. *Journal of Structural Engineering*. Vol 117, No. 8, aug. 1991.

### Santvaros konstrukcinių elementų parinkimas

1 lentelė. Santvaros apatinės juostos elementų parinkimas pagal EN 1993-1-1 rekomendacijas

|                 | Apatinės juostos el. (pagal EN 1993-1-1) |                                                            |     |                            |             |                               |                          |                               |     |                  |                      |  |  |
|-----------------|------------------------------------------|------------------------------------------------------------|-----|----------------------------|-------------|-------------------------------|--------------------------|-------------------------------|-----|------------------|----------------------|--|--|
| Elemento<br>Nr. | Geometrinis<br>ilgis, mm                 | Skaičiuojamasis ilgis<br>(pagal EN 1993-1-1<br>BB.1.3), mm | λ   | Inercijos<br>spindulys, cm | Skerspjūvis | Inercijos<br>spindulys,<br>cm | Priimamas<br>skerspjūvis | Inercijos<br>spindulys,<br>cm | λ   | Liaunio sąlyga   | Elemento<br>masė, kg |  |  |
| 1               | 6000                                     | 5400                                                       | 120 | 4,500                      | 120x120x7.1 | 4,53                          | 120x120x6                | 4,61                          | 117 | Sąlyga tenkinama | 124,8                |  |  |
| 2               | 6000                                     | 5400                                                       | 120 | 4,500                      | 120x120x7.1 | 4,53                          | 120x120x6                | 4,61                          | 117 | Sąlyga tenkinama | 124,8                |  |  |
| 3               | 6000                                     | 5400                                                       | 120 | 4,500                      | 120x120x7.1 | 4,53                          | 120x120x6                | 4,61                          | 117 | Sąlyga tenkinama | 124,8                |  |  |
| 4               | 6000                                     | 5400                                                       | 120 | 4,500                      | 120x120x7.1 | 4,53                          | 120x120x6                | 4,61                          | 117 | Sąlyga tenkinama | 124,8                |  |  |
| 5               | 6000                                     | 5400                                                       | 120 | 4,500                      | 120x120x7.1 | 4,53                          | 120x120x6                | 4,61                          | 117 | Sąlyga tenkinama | 124,8                |  |  |
| 6               | 6000                                     | 5400                                                       | 120 | 4,500                      | 120x120x7.1 | 4,53                          | 120x120x6                | 4,61                          | 117 | Sąlyga tenkinama | 124,8                |  |  |

2 lentelė. Santvaros apatinės juostos elementų parinkimas pagal STR 2.05.08:2005 rekomendacijas

|                 | Apatinės juostos el. (pagal STR 2.05.08:2005) |                                                                           |     |                            |             |                               |                          |                               |     |                  |                      |  |  |
|-----------------|-----------------------------------------------|---------------------------------------------------------------------------|-----|----------------------------|-------------|-------------------------------|--------------------------|-------------------------------|-----|------------------|----------------------|--|--|
| Elemento<br>Nr. | Geometrinis<br>ilgis, mm                      | Skaičiuojamasis ilgis<br>(pagal STR<br>2.05.08:2005, 4.9<br>lentelę ), mm | λ   | Inercijos<br>spindulys, cm | Skerspjūvis | Inercijos<br>spindulys,<br>cm | Priimamas<br>skerspjūvis | Inercijos<br>spindulys,<br>cm | λ   | Liaunio sąlyga   | Elemento<br>masė, kg |  |  |
| 1               | 6000                                          | 6000                                                                      | 120 | 5,000                      | 140x140x10  | 5,2                           | 140x140x6                | 5,43                          | 110 | Sąlyga tenkinama | 147                  |  |  |
| 2               | 6000                                          | 6000                                                                      | 120 | 5,000                      | 140x140x10  | 5,2                           | 140x140x6                | 5,43                          | 110 | Sąlyga tenkinama | 147                  |  |  |
| 3               | 6000                                          | 6000                                                                      | 120 | 5,000                      | 140x140x10  | 5,2                           | 140x140x6                | 5,43                          | 110 | Sąlyga tenkinama | 147                  |  |  |
| 4               | 6000                                          | 6000                                                                      | 120 | 5,000                      | 140x140x10  | 5,2                           | 140x140x6                | 5,43                          | 110 | Sąlyga tenkinama | 147                  |  |  |
| 5               | 6000                                          | 6000                                                                      | 120 | 5,000                      | 140x140x10  | 5,2                           | 140x140x6                | 5,43                          | 110 | Sąlyga tenkinama | 147                  |  |  |
| 6               | 6000                                          | 6000                                                                      | 120 | 5,000                      | 140x140x10  | 5,2                           | 140x140x6                | 5,43                          | 110 | Sąlyga tenkinama | 147                  |  |  |

| Viršutinės juostos el. (pagal EN 1993-1-1) |                          |                                                            |     |                            |             |                               |                          |                               |     |                  |                      |
|--------------------------------------------|--------------------------|------------------------------------------------------------|-----|----------------------------|-------------|-------------------------------|--------------------------|-------------------------------|-----|------------------|----------------------|
| Elemento<br>Nr.                            | Geometrinis<br>ilgis, mm | Skaičiuojamasis ilgis<br>(pagal EN 1993-1-1<br>BB.1.3), mm | λ   | Inercijos<br>spindulys, cm | Skerspjūvis | Inercijos<br>spindulys,<br>cm | Priimamas<br>skerspjūvis | Inercijos<br>spindulys,<br>cm | λ   | Liaunio sąlyga   | Elemento<br>masė, kg |
| 7                                          | 3010                     | 2709                                                       | 120 | 2,258                      | 60x60x4     | 2,26                          | 60x60x4                  | 2,26                          | 120 | Sąlyga tenkinama | 20,20                |
| 8                                          | 3010                     | 2709                                                       | 120 | 2,258                      | 60x60x4     | 2,26                          | 60x60x4                  | 2,26                          | 120 | Sąlyga tenkinama | 20,20                |
| 9                                          | 3010                     | 2709                                                       | 120 | 2,258                      | 60x60x4     | 2,26                          | 60x60x4                  | 2,26                          | 120 | Sąlyga tenkinama | 20,20                |
| 10                                         | 3010                     | 2709                                                       | 120 | 2,258                      | 60x60x4     | 2,26                          | 60x60x4                  | 2,26                          | 120 | Sąlyga tenkinama | 20,20                |
| 11                                         | 3010                     | 2709                                                       | 120 | 2,258                      | 60x60x4     | 2,26                          | 60x60x4                  | 2,26                          | 120 | Sąlyga tenkinama | 20,20                |
| 12                                         | 3010                     | 2709                                                       | 120 | 2,258                      | 60x60x4     | 2,26                          | 60x60x4                  | 2,26                          | 120 | Sąlyga tenkinama | 20,20                |
| 13                                         | 3010                     | 2709                                                       | 120 | 2,258                      | 60x60x4     | 2,26                          | 60x60x4                  | 2,26                          | 120 | Sąlyga tenkinama | 20,20                |
| 14                                         | 3010                     | 2709                                                       | 120 | 2,258                      | 60x60x4     | 2,26                          | 60x60x4                  | 2,26                          | 120 | Sąlyga tenkinama | 20,20                |
| 15                                         | 3010                     | 2709                                                       | 120 | 2,258                      | 60x60x4     | 2,26                          | 60x60x4                  | 2,26                          | 120 | Sąlyga tenkinama | 20,20                |
| 16                                         | 3010                     | 2709                                                       | 120 | 2,258                      | 60x60x4     | 2,26                          | 60x60x4                  | 2,26                          | 120 | Sąlyga tenkinama | 20,20                |
| 17                                         | 3010                     | 2709                                                       | 120 | 2,258                      | 60x60x4     | 2,26                          | 60x60x4                  | 2,26                          | 120 | Sąlyga tenkinama | 20,20                |
| 18                                         | 3010                     | 2709                                                       | 120 | 2,258                      | 60x60x4     | 2,26                          | 60x60x4                  | 2,26                          | 120 | Sąlyga tenkinama | 20,20                |

3 lentelė. viršutinės juostos elementų parinkimas pagal EN 1993-1-1 rekomendacijas

4 lentelė. Viršutinės juostos elementų parinkimas pagal STR 2.05.08:2005 rekomendacijas
|                 |                          |                                                            |     | Viršutinė                  | s juostos el. (pa | gal STR 2.0                   | 05.08:2005)              |                               |     |                  |                      |
|-----------------|--------------------------|------------------------------------------------------------|-----|----------------------------|-------------------|-------------------------------|--------------------------|-------------------------------|-----|------------------|----------------------|
| Elemento<br>Nr. | Geometrinis<br>ilgis, mm | Skaičiuojamasis ilgis<br>(pagal EN 1993-1-1<br>BB.1.3), mm | λ   | Inercijos<br>spindulys, cm | Skerspjūvis       | Inercijos<br>spindulys,<br>cm | Priimamas<br>skerspjūvis | Inercijos<br>spindulys,<br>cm | λ   | Liaunio sąlyga   | Elemento<br>masė, kg |
| 7               | 3010                     | 3010                                                       | 120 | 2,508                      | 70x70x4           | 2,67                          | 70x70x4                  | 2,67                          | 113 | Sąlyga tenkinama | 23,99                |
| 8               | 3010                     | 3010                                                       | 120 | 2,508                      | 70x70x4           | 2,67                          | 70x70x4                  | 2,67                          | 113 | Sąlyga tenkinama | 23,99                |
| 9               | 3010                     | 3010                                                       | 120 | 2,508                      | 70x70x4           | 2,67                          | 70x70x4                  | 2,67                          | 113 | Sąlyga tenkinama | 23,99                |
| 10              | 3010                     | 3010                                                       | 120 | 2,508                      | 70x70x4           | 2,67                          | 70x70x4                  | 2,67                          | 113 | Sąlyga tenkinama | 23,99                |
| 11              | 3010                     | 3010                                                       | 120 | 2,508                      | 70x70x4           | 2,67                          | 70x70x4                  | 2,67                          | 113 | Sąlyga tenkinama | 23,99                |
| 12              | 3010                     | 3010                                                       | 120 | 2,508                      | 70x70x4           | 2,67                          | 70x70x4                  | 2,67                          | 113 | Sąlyga tenkinama | 23,99                |
| 13              | 3010                     | 3010                                                       | 120 | 2,508                      | 70x70x4           | 2,67                          | 70x70x4                  | 2,67                          | 113 | Sąlyga tenkinama | 23,99                |
| 14              | 3010                     | 3010                                                       | 120 | 2,508                      | 70x70x4           | 2,67                          | 70x70x4                  | 2,67                          | 113 | Sąlyga tenkinama | 23,99                |
| 15              | 3010                     | 3010                                                       | 120 | 2,508                      | 70x70x4           | 2,67                          | 70x70x4                  | 2,67                          | 113 | Sąlyga tenkinama | 23,99                |
| 16              | 3010                     | 3010                                                       | 120 | 2,508                      | 70x70x4           | 2,67                          | 70x70x4                  | 2,67                          | 113 | Sąlyga tenkinama | 23,99                |
| 17              | 3010                     | 3010                                                       | 120 | 2,508                      | 70x70x4           | 2,67                          | 70x70x4                  | 2,67                          | 113 | Sąlyga tenkinama | 23,99                |
| 18              | 3010                     | 3010                                                       | 120 | 2,508                      | 70x70x4           | 2,67                          | 70x70x4                  | 2,67                          | 113 | Sąlyga tenkinama | 23,99                |

5 lentelė. Tinklelio elementų parinkimas pagal EN 1993-1-1 rekomendacijas

|                 |                          |                                                            |     | Tir                        | nklelio elemen | tai (pagal EN 19           | 993-1-1)                 |                            |     |                  |                      |
|-----------------|--------------------------|------------------------------------------------------------|-----|----------------------------|----------------|----------------------------|--------------------------|----------------------------|-----|------------------|----------------------|
| Elemento<br>Nr. | Geometrinis<br>ilgis, mm | Skaičiuojamasis ilgis<br>(pagal EN 1993-1-1<br>BB.1.3), mm | λ   | Inercijos<br>spindulys, cm | Skerspjūvis    | Inercijos<br>spindulys, cm | Priimamas<br>skerspjūvis | Inercijos<br>spindulys, cm | λ   | Liaunio sąlyga   | Elemento<br>masė, kg |
| 19              | 3870                     | 2902,5                                                     | 120 | 2,419                      | 70x70x4        | 2,67                       | 70x70x4                  | 2,67                       | 109 | Sąlyga tenkinama | 30,84                |
| 20              | 3870                     | 2902,5                                                     | 120 | 2,419                      | 70x70x4        | 2,67                       | 70x70x4                  | 2,67                       | 109 | Sąlyga tenkinama | 30,84                |
| 21              | 4210                     | 3157,5                                                     | 120 | 2,631                      | 70x70x4        | 2,67                       | 70x70x4                  | 2,67                       | 118 | Sąlyga tenkinama | 33,55                |
| 22              | 4210                     | 3157,5                                                     | 120 | 2,631                      | 70x70x4        | 2,67                       | 70x70x4                  | 2,67                       | 118 | Sąlyga tenkinama | 33,55                |
| 23              | 4570                     | 3427,5                                                     | 120 | 2,856                      | 80x80x5        | 3,03                       | 80x80x5                  | 3,03                       | 113 | Sąlyga tenkinama | 51,64                |
| 24              | 4570                     | 3427,5                                                     | 120 | 2,856                      | 80x80x5        | 3,03                       | 80x80x5                  | 3,03                       | 113 | Sąlyga tenkinama | 51,64                |
| 25              | 4570                     | 3427,5                                                     | 120 | 2,856                      | 80x80x5        | 3,03                       | 80x80x5                  | 3,03                       | 113 | Sąlyga tenkinama | 51,64                |
| 26              | 4570                     | 3427,5                                                     | 120 | 2,856                      | 80x80x5        | 3,03                       | 80x80x5                  | 3,03                       | 113 | Sąlyga tenkinama | 51,64                |
| 27              | 4210                     | 3157,5                                                     | 120 | 2,631                      | 70x70x4        | 2,67                       | 70x70x4                  | 2,67                       | 118 | Sąlyga tenkinama | 33,55                |
| 28              | 4210                     | 3157,5                                                     | 120 | 2,631                      | 70x70x4        | 2,67                       | 70x70x4                  | 2,67                       | 118 | Sąlyga tenkinama | 33,55                |
| 29              | 3870                     | 2902,5                                                     | 120 | 2,419                      | 70x70x4        | 2,67                       | 70x70x4                  | 2,67                       | 109 | Sąlyga tenkinama | 30,84                |
| 30              | 3870                     | 2902,5                                                     | 120 | 2,419                      | 70x70x4        | 2,67                       | 70x70x4                  | 2,67                       | 109 | Sąlyga tenkinama | 30,84                |

6 lentelė. Statramsčių elementų parinkimas pagal 1993-1-1 rekomendacijas

|                 |                          |                                                            |     | Statra                        | amsčių eleme | ntai (pagal EN 1           | 993-1-1)                 |                               |     |                  |                      |
|-----------------|--------------------------|------------------------------------------------------------|-----|-------------------------------|--------------|----------------------------|--------------------------|-------------------------------|-----|------------------|----------------------|
| Elemento<br>Nr. | Geometrinis<br>ilgis, mm | Skaičiuojamasis ilgis<br>(pagal EN 1993-1-1<br>BB.1.3), mm | λ   | Inercijos<br>spindulys,<br>cm | Skerspjūvis  | Inercijos<br>spindulys, cm | Priimamas<br>skerspjūvis | Inercijos<br>spindulys,<br>cm | λ   | Liaunio sąlyga   | Elemento<br>masė, kg |
| 31              | 2200                     | 1650                                                       | 120 | 1,38                          | 40x40x2.5    | 1,51                       | 50x50x3                  | 1,9                           | 87  | Sąlyga tenkinama | 9,35                 |
| 32              | 2700                     | 2025                                                       | 120 | 1,69                          | 50x50x3      | 1,9                        | 50x50x3                  | 1,9                           | 107 | Sąlyga tenkinama | 11,48                |
| 33              | 3200                     | 2400                                                       | 120 | 2,00                          | 60x60x4      | 2,26                       | 60x60x4                  | 2,26                          | 106 | Sąlyga tenkinama | 21,47                |
| 34              | 3700                     | 2775                                                       | 120 | 2,31                          | 60x60x2.5    | 2,33                       | 70x70x4                  | 2,67                          | 104 | Sąlyga tenkinama | 29,49                |
| 35              | 3200                     | 2400                                                       | 120 | 2,00                          | 60x60x4      | 2,26                       | 60x60x4                  | 2,26                          | 106 | Sąlyga tenkinama | 21,47                |
| 36              | 2700                     | 2025                                                       | 120 | 1,69                          | 50x50x3      | 1,9                        | 50x50x3                  | 1,9                           | 107 | Sąlyga tenkinama | 11,48                |
| 37              | 2200                     | 1650                                                       | 120 | 1,38                          | 40x40x2.5    | 1,51                       | 50x50x3                  | 1,9                           | 87  | Sąlyga tenkinama | 9,35                 |

7 lentelė. Tinklelio elementų parinkimas pagal STR 2.05.08:2005 rekomendacijas

|                 |                          |                                                                          |     | Tinkleli                      | o elementai (p | bagal STR 2.0                 | 05.08:2005)              |                               |     |                  |                      |
|-----------------|--------------------------|--------------------------------------------------------------------------|-----|-------------------------------|----------------|-------------------------------|--------------------------|-------------------------------|-----|------------------|----------------------|
| Elemento<br>Nr. | Geometrinis<br>ilgis, mm | Skaičiuojamasis ilgis<br>(pagal STR<br>2.05.08:2005, 4.9<br>lentelę), mm | λ   | Inercijos<br>spindulys,<br>cm | Skerspjūvis    | Inercijos<br>spindulys,<br>cm | Priimamas<br>skerspjūvis | Inercijos<br>spindulys,<br>cm | λ   | Liaunio sąlyga   | Elemento<br>masė, kg |
| 19              | 3870                     | 3096                                                                     | 120 | 2,580                         | 70x70x4        | 2,67                          | 70x70x4                  | 2,67                          | 116 | Sąlyga tenkinama | 30,84                |
| 20              | 3870                     | 3096                                                                     | 120 | 2,580                         | 70x70x4        | 2,67                          | 70x70x4                  | 2,67                          | 116 | Sąlyga tenkinama | 30,84                |
| 21              | 4210                     | 3368                                                                     | 120 | 2,807                         | 80x80x5        | 3,03                          | 80x80x5                  | 3,03                          | 111 | Sąlyga tenkinama | 47,57                |
| 22              | 4210                     | 3368                                                                     | 120 | 2,807                         | 80x80x5        | 3,03                          | 80x80x5                  | 3,03                          | 111 | Sąlyga tenkinama | 47,57                |
| 23              | 4570                     | 3656                                                                     | 120 | 3,047                         | 80x80x4        | 3,07                          | 80x80x4                  | 3,07                          | 119 | Sąlyga tenkinama | 42,14                |
| 24              | 4570                     | 3656                                                                     | 120 | 3,047                         | 80x80x4        | 3,07                          | 80x80x4                  | 3,07                          | 119 | Sąlyga tenkinama | 42,14                |
| 25              | 4570                     | 3656                                                                     | 120 | 3,047                         | 80x80x4        | 3,07                          | 80x80x4                  | 3,07                          | 119 | Sąlyga tenkinama | 42,14                |
| 26              | 4570                     | 3656                                                                     | 120 | 3,047                         | 80x80x4        | 3,07                          | 80x80x4                  | 3,07                          | 119 | Sąlyga tenkinama | 42,14                |
| 27              | 4210                     | 3368                                                                     | 120 | 2,807                         | 80x80x5        | 3,03                          | 80x80x5                  | 3,03                          | 111 | Sąlyga tenkinama | 47,57                |
| 28              | 4210                     | 3368                                                                     | 120 | 2,807                         | 80x80x5        | 3,03                          | 80x80x5                  | 3,03                          | 111 | Sąlyga tenkinama | 47,57                |
| 29              | 3870                     | 3096                                                                     | 120 | 2,580                         | 70x70x4        | 2,67                          | 70x70x4                  | 2,67                          | 116 | Sąlyga tenkinama | 30,84                |
| 30              | 3870                     | 3096                                                                     | 120 | 2,580                         | 70x70x4        | 2,67                          | 70x70x4                  | 2,67                          | 116 | Sąlyga tenkinama | 30,84                |

8 lentelė. Statramsčių elementų parinkimas pagal STR 2.05.08:2005 rekomendacijas

|                 |                          |                                                                          |     | Spyri                         | ų elementai (pa | agal STR 2.05                 | .08:2005)                |                               |     |                  |                      |
|-----------------|--------------------------|--------------------------------------------------------------------------|-----|-------------------------------|-----------------|-------------------------------|--------------------------|-------------------------------|-----|------------------|----------------------|
| Elemento<br>Nr. | Geometrinis<br>ilgis, mm | Skaičiuojamasis ilgis<br>(pagal STR<br>2.05.08:2005, 4.9<br>lentelę), mm | λ   | Inercijos<br>spindulys,<br>cm | Skerspjūvis     | Inercijos<br>spindulys,<br>cm | Priimamas<br>skerspjūvis | Inercijos<br>spindulys,<br>cm | λ   | Liaunio sąlyga   | Elemento<br>masė, kg |
| 31              | 2200                     | 1650                                                                     | 120 | 1.38                          | 40x40x2.5       | 1.51                          | 50x50x3                  | 1.9                           | 87  | Sąlyga tenkinama | 9.35                 |
| 32              | 2700                     | 2025                                                                     | 120 | 1.69                          | 50x50x3         | 1.9                           | 50x50x3                  | 1.9                           | 107 | Sąlyga tenkinama | 9.35                 |
| 33              | 3200                     | 2400                                                                     | 120 | 2.00                          | 60x60x4         | 2.26                          | 60x60x4                  | 2.26                          | 106 | Sąlyga tenkinama | 14.76                |
| 34              | 3700                     | 2775                                                                     | 120 | 2.31                          | 60x60x2.5       | 2.33                          | 70x70x4                  | 2.67                          | 104 | Sąlyga tenkinama | 17.53                |
| 35              | 3200                     | 2400                                                                     | 120 | 2.00                          | 60x60x4         | 2.26                          | 60x60x4                  | 2.26                          | 106 | Sąlyga tenkinama | 14.76                |
| 36              | 2700                     | 2025                                                                     | 120 | 1.69                          | 50x50x3         | 1.9                           | 50x50x3                  | 1.9                           | 107 | Sąlyga tenkinama | 9.35                 |
| 37              | 2200                     | 1650                                                                     | 120 | 1.38                          | 40x40x2.5       | 1.51                          | 50x50x3                  | 1.9                           | 87  | Sąlyga tenkinama | 9.35                 |

#### 2 priedas

#### 9 lentelė. Įrąžų suvestinė "Santvaros 1" elementuose Beam L/C Fx kN My kNm Mz kNm Stress N/mm2 Apatinės juostos el. -335.90 0,00 2,24 -100.27 1 3 2 3 -678,05 0,00 -3,24 -202,40 3 3 -751,28 0,00 -2,15 -224,26 3 4 -751,28 0,00 -2,15 -224,26 5 3 -678,05 0,00 -3,24 -202,40 3 6 -335,90 0.00 2,24 -100.27 Viršutinės juostos el. 7 3 4,543 0,000 4,003 4,302 8 3 553,199 0.000 13,918 523,862 3 9 553,069 0,000 10,688 523,739 3 10 745,462 0,000 12,153 705,930 3 745,416 0.000 11,192 11 705,886 3 12 725,523 0,000 11,897 687,049 3 13 687,049 725,523 0,000 11,897 3 14 745,416 0,000 11,192 705,886 3 12,153 15 745,462 0,000 705,930 3 16 553,069 0.000 10,688 523,739 3 553,199 17 0.000 13,918 523,862 18 3 4,543 0,000 4,003 4,302 Tinklelio elementai 19 430,148 0,000 0.000 407,337 3 3 -275,575 0,000 0,000 -260,961 20 3 21 180,885 0,000 0,000 121,399 22 3 0,000 0,000 -59,310 -88,372 3 0,000 0,000 13,249 23 16,031 24 3 45,852 0,000 0,000 37,894 25 3 0.000 0,000 37,894 45,852 3 0.000 0.000 13.249 26 16,031 3 27 0.000 0,000 -59,310 -88,372 3 28 180,885 0.000 0,000 121,399 3 29 -275,575 0,000 0,000 -260,961 3 0,000 30 430,148 0,000 407,337 Statramsčių elementai 31 3 20,784 0.000 -2,241 34,990 32 3 46,035 0,000 0,000 77,499 3 33 47,173 0,000 0.000 53,123 3 34 -72,553 0,000 0,000 -68,706 3 35 47,173 0,000 0,000 53,123 3 46,035 0,000 77,499 36 0.000 37 3 0,000 2,241 34,990 20,784

#### Įrąžų santvaros elementuose suvestinė

| Beam | L/C | Fx kN            | My kNm | Mz kNm | Stress N/mm2 |
|------|-----|------------------|--------|--------|--------------|
|      |     | Apatinės juosto  | s el.  |        | -            |
| 1    | 1 3 | -345.117         | 0      | 0.411  | -121.094     |
| 2    | 2 3 | -693.943         | 0      | -0.038 | -243.489     |
| 3    | 3 3 | -767.239         | 0      | -0.207 | -269.207     |
| 2    | 4 3 | -767.239         | 0      | -0.207 | -269.207     |
| 5    | 5 3 | -693.943         | 0      | -0.038 | -243.489     |
| 6    | 5 3 | -345.117         | 0      | 0.411  | -121.094     |
|      |     | Viršutinės juost | os el. |        |              |
| 7    | 7 3 | 1.961            | 0      | 0.459  | 0.417        |
| 8    | 3 3 | 565.004          | 0      | 16.791 | 120.214      |
| 9    | ) 3 | 564.496          | 0      | 4.917  | 120.105      |
| 10   | ) 3 | 761.996          | 0      | 11.412 | 162.127      |
| 11   | 1 3 | 761.969          | 0      | 8.814  | 162.121      |
| 12   | 2 3 | 742.771          | 0      | 7.184  | 158.036      |
| 13   | 3 3 | 742.771          | 0      | 7.184  | 158.036      |
| 14   | 4 3 | 761.969          | 0      | 8.814  | 162.121      |
| 15   | 5 3 | 761.996          | 0      | 11.412 | 162.127      |
| 16   | 5 3 | 564.495          | 0      | 4.917  | 120.105      |
| 17   | 7 3 | 565.004          | 0      | 16.791 | 120.214      |
| 18   | 3 3 | 1.961            | 0      | 0.459  | 0.417        |
|      |     | Tinklelio eleme  | ntai   |        | -            |
| 19   | 9 3 | 445.433          | 0      | 0      | 156.292      |
| 20   | ) 3 | -278.493         | 0      | 0      | -263.724     |
| 21   | 3   | 187.208          | 0      | 0      | 80.003       |
| 22   | 2 3 | -88.993          | 0      | 0      | -84.274      |
| 23   | 3 3 | 15.44            | 0      | 0      | 10.362       |
| 24   | 4 3 | 43.673           | 0      | 0      | 29.311       |
| 25   | 5 3 | 43.673           | 0      | 0      | 29.311       |
| 26   | 5 3 | 15.44            | 0      | 0      | 10.362       |
| 27   | 7 3 | -88.994          | 0      | 0      | -84.274      |
| 28   | 3 3 | 187.208          | 0      | 0      | 80.003       |
| 29   | 3   | -278.493         | 0      | 0      | -263.724     |
| 30   | ) 3 | 445.433          | 0      | 0      | 156.292      |
|      |     | Statramsčių eler | mentai |        |              |
| 31   | 3   | 19.01            | 0      | -0.411 | 32.003       |
| 32   | 2 3 | 42.614           | 0      | 0      | 71.741       |
| 33   | 3 3 | 48.599           | 0      | 0      | 46.022       |
| 34   | 4 3 | -68.981          | 0      | 0      | -65.323      |
| 35   | 5 3 | 48.599           | 0      | 0      | 46.022       |
| 36   | 5 3 | 42.614           | 0      | 0      | 71.741       |
| 37   | 7 3 | 19.01            | 0      | 0.411  | 32.003       |

10 lentelė. Įrąžų suvestinė "Santvaros 2" elementuose

# 3 priedas

# "Santvaros 1" mazgų laikomosios galios nustatymas

| 111 / 1.      | 0 1 10       |         |                        | 1 /        | · ·         | 1 '1 '      | 1.       | 1        | • •    |
|---------------|--------------|---------|------------------------|------------|-------------|-------------|----------|----------|--------|
| I I lentele   | Santvarog 1" | /L_to1/ | $\alpha$ maza $\alpha$ | elementu   | narametrai  | laikomogiog | 021106 6 | 22310133 | /1m111 |
| I I IOIIIOIO. | "Santvaros i |         | 0 mazgo                | CICILICIIU | parametral. | laikomosios | ganos    | snaiciav | mui    |
|               | ,,           | 5       | 0                      | <b>U</b>   | ,           |             | 0        |          |        |

|          |                         | Mazgo elementų skaičiuojamieji dydžiai |       |       |         |                 |        |      |       |       |       |        |    |    |             |
|----------|-------------------------|----------------------------------------|-------|-------|---------|-----------------|--------|------|-------|-------|-------|--------|----|----|-------------|
| Elemento | Viršutinės juostos el   | h(h) m                                 | t m   | А,    | NEd,    | Iražos poveikis | MEd,   | Wel, | Wpl,  | fy,   | fyd,  | Е,     | NC | Ai | Skerspjūvio |
| Nr.      | v insurines juostos er. | n(0), m                                | ι, Π  | cm2   | kN      |                 | kNm    | cm3  | cm3   | N/mm2 | N/mm2 | N/mm2  | γc | 01 | klasė       |
| 10       | 140x140x8               | 0,140                                  | 0,008 | 40,04 | 745,462 | Gniuždymas      | 12,153 | 161  | 194,2 | 275   | 250   | 210000 | 1  |    | 1klasė      |
| 11       | 140x140x8               | 0,140                                  | 0,008 | 40,04 | 745,416 | Gniuždymas      | 11,192 | 161  | 194,2 | 275   | 250   | 210000 | 1  |    | 1klasė      |
|          |                         |                                        |       |       |         | Tinklelio       |        |      |       |       |       |        |    |    |             |
|          |                         |                                        |       |       |         | elmentai        |        |      |       |       |       |        |    |    |             |
| 33       | 50x50x3                 | 0,050                                  | 0,003 | 5,41  | 47,173  | Gniuždymas      | 0      | 7,79 | 9,39  | 275   | 250   | 210000 | 1  | 85 | 1klasė      |

12 lentelė. "Santvaros 1" 4-tojo mazgo pagrindiniai rodikliai

| 1                            | Mazgo geometrinės sąly         | gos               |       |            |
|------------------------------|--------------------------------|-------------------|-------|------------|
| $\eta_1 = \beta_1 = b_1/b_0$ | $c_1 = h_1 / sin \theta_1$ , m | γ <sub>1(1)</sub> | γο    | $\gamma_t$ |
| 0,357                        | 0,050                          | 1                 | 0,823 | 0,8        |

2-ojo mazgo laikomosios galios nustatymas.

13 lentelė. "Santvaros 1" 2-tojo mazgo elementų parametrai, laikomosios galios skaičiavimui

|          |                          |         |       |                 |                   | Mazgo elementu     | į skaičiuoja      | amieji dyo        | džiai             |                   |                   |                   |    |                |             |
|----------|--------------------------|---------|-------|-----------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----|----------------|-------------|
| Elemento | Viršutinės juostos el    | h(h) m  | t m   | Α,              | N <sub>Ed</sub> , | Iražos poveikis    | M <sub>Ed</sub> , | W <sub>el</sub> , | W <sub>pl</sub> , | f <sub>y</sub> ,  | f <sub>yd</sub> , | Е,                | 24 | A.             | Skerspjūvio |
| Nr.      | v irsutilies juostos er. | n(0), m | ι, Π  | cm <sup>2</sup> | kN                | įiązos poveikis    | kNm               | cm <sup>3</sup>   | cm <sup>3</sup>   | N/mm <sup>2</sup> | N/mm <sup>2</sup> | N/mm <sup>2</sup> | Yc | $\mathbf{U}_1$ | klasė       |
| 8        | 140x140x8                | 0,140   | 0,01  | 40,04           | 553,199           | Gniuždymas         | 13,918            | 161               | 194,2             | 275               | 250               | 210000            | 1  |                | 1klasė      |
| 9        | 140x140x8                | 0,140   | 0,01  | 40,04           | 553,069           | Gniuždymas         | 10,688            | 161               | 194,2             | 275               | 250               | 210000            | 1  |                | 1klasė      |
|          |                          |         |       |                 |                   | Tinklelio elmentai |                   |                   |                   |                   |                   |                   |    |                |             |
| 32       | 50x50x3                  | 0,050   | 0,003 | 5,41            | 46,035            | Gniuždymas         | 0                 | 7,79              | 9,39              | 275               | 250               | 210000            | 1  | 85             | 1klasė      |

| 14 lentelė. "Santvaros 1" 4-tojo mazgo pagrindiniai rodikli | "Santvaros 1" 4-tojo mazgo pagrindiniai rodikliai |
|-------------------------------------------------------------|---------------------------------------------------|
|-------------------------------------------------------------|---------------------------------------------------|

| М                            | azgo geometrinės sąly          | /gos              |       |            |
|------------------------------|--------------------------------|-------------------|-------|------------|
| $\eta_1 = \beta_1 = b_1/b_0$ | $c_1 = h_1 / sin \theta_1$ , m | γ <sub>1(1)</sub> | γο    | $\gamma_t$ |
| 0,357                        | 0,050                          | 1                 | 0,998 | 0,8        |

# 15 lentelė. "Santavaros 1" 2-tojo mazgo ašinės laikomosiso galios nustatymas

| Mazgo tipas                                                                                                                                       | Drojektinė leiko       | mosios galios raikšma kN                                |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------|--|--|--|--|--|
| K,N mazgas su tarpu                                                                                                                               | гюјекине тако          | mosios ganos reiksme, kiv                               |  |  |  |  |  |
| ti serita                                                                                                                                         | Juosto<br>(praspat     | s paviršiaus irtis<br>īdimas/išplėšimas)                |  |  |  |  |  |
|                                                                                                                                                   |                        | β1≤0,9                                                  |  |  |  |  |  |
| $N_1 \rightarrow g$ $N_2 \rightarrow b_2$                                                                                                         | g/c1≤0,25              |                                                         |  |  |  |  |  |
| θ1 θ2 θ2                                                                                                                                          | N <sub>1.Rd</sub> , kN | 57,84                                                   |  |  |  |  |  |
|                                                                                                                                                   | Juostos šon            | Juostos šoninės sienelės klupimas                       |  |  |  |  |  |
|                                                                                                                                                   |                        | β1≤0,85                                                 |  |  |  |  |  |
| $\checkmark \qquad \qquad$ | N <sub>1.Rd</sub> , kN | Sąlygos tikrinti nereikia                               |  |  |  |  |  |
|                                                                                                                                                   | R                      | amsčio irtis                                            |  |  |  |  |  |
|                                                                                                                                                   | k                      | 1                                                       |  |  |  |  |  |
|                                                                                                                                                   | N <sub>1.Rd</sub> , kN | 87,83                                                   |  |  |  |  |  |
| Mažiausia laikomoji gelie:                                                                                                                        | Juostos paviršiaus     |                                                         |  |  |  |  |  |
| wiaziausia laikoinoji galla:                                                                                                                      | irtis                  | Tikriname sąlygą: N <sub>i.Ed</sub> <n<sub>i.Rd</n<sub> |  |  |  |  |  |
| N1.Rd, kN                                                                                                                                         | 57,84                  | Sąlyga tenkinama                                        |  |  |  |  |  |

|                 | Mazgo elementų skaičiuojamieji dydžiai |         |       |                       |                         |                    |                          |                                      |                                      |                                       |                                        |                         |                |              |                      |
|-----------------|----------------------------------------|---------|-------|-----------------------|-------------------------|--------------------|--------------------------|--------------------------------------|--------------------------------------|---------------------------------------|----------------------------------------|-------------------------|----------------|--------------|----------------------|
| Elemento<br>Nr. | Viršutinės juostos el.                 | h(b), m | t, m  | A,<br>cm <sup>2</sup> | N <sub>Ed</sub> ,<br>kN | Įrąžos<br>poveikis | M <sub>Ed</sub> ,<br>kNm | W <sub>el</sub> ,<br>cm <sup>3</sup> | W <sub>pl</sub> ,<br>cm <sup>3</sup> | f <sub>y</sub> ,<br>N/mm <sup>2</sup> | f <sub>yd</sub> ,<br>N/mm <sup>2</sup> | E,<br>N/mm <sup>2</sup> | γ <sub>c</sub> | $\theta_{i}$ | Skerspjūvio<br>klasė |
| 7               | 140x140x8                              | 0,140   | 0,008 | 40,04                 | 4,543                   | Gniuždymas         | 4,003                    | 161                                  | 194,2                                | 275                                   | 250                                    | 210000                  | 1              |              | 1klasė               |
| 8               | 140x140x8                              | 0,140   | 0,008 | 40,04                 | 553,199                 | Gniuždymas         | 13,918                   | 161                                  | 194,2                                | 275                                   | 250                                    | 210000                  | 1              |              | 1klasė               |
|                 |                                        |         |       |                       | T                       | inklelio elment    | tai                      |                                      |                                      |                                       |                                        |                         |                |              |                      |
| 19              | 120x120x6                              | 0,120   | 0,006 | 26,43                 | 430,148                 | Gniuždymas         | 0                        | 93,69                                | 111,6                                | 275                                   | 250                                    | 210000                  | 1              | 34           | 1klasė               |
| 20              | 100x100x3                              | 0,100   | 0,003 | 11,41                 | -275,575                | Tempimas           | 0                        | 35,41                                | 41,21                                | 275                                   | 250                                    | 210000                  | 1              | 44           | 2klasė               |

16 lentelė. "Santvaros 1" 1-ojo mazgo konstrukcinių elementų reikialingi parametrai laikomosios galios skaičiavimui

3-ojo ir 5-ojo mazgų laikomosios galios nustatymas.

17 lentelė. "Santvaros 1" 3-čiojo mazgo elementų parametrai, laikomosios galios skaičiavimui

|                 | Mazgo elementų skaičiuojamieji dydžiai |         |       |           |                         |                    |                          |                                      |                                      |                                       |                                        |                         |                |                         |                      |
|-----------------|----------------------------------------|---------|-------|-----------|-------------------------|--------------------|--------------------------|--------------------------------------|--------------------------------------|---------------------------------------|----------------------------------------|-------------------------|----------------|-------------------------|----------------------|
| Elemento<br>Nr. | Viršutinės juostos el.                 | h(b), m | t, m  | A, $cm^2$ | N <sub>Ed</sub> ,<br>kN | Įrąžos<br>poveikis | M <sub>Ed</sub> ,<br>kNm | W <sub>el</sub> ,<br>cm <sup>3</sup> | W <sub>pl</sub> ,<br>cm <sup>3</sup> | f <sub>y</sub> ,<br>N/mm <sup>2</sup> | f <sub>yd</sub> ,<br>N/mm <sup>2</sup> | E,<br>N/mm <sup>2</sup> | γ <sub>c</sub> | $\boldsymbol{\theta}_i$ | Skerspjūvio<br>klasė |
| 9               | 140x140x8                              | 0,140   | 0,008 | 40,04     | 553,069                 | Gniuždymas         | 10,688                   | 161                                  | 194,2                                | 275                                   | 250                                    | 210000                  | 1              |                         | 1 klasė              |
| 10              | 140x140x8                              | 0,140   | 0,008 | 40,04     | 745,462                 | Gniuždymas         | 12,153                   | 161                                  | 194,2                                | 275                                   | 250                                    | 210000                  | 1              |                         | 1 klasė              |
|                 |                                        |         |       |           | Т                       | inklelio elment    | tai                      |                                      |                                      |                                       |                                        |                         |                |                         |                      |
| 21              | 80x80x5                                | 0,080   | 0,005 | 14,36     | 180,885                 | Gniuždymas         | 0                        | 32,86                                | 39,74                                | 275                                   | 250                                    | 210000                  | 1              | 40                      | 1klasė               |
| 22              | 50x50x3                                | 0,050   | 0,003 | 5,41      | -88,372                 | Tempimas           | 0                        | 7,79                                 | 9,39                                 | 275                                   | 250                                    | 210000                  | 1              | 49                      | 1klasė               |

18 lentelė. "Santvaros 1" 5-tojo mazgo elementų parametrai, laikomosios galios skaičiavimui

|                 | Mazgo elementų skaičiuojamieji dydžiai |         |       |                       |                         |                    |                          |                                      |                                      |                                       |                                        |                         |              |              |                      |
|-----------------|----------------------------------------|---------|-------|-----------------------|-------------------------|--------------------|--------------------------|--------------------------------------|--------------------------------------|---------------------------------------|----------------------------------------|-------------------------|--------------|--------------|----------------------|
| Elemento<br>Nr. | Viršutinės juostos el.                 | h(b), m | t, m  | A,<br>cm <sup>2</sup> | N <sub>Ed</sub> ,<br>kN | Įrąžos<br>poveikis | M <sub>Ed</sub> ,<br>kNm | W <sub>el</sub> ,<br>cm <sup>3</sup> | W <sub>pl</sub> ,<br>cm <sup>3</sup> | f <sub>y</sub> ,<br>N/mm <sup>2</sup> | f <sub>yd</sub> ,<br>N/mm <sup>2</sup> | E,<br>N/mm <sup>2</sup> | $\gamma_{c}$ | $\theta_{i}$ | Skerspjūvio<br>klasė |
| 11              | 140x140x8                              | 0.140   | 0.008 | 40.04                 | 745.416                 | Gniuždymas         | 11.192                   | 161                                  | 194.2                                | 275                                   | 250                                    | 210000                  | 1            |              | 1klasė               |
| 12              | 140x140x8                              | 0.140   | 0.008 | 40.04                 | 725.523                 | Gniuždymas         | 11.897                   | 161                                  | 194.2                                | 275                                   | 250                                    | 210000                  | 1            |              | 1klasė               |
|                 |                                        |         |       |                       | Т                       | inklelio elment    | ai                       |                                      |                                      |                                       |                                        |                         |              |              |                      |
| 23              | 50x50x3                                | 0.050   | 0.003 | 5.41                  | 16.031                  | Gniuždymas         | 0                        | 7.79                                 | 9.39                                 | 275                                   | 250                                    | 210000                  | 1            | 44           | 1klasė               |
| 24              | 50x50x3                                | 0.050   | 0.003 | 5.41                  | 45.852                  | Gniuždymas         | 0                        | 7.79                                 | 9.39                                 | 275                                   | 250                                    | 210000                  | 1            | 54           | 1klasė               |

| 19 lentelė.                                               | 9 lentelė. "Santvaros 1" 3-čiojo mazgo pagrindiniai rodikliai |                                                                 |                               |                   |                   |                       |                                                   |  |  |  |  |  |
|-----------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------|-------------------|-------------------|-----------------------|---------------------------------------------------|--|--|--|--|--|
|                                                           | Ma                                                            | zgo geometrin                                                   | ės sąlygos                    |                   |                   |                       |                                                   |  |  |  |  |  |
| e                                                         | 2g <sub>min</sub> , m                                         | 2g                                                              | h <sub>0, rek</sub> , m       | g/c <sub>1</sub>  | g/c <sub>2</sub>  | e <sub>reik</sub> , m |                                                   |  |  |  |  |  |
| -0,020                                                    | 0,0080                                                        | 0,0080                                                          | 0,140                         | 0,032             | 0,060             | -0,020                |                                                   |  |  |  |  |  |
| $\eta_1 = \beta_1 = b_1/b_0$                              | $\eta_2 = \beta_2 = b_2/b_0$                                  | $c_1 \!\!=\!\! h_1 \! / \! sin \theta_1$ , $m$                  | $c_2=h_2/\sin\theta_2$ ,<br>m | γ <sub>1(1)</sub> | γ <sub>1(2)</sub> | γο                    |                                                   |  |  |  |  |  |
| 0,571                                                     | 0,357                                                         | 0,124                                                           | 0,066                         | 1                 | 1,2               | 0,823                 |                                                   |  |  |  |  |  |
| 20 lentelė.                                               | "Santavaros                                                   | 1" 3-čiojo maz                                                  | zgo ašinės lai                | ikomos            | iso gali          | ios nusta             | tymas                                             |  |  |  |  |  |
| Mazgo tipas<br>K Numerova na tanua<br>K Numerova na tanua |                                                               |                                                                 |                               |                   |                   |                       |                                                   |  |  |  |  |  |
| K,N mazgas su tarpu                                       |                                                               |                                                                 |                               |                   |                   |                       |                                                   |  |  |  |  |  |
| Juostos paviršiaus irtis (praspaudimas/išplėšimas)        |                                                               |                                                                 |                               |                   |                   |                       |                                                   |  |  |  |  |  |
|                                                           |                                                               |                                                                 | β1                            | ≤0,9              |                   | β2≤0,9                |                                                   |  |  |  |  |  |
| The second second                                         |                                                               | t <sub>2</sub>                                                  | g/c1                          | ≤0,25             | g/c2≤0,25         |                       |                                                   |  |  |  |  |  |
| b <sub>1</sub> N <sub>1</sub>                             | a N                                                           | h <sub>2</sub> b                                                | N <sub>1.Rd</sub> , kN        |                   |                   |                       | 328,27                                            |  |  |  |  |  |
| θ1                                                        |                                                               |                                                                 | N <sub>2.Rd</sub> , kN        |                   |                   |                       | 166,92                                            |  |  |  |  |  |
|                                                           |                                                               |                                                                 | 32                            | 8,27              |                   | Pa                    | vojingiausia įrąža                                |  |  |  |  |  |
|                                                           |                                                               | <sub>&gt;</sub> h <sub>0</sub> <del>&gt;</del> ≤ <sup>τ</sup> ₀ |                               | Ti                | nklelio           | ) elemen              | ito irtis                                         |  |  |  |  |  |
|                                                           |                                                               |                                                                 | k                             |                   |                   |                       | 1                                                 |  |  |  |  |  |
|                                                           |                                                               | $\leftarrow$ $\overset{b_0}{\rightarrow}$                       | N <sub>1.Rd</sub> , kN        |                   |                   | ક્રિ                  | lyga nevertinama                                  |  |  |  |  |  |
|                                                           |                                                               |                                                                 | N <sub>2.Rd</sub> , kN        |                   |                   |                       | 132,22                                            |  |  |  |  |  |
|                                                           |                                                               |                                                                 | 13                            | 2,22              |                   | Pa                    | vojingiausia įrąža                                |  |  |  |  |  |
| Mažia                                                     | usia laikomoj                                                 | i galia:                                                        | Tinklelio e                   | lement            | to irtis          | Tikrina               | ame sąlygą: N <sub>i.Ed</sub> <n<sub>i.Rd</n<sub> |  |  |  |  |  |
|                                                           | N2.Rd, kN                                                     |                                                                 | 13                            | 2,22              | Sąlyga tenkinama  |                       |                                                   |  |  |  |  |  |

| 21 lentelė. | "Santvaros | 1" 5-tojo | mazgo | pagrind | iniai | rodikliai |
|-------------|------------|-----------|-------|---------|-------|-----------|
|-------------|------------|-----------|-------|---------|-------|-----------|

| Mazgo geometrinės sąlygos    |                                        |                                |                           |                   |                   |                       |  |  |  |  |
|------------------------------|----------------------------------------|--------------------------------|---------------------------|-------------------|-------------------|-----------------------|--|--|--|--|
| e                            | 2g <sub>min</sub> , m                  | 2g                             | h <sub>0, rek</sub> , m   | $g/c_1$           | $g/c_2$           | e <sub>reik</sub> , m |  |  |  |  |
| 0.005                        | 0.0060 0.0653 0.140 0.453 0.528 -0.029 |                                |                           |                   |                   |                       |  |  |  |  |
| $\eta_1 = \beta_1 = b_1/b_0$ | $\eta_2 = \beta_2 = b_2/b_0$           | $c_1 = h_1 / sin \theta_1$ , m | $c_2=h_2/sin\theta_2$ , m | γ <sub>1(1)</sub> | γ <sub>1(2)</sub> | γο                    |  |  |  |  |
| 0.357                        | 0.357                                  | 0.072                          | 0.062                     | 1                 | 1                 | 0.823                 |  |  |  |  |

| 22 ientele. "Santavaros 1 5-tojo mazg                                                     | go asines laikomosiso galic                       | os nustatymas                                           |  |  |
|-------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|--|--|
| Mazgo tipas<br>K,N mazgas su tarpu                                                        | Skaičiuotinė laikon                               | nosios galios reikšmė, kN                               |  |  |
|                                                                                           | Juostos paviršiaus irti                           | s (praspaudimas/išplėšimas)                             |  |  |
|                                                                                           | β1≤0,9                                            | β2≤0,9                                                  |  |  |
| t <sub>1</sub>                                                                            | g/c1>0,25                                         | g/c2>0,25                                               |  |  |
| b <sub>1</sub> N <sub>1</sub> N <sub>1</sub> N <sub>1</sub> N <sub>2</sub> h <sub>2</sub> | N <sub>1.Rd</sub> , kN                            | 77.61                                                   |  |  |
| θ1                                                                                        | N <sub>2.Rd</sub> , kN                            | 62.96                                                   |  |  |
| $\theta_2$                                                                                | 62.96                                             | Pavojingiausia įrąža                                    |  |  |
| $h_0 \rightarrow t_0$                                                                     | Rar                                               | nsčio irtis                                             |  |  |
|                                                                                           | k                                                 | 1                                                       |  |  |
|                                                                                           | N <sub>1.Rd</sub> , kN                            | Elementas gniuždomas,<br>sąlyga nevertinama             |  |  |
|                                                                                           | N <sub>2.Rd</sub> , kN                            | Elementas<br>gniuždomas,sąlyga<br>nevertinama           |  |  |
|                                                                                           | Elementas gniuždomas,<br>sąlyga nevertinama       | Pavojingiausia įrąža                                    |  |  |
| Mažiausia laikomoji galia:                                                                | Juostos paviršiaus irtis<br>(praspaudimas/išplėši | Tikriname sąlygą: N <sub>i.Ed</sub> <n<sub>i.Rd</n<sub> |  |  |
| N2.Rd, kN                                                                                 | 62.96                                             | Sąlyga tenkinama                                        |  |  |

| 22 lentelė.                                                                                                                                          | "Santavaros   | 1" 5-tojo mazgo | ašinės laikomosiso | galios nustatymas |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|--------------------|-------------------|
| <b><u><u><u></u></u></u></b> <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> | "Sunta rai ob | i e tojo mazgo  |                    | Sanos mastary mas |

|                 |           |                        | _                     |                    |                        |                 |                         | Mazgo              | o elementų                     | skaičiu                              | ojamieji dy                          | džiai                    |                      |                                       |                   |                                |    |                       |                         |                         |                      |
|-----------------|-----------|------------------------|-----------------------|--------------------|------------------------|-----------------|-------------------------|--------------------|--------------------------------|--------------------------------------|--------------------------------------|--------------------------|----------------------|---------------------------------------|-------------------|--------------------------------|----|-----------------------|-------------------------|-------------------------|----------------------|
| Elemento<br>Nr. | Apatinės  | s juostos e            | l. h(b), 1            | n t,               | m A<br>cm              | 2               | N <sub>Ed</sub> ,<br>kN | Įrąžo              | s poveikis                     | M <sub>Ed</sub> ,<br>kNm             | W <sub>el</sub> ,<br>cm <sup>3</sup> | W <sub>p</sub><br>cm     |                      | f <sub>y</sub> ,<br>N/mm <sup>2</sup> | N                 | $f_{yd}$ ,<br>/mm <sup>2</sup> | N/ | E,<br>mm <sup>2</sup> | γc                      | $\boldsymbol{\theta}_i$ | Skerspjūvio<br>klasė |
| 1               | 1402      | x140x6                 | 0.140                 | ) 0.0              | 006 31.2               | 23 -            | 335.89                  | 8 Te               | mpimas                         | 2.241                                | 131.5                                | 155                      | .3                   | 275                                   |                   | 250                            | 21 | 0000                  | 1                       |                         | 1klasė               |
| 2               | 1402      | x140x6                 | 0.140                 | ) 0.               | 006 31.                | -23             | 678.04                  | 9 Te               | mpimas                         | -3.24                                | 2 131.5                              | 155                      | .3                   | 275                                   |                   | 250                            | 21 | 0000                  | 1                       |                         | 1klasė               |
|                 |           |                        |                       |                    |                        |                 |                         | Tinkle             | lio elmenta                    | i                                    |                                      |                          |                      |                                       |                   |                                |    |                       |                         |                         |                      |
| 20              | 1002      | x100x3                 | 0.100                 | ) 0.0              | 003 11.4               | 1 -             | 275.57                  | 5 Te               | mpimas                         | 0                                    | 35.41                                | 41.2                     | 21                   | 275                                   |                   | 250                            | 21 | 0000                  | 1                       | 39                      | 2klasė               |
| 21              | 802       | x80x5                  | 0.080                 | ) 0.               | 005 14.3               | 36 1            | 180.885                 | 5 Gni              | uždymas                        | 0                                    | 32.86                                | 39.7                     | 74                   | 275                                   |                   | 250                            | 21 | 0000                  | 1                       | 45                      | 1klasė               |
| 32              | 502       | x50x3                  | 0.050                 | ) 0.               | 003 5.4                | 1               | 46.035                  | Gni                | uždymas                        | 0                                    | 7.79                                 | 9.3                      | 9                    | 275                                   |                   | 250                            | 21 | 0000                  | 1                       | 90                      | 1klasė               |
| 24 lentelė      | . "Sa     | ntvaros 1              | " 6-ojo r             | nazgo              | svarbiausi             | ji rod          | likliai la              | aikomosio          | os galios sk                   | aičiavi                              | nui                                  |                          |                      |                                       |                   |                                |    |                       |                         | -                       |                      |
|                 |           |                        |                       |                    |                        |                 | Maz                     | zgo geom           | etrinės sąly                   | 'gos                                 |                                      |                          |                      |                                       |                   |                                |    |                       |                         |                         |                      |
| e <sub>1</sub>  | $e_2$     | 2g <sub>1min</sub> , n | $1  2g_{2m}$          | <sub>iin</sub> , m | $2g_1$                 |                 | 2                       | g <sub>2</sub>     | $h_{0, rek1}, m$               | ı                                    | $h_{0, rek2}, m$                     |                          | e <sub>reik1</sub> , | , m                                   | e                 | e <sub>reik2</sub> , m         |    | $\gamma_{1(1)}$       | $\gamma_{1(2)}$         |                         |                      |
| 0.0194          | 0.0196    | 0.0060                 | 0.0                   | 008                | 0.006                  | )               | 0.0                     | 080                | 0.140                          |                                      | 0.140                                |                          | 0.01                 | .94                                   | (                 | 0.0196                         |    | 1.2                   | 1                       |                         |                      |
| $g_1/c_1$       | $g_1/c_3$ | $g_2/c_2$              | <b>g</b> <sub>2</sub> | /c <sub>3</sub>    | $\eta_1 = \beta_1 = b$ | /b <sub>0</sub> | $\eta_2 = \beta_2$      | $=b_{2}/b_{0}$     | $\eta_3 = \beta_3 = b_3 / b_3$ | $b_1$ $c_1$                          | $=h_1/\sin\theta_1$ ,                | m $c_2=1$                | h <sub>2</sub> /sir  | $n\theta_2$ , m                       | c <sub>3</sub> =h | $s_3/\sin\theta_3$ ,           | m  | γ <sub>1(3)</sub>     | $\gamma_0$              |                         |                      |
| 0.019           | 0.060     | 0.035                  | 0.0                   | 080                | 0.714                  |                 | 0.5                     | 571                | 0.357                          |                                      | 0.159                                |                          | 0.11                 | 13                                    |                   | 0.050                          |    | 1                     | 1.000                   |                         |                      |
| 25 lentelė      | . "Sa     | ntvaros 1 <sup>°</sup> | ' 7-tojo              | mazgo              | elementų               | oaram           | netrai, la              | aikomosio          | os galios sk                   | aičiavi                              | nui                                  | •                        |                      |                                       |                   |                                |    |                       |                         |                         |                      |
|                 |           |                        |                       |                    | -                      |                 |                         | Mazgo              | o elementų sk                  | aičiuoja                             | nieji dydžiai                        |                          |                      |                                       |                   |                                |    |                       |                         | 1                       |                      |
| Elemento<br>Nr. | Apatinės  | juostos el.            | h(b), m               | t, m               | $A, cm^2$              | N<br>I          | N <sub>Ed</sub> ,<br>kN | Įrąžos<br>poveikis | M <sub>Ed</sub> ,<br>kNm       | W <sub>el</sub> ,<br>cm <sup>3</sup> | W <sub>pl</sub> ,<br>cm <sup>3</sup> | f <sub>y</sub> ,<br>N/mn | n <sup>2</sup>       | f <sub>yd</sub> , N/n                 | nm <sup>2</sup>   | E,<br>N/mm                     | 2  | $\gamma_{c}$          | $\boldsymbol{\theta}_i$ | Ske                     | erspjūvio<br>klasė   |
| 2               | 140x      | 140x6                  | 0.140                 | 0.006              | 31.23                  | -67             | 8.049                   | Tempima            | s -3.242                       | 131.5                                | 155.3                                | 275                      |                      | 250                                   |                   | 21000                          | 0  | 1                     |                         | 1                       | klasė                |
| 3               | 140x      | 140x6                  | 0.140                 | 0.006              | 31.23                  | -75             | 51.275                  | Tempima            | s -2.148                       | 131.5                                | 155.3                                | 275                      |                      | 250                                   |                   | 21000                          | 0  | 1                     |                         | 1                       | klasė                |
|                 |           |                        |                       |                    | -                      | _               | Tir                     | nklelio elm        | entai                          |                                      |                                      | -                        |                      |                                       |                   |                                |    |                       |                         |                         |                      |
| 22              | 60x       | 60x4                   | 0.060                 | 0.004              | 8.55                   | -88             | 8.372                   | Tempima            | s 0                            | 14.52                                | 17.64                                | 275                      |                      | 250                                   |                   | 21000                          | 0  | 1                     | 45                      | 1                       | klasė                |
| 23              | 50x       | 50x3                   | 0.050                 | 0.003              | 5.41                   | 16              | 5.031                   | Gniuždym           | as 0                           | 7.79                                 | 9.39                                 | 275                      |                      | 250                                   |                   | 21000                          | 0  | 1                     | 49                      | 1                       | klasė                |
| 33              | 60x       | 60x4                   | 0.060                 | 0.004              | 8.55                   | 47              | 7.173                   | Gniuždym           | as 0                           | 14.52                                | 17.64                                | 275                      |                      | 250                                   |                   | 21000                          | 0  | 1                     | 90                      | 1                       | klasė                |

23 lentelė. "Santvaros 1" 6-ojo mazgo konstrukcinių elementų reikialingi parametrai laikomosios galios skaičiavimui

|                | //                        |                        | 3 0 1                  | 0                            |                           |                                                   |                                     |                                     |                           |                 |                 |
|----------------|---------------------------|------------------------|------------------------|------------------------------|---------------------------|---------------------------------------------------|-------------------------------------|-------------------------------------|---------------------------|-----------------|-----------------|
|                | Mazgo geometrinės sąlygos |                        |                        |                              |                           |                                                   |                                     |                                     |                           |                 |                 |
| e <sub>1</sub> | e <sub>2</sub>            | 2g <sub>1min</sub> , m | 2g <sub>2min</sub> , m | 2g <sub>1</sub>              | 2g <sub>2</sub>           | $h_{0, rek1}, m$                                  | h <sub>0, rek2</sub> , m            | e <sub>reik1</sub> , m              | e <sub>reik2</sub> , m    | $\gamma_{1(1)}$ | $\gamma_{1(2)}$ |
| 0.0104         | 0.0107                    | 0.0080                 | 0.007                  | 0.0080                       | 0.0070                    | 0.140                                             | 0.140                               | 0.0104                              | 0.0107                    | 1.2             | 1               |
| $g_1/c_1$      | $g_1/c_3$                 | $g_2/c_2$              | $g_2/c_3$              | $\eta_1 = \beta_1 = b_1/b_0$ | $b_2 = \beta_2 = b_2/b_2$ | η <sub>3</sub> =β <sub>3</sub> =b <sub>3</sub> /b | c <sub>1</sub> =h <sub>1</sub> /sin | c <sub>2</sub> =h <sub>2</sub> /sin | $c_3=h_3/sin\theta_3$ , m | $\gamma_{1(3)}$ | $\gamma_0$      |
| 0.047          | 0.067                     | 0.053                  | 0.058                  | 0.429                        | 0.357                     | 0.429                                             | 0.085                               | 0.066                               | 0.060                     | 1               | 1.000           |

26 lentelė. "Santvaros 1" 7-tojo mazgo pagrindiniai rodikliai

|                            | 0                                                            | 5                  |                                          |
|----------------------------|--------------------------------------------------------------|--------------------|------------------------------------------|
|                            | Įrąžų pusiausv                                               | yros sąlyga KT ma  | azgui                                    |
| Mazgo tipas                |                                                              |                    |                                          |
|                            | Sąly                                                         | ga tenkinama       |                                          |
| KT mazgas                  | Skaičiuotinė laiko                                           | mosios galios reik | šmė, kN                                  |
|                            | Juostos paviršiaus irt                                       | tis (praspaudimas  | /išplėšimas)                             |
|                            | β1≤0,9                                                       | β2≤0,9             | β3≤0,9                                   |
|                            | g1/c1≤0,25                                                   | g2/c2≤0,25         |                                          |
|                            | g1/c3≤0,25                                                   | g2/c3≤0,25         |                                          |
|                            | N <sub>1.Rd</sub> , kN                                       | 153.3              | 2                                        |
|                            | N <sub>2.Rd</sub> , kN                                       | 95.08              | 8                                        |
|                            | N <sub>3.Rd</sub> , kN                                       | 73.4               | 8                                        |
|                            | 73.48                                                        | Pavojingiau        | sia įrąža                                |
|                            | Ra                                                           |                    |                                          |
|                            | k                                                            | 1                  |                                          |
|                            | N <sub>1.Rd</sub> , kN                                       | 196.8              | 0                                        |
|                            |                                                              | Elementas gniuž    | domas,sąlyga                             |
|                            | N <sub>2.Rd</sub> , kN                                       | nevertin           | ama                                      |
|                            |                                                              |                    |                                          |
|                            |                                                              | Elementas gniuž    | domas,sąlyga                             |
|                            | N <sub>3.Rd</sub> , kN                                       | nevertin           | ama                                      |
|                            | 196.80                                                       | Pavojingiau        | sia įrąža                                |
| Mažiausia laikomoji galia: | Juostos paviršiaus<br>irtis<br>(praspaudimas/išplėši<br>mas) | Tikriname sąlyg    | ą: N <sub>i.Ed</sub> <n<sub>i.Rd</n<sub> |
| N3.Rd, kN                  | 73.48                                                        | Salvga ten         | kinama                                   |
|                            |                                                              | Sqiy Su tem        |                                          |

### 27 lentelė. "Santavaros 1" 7-tojo mazgo ašinės laikomosiso galios nustatymas

# "Santvaros 2" mazgų laikomosios galios nustatymas

|                                  | Mazgo elementų skaičiuojamieji dydžiai |             |            |                       |                             |                       |                         |                    |                          |                                      |                                     |                        |                                        |                       |                 |                         |                         |                      |
|----------------------------------|----------------------------------------|-------------|------------|-----------------------|-----------------------------|-----------------------|-------------------------|--------------------|--------------------------|--------------------------------------|-------------------------------------|------------------------|----------------------------------------|-----------------------|-----------------|-------------------------|-------------------------|----------------------|
| Elemento<br>Nr.                  | Viršutinės juo                         | ostos el.   | h(b)<br>mm | , t,<br>mm            | A,<br>cm <sup>2</sup>       | N <sub>Ec</sub>       | l, Įrąž                 | žos poveikis       | M <sub>Ed</sub> ,<br>kNm | W <sub>el</sub> ,<br>cm <sup>3</sup> | W <sub>pl,</sub><br>cm <sup>3</sup> | f <sub>yi</sub><br>N/m | ,<br>m <sup>2</sup> N/                 | E,<br>mm <sup>2</sup> | γ <sub>М5</sub> | $\boldsymbol{\theta}_i$ | Skersp<br>kla           | jūvio<br>sė          |
| 10                               | 160x160                                | x8          | 0,16       | 0 0,008               | 8 46,44                     | 761,9                 | 996 G                   | niuždymas          | 11,412                   | 217,7                                | 260,1                               | 27                     | 5 21                                   | 0000                  | 1               |                         | 1kla                    | ısė                  |
| 11                               | 160x160                                | x8          | 0,16       | 0 0,008               | 3 46,44                     | 761,9                 | 969 G                   | niuždymas          | 8,814                    | 217,7                                | 260,1                               | 27                     | 5 21                                   | 0000                  | 1               |                         | 1kla                    | ısė                  |
|                                  |                                        |             |            | 1                     |                             | 1                     |                         | Tinklelio elm      | nentai                   | Γ                                    |                                     | -                      |                                        |                       |                 | 1 1                     |                         |                      |
| 33                               | 60x60x                                 | 4           | 0,06       | 0 0,004               | 8,55                        | 48,5                  | 99 1                    | Tempimas           | 0                        | 14,52                                | 17,64                               | 27                     | 5 21                                   | 0000                  | 1               | 85                      | 1kla                    | ısė                  |
| 2-ojo maz                        | go laikomosio                          | s galios r  | nustaty    | mas.                  |                             |                       |                         |                    |                          |                                      |                                     |                        |                                        |                       |                 |                         |                         |                      |
| 29 lentelė.                      | "Santvaros                             | 2" 2-tojo   | mazgo      | elemen                | tų param                    | etrai, la             | ikomosi                 | os galios ska      | učiavimu                 | i                                    |                                     |                        |                                        |                       |                 |                         |                         |                      |
|                                  |                                        |             |            |                       |                             |                       | Mazgo                   | o elementų sk      | aičiuojar                | nieji dy                             | džiai                               |                        |                                        | -                     |                 |                         |                         |                      |
| Elemento<br>Nr.                  | Viršutinės juo                         | stos el.    | h(         | (b), mm               | t,<br>mm                    | A,<br>cm <sup>2</sup> | N <sub>Ed</sub> ,<br>kN | Įrąžos<br>poveikis | M <sub>Ed</sub> ,<br>kNm | W <sub>el</sub> ,<br>cm <sup>3</sup> | W <sub>p</sub><br>cm                | l,<br>3                | f <sub>yi</sub> ,<br>N/mm <sup>2</sup> | E,<br>N/mm            | n <sup>2</sup>  | γ <sub>M5</sub>         | $\boldsymbol{\theta}_i$ | Skerspjūvio<br>klasė |
| 8                                | 160x160x8                              |             |            | 0.160                 | 0.008                       | 46.44                 | 565.004                 | 4 Gniuždyma        | ls 16.79                 | 01 21                                | 7.7 2                               | 60.1                   | 275                                    | 2100                  | 000             | 1                       |                         | 1klasė               |
| 9                                | 160x160x8                              |             |            | 0.160                 | 0.008                       | 46.44                 | 564.49                  | 6 Gniuždyma        | is 4.91                  | 7 21                                 | 7.7 2                               | 60.1                   | 275                                    | 2100                  | 000             | 1                       |                         | 1klasė               |
|                                  |                                        |             |            |                       |                             |                       |                         | Tinklelio el       | mentai                   |                                      |                                     |                        |                                        |                       |                 | 1                       | _                       | 1                    |
| 32                               | 70x70x4                                |             |            | 0.070                 | 0.004                       | 10.15                 | 42.614                  | 4 Tempimas         | 0                        | 20                                   | 0.61 2                              | 4.76                   | 275                                    | 2100                  | 000             | 1                       | 85                      | 1klasė               |
| 30 lentelė.                      | "Santvaros                             | 2" 2-tojo   | mazgo      | ) tinkamı             | ımo sąly                    | gos                   |                         |                    |                          |                                      |                                     |                        |                                        |                       |                 |                         | _                       |                      |
| Mazgo tipa                       | as                                     |             |            |                       |                             |                       |                         | Т                  |                          |                                      |                                     |                        |                                        |                       |                 |                         |                         |                      |
| b <sub>i</sub> /b <sub>0</sub>   | Tinklelio el.                          | $b_1/b_0 =$ | 0.44       |                       | ≥0,25                       |                       |                         |                    |                          | Sąlyga                               | tenkinam                            | a                      |                                        |                       |                 |                         |                         |                      |
| Gniudyma                         | s Tinklelio el.                        | $b_1/t_1 =$ | 17.5       | -11./00               | $\leq 35$                   | 27.00                 |                         |                    |                          | Sąlyga                               | tenkinam                            | a                      |                                        |                       |                 |                         | _                       |                      |
| Tomnimo                          | . Tinklalia al                         | h /t —      | 17.50      | <u></u> <u></u> 41723 | $\frac{5}{191} = 1$         | 37.90                 |                         |                    |                          | Sąlyga                               | tenkinam                            | a<br>2                 |                                        |                       |                 |                         |                         |                      |
| Tempina                          |                                        | $U_1/U_1 -$ | 17.30      |                       | $\leq 35$                   |                       |                         |                    |                          | Sąlyga<br>Salyga                     | tenkinam                            | a<br>a                 |                                        |                       |                 |                         |                         |                      |
| $b_0/t_0$                        | Juostos el.                            | $b_0/t_0 =$ | 20         | <41√23                | $\frac{-33}{5/\text{fyi}=}$ | 37.90                 | Sątyga tenkinama        |                    |                          |                                      |                                     |                        |                                        |                       |                 |                         |                         |                      |
|                                  |                                        | I           |            |                       |                             | Papi                  | ldomos                  | sąlygos            |                          | 00                                   |                                     |                        |                                        |                       |                 |                         |                         |                      |
| β=                               | 0.4375                                 | ≤0,8        | 5          | Galima                | vertinti                    | tik juos              | tos pavi                | ršiaus irtį ir t   | inklelio e               | element                              | o irtį dėl s                        | sumaže                 | ejusio ef                              | ektyvi                | ojo p           | oločio                  | )                       |                      |
| b <sub>0</sub> /t <sub>0</sub> = | 20                                     | ≥10         | Gal        | ima įver              | tinti tik j                 | uostos                | paviršia                | us irtį ir tinkl   | elio elem                | ento irt                             | į dėl sum                           | ažęjusi                | io efekty                              | viojo j               | ploč            | io                      |                         |                      |

28 lentelė. "Santvaros 2" 4-ojo mazgo konstrukcinių elementų reikialingi parametrai laikomosios galios skaičiavimui

| 51 reflecte. "Santavaros 2 2-tojo mazg | o asines laike       | JIIIOSISO gai | 105 Hustatymas                                                |
|----------------------------------------|----------------------|---------------|---------------------------------------------------------------|
| Mazgo tipas                            |                      | Proj          | ektinė laikomoji galia                                        |
| T,X,Y mazgas                           | β                    | 0.4375        |                                                               |
|                                        | 0.43                 | 375           | Juostos paviršiaus irtis, β≤0,85                              |
|                                        | n                    | 0.677         |                                                               |
|                                        | k <sub>n</sub>       | 0.68          | 82.94                                                         |
|                                        | β                    | 1             | Juostos šoninės sienelės klupimas,                            |
|                                        |                      | λ             | β=1,0                                                         |
|                                        | f <sub>b</sub> , MPa | 0.719         | Nevertiname                                                   |
| <u> </u>                               |                      | χ             | N <sub>i,Rd</sub> , kN                                        |
| t <sub>i</sub> n <sub>i</sub>          | 196.09               | 0.713         | 347.27                                                        |
| Ni                                     | b <sub>eff</sub> ,   | , m           | Ramsčio irtis, β≥0,85                                         |
| θ                                      |                      |               | Nevertiname                                                   |
|                                        | 0.0                  | 70            | N <sub>i,Rd</sub> , kN                                        |
|                                        |                      |               | 290.4                                                         |
|                                        | γ                    | 10.00         | Juostos išplėšiamoji/praspaudžiamoji<br>irtis, 0,85≤β≤(1-1/γ) |
|                                        | b <sub>ep</sub> ,    | m             | Nevertiname                                                   |
|                                        | 0.0                  | 35            | N <sub>i,Rd</sub> , kN                                        |
|                                        | 0.0                  | 55            | 268.44                                                        |
| Mažiausia laikomoji galia:             | Juostos pa           | aviršiaus     | Tikriname sąlygą: N <sub>i.Ed</sub> <n<sub>i.Rd</n<sub>       |
| wiaziausia laikomoji galla:            | irtis, β             | ≤0,85         | Sąlyga tenkinama                                              |

31 lentelė. "Santavaros 2" 2-tojo mazgo ašinės laikomosiso galios nustatymas

|                 |                        | Mazgo elementų skaičiuojamieji dydžiai                                           |          |                       |                         |                    |                          |                                      |                                      |                                       |             |                   |                 |               |                    |
|-----------------|------------------------|----------------------------------------------------------------------------------|----------|-----------------------|-------------------------|--------------------|--------------------------|--------------------------------------|--------------------------------------|---------------------------------------|-------------|-------------------|-----------------|---------------|--------------------|
| Elemento<br>Nr. | Viršutinės juostos el. | h(b),<br>mm                                                                      | t,<br>mm | A,<br>cm <sup>2</sup> | N <sub>Ed</sub> ,<br>kN | Įrąžos poveikis    | M <sub>Ed</sub> ,<br>kNm | W <sub>el</sub> ,<br>cm <sup>3</sup> | W <sub>pl</sub> ,<br>cm <sup>3</sup> | F <sub>y</sub> ,<br>N/mm <sup>2</sup> | E,<br>N/mn  | $n^2 \gamma_{MS}$ | $\theta_i$      | Skersp<br>kla | ojūvio<br>sė       |
| 7               | 160x160x8              | 0.160                                                                            | 0.008    | 46.44                 | 1.961                   | Gniuždymas         | 0.459                    | 217.7                                | 260.1                                | 275                                   | 21000       | 0 1               |                 | 1kl           | asė                |
| 8               | 160x160x8              | 0.160                                                                            | 0.008    | 46.44                 | 565.004                 | Gniuždymas         | 16.791                   | 217.7                                | 260.1                                | 275                                   | 21000       | 0 1               |                 | 1kl           | asė                |
|                 |                        | · ·                                                                              | -        |                       |                         | Tinklelio elr      | nentai                   |                                      |                                      |                                       |             |                   |                 |               |                    |
| 19              | 120x120x6              | 0.120                                                                            | 0.006    | 26.43                 | 445.433                 | Gniuždymas         | 0                        | 93.69                                | 111.6                                | 275                                   | 21000       | 0 1               | 34              | 1kl           | asė                |
| 20              | 70x70x4                | 0.070                                                                            | 0.004    | 10.15                 | -278.493                | Tempimas           | 0                        | 20.61                                | 24.76                                | 275                                   | 21000       | 0 1               | 40              | 1kl           | asė                |
| 33 lentelė.     | "Santvaros 2" 3-čioj   | "Santvaros 2" 3-čiojo mazgo elementų parametrai, laikomosios galios skaičiavimui |          |                       |                         |                    |                          |                                      |                                      |                                       |             |                   |                 |               |                    |
|                 |                        |                                                                                  |          |                       | Ma                      | zgo elementų ska   | ičiuojami                | eji dydž                             | iai                                  |                                       |             |                   |                 |               |                    |
| Elemento<br>Nr. | Viršutinės juostos el. | h(b), mm                                                                         | t,<br>mm | A,<br>cm <sup>2</sup> | N <sub>Ed</sub> ,<br>kN | Įrąžos<br>poveikis | M <sub>Ed</sub> ,<br>kNm | W <sub>el</sub> ,<br>cm <sup>3</sup> | W <sub>pl</sub> ,<br>cm <sup>3</sup> | f <sub>yi</sub> ,<br>N/mr             | $m^2$ E, N/ | mm <sup>2</sup>   | γ <sub>м5</sub> | $\theta_i$    | Skerspjūv<br>klasė |
| 9               | 160x160x8              | 0.160                                                                            | 0.008    | 46.4                  | 14 564.4                | 96 Gniuždymas      | 4.917                    | 217.7                                | 260                                  | .1 27                                 | 5 2         | 10000             | 1               | 1             | 1klasė             |
| 10              | 160x160x8              | 0.160                                                                            | 0.008    | 46.4                  | 44 761.9                | 96 Gniuždymas      | 11.412                   | 217.7                                | 260                                  | .1 27                                 | 25 2        | 10000             | ]               | l             | 1klasė             |
|                 |                        |                                                                                  |          |                       |                         | Tinklelio elm      | ientai                   |                                      |                                      |                                       |             |                   |                 |               |                    |
| 21              | 90x90x5                | 0.090                                                                            | 0.005    | 16.36                 | 187.2                   | 08 Gniuždymas      | 0                        | 42.87                                | 51.4                                 | 1 27                                  | 25 2        | 10000             | ]               | 1 40          | ) 1klasė           |
| 22              | 70x70x4                | 0.070                                                                            | 0.004    | 10.15                 | -88.9                   | 93 Tempimas        | 0                        | 20.61                                | 24.7                                 | 6 27                                  | 25 2        | 10000             | ]               | 1 40          | ) 1klasė           |
| 34 lentelė.     | "Santvaros 2" 5-tojo   | o mazgo el                                                                       | ementų   | parameti              | rai, laikom             | osios galios skai  | čiavimui                 |                                      |                                      |                                       |             |                   |                 |               |                    |
|                 |                        | -                                                                                |          |                       | Ma                      | zgo elementų ska   | ičiuojami                | eji dydž                             | iai                                  |                                       |             |                   |                 |               |                    |
|                 |                        |                                                                                  |          |                       |                         |                    |                          | <b>W</b> 7                           | W/                                   | f                                     | Б           |                   |                 |               |                    |

32 lentelė. "Santvaros 2" 1-ojo mazgo konstrukcinių elementų reikialingi parametrai laikomosios galios skaičiavimui

|                 |                        |          |          |                       | Mazgo                   | elementų skai      | čiuojamie                | eji dydžia                           | i                                    |                                        |                         |     |              |                      |
|-----------------|------------------------|----------|----------|-----------------------|-------------------------|--------------------|--------------------------|--------------------------------------|--------------------------------------|----------------------------------------|-------------------------|-----|--------------|----------------------|
| Elemento<br>Nr. | Viršutinės juostos el. | h(b), mm | t,<br>mm | A,<br>cm <sup>2</sup> | N <sub>Ed</sub> ,<br>kN | Įrąžos<br>poveikis | M <sub>Ed</sub> ,<br>kNm | W <sub>el</sub> ,<br>cm <sup>3</sup> | W <sub>pl</sub> ,<br>cm <sup>3</sup> | f <sub>yi</sub> ,<br>N/mm <sup>2</sup> | E,<br>N/mm <sup>2</sup> | γм5 | $\theta_{i}$ | Skerspjūvio<br>klasė |
| 11              | 160x160x8              | 0.160    | 0.008    | 46.44                 | 761.969                 | Gniuždymas         | 8.814                    | 217.7                                | 260.1                                | 275                                    | 210000                  | 1   |              | 1klasė               |
| 12              | 160x160x8              | 0.160    | 0.008    | 46.44                 | 742.771                 | Gniuždymas         | 7.184                    | 217.7                                | 260.1                                | 275                                    | 210000                  | 1   |              | 1klasė               |
|                 |                        |          |          |                       |                         | Tinklelio elmo     | entai                    |                                      |                                      |                                        |                         |     |              |                      |
| 23              | 80x80x5                | 0.080    | 0.005    | 14.36                 | 15.44                   | Gniuždymas         | 0                        | 32.86                                | 39.74                                | 275                                    | 210000                  | 1   | 44           | 1klasė               |
| 24              | 80x80x5                | 0.080    | 0.005    | 14.36                 | 43.673                  | Gniuždymas         | 0                        | 32.86                                | 39.74                                | 275                                    | 210000                  | 1   | 40           | 1klasė               |

| 35 lentelė                       | <b>.</b>   | "Sa  | ntvaros 2" 3   | 3-čiojo n   | nazgo sva  | arbia       | usieji rodiklia                     | i                   |                       |                                              |
|----------------------------------|------------|------|----------------|-------------|------------|-------------|-------------------------------------|---------------------|-----------------------|----------------------------------------------|
|                                  | 1          |      | g              |             |            |             |                                     | 2                   | g>=g <sub>min</sub>   |                                              |
| g <sub>min</sub> , m             | 0.0        | 09   | 0.060          | 5           |            |             | 1 1                                 | Sąlyga              | a tenkin              | ama                                          |
| e, m                             | 0.00       | 000  | Kad būtų te    | enkinama    | ı 3.28 sąl | yga:        | -0.088                              | ≤e≤                 | 0.04                  | Sąlyga tenkinama                             |
| $\mathbf{g}_{\mathrm{a}}$        | 0.05       | 555  | Tikı           | riname sa   | ąlygą:     |             | $g_a > 1,5t_0 =$                    | =                   | 0.01                  | Sąlyga tenkinama                             |
| β                                | 0.50       | 000  |                |             |            | Rei         | kia tikrinti ino                    | osta pra            | asnaudii              | mui                                          |
| γ                                | 10.        | 00   |                |             |            | 1.01        |                                     | ,sut pr             | uspuuun               |                                              |
| n                                | 0.75       | 562  | k <sub>n</sub> | <u> </u>    | 0.6950     | )           | 1                                   |                     |                       | ≤1                                           |
| 36 lentele                       | ).<br>     | "Sa  | ntvaros 2" :   | 3-čiojo n   | nazgo tin  | kam         | umo sąlygos                         |                     |                       |                                              |
| Mazgo t                          | ipas       |      |                |             |            |             | K su tarpu                          |                     |                       | Salvas tankinama                             |
|                                  |            | 1 ti | nklelio el.    | $b_1/b_0 =$ | 0.56       | >0          | $\underline{\geq}0,33$              | 0.20                |                       | Sąlyga tenkinama<br>Sąlyga tenkinama         |
| b <sub>i</sub> /b <sub>0</sub>   | -          |      |                |             |            | ≥0,         | >0.35                               | 0.30                |                       | Sątyga tenkinama                             |
|                                  |            | 2 ti | nklelio el.    | $b_2/b_0 =$ | 0.438      | >0          | $\frac{-0,33}{1+0.01 \cdot b0/t0=}$ | 0.30                |                       | Sąlyga tenkinama                             |
|                                  |            |      |                |             |            | <u>_</u> 0, | <35                                 | 0.50                |                       | Sąlyga tenkinama                             |
|                                  |            | 1 ti | nklelio el.    | $b_1/t_1 =$ | 18         | <           | $\frac{-50}{41\sqrt{235/f_{vi}}}$   | 37 90               |                       | Sąlyga tenkinama                             |
| Gniudyr                          | nas        |      |                |             |            |             | <u>≤35</u>                          | 57.90               | Tinkle                | elio elementas tempiamas                     |
|                                  |            | 2 ti | nklelio el.    | $b_2/t_2 =$ | 17.5       | <           | $41\sqrt{235/fvi} =$                | 37 90               | Tinkle                | elio elementas tempiamas                     |
| Tempin                           | nas        | 1 ti | nklelio el.    | $b_1/t_1 =$ | 18.00      |             | <35                                 | 57.50               | Tinkle                | lio elementas gniuždomas                     |
| 1                                |            | 2 ti | nklelio el.    | $b_2/t_2 =$ | 17.50      |             | <35                                 |                     | THIRTO                | Salvoa tenkinama                             |
|                                  |            |      |                |             | 17.50      |             | <u></u><br><35                      |                     |                       | Salvga tenkinama                             |
| $b_0/t_0$                        |            | ju   | ostos el.      | $b_0/t_0 =$ | 20         | $\leq$      | 41√235/fyi=                         | 37.90               |                       | Salyga tenkinama                             |
| T                                |            |      | - /1           |             | 0.414      |             | $\geq 0.5(1-\beta) =$               | 0.250               |                       | Salyga tenkinama                             |
| 1 arpa                           | .S         |      | $g/b_0 =$      |             | 0.414      |             | $\leq 1,5(1-\beta) =$               | 0.750               |                       | Sąlyga tenkinama                             |
|                                  |            |      |                |             | Papi       | ldon        | nos sąlygos                         |                     |                       |                                              |
| β                                |            |      | ≤0,6           | ir          | ≤1,3       |             | Reikia tik                          | rinti vi            | isus gali             | imus irties atvejus                          |
| b <sub>0</sub> /t <sub>0</sub> = | =          |      | 20             | ≥15         | Galima     | įver        | tinti tik juosto<br>dėl sumažę      | s pavir<br>zjusio ( | ršiaus ir<br>efektyvi | tį ir tinklelio elemento irtį<br>iojo pločio |
| 37 lentelė                       | <b>)</b> . | "Sa  | ntavaros 2"    | 3-čiojo     | mazgo aš   | śinės       | laikomosiso g                       | galios              | nustatyr              | mas                                          |
|                                  |            |      | Mazgo tipa     | as          |            |             | Skaičiuotii                         | nė laik             | omosio                | s galios reikšmė, kN                         |
|                                  |            | K,N  | I mazgas su    | tarpu       |            |             |                                     |                     |                       |                                              |
|                                  |            |      |                |             |            |             | و                                   | Juosto              | os pavir              | šiaus irtis                                  |
|                                  |            |      |                |             |            |             | N <sub>1.Rd</sub> , kN              |                     |                       | 267.80                                       |
|                                  |            |      |                |             |            |             | N <sub>2.Rd</sub> , kN              |                     |                       | 267.80                                       |
|                                  |            |      |                |             |            |             | 267.80                              |                     | Pav                   | vojingiausia įrąža                           |
|                                  |            |      |                |             |            |             |                                     | Juost               | os šlyja              | moji irtis                                   |
|                                  |            |      |                |             |            |             | V <sub>pl.Rd</sub> , kN             |                     |                       | 427.60                                       |
|                                  |            |      |                |             |            |             | V <sub>Ed</sub> , kN                |                     |                       | 120.33                                       |
|                                  |            |      |                |             |            |             | A <sub>v</sub> , m                  |                     |                       | 0.0027                                       |
|                                  |            |      |                |             |            |             | α                                   |                     |                       | 0.1041                                       |
|                                  |            |      |                |             |            |             | $V_{Ed} > 0.5 V_{pl R}$             | łd                  | N0,Rc                 | l skaičiuoti nereikia                        |
|                                  |            |      |                |             |            |             | N <sub>0.Rd</sub> , kN              |                     |                       | -                                            |

| b <sub>1</sub>                 |      | 1            |                  | N                    | h <sub>2</sub>   | t <sub>2</sub> | N1.Rd,                | kN             |                       | 1147.09                                             |
|--------------------------------|------|--------------|------------------|----------------------|------------------|----------------|-----------------------|----------------|-----------------------|-----------------------------------------------------|
| θ1                             | fr   | y y          | •                | N <sub>2</sub><br>θα |                  | *              |                       | Tin            | klelio o              | elemento irtis                                      |
| <b>⊢</b> _ <b>Ý</b>            |      | <u>+ – –</u> |                  |                      |                  | t.             | b <sub>eff1</sub> ,r  | n              |                       | 0.072                                               |
| <br>                           |      |              |                  | h <sub>o</sub>       |                  | <u>•</u> ••    | b <sub>eff2</sub> ,r  | n              |                       | 0.07                                                |
|                                |      |              |                  | ¥                    |                  |                | N <sub>1.Rd</sub> , I | κN             | Temj                  | piamų tinklelio elementų<br>nėra, irtis neįvyks     |
|                                |      |              |                  |                      |                  | -              | N <sub>2.Rd</sub> , 1 | ٨N             |                       | 290.4                                               |
|                                |      |              |                  |                      |                  | _              | 290.4                 | 4              |                       | Pavojingiausia įrąža                                |
|                                |      |              |                  |                      |                  | -              | Juosto                | s išplėš       | <mark>śiamoj</mark> i | i/praspaudžiamoji irtis                             |
|                                |      |              |                  |                      |                  | _              | b <sub>ep1</sub> ,r   | n              |                       | 0.045                                               |
|                                |      |              |                  |                      |                  | _              | b <sub>ep2</sub> ,r   | n              |                       | 0.035                                               |
|                                |      |              |                  |                      |                  |                | γ                     |                |                       | 10                                                  |
|                                |      |              |                  |                      |                  | -              | N <sub>1.Rd</sub> , I | κN             |                       | 501.65                                              |
|                                |      |              |                  |                      |                  |                | N <sub>2.Rd</sub> , 1 | ٨N             |                       | 390.17                                              |
|                                |      |              |                  |                      |                  |                | 501.6                 | 5              |                       | Pavojingiausia įrąža                                |
|                                | M    | ažiau        | ısia laikom      | oji galia            | :                |                | Juost<br>paviršiau    | os<br>s irtis  | Tikr                  | iname sąlygą: N <sub>i.Ed</sub> <n<sub>i.Rd</n<sub> |
|                                |      |              | N1.Rd, k         | N                    |                  |                | 267.8                 | 0              |                       | Sąlyga tenkinama                                    |
| 38 lentelė                     | •    | "Sa          | ntvaros 2" :     | 5-tojo ma            | zgo svar         | biau           | isieji rodik          | liai           |                       |                                                     |
|                                |      |              | g                |                      |                  |                |                       | Ę              | g>=g <sub>min</sub>   | 1                                                   |
| g <sub>min</sub> , m           | 0.0  | 010          | 0.058<br>Kad būt | u tenking            | ma 2 28          |                |                       | Sąlyg          | a tenki               | nama                                                |
| e, m                           | 0.0  | 000          | Kau Uui          | sąlyga:              | una <i>3.</i> 28 |                | -0.088                | ≤e≤            | 0.04                  | Sąlyga tenkinama                                    |
| g,                             | 0.04 | 472          | Tikr             | iname sa             | lvga:            |                | g <sub>a</sub> >1,5   | $t_0 =$        | 0.01                  | Salvga tenkinama                                    |
| β                              | 0.5  | 000          |                  |                      |                  | :1_:           | :1                    |                |                       | 1::                                                 |
| γ                              | 10.  | .00          |                  |                      | K                | (eiki          | la tikrinti ji        | uostą p        | raspauc               | aimui                                               |
| n                              | 0.7  | 199          | $\mathbf{k}_{n}$ |                      | 0.7241           |                |                       |                |                       | ≤1                                                  |
| 39 lentelė                     |      | "Sa          | ntvaros 2" :     | 5-tojo ma            | izgo tinka       | amu            | mo sąlygo             | S              |                       |                                                     |
| Mazgo ti                       | pas  |              |                  |                      | <u> </u>         |                | K su tai              | pu             |                       |                                                     |
|                                |      | 1 ti         | nklelio el.      | $b_1/b_0 =$          | 0.50             |                | <u>≥0,35</u>          | 5              | 2.0                   | Sąlyga tenkinama                                    |
| b <sub>i</sub> /b <sub>0</sub> |      |              |                  |                      |                  | <u>≥</u> 0,    | $1+0,01\cdot b0/$     | t0 = 0.        | 30                    | Sąlyga tenkinama                                    |
|                                |      | 2 ti         | nklelio el.      | $b_2/b_0 =$          | 0.5              | >0             | 20,33                 | $\frac{1}{10}$ | 20                    | Sąlyga tenkinama                                    |
|                                |      |              |                  |                      |                  | <u> </u>       | <35                   | 10-10.         | 30                    | Sąlyga tenkinama                                    |
|                                |      | 1 ti         | nklelio el.      | $b_1/t_1 =$          | 16               | <4             | <br>41√235/fvi        | = 37           | 90                    | Sąlyga tenkinama                                    |
| Gniudyr                        | nas  |              |                  |                      |                  |                | <u>≤35</u>            | 51             | .,,,,                 | Salvga tenkinama                                    |
|                                |      | 2 ti         | nklelio el.      | $b_2/t_2 =$          | 16.0             | <4             | 41√235/fvi            | = 37           | .90                   | Salvga tenkinama                                    |
| Tempin                         | nas  | 1 ti         | nklelio el.      | $b_1/t_1 =$          | 16.00            |                | <35                   | <i>2 /</i>     | Tin                   | klelio elementas gniuždomas                         |
|                                |      | 2 ti         | nklelio el.      | $b_2/t_2 =$          | 16.00            |                | <35                   |                | Tin                   | klelio elementas gniuždomas                         |
| b <sub>0</sub> /t <sub>0</sub> |      | ju           | ostos el.        | $b_0/t_0 =$          | 20               |                | <u>35</u>             |                |                       | Sąlyga tenkinama                                    |

|                |                    |                |                  | <411                        | $\sqrt{235/\text{fvi}}$ =   | 37 90                      | Salva                       | ya tenkinama                                               |
|----------------|--------------------|----------------|------------------|-----------------------------|-----------------------------|----------------------------|-----------------------------|------------------------------------------------------------|
|                |                    |                |                  |                             | 5(1-B)=                     | 0 250                      | Sąlyg                       | ya tenkinama                                               |
| Tarpas         | g/b <sub>0</sub> = |                | 0.365            | <1                          | $5(1-\beta) =$              | 0.250                      | Sąlyg                       | a tenkinama                                                |
|                |                    |                | Papil            | domos                       | salvgos                     | 0.700                      | 5475                        |                                                            |
| ß              | <0.6               | ir             | <1 3             |                             | Reikia tik                  | rinti viene                | galimus i                   | rtias atvaius                                              |
| P              | _0,0               | п              | _1,5             |                             | INCIKIA LIK                 | 111111 v15u5               | gainnus i                   |                                                            |
| $b_0/t_0 =$    | 20                 | ≥15            | Galima           | įvertin                     | ti tik juosto<br>dėl sumažo | os paviršia<br>ejusio efek | us irtį ir ti<br>ctyviojo p | nklelio elemento irtį<br>ločio                             |
| 40 lentelė.    | "Santavaros 2"     | 5-tojo m       | azgo aši         | nės lail                    | komosiso g                  | alios nusta                | itymas                      |                                                            |
|                | Mazgo tij          | pas            |                  |                             | Skaiči                      | iuotinė lail               | comosios                    | galios reikšmė, kN                                         |
|                | K,N mazgas s       | su tarpu       |                  |                             |                             |                            | • ••                        | •                                                          |
|                |                    |                |                  |                             |                             | Juost                      | os pavirsi                  | aus irtis                                                  |
|                |                    |                |                  |                             | ]                           | N <sub>1.Rd</sub> , kN     |                             | 258.17                                                     |
|                |                    |                |                  |                             | ]                           | N <sub>2.Rd</sub> , kN     |                             | 279.00                                                     |
|                |                    |                |                  |                             |                             | 279.00                     |                             | Pavojingiausia įrąža                                       |
|                |                    |                |                  |                             |                             | Juost                      | tos šlyjam                  | oji irtis                                                  |
|                |                    |                |                  |                             |                             | V <sub>pl.Rd</sub> , kN    |                             | 430.41                                                     |
|                |                    |                |                  |                             |                             | V <sub>Ed</sub> , kN       |                             | 28.07                                                      |
|                |                    |                |                  |                             |                             | A <sub>v</sub> , m         |                             | 0.0027                                                     |
|                |                    |                |                  |                             | -                           | α                          |                             | 0.1179                                                     |
|                |                    |                |                  |                             | V                           | $_{Ed}$ >0.5V $_{pl.R}$    | d                           | N0,Rd skaičiuoti<br>nereikia                               |
| 2              | rt <sub>1</sub>    |                |                  | <sub>€</sub> t <sub>2</sub> | ]                           | N <sub>0.Rd</sub> , kN     |                             | -                                                          |
| b <sub>1</sub> | I <sub>1</sub>     | N <sub>2</sub> | h <sub>2</sub> b | 2                           | N                           | V2.Rd, kN                  |                             | 1147.09                                                    |
| θ1             |                    | 2              |                  | ~                           |                             | Tinkl                      | elio eleme                  | ento irtis                                                 |
|                |                    | θ              | 2                | 2                           |                             | b <sub>eff1</sub> ,m       |                             | 0.064                                                      |
| <u> </u>       |                    | ĥ,             | ₀││              | <mark>&lt; t</mark> ₀       |                             | b <sub>eff2</sub> ,m       |                             | 0.064                                                      |
| [              |                    |                |                  | J                           |                             |                            |                             | Tempiamų tinklelio                                         |
|                |                    | I              | < <sup>b</sup> 0 |                             |                             | N LN                       |                             | elementų nėra, irtis                                       |
|                |                    |                |                  |                             |                             | 1 1.Rd, KIN                |                             | Tempiamu tinklelio                                         |
|                |                    |                |                  |                             |                             |                            |                             | elementų nėra, irtis                                       |
|                |                    |                |                  |                             |                             | N <sub>2.Rd</sub> , kN     |                             | neįvyks                                                    |
|                |                    |                |                  |                             | Temp                        | iamų tink                  | lelio                       | Dovojingioucio irožo                                       |
|                |                    |                |                  |                             | Iuost                       | nera, irus<br>os išnlėšia  | moji/nra                    | ravojingiausia įrąza                                       |
|                |                    |                |                  |                             | 54050                       | h m                        | moji/pra.                   |                                                            |
|                |                    |                |                  |                             |                             | D <sub>ep1</sub> ,m        |                             | 0.040                                                      |
|                |                    |                |                  |                             |                             | b <sub>ep2</sub> ,m        |                             | 0.04                                                       |
|                |                    |                |                  |                             | -                           | $\frac{l}{N_{1,p,1} kN}$   |                             | 300 12                                                     |
|                |                    |                |                  |                             |                             | $N_{2D^3} kN$              |                             | 450 41                                                     |
|                |                    |                |                  |                             |                             | 450 41                     |                             | Dovojin ziovoje ins¥-                                      |
| N              |                    |                |                  |                             |                             | 430.41                     |                             | r avojingiausia įrąza                                      |
|                | Mažiausia laiko    | moji gali      | a:               |                             | Juostos                     | paviršiau                  | ıs irtis                    | Tikriname sąlygą:<br>N <sub>i Ed</sub> <n<sub>i Rd</n<sub> |

| Flemento             |         |                 |             |           |                       | Mazg                                                                                                       | o ele   | ementų skaiči | uojamiej                   | i dyd                | źiai    |                                      |                                       |                         |                 |                         |                                                           |                 |
|----------------------|---------|-----------------|-------------|-----------|-----------------------|------------------------------------------------------------------------------------------------------------|---------|---------------|----------------------------|----------------------|---------|--------------------------------------|---------------------------------------|-------------------------|-----------------|-------------------------|-----------------------------------------------------------|-----------------|
| Nr.                  | Apatine | es juostos el.  | h(b),<br>mm | t,<br>mm  | A,<br>cm <sup>2</sup> | N <sub>Ed</sub> ,<br>kN                                                                                    | Įr      | rąžos poveiki | s M <sub>Ed</sub> ,<br>kNm | W <sub>e</sub><br>cm | l.<br>3 | W <sub>pl</sub> ,<br>cm <sup>3</sup> | F <sub>y</sub> ,<br>N/mm <sup>2</sup> | E,<br>N/mm <sup>2</sup> | γ <sub>М5</sub> | $\boldsymbol{\theta}_i$ | Skerspj<br>klas                                           | jūvio<br>sė     |
| 1                    | 120     | )x120x8         | 0.120       | 0.008     | 33.64                 | -345.1                                                                                                     | 17      | Tempimas      | 0.411                      | 112                  | .8      | 137.8                                | 275                                   | 210000                  | 1               |                         | 1kla                                                      | sė              |
| 2                    | 120     | x120x8          | 0.120       | 0.008     | 33.64                 | -693.94                                                                                                    | 43      | Tempimas      | -0.038                     | 112                  | .8      | 137.8                                | 275                                   | 210000                  | 1               |                         | 1kla                                                      | sė              |
|                      |         |                 |             |           |                       |                                                                                                            | •       | Tinklelio el  | mentai                     |                      |         |                                      |                                       |                         | •               | •                       |                                                           |                 |
| 20                   | 70      | 0x70x4          | 0.070       | 0.004     | 10.15                 | -278.49                                                                                                    | 93      | Tempimas      | 0                          | 20.                  | 51      | 24.76                                | 275                                   | 210000                  | 1               | 39                      | 1kla                                                      | sė              |
| 21                   | 90      | x90x5           | 0.090       | 0.005     | 16.36                 | 187.20                                                                                                     | 8       | Gniuždymas    | 0                          | 42.                  | 37      | 51.41                                | 275                                   | 210000                  | 1               | 45                      | 1kla                                                      | sė              |
| 32                   | 50      | 0x50x3          | 0.050       | 0.003     | 5.41                  | 42.61                                                                                                      | 4       | Gniuždymas    | 0                          | 7.7                  | 9       | 9.39                                 | 275                                   | 210000                  | 1               | 90                      | 1kla                                                      | sė              |
| 42 lentelė           | . "Sa   | ntvaros 2" 7-to | ojo maz     | go elem   | entų pa               | arametra                                                                                                   | i, laik | komosios gali | os skaič                   | iavim                | ui      |                                      |                                       |                         |                 |                         |                                                           |                 |
| Flemento             |         |                 |             |           |                       | Maz                                                                                                        | go el   | lementų skaič | iuojami                    | eji dy               | lžia    | ui                                   |                                       |                         |                 |                         |                                                           |                 |
| Nr.                  | Apatine | ės juostos el.  | h(b),<br>mm | t,<br>mm  | $A, cm^2$             | A, $N_{Ed}$ , $V_{Ed}$ , $V_{ed}$ , $V_{el}$ , $W_{el}$ , $W_{pl}$ , $M_{ed}$ , $W_{el}$ , $W_{pl}$ , $N/$ |         |               |                            |                      |         |                                      | f <sub>y</sub> ,<br>N/mm              | $h^2 = \frac{E}{N/mn}$  | $n^2$ $\gamma$  | M5                      | $\theta_i \begin{vmatrix} \text{Sker} \\ k \end{vmatrix}$ | spjūvio<br>lasė |
| 2                    | 120     | )x120x8         | 0.120       | 0.008     | 33.64                 | -693.9                                                                                                     | 943     | Tempimas      | -0.03                      | 8 1                  | 2.8     | 137.8                                | 8 275                                 | 21000                   | 00              | 1                       | 11                                                        | klasė           |
| 3                    | 120     | )x120x8         | 0.120       | 0.008     | 33.64                 | -767.2                                                                                                     | 239     | Tempimas      | -0.20                      | 07 11                | 2.8     | 137.8                                | 8 275                                 | 21000                   | 00              | 1                       | 11                                                        | klasė           |
|                      |         |                 |             |           |                       |                                                                                                            |         | Tinklelio e   | elmentai                   |                      |         |                                      |                                       |                         |                 |                         |                                                           |                 |
| 22                   | 7(      | )x70x4          | 0.070       | 0.004     | 10.15                 | -88.9                                                                                                      | 93      | Tempimas      | 0                          | 20                   | 0.61    | 24.76                                | 5 275                                 | 21000                   | 00              | 1                       | 45 11                                                     | klasė           |
| 23                   | 8(      | )x80x5          | 0.080       | 0.005     | 14.36                 | 15.4                                                                                                       | 4       | Gniuždyma     | s 0                        | 32                   | .86     | 39.74                                | 275                                   | 21000                   | 00              | 1                       | 49 Ik                                                     | klasė           |
| 33                   | 60      | )x60x4          | 0.060       | 0.004     | 8.55                  | 48.59                                                                                                      | 99      | Gniuždyma     | s 0                        | 14                   | .52     | 17.64                                | 275                                   | 21000                   | 00              | 1                       | 90 11                                                     | klasė           |
| 43 lentelė           | . "Sa   | ntvaros 2" 7-to | ojo maz     | go svarł  | oiausie               | ji rodikli                                                                                                 | ai      |               | •                          |                      |         |                                      |                                       | <u>.</u>                |                 |                         |                                                           |                 |
| KT su                | tarpu   | g               |             | q         |                       |                                                                                                            |         | g>            | =g <sub>min</sub>          |                      |         |                                      |                                       |                         |                 |                         |                                                           |                 |
| g <sub>min</sub> , m | 0.008   | 0.016           |             | -         |                       |                                                                                                            |         | Sąlyga        | tenkinar                   | na                   |         |                                      |                                       |                         |                 |                         |                                                           |                 |
| g <sub>min</sub> , m | 0.009   | 0.016           |             | -         |                       |                                                                                                            |         | Sąlyga        | tenkinar                   | na                   |         |                                      |                                       |                         |                 |                         |                                                           |                 |
| e <sub>1</sub> , m   | 0.035   | Kad būtų tenk   | inama (     | 3.28 sąly | ga: .                 | -0.066                                                                                                     | ≤e≤     | ≤ 0.03        | Sąly                       | /ga ne               | tenl    | kinama                               |                                       |                         |                 |                         |                                                           |                 |
| e <sub>2</sub> , m   | 0.054   | Kad būtų tenk   | inama (     | 3.28 sąly | ga:                   | $rga: -0.066 \le e \le 0.03$ Sąlyga netenkinama                                                            |         |               |                            |                      |         |                                      |                                       |                         |                 |                         |                                                           |                 |
| g <sub>a1</sub>      | 0.0120  | Tikrina         | ame sąl     | ygą:      |                       | g <sub>a</sub> >1,51                                                                                       |         | 0.01          | Są                         | lyga t               | enk     | inama                                |                                       |                         |                 |                         |                                                           |                 |
| g <sub>a2</sub>      | 0.0120  | Tikrina         | ame sąl     | ygą:      |                       | g <sub>a</sub> >1,51                                                                                       | =_0     | 0.01          | Są                         | lyga t               | enk     | inama                                |                                       |                         |                 |                         |                                                           |                 |
| β                    | 0.5833  |                 |             |           | Reiki                 | a tikrinti                                                                                                 | iuost   | a praspaudim  | mi                         |                      |         |                                      |                                       |                         |                 |                         |                                                           |                 |
| γ                    | 7.50    |                 | 1           |           |                       |                                                                                                            | ,4050   | T PIUSPUUUIII |                            |                      |         |                                      |                                       |                         |                 |                         |                                                           |                 |
| n                    | 0.7511  | k <sub>n</sub>  |             | 1.000     | )                     |                                                                                                            |         |               | ≤1                         |                      |         |                                      |                                       |                         |                 |                         |                                                           |                 |

41 lentelė. "Santvaros 2" 6-ojo mazgo konstrukcinių elementų reikialingi parametrai laikomosios galios skaičiavimui

| 44 lentelé                                                   | e. "Sa                  | antvaros 2"7                             | '-tojo n        | nazgo su užlai | da sva                         | rbiaus   | sieji ro             | dikliai    |                                        |                       |  |  |  |  |
|--------------------------------------------------------------|-------------------------|------------------------------------------|-----------------|----------------|--------------------------------|----------|----------------------|------------|----------------------------------------|-----------------------|--|--|--|--|
|                                                              |                         | g                                        | 2               | q              |                                |          | 2                    | g>         | ≥=g <sub>min</sub>                     |                       |  |  |  |  |
| g <sub>min</sub> , m                                         | 0.008                   | _                                        |                 | 0.025          |                                | Т        | inkleli              | o element  | ai mazge pe                            | rsidengia             |  |  |  |  |
| g <sub>min</sub> , m                                         | 0.009                   | -                                        |                 | 0.031          |                                | Т        | inkleli              | o element  | ai mazge pe                            | rsidengia             |  |  |  |  |
| e <sub>1</sub> , m                                           | -0.005                  | Kad būtų ter                             | nkinam          | a 3.28 sąlyga: | -0.0                           | 66       | ≤e≤                  | 0.03       | Sąly                                   | ga tenkinama          |  |  |  |  |
| e <sub>2</sub> , m                                           | 0.000                   | Kad būtų ter                             | nkinam          | a 3.28 sąlyga: | -0.0                           | 66       | ≤e≤                  | 0.03       | Sąly                                   | ga tenkinama          |  |  |  |  |
| $\mathbf{g}_{a1}$                                            | -                       | Tikri                                    | name s          | sąlygą:        | ga                             | >1,5t    |                      | 0.012      | Sąly                                   | ga tenkinama          |  |  |  |  |
| g <sub>a2</sub>                                              | -                       | Tikri                                    | name s          | salyga:        | ga                             | >1,5t    |                      | 0.012      | Sąly                                   | ga tenkinama          |  |  |  |  |
| β                                                            | 0.5833                  |                                          |                 | D - 11         | -:- 4:1                        |          |                      |            | :                                      |                       |  |  |  |  |
| γ                                                            | 7.50                    |                                          |                 | Kell           |                                | inu ji   | uostą p              | raspaudin  | 101                                    |                       |  |  |  |  |
| n                                                            | 0.7511                  | k <sub>n</sub>                           |                 | 1.0000         |                                |          |                      |            | ≤1                                     |                       |  |  |  |  |
| 45 lentelė                                                   | e. "S                   | antvaros 2"7                             | /-tojo n        | nazgo su užlai | da tink                        | amur     | no sąly              | /gos       |                                        |                       |  |  |  |  |
| Mazgo                                                        |                         |                                          |                 |                |                                |          |                      |            |                                        |                       |  |  |  |  |
| tipas K su užlaida, [i=1 arba 2, j= uždengiamasis elementas] |                         |                                          |                 |                |                                |          |                      |            |                                        |                       |  |  |  |  |
|                                                              | 1 tinkl                 | elio el. $b_1/b_0=$                      | 0.58            | ≥0,25          |                                |          | Sąly                 | yga tenkin | ama                                    |                       |  |  |  |  |
| $b_i/b_0$                                                    | 2 tinkl                 | elio el. $b_2/b_0=$                      | =0.667          | ≥0,25          |                                |          | Sąly                 | yga tenkin | iama                                   |                       |  |  |  |  |
|                                                              | 3 tinkl                 | elio el.b <sub>3</sub> /b <sub>0</sub> = | 0.500           | ≥0,25          | 1                              |          | Sąly                 | yga tenkin | iama                                   |                       |  |  |  |  |
|                                                              | 1 tinkl                 | elio el. $b_1/t_1 =$                     | 17.5            | ≤36√235/fyi=   | 33.28                          | Tin      | klelio e             | elementas  | tempiamas                              |                       |  |  |  |  |
| Gniudym                                                      | as <mark>2 tinkl</mark> | elio el. $b_2/t_2=$                      | 16.0            | ≤36√235/fyi=   | 33.28                          | 5        | Sąly                 | yga tenkin | iama                                   |                       |  |  |  |  |
|                                                              | 3 tinkl                 | elio el. $b_3/t_3=$                      | 15.0            | ≤36√235/fyi=   | 33.28                          |          | Sąly                 | yga tenkin | iama                                   |                       |  |  |  |  |
| Tempima                                                      | as 1 tinkl              | elio el. $b_1/t_1 =$                     | 17.50           | ≤35            |                                |          | Sąly                 | yga tenkir | iama                                   |                       |  |  |  |  |
|                                                              | 2 tinkl                 | elio el. $b_2/t_2=$                      | 16.00           | ≤35            |                                | Tink     | clelio e             | lementas   | gniuždomas                             |                       |  |  |  |  |
|                                                              | 3 tinkl                 | elio el. $b_3/t_3=$                      | 15.00           | ≤35            | _                              | Tink     | clelio e             | lementas   | gniuždomas                             |                       |  |  |  |  |
| b <sub>0</sub> /t <sub>0</sub>                               | juost                   | os el. $b_0/t_0=$                        | 15              | ≤41√235/fyi=   | 37.90                          |          | Sąly                 | yga tenkir | iama                                   |                       |  |  |  |  |
|                                                              | 1 tinkl                 | elio el. $f_{1y} \cdot t_1$              | 1100            | bj             | b <sub>i</sub> /b <sub>i</sub> |          |                      | ≥0,75      |                                        |                       |  |  |  |  |
| $b_i/b_j$                                                    | 2 tinkl                 | elio el. $f_{2y} \cdot t_2$              | 1375            | bj             | 0.86                           |          | Sąly                 | yga tenkir | iama                                   |                       |  |  |  |  |
|                                                              | 3 tinkl                 | elio el. $f_{2y} \cdot t_3$              | 1100            | bi             | 0.75                           |          | Sąly                 | yga tenkir | iama                                   |                       |  |  |  |  |
| Užlaida                                                      | $q_1$ ,                 | m e <sub>1</sub> , m                     | $\lambda_{ov}$  | 25.00%         | ≥25%                           | <b>)</b> | Sąly                 | yga tenkin | iama                                   |                       |  |  |  |  |
|                                                              | 0.0                     | 025 -0.005                               | 5               |                | ≤100%                          | 0        | Sąly                 | yga tenkin | lama                                   |                       |  |  |  |  |
| Užlaida                                                      | $q_2$ ,                 | $m e_1, m$                               | λ <sub>ov</sub> | 29.10%         | ≥25%                           |          | Sąly                 | yga tenkin | iama                                   |                       |  |  |  |  |
| 16 lentelė                                                   |                         | $\frac{0.000}{2}$                        | 7 toio          | mazgo ačinės   | <u>≤100%</u><br>laikor         |          | Sąly<br>v galios     | yga tenkin | lama                                   |                       |  |  |  |  |
|                                                              | . ,,5                   |                                          | 7-10]0          | mazgo asmes    |                                | 105150   | Panil                | ldomos sa  | las<br>Ivgos KT m                      | azgui                 |  |  |  |  |
|                                                              |                         | Mazgo tip                                | bas             |                |                                |          |                      | Salvga     | tenkinama                              |                       |  |  |  |  |
|                                                              | K                       | T mazgas su                              | užlaida         | a              |                                | Skai     | čiuotin              | ie laikomo | sios galios                            | reikšmė, kN           |  |  |  |  |
|                                                              |                         |                                          |                 |                |                                | Ti       | nklelio              | elemento   | irtis, 25%                             | ≤λ <sub>ov</sub> <50% |  |  |  |  |
|                                                              |                         |                                          |                 |                |                                | Ni       | <sub>i.Rd</sub> , kN |            | 16                                     | 0.91                  |  |  |  |  |
|                                                              |                         |                                          |                 |                |                                | t        | o <sub>eff</sub> , m |            | 0.0                                    | 060                   |  |  |  |  |
|                                                              |                         |                                          |                 |                |                                | b        | <sub>e.ov</sub> , m  |            | 0.034                                  |                       |  |  |  |  |
|                                                              |                         |                                          |                 |                |                                | Ti       | nklelio              | elemento   | emento irtis, 50%≤λ <sub>ov</sub> <80% |                       |  |  |  |  |
|                                                              |                         |                                          |                 |                |                                | N        | Rd kN                |            |                                        | -                     |  |  |  |  |
|                                                              |                         |                                          |                 |                |                                | h        | $D_{\rm eff.}$ m     |            | 0.0                                    | 060                   |  |  |  |  |

Kadangi netenkinama minimalių ekscentricitetų sąlyga 7-tąjį mazgą projektuojame su užlaida.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b <sub>e,ov</sub> , m<br><b>Tinklelio ele</b> | 0.034<br>emento irtis, λ₀v≥80%                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|
| where the second s | N <sub>i Rd</sub> , kN                        | -                                                       |
| Nisa Nisa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b <sub>eff</sub> ,m                           | 0.060                                                   |
| Mara<br>Nera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b <sub>e,ov</sub> , m                         | 0.034                                                   |
| Mažiausia laikamaji galiat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Tinklelio elemento                            | Tikriname sąlygą: N <sub>i.Ed</sub> <n<sub>i.Rd</n<sub> |
| 160.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | irtis,<br>25%≤λov<50%                         | Sąlyga tenkinama                                        |

# T, X, Y tipo mazgų juostos plastifikacijos irties analizė

|             |       |      |                           |                            |     |                             | •               |                                            |                 |                                              |                  | •                                         |                |       |         |
|-------------|-------|------|---------------------------|----------------------------|-----|-----------------------------|-----------------|--------------------------------------------|-----------------|----------------------------------------------|------------------|-------------------------------------------|----------------|-------|---------|
| γ           | β     |      | N <sub>i,Rd(EN)</sub> ,kl | N N <sub>i,Rd(STR)</sub> , | N   | N <sub>i,Rd(anal)</sub> ,k  | N               | N <sub>i,Rd(anal)</sub> /N <sub>i,Rd</sub> | (EN)            | N <sub>i,Rd(anal)</sub> /N <sub>i,Rd(S</sub> | STR)             | N <sub>i,Rd(EN)</sub> /N <sub>i,Rd(</sub> | STR)           | σ     | uostoje |
| 20          |       |      | 25.34                     | 13.35                      |     | 21.55                       |                 | 14.96%                                     |                 | -61.42%                                      |                  | 1.90                                      |                |       |         |
| 16.00       |       |      | 39.59                     | 20.86                      |     | 33.75                       |                 | 14.75%                                     |                 | -61.79%                                      |                  | 1.90                                      |                | 10    | )86.7   |
| 13.34       |       |      | 57.01                     | 30.04                      |     | 48.70                       |                 | 14.58%                                     |                 | -62.12%                                      |                  | 1.90                                      |                | 79    | 94.39   |
| 12.70       |       | ſ    | 62.85                     | 33.11                      |     | 53.73                       |                 | 14.51%                                     |                 | -62.28%                                      |                  | 1.90                                      |                | 69    | 93.52   |
| 11.27       | 0.312 | 25   | 79.83                     | 42.06                      |     | 68.34                       |                 | 14.39%                                     |                 | -62.48%                                      |                  | 1.90                                      |                | 53    | 37.54   |
| 10.00       | 0.01  |      | 101.35                    | 53.40                      |     | 86.90                       |                 | 14.26%                                     |                 | -62.73%                                      |                  | 1.90                                      |                | 42    | 27.31   |
| 9.09        |       |      | 122.64                    | 64.61                      |     | 105.29                      |                 | 14.15%                                     |                 | -62.96%                                      |                  | 1.90                                      |                | ,     | 362     |
| 8.00        |       |      | 158.36                    | 83.43                      |     | 136.18                      |                 | 14.01%                                     |                 | -63.23%                                      |                  | 1.90                                      |                | 27    | 7.14    |
| 6.67        |       |      | 228.04                    | 120.14                     |     | 196.47                      |                 | 13.84%                                     |                 | -63.53%                                      |                  | 1.90                                      |                | 23    | 32.71   |
| 6.40        |       |      | 247.44                    | 130.37                     |     | 213.25                      |                 | 13.82%                                     |                 | -63.57%                                      |                  | 1.90                                      |                | 20    | )1.31   |
| 48 lentelė. | Juos  | stos | plastifikaci              | jos irties lygin           | amo | oji analizė, n              | eįve            | ertinant įrąžų sa                          | ntva            | ros juostoje, kai                            | rodik            | lis $\beta = 0,5$                         |                |       |         |
| γ           | β     | Ni   | , <sub>Rd(EN)</sub> ,kN   | N <sub>i,Rd(STR)</sub> ,kN | N   | J <sub>i,Rd(anal)</sub> ,kN | N <sub>i,</sub> | Rd(anal)/Ni,Rd(EN)                         | N <sub>i,</sub> | $Rd(anal)/N_{i,Rd(STR)}$                     | N <sub>i,l</sub> | $R_{d(EN)}/N_{i,Rd(STR)}$                 | $\sigma_{juo}$ | stoje |         |
| 20          |       |      | 33.85                     | 19.42                      |     | 30.44                       |                 | 10.07%                                     |                 | -56.75%                                      |                  | 1.74                                      |                | -     |         |
| 16.00       |       |      | 52.89                     | 30.34                      |     | 47.78                       |                 | 9.66%                                      |                 | -57.48%                                      |                  | 1.74                                      | 122            | 8.5   |         |
| 13.34       |       |      | 76.17                     | 43.69                      |     | 69.11                       |                 | 9.27%                                      |                 | -58.18%                                      |                  | 1.74                                      | 849            | .47   |         |
| 12.70       |       |      | 83.98                     | 48.17                      |     | 76.29                       |                 | 9.16%                                      |                 | -58.38%                                      |                  | 1.74                                      | 770            | .01   |         |
| 11.27       | 0.5   |      | 106.66                    | 61.18                      |     | 97.19                       |                 | 8.88%                                      |                 | -58.86%                                      |                  | 1.74                                      | 610            | .52   |         |
| 10.00       |       |      | 135.41                    | 77.67                      |     | 123.76                      |                 | 8.60%                                      |                 | -59.34%                                      |                  | 1.74                                      | 471            | .45   |         |
| 9.09        |       |      | 163.85                    | 93.98                      |     | 150.11                      |                 | 8.39%                                      |                 | -59.73%                                      |                  | 1.74                                      | 411            | 1.3   |         |
| 8.00        |       |      | 211.58                    | 121.36                     |     | 194.4                       |                 | 8.12%                                      |                 | -60.18%                                      |                  | 1.74                                      | 319            | .51   |         |
| 6.67        |       |      | 304.67                    | 174.76                     |     | 280.78                      |                 | 7.84%                                      |                 | -60.67%                                      |                  | 1.74                                      | 261            | .63   |         |
| 6.40        |       |      | 330.59                    | 189.63                     |     | 304.78                      |                 | 7.81%                                      |                 | -60.72%                                      |                  | 1.74                                      | 27             | '9    |         |

47 lentelė. Juostos plastifikacijos irties lyginamoji analizė, neįvertinant įrąžų santvaros juostoje, kai rodiklis  $\beta = 0,3125$ 

| γ           | β     |                 | N <sub>i,Rd(EN)</sub> ,kl | N N <sub>i,Rd(STR)</sub> ,k | N N <sub>i,Rd(anal</sub>    | ,kN              | N <sub>i,Rd(anal)</sub> /N <sub>i,Rd</sub> | (EN)            | N <sub>i,Rd(anal)</sub> /N <sub>i,Rd(S</sub> | STR)             | N <sub>i,Rd(EN)</sub> /N <sub>i,Rd</sub> | STR)            | σ <sub>juostoje</sub> |
|-------------|-------|-----------------|---------------------------|-----------------------------|-----------------------------|------------------|--------------------------------------------|-----------------|----------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------|
| 20          |       |                 | 43.63                     | 26.55                       | 41.0                        | 0                | 6.03%                                      |                 | -54.43%                                      |                  | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                       |
| 16.00       |       |                 | 68.17                     | 41.48                       | 64.5                        | 2                | 5.35%                                      |                 | -55.54%                                      |                  | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 1050.8                |
| 13.34       |       |                 | 98.17                     | 59.74                       | 93.4                        | 7                | 4.79%                                      |                 | -56.46%                                      |                  | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 754.31                |
| 12.70       |       |                 | 108.23                    | 65.86                       | 103.2                       | 2                | 4.63%                                      |                 | -56.73%                                      |                  | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 715.56                |
| 11.27       | 0.62  | 5               | 137.46                    | 83.65                       | 131.6                       | 51               | 4.26%                                      |                 | -57.33%                                      |                  | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 548.65                |
| 10.00       | 0.02  | .5              | 174.52                    | 106.2                       | 167.7                       | 0                | 3.91%                                      |                 | -57.91%                                      |                  | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 406.19                |
| 9.09        |       |                 | 211.17                    | 128.5                       | 203.4                       | -2               | 3.67%                                      |                 | -58.30%                                      |                  | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 368.39                |
| 8.00        |       |                 | 272.68                    | 165.93                      | 263.2                       | .9               | 3.44%                                      |                 | -58.68%                                      |                  | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 296.08                |
| 6.67        |       |                 | 392.66                    | 238.94                      | 379.1                       | 6                | 3.44%                                      |                 | -58.68%                                      |                  | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 224.09                |
| 6.40        |       |                 | 426.07                    | 259.27                      | 411.1                       | 1                | 3.51%                                      |                 | -58.56%                                      |                  | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | 267.11                |
| 50 lentelė. | Juos  | stos j          | plastifikaci              | jos irties lygina           | amoji analizė               | neįv             | ertinant įrąžų sa                          | ntva            | ros juostoje, kai                            | rodik            | lis $\beta = 0,75$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                       |
| γ           | β     | N <sub>i,</sub> | <sub>Rd(EN)</sub> ,kN     | N <sub>i,Rd(STR)</sub> ,kN  | N <sub>i,Rd(anal)</sub> ,kN | I N <sub>i</sub> | i,Rd(anal)/Ni,Rd(EN)                       | N <sub>i,</sub> | $Rd(anal)/N_{i,Rd(STR)}$                     | N <sub>i,F</sub> | Rd(EN)/Ni,Rd(STR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\sigma_{juos}$ | toje                  |
| 20          |       |                 | 61.94                     | 40.24                       | 61.67                       |                  | 0.436%                                     |                 | -53.26%                                      |                  | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                       |
| 16.00       |       |                 | 96.78                     | 62.88                       | 97.2300                     |                  | -0.465%                                    |                 | -54.63%                                      |                  | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 951.            | 54                    |
| 13.34       |       | 1               | 139.36                    | 90.55                       | 140.92                      |                  | -1.119%                                    |                 | -55.63%                                      |                  | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 760.            | 68                    |
| 12.70       |       | ]               | 153.64                    | 99.83                       | 155.58                      |                  | -1.263%                                    |                 | -55.84%                                      |                  | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 737.            | 38                    |
| 11.27       | 0.75  | 1               | 195.14                    | 126.8                       | 198.09                      |                  | -1.512%                                    |                 | -56.22%                                      |                  | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 697.            | 21                    |
| 10.00       | 0.75  | 2               | 247.75                    | 160.98                      | 251.64                      |                  | -1.570%                                    |                 | -56.32%                                      |                  | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 710.            | 51                    |
| 9.09        |       | 2               | 299.77                    | 194.78                      | 304.04                      |                  | -1.424%                                    |                 | -56.09%                                      |                  | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 549.            | 16                    |
| 8.00        |       |                 | 387.1                     | 251.53                      | 390.38                      |                  | -0.847%                                    |                 | -55.20%                                      |                  | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 403.            | 66                    |
| 6.67        |       | 4               | 557.43                    | 362.2                       | 551.85                      |                  | 1.001%                                     |                 | -52.36%                                      |                  | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 221.            | 73                    |
| 6.40        |       | (               | 604.85                    | 393.02                      | 595.07                      |                  | 1.617%                                     |                 | -51.41%                                      |                  | 1.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 189.            | 28                    |
| 51 lentelė. | Juos  | stos j          | plastifikaci              | jos irties lygina           | amoji analizė               | neįv             | ertinant įrąžų sa                          | ntva            | ros juostoje, kai                            | rodik            | lis $\beta = 0,875$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                       |
| γ           | β     | N <sub>i,</sub> | <sub>Rd(EN)</sub> ,kN     | N <sub>i,Rd(STR)</sub> ,kN  | N <sub>i,Rd(anal)</sub> ,kN | I N <sub>i</sub> | $_{i,Rd(anal)}/N_{i,Rd(EN)}$               | N <sub>i,</sub> | Rd(anal)/Ni,Rd(STR)                          | N <sub>i,F</sub> | Rd(EN)/Ni,Rd(STR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\sigma_{juos}$ | toje                  |
| 20          | 0.875 |                 | 95.86                     | 79.14                       | 120.95                      |                  | -26.17%                                    |                 | -52.83%                                      |                  | 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                       |
| 16.00       |       | 1               | 149.79                    | 123.66                      | 181.81                      |                  | -21.38%                                    |                 | -47.02%                                      |                  | 1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 759.            | 71                    |

49 lentelė. Juostos plastifikacijos irties lyginamoji analizė, neįvertinant įrąžų santvaros juostoje, kai rodiklis  $\beta = 0,625$ 

| 13.34 | 215.7  | 178.07 | 265.5400 | -23.11% | -49.12% | 1.21 | 472.7  |
|-------|--------|--------|----------|---------|---------|------|--------|
| 12.70 | 237.8  | 196.32 | 290.53   | -22.17% | -47.99% | 1.21 | 461.48 |
| 11.27 | 353    | 294.35 | 359.99   | -1.98%  | -22.30% | 1.20 | 399.2  |
| 10.00 | 383.46 | 316.57 | 441.72   | -15.19% | -39.53% | 1.21 | 362.52 |
| 9.09  | 463.99 | 383.05 | 516.31   | -11.28% | -34.79% | 1.21 | 336.79 |
| 8.00  | 599.16 | 494.64 | 629.78   | -5.11%  | -27.32% | 1.21 | 306.93 |
| 6.67  | 862.78 | 712.28 | 819.44   | 5.02%   | -15.04% | 1.21 | 262.66 |
| 6.40  | 936.18 | 772.88 | 866.64   | 7.43%   | -12.13% | 1.21 | 254.5  |

52 lentelė. Juostos plastifikacijos irties lyginamoji analizė, neįvertinant įrąžų santvaros juostoje, priklausomai nuo rodiklio  $\beta$ 

| γ  | β    | N <sub>i,Rd(EN)</sub> ,kN | N <sub>i,Rd(STR)</sub> ,kN | N <sub>i,Rd(anal)</sub> ,kN |
|----|------|---------------------------|----------------------------|-----------------------------|
|    | 0.31 | 101.35                    | 53.40                      | 86.90                       |
|    | 0.50 | 135.41                    | 123.76                     | 123.76                      |
| 10 | 0.63 | 174.52                    | 106.20                     | 167.70                      |
|    | 0.75 | 247.75                    | 160.98                     | 251.64                      |
|    | 0.88 | 383.46                    | 316.57                     | 441.72                      |

53 lentelė. Juostos plastifikacijos irties lyginamoji analizė, įvertinant įrąžas santvaros juostoje, kai rodiklis  $\beta = 0,3125$ 

| γ     | β      | N <sub>i,Rd(EN)</sub> ,kN | N <sub>i,Rd(STR)</sub> ,kN | N <sub>i,Rd(anal)</sub> ,kN | $N_{i,Rd(anal)}/N_{i,Rd(EN)}$ | $N_{i,Rd(anal)}/N_{i,Rd(STR)}$ | $N_{i,Rd(EN)}\!/N_{i,Rd(STR)}$ |
|-------|--------|---------------------------|----------------------------|-----------------------------|-------------------------------|--------------------------------|--------------------------------|
| 20    |        | 18.8                      | 9.09                       | 21.55                       | -14.63%                       | -137.07%                       | 2.07                           |
| 16.00 |        | 29.38                     | 17.47                      | 33.75                       | -14.87%                       | -93.19%                        | 1.68                           |
| 13.34 |        | 42.3                      | 28.28                      | 48.70                       | -15.13%                       | -72.21%                        | 1.50                           |
| 12.70 |        | 46.64                     | 31.85                      | 53.73                       | -15.20%                       | -68.70%                        | 1.46                           |
| 11.27 | 0.2125 | 59.23                     | 42.06                      | 68.34                       | -15.38%                       | -62.48%                        | 1.41                           |
| 10.00 | 0.5125 | 75.2                      | 53.40                      | 86.90                       | -15.56%                       | -62.73%                        | 1.41                           |
| 9.09  |        | 90.99                     | 64.61                      | 105.29                      | -15.72%                       | -62.96%                        | 1.41                           |
| 8.00  |        | 117.5                     | 83.43                      | 136.18                      | -15.90%                       | -63.23%                        | 1.41                           |
| 6.67  |        | 169.2                     | 120.14                     | 196.47                      | -16.12%                       | -63.53%                        | 1.41                           |
| 6.40  |        | 183.6                     | 130.37                     | 213.25                      | -16.15%                       | -63.57%                        | 1.41                           |

| γ           | β    | N    | <sub>i,Rd(EN)</sub> ,kN  | N <sub>i,Rd(STR)</sub> ,kN  | N <sub>i,Rd(anal)</sub> ,kN | Ni    | i,Rd(anal)/Ni,Rd(EN)                       | Ni    | Rd(anal)/Ni,Rd(STR)                          | N <sub>i,F</sub> | Rd(EN)/Ni,Rd(STR)                           |     |
|-------------|------|------|--------------------------|-----------------------------|-----------------------------|-------|--------------------------------------------|-------|----------------------------------------------|------------------|---------------------------------------------|-----|
| 20          |      |      | 32.2                     | 13.22                       | 30.44                       |       | 5.47%                                      |       | -130.26%                                     |                  | 2.44                                        |     |
| 16.00       |      |      | 50.32                    | 25.41                       | 47.78                       |       | 5.05%                                      |       | -88.04%                                      |                  | 1.98                                        |     |
| 13.34       |      |      | 72.45                    | 41.14                       | 69.11                       |       | 4.61%                                      |       | -67.99%                                      |                  | 1.76                                        |     |
| 12.70       |      |      | 79.88                    | 46.32                       | 76.29                       |       | 4.49%                                      |       | -64.70%                                      |                  | 1.72                                        |     |
| 11.27       | 0.5  |      | 101.46                   | 61.18                       | 97.19                       |       | 4.21%                                      |       | -58.86%                                      |                  | 1.66                                        |     |
| 10.00       | 0.5  |      | 128.81                   | 77.67                       | 123.76                      |       | 3.92%                                      |       | -59.34%                                      |                  | 1.66                                        |     |
| 9.09        |      |      | 155.86                   | 93.98                       | 150.11                      |       | 3.69%                                      |       | -59.73%                                      |                  | 1.66                                        |     |
| 8.00        |      |      | 201.26                   | 121.36                      | 194.4                       |       | 3.41%                                      |       | -60.18%                                      |                  | 1.66                                        |     |
| 6.67        |      |      | 289.82                   | 174.76                      | 280.78                      |       | 3.12%                                      |       | -60.67%                                      |                  | 1.66                                        |     |
| 6.40        |      |      | 314.47                   | 189.63                      | 304.78                      |       | 3.08%                                      |       | -60.72%                                      |                  | 1.66                                        |     |
| 55 lentelė. | Juos | stos | plastifikaci             | ijos irties lygina          | amoji analizė,              | įvert | inant įrąžas san                           | tvaro | os juostoje, kai ro                          | odikli           | s $\beta = 0,625$                           |     |
| γ           | β    |      | N <sub>i,Rd(EN)</sub> ,k | N N <sub>i,Rd(STR)</sub> ,k | N N <sub>i,Rd(anal)</sub>   | ,kN   | N <sub>i,Rd(anal)</sub> /N <sub>i,Rd</sub> | (EN)  | N <sub>i,Rd(anal)</sub> /N <sub>i,Rd(S</sub> | STR)             | N <sub>i,Rd(EN)</sub> /N <sub>i,Rd(ST</sub> | ΓR) |
| 20          |      |      | 43.63                    | 18.07                       | 41.00                       | )     | 6.03%                                      |       | -126.90%                                     |                  | 2.41                                        |     |
| 16.00       |      |      | 68.17                    | 34.74                       | 64.52                       | 2     | 5.35%                                      |       | -85.72%                                      |                  | 1.96                                        |     |
| 13.34       |      |      | 98.17                    | 56.25                       | 93.4                        | 7     | 4.79%                                      |       | -66.17%                                      |                  | 1.75                                        |     |
| 12.70       |      |      | 108.23                   | 63.34                       | 103.2                       | 2     | 4.63%                                      |       | -62.96%                                      |                  | 1.71                                        |     |
| 11.27       | 0.62 | 5    | 137.46                   | 83.62                       | 131.6                       | 1     | 4.26%                                      |       | -57.39%                                      |                  | 1.64                                        |     |
| 10.00       | 0.62 | .5   | 174.52                   | 106.20                      | 167.7                       | 0     | 3.91%                                      |       | -57.91%                                      |                  | 1.64                                        |     |
| 9.09        |      |      | 211.17                   | 128.50                      | 203.4                       | 2     | 3.67%                                      |       | -58.30%                                      |                  | 1.64                                        |     |
| 8.00        |      |      | 272.68                   | 165.93                      | 263.2                       | 9     | 3.44%                                      |       | -58.68%                                      |                  | 1.64                                        |     |
| 6.67        |      |      | 392.66                   | 238.94                      | 379.1                       | 6     | 3.44%                                      |       | -58.68%                                      |                  | 1.64                                        |     |
| 6.40        |      |      | 426.07                   | 259.27                      | 411.1                       | 1     | 3.51%                                      |       | -58.56%                                      |                  | 1.64                                        |     |
| 56 lentelė. | Juos | stos | plastifikaci             | ijos irties lygina          | amoji analizė,              | įvert | inant įrąžas san                           | tvaro | os juostoje, kai ro                          | odikli           | s $\beta = 0,75$                            |     |
| γ           | β    | N    | <sub>i,Rd(EN)</sub> ,kN  | N <sub>i,Rd(STR)</sub> ,kN  | N <sub>i,Rd(anal)</sub> ,kN | Ni    | i,Rd(anal)/Ni,Rd(EN)                       | Ni    | Rd(anal)/Ni,Rd(STR)                          | N <sub>i,F</sub> | Rd(EN)/Ni,Rd(STR)                           |     |
| 20          | 0.75 |      | 61.94                    | 27.39                       | 61.67                       |       | 0.436%                                     |       | -125.16%                                     |                  | 2.26                                        |     |
| 16.00       |      |      | 96.78                    | 52.66                       | 97.2300                     |       | -0.465%                                    |       | -84.64%                                      |                  | 1.84                                        |     |
| 13.34       |      |      | 139.36                   | 85.27                       | 140.92                      |       | -1.119%                                    |       | -65.26%                                      |                  | 1.63                                        |     |

54 lentelė. Juostos plastifikacijos irties lyginamoji analizė, įvertinant įrąžas santvaros juostoje, kai rodiklis  $\beta = 0,5$ 

| 12.70       |       | 153.64                    | 96.01                      | 155.58                      | -1.263%                       | -62.05%                        | 1.60                           |
|-------------|-------|---------------------------|----------------------------|-----------------------------|-------------------------------|--------------------------------|--------------------------------|
| 11.27       |       | 195.14                    | 126.8                      | 198.09                      | -1.512%                       | -56.22%                        | 1.54                           |
| 10.00       |       | 247.75                    | 160.98                     | 251.64                      | -1.570%                       | -56.32%                        | 1.54                           |
| 9.09        |       | 299.77                    | 194.78                     | 304.04                      | -1.424%                       | -56.09%                        | 1.54                           |
| 8.00        |       | 387.1                     | 251.53                     | 390.38                      | -0.847%                       | -55.20%                        | 1.54                           |
| 6.67        |       | 557.43                    | 362.2                      | 551.85                      | 1.001%                        | -52.36%                        | 1.54                           |
| 6.40        |       | 604.85                    | 393.02                     | 595.07                      | 1.617%                        | -51.41%                        | 1.54                           |
| 57 lentelė. | Juos  | stos plastifikac          | ijos irties lygina         | amoji analizė, įv           | vertinant įrąžas sant         | tvaros juostoje, kai ro        | odiklis $\beta = 0,875$        |
| γ           | β     | N <sub>i,Rd(EN)</sub> ,kN | N <sub>i,Rd(STR)</sub> ,kN | N <sub>i,Rd(anal)</sub> ,kN | $N_{i,Rd(anal)}/N_{i,Rd(EN)}$ | $N_{i,Rd(anal)}/N_{i,Rd(STR)}$ | $N_{i,Rd(EN)}\!/N_{i,Rd(STR)}$ |
| 20          |       | 112.04                    | 53.86                      | 120.95                      | -7.95%                        | -124.56%                       | 2.08                           |
| 16.00       |       | 175.07                    | 103.55                     | 181.81                      | -3.85%                        | -75.58%                        | 1.69                           |
| 13.34       |       | 252.09                    | 167.69                     | 265.54                      | -5.34%                        | -58.35%                        | 1.50                           |
| 12.70       |       | 277.93                    | 188.8                      | 290.53                      | -4.53%                        | -53.88%                        | 1.47                           |
| 11.27       | 0.875 | 353                       | 249.35                     | 359.99                      | -1.98%                        | -44.37%                        | 1.42                           |
| 10.00       | 0.075 | 448.17                    | 316.57                     | 441.72                      | 1.44%                         | -39.53%                        | 1.42                           |
| 9.09        |       | 542.28                    | 383.05                     | 516.31                      | 4.79%                         | -34.79%                        | 1.42                           |
| 8.00        |       | 700.26                    | 494.64                     | 629.78                      | 10.06%                        | -27.32%                        | 1.42                           |
| 6.67        |       | 1008.38                   | 712.28                     | 819.44                      | 18.74%                        | -15.04%                        | 1.42                           |
| 6.40        |       | 1094.16                   | 772.88                     | 866.64                      | 20.79%                        | -12.13%                        | 1.42                           |

58 lentelė. Juostos plastifikacijos irties lyginamoji analizė, įvertinant įrąžas santvaros juostoje, priklausomai nuo rodiklio  $\beta$ 

| γ  | β      | $N_{i,Rd(EN)}$ , $kN$ | N <sub>i,Rd(STR)</sub> ,kN | $N_{i,Rd(anal)}$ , $kN$ |
|----|--------|-----------------------|----------------------------|-------------------------|
|    | 0.3125 | 75.20                 | 53.40                      | 86.90                   |
|    | 0.5    | 128.81                | 77.67                      | 123.76                  |
| 10 | 0.625  | 174.52                | 106.20                     | 167.70                  |
|    | 0.75   | 247.75                | 160.98                     | 251.64                  |
|    | 0.875  | 448.17                | 316.57                     | 441.72                  |

# 6 priedas

# K tipo mazgų juostos plastifikacijos irties analizė

| γ           | β         | N <sub>i,Rd(EN)</sub> ,kN | N <sub>i,Rd(STR)</sub> ,kN | N <sub>i,Rd(anal)</sub> ,kN | $N_{i,Rd(anal)}/N_{i,Rd(EN)}$ | $N_{i,Rd(anal)}\!/N_{i,Rd(STR)}$ | $N_{i,Rd(EN)}\!/N_{i,Rd(STR)}$ |
|-------------|-----------|---------------------------|----------------------------|-----------------------------|-------------------------------|----------------------------------|--------------------------------|
| 16.00       |           | 76.48                     | 55.56                      | 41.23                       | 46.09%                        | 25.79%                           | -37.65%                        |
| 13.34       |           | 100.54                    | 80                         | 59.64                       | 40.68%                        | 25.45%                           | -25.68%                        |
| 12.70       |           | 108.18                    | 88.2                       | 65.83                       | 39.15%                        | 25.36%                           | -22.65%                        |
| 11.27       |           | 129.42                    | 112.02                     | 83.89                       | 35.18%                        | 25.11%                           | -15.53%                        |
| 10.00       | 0.3125    | 154.79                    | 142.22                     | 106.88                      | 30.95%                        | 24.85%                           | -8.84%                         |
| 9.09        |           | 178.58                    | 172.09                     | 129.7                       | 27.37%                        | 24.63%                           | -3.77%                         |
| 8.00        |           | 216.33                    | 222.22                     | 168.16                      | 22.27%                        | 24.33%                           | 2.65%                          |
| 6.67        |           | 284.37                    | 320                        | 243.55                      | 14.35%                        | 23.89%                           | 11.13%                         |
| 6.40        |           | 302.33                    | 347.22                     | 264.6                       | 12.48%                        | 23.79%                           | 12.93%                         |
| 60 lentelė. | Juostos p | lastifikacijos i          | rties lyginamoj            | ji analizė, neįvo           | ertinant įrąžų santv          | aros juostoje, kai ro            | diklis $\beta = 0,5$           |
| γ           | β         | N <sub>i,Rd(EN)</sub> ,kN | N <sub>i,Rd(STR)</sub> ,kN | N <sub>i,Rd(anal)</sub> ,kN | $N_{i,Rd(anal)}/N_{i,Rd(EN)}$ | $N_{i,Rd(anal)}\!/N_{i,Rd(STR)}$ | $N_{i,Rd(EN)}\!/N_{i,Rd(STR)}$ |
| 16.00       |           | 122.38                    | 90.28                      | 61.8                        | 49.50%                        | 31.55%                           | -35.56%                        |
| 13.34       |           | 160.87                    | 130.01                     | 89.54                       | 44.34%                        | 31.13%                           | -23.74%                        |
| 12.70       |           | 173.08                    | 143.33                     | 98.89                       | 42.86%                        | 31.01%                           | -20.76%                        |
| 11.27       |           | 207.07                    | 182.04                     | 126.14                      | 39.08%                        | 30.71%                           | -13.75%                        |
| 10.00       | 0.5       | 247.67                    | 231.12                     | 160.86                      | 35.05%                        | 30.40%                           | -7.16%                         |
| 9.09        |           | 285.73                    | 279.66                     | 195.33                      | 31.64%                        | 30.15%                           | -2.17%                         |
| 8.00        |           | 346.13                    | 361.13                     | 253.39                      | 26.79%                        | 29.83%                           | 4.15%                          |
| 6.67        |           | 455                       | 520.02                     | 366.87                      | 19.37%                        | 29.45%                           | 12.50%                         |
| 6.40        |           | 483.73                    | 564.26                     | 398.45                      | 17.63%                        | 29.39%                           | 14.27%                         |

59 lentelė. Juostos plastifikacijos irties lyginamoji analizė, neįvertinant įrąžų santvaros juostoje, kai rodiklis  $\beta = 0,3125$ 

| γ         |      | β                             | N <sub>i Rd(E)</sub> | n,kN             | Ni Rd(STR),           | kN              | N <sub>i Rd(anal)</sub> ,kN | N <sub>i Rd(anal)</sub> /N <sub>i Rd(EN)</sub> | N <sub>i Rd(anal)</sub> /N <sub>i Rd(STR)</sub> | $N_{iRd(EN)}/N_{iRd(STR)}$   |
|-----------|------|-------------------------------|----------------------|------------------|-----------------------|-----------------|-----------------------------|------------------------------------------------|-------------------------------------------------|------------------------------|
| 16.00     |      |                               | 152                  | 97               | 132.85                | 2               | 88.94                       | 41 86%                                         | 33.07%                                          | -15 12%                      |
| 12.24     |      |                               | 201                  | <u> </u>         | 101.24                | 5               | 129.07                      | 25 860/                                        | 22.60%                                          | 5 000/                       |
| 13.34     |      |                               | 201.                 | 08               | 191.53                | )               | 128.97                      | 33.80%                                         | 32.00%                                          | -3.08%                       |
| 12.70     |      |                               | 216.                 | 35               | 210.96                | 5               | 142.45                      | 34.16%                                         | 32.48%                                          | -2.55%                       |
| 11.27     | 0    | 625                           | 258.                 | 84               | 267.94                | 1               | 181.74                      | 29.79%                                         | 32.17%                                          | 3.40%                        |
| 10.00     |      | .025                          | 309.                 | 59               | 340.17                | 7               | 231.7                       | 25.16%                                         | 31.89%                                          | 8.99%                        |
| 9.09      |      |                               | 357.                 | 17               | 411.61                | 1               | 281.15                      | 21.28%                                         | 31.70%                                          | 13.23%                       |
| 8.00      |      |                               | 432.                 | 66               | 531.52                | 2               | 364.06                      | 15.86%                                         | 31.51%                                          | 18.60%                       |
| 6.67      |      |                               | 568.                 | 75               | 765.39                | )               | 524.42                      | 7.79%                                          | 31.48%                                          | 25.69%                       |
| 6.40      |      |                               | 604.                 | 66               | 830.5                 |                 | 568.6                       | 5.96%                                          | 31.54%                                          | 27.19%                       |
| 52 lentel | ė. J | luostos p                     | olastifika           | cijos i          | rties lygina          | amoji           | i analizė, neįv             | vertinant įrąžų santv                          | aros juostoje, kai ro                           | odiklis $\beta = 0,75$       |
| γ         | β    | N <sub>i,Rd</sub> (           | <sub>EN)</sub> ,kN   | N <sub>i,R</sub> | <sub>d(STR)</sub> ,kN | N <sub>i</sub>  | <sub>,Rd(anal)</sub> ,kN    | N <sub>i,Rd(anal)</sub> /N <sub>i,Rd(EN)</sub> | $N_{i,Rd(anal)}/N_{i,Rd(STR)}$                  | $N_{i,Rd(EN)}/N_{i,Rd(STR)}$ |
| 16.00     |      | 18                            | 3.56                 | 2                | 15.22                 |                 | 153.74                      | 16.25%                                         | 28.57%                                          | 14.71%                       |
| 13.34     |      | 24                            | 1.3                  | 3                | 09.92                 |                 | 223.29                      | 7.46%                                          | 27.95%                                          | 22.14%                       |
| 12.70     |      | 25                            | 9.62                 | 3                | 41.69                 |                 | 246.65                      | 5.00%                                          | 27.81%                                          | 24.02%                       |
| 11.27     |      | 31                            | 0.61                 | 4                | 33.98                 |                 | 314.38                      | -1.21%                                         | 27.56%                                          | 28.43%                       |
| 10.00     | 0.75 | 37                            | 1.5                  | 5                | 50.97                 |                 | 399.64                      | -7.57%                                         | 27.47%                                          | 32.57%                       |
| 9.09      |      | 42                            | 28.6                 | 6                | 66.68                 |                 | 482.92                      | -12.67%                                        | 27.56%                                          | 35.71%                       |
| 8.00      |      | 51                            | 9.19                 | 8                | 360.9                 |                 | 619.72                      | -19.36%                                        | 28.01%                                          | 39.69%                       |
| 6.67      |      | 68                            | 32.5                 | 12               | 239.69                |                 | 873.61                      | -28.00%                                        | 29.53%                                          | 44.95%                       |
| 6.40      |      | 72                            | 5.59                 | 13               | 345.15                |                 | 941.06                      | -29.70%                                        | 30.04%                                          | 46.06%                       |
| 3 lentel  | ė. J | Juostos plastifikacijos irtie |                      | rties lygina     | amoji                 | i analizė, neįv | vertinant įrąžų santv       | aros juostoje, prikla                          | usomai nuo rodikli                              |                              |
| γ         |      | β                             | 5                    | N <sub>i,R</sub> | <sub>l(EN)</sub> ,kN  | 1               | N <sub>i,Rd(STR)</sub> ,kN  | N <sub>i,Rd(anal)</sub> ,kN                    |                                                 |                              |
| 10        | )    | 0.31                          | 125                  | 15               | 54.79                 |                 | 142.22                      | 106.88                                         |                                                 |                              |
|           |      | 0.50                          | 000                  | 24               | 17.67                 |                 | 231.12                      | 160.86                                         |                                                 |                              |
|           |      | 0.62                          | 250                  | 30               | )9.59                 |                 | 340.17                      | 231.70                                         |                                                 |                              |

61 lentelė. Juostos plastifikacijos irties lyginamoji analizė, neįvertinant įrąžų santvaros juostoje, kai rodiklis  $\beta = 0,625$ 

|             | 0.7500 371.50 |                           | 71.50                      | 550.97                        | 399.64                        |                                |                                |
|-------------|---------------|---------------------------|----------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|
| 64 lentelė. | Juostos p     | lastifikacijos            | irties lyginan             | noji analizė, įvert           | inant įrąžas santvai          | ros juostoje, kai rod          | iklis $\beta = 0,3125$         |
| γ           | β             | N <sub>i,Rd(EN)</sub> ,kN | N <sub>i,Rd(STR)</sub> ,kl | N N <sub>i,Rd(anal)</sub> ,kN | $N_{i,Rd(anal)}/N_{i,Rd(EN)}$ | $N_{i,Rd(anal)}/N_{i,Rd(STR)}$ | $N_{i,Rd(EN)}/N_{i,Rd(STR)}$   |
| 16.00       |               | 2.68                      | 46.52                      | 41.23                         | -1438.43%                     | 11.37%                         | 94.24%                         |
| 13.34       |               | 23.25                     | 75.33                      | 59.64                         | -156.52%                      | 20.83%                         | 69.14%                         |
| 12.70       |               | 28.94                     | 84.82                      | 65.83                         | -127.47%                      | 22.39%                         | 65.88%                         |
| 11.27       |               | 48.18                     | 112.02                     | 83.89                         | -74.12%                       | 25.11%                         | 56.99%                         |
| 10.00       | 0.3125        | 71.96                     | 142.22                     | 106.88                        | -48.53%                       | 24.85%                         | 49.40%                         |
| 9.09        |               | 94.84                     | 172.09                     | 129.7                         | -36.76%                       | 24.63%                         | 44.89%                         |
| 8.00        |               | 132                       | 222.22                     | 168.16                        | -27.39%                       | 24.33%                         | 40.60%                         |
| 6.67        |               | 196.85                    | 320                        | 243.55                        | -23.72%                       | 23.89%                         | 38.48%                         |
| 6.40        |               | 214.91                    | 347.22                     | 264.6                         | -23.12%                       | 23.79%                         | 38.11%                         |
| 65 lentelė. | Juostos p     | lastifikacijos            | irties lyginan             | noji analizė, įvert           | inant įrąžas santvai          | ros juostoje, kai rod          | iklis $\beta = 0,5$            |
| γ           | β             | N <sub>i,Rd(EN)</sub> ,kN | N <sub>i,Rd(STR)</sub> ,kl | N N <sub>i,Rd(anal)</sub> ,kN | $N_{i,Rd(anal)}/N_{i,Rd(EN)}$ | $N_{i,Rd(anal)}/N_{i,Rd(STR)}$ | $N_{i,Rd(EN)}\!/N_{i,Rd(STR)}$ |
| 16.00       |               | 62.34                     | 75.6                       | 61.8                          | 0.87%                         | 18.25%                         | 17.54%                         |
| 13.34       |               | 101.67                    | 122.42                     | 89.54                         | 11.93%                        | 26.86%                         | 16.95%                         |
| 12.70       |               | 113.32                    | 137.84                     | 98.89                         | 12.73%                        | 28.26%                         | 17.79%                         |
| 11.27       |               | 149.13                    | 182.04                     | 126.14                        | 15.42%                        | 30.71%                         | 18.08%                         |
| 10.00       | 0.5           | 192.7                     | 231.12                     | 160.86                        | 16.52%                        | 30.40%                         | 16.62%                         |
| 9.09        |               | 234.14                    | 279.66                     | 195.33                        | 16.58%                        | 30.15%                         | 16.28%                         |
| 8.00        |               | 300.74                    | 361.13                     | 253.39                        | 15.74%                        | 29.83%                         | 16.72%                         |
| 6.67        |               | 418.66                    | 520.02                     | 366.87                        | 12.37%                        | 29.45%                         | 19.49%                         |
| 6.40        |               | 450.73                    | 564.26                     | 398.45                        | 11.60%                        | 29.39%                         | 20.12%                         |
| 66 lentelė. | Juostos p     | lastifikacijos            | irties lyginan             | noji analizė, įvert           | inant įrąžas santvai          | ros juostoje, kai rod          | iklis $\beta = 0,625$          |
| γ           | β             | N <sub>i,Rd(EN)</sub> ,kN | N <sub>i,Rd(STR)</sub> ,kl | N N <sub>i,Rd(anal)</sub> ,kN | $N_{i,Rd(anal)}/N_{i,Rd(EN)}$ | $N_{i,Rd(anal)}/N_{i,Rd(STR)}$ | $N_{i,Rd(EN)}\!/N_{i,Rd(STR)}$ |
| 16.00       | 0.625         | 102.11                    | 111.27                     | 88.94                         | 12.90%                        | 20.07%                         | 8.23%                          |
| 13.34       |               | 153.95                    | 180.19                     | 128.97                        | 16.23%                        | 28.43%                         | 14.56%                         |
| 12.70       |               | 169.57                    | 202.88                     | 142.45                        | 15.99%                        | 29.79%                         | 16.42%                         |

| 11.27     |       |                    | 216.4              | 43                | 267.94               | 4 1                   | 81.74      | 16.03%                                    | 6      | 32.17%                    |        | 19.22%                       |
|-----------|-------|--------------------|--------------------|-------------------|----------------------|-----------------------|------------|-------------------------------------------|--------|---------------------------|--------|------------------------------|
| 10.00     |       |                    | 273.               | 20                | 340.17               | 7 2.                  | 31.70      | 15.19%                                    | 6      | 31.89%                    |        | 19.69%                       |
| 9.09      |       |                    | 327.               | 00                | 411.6                | 1 2                   | 81.15      | 14.02%                                    | 6      | 31.70%                    |        | 20.56%                       |
| 8.00      |       |                    | 413.               | 23                | 531.52               | 2 3                   | 64.06      | 11.90%                                    | 6      | 31.51%                    |        | 22.26%                       |
| 6.67      |       |                    | 566.               | 54                | 765.39               | 9 52                  | 24.42      | 7.43%                                     | )      | 31.48%                    |        | 25.98%                       |
| 6.40      |       |                    | 607.               | 94                | 830.50               | ) 5                   | 68.60      | 6.47%                                     | )      | 31.54%                    |        | 26.80%                       |
| 67 lentel | ė. Ju | uostos p           | lastifika          | cijos ii          | ties lygin           | amoji anal            | lizė, įver | tinant įrąžas s                           | santva | os juostoje, ka           | ai rod | iklis $\beta = 0,75$         |
| γ         | β     | N <sub>i,Rd(</sub> | <sub>EN)</sub> ,kN | N <sub>i,Rc</sub> | <sub>(STR)</sub> ,kN | N <sub>i,Rd(ana</sub> | ı),kN      | N <sub>i,Rd(anal)</sub> /N <sub>i,R</sub> | d(EN)  | $N_{i,Rd(anal)}/N_{i,Rd}$ | l(STR) | $N_{i,Rd(EN)}/N_{i,Rd(STR)}$ |
| 16.00     |       | 14                 | 1.89               | 1                 | 80.23                | 153.7                 | 74         | -8.35%                                    |        | 14.70%                    |        | 21.27%                       |
| 13.34     |       | 200                | 6.24               | 2                 | 91.85                | 223.2                 | 29         | -8.27%                                    |        | 23.49%                    |        | 29.33%                       |
| 12.70     |       | 223                | 5.82               | 3                 | 28.6                 | 246.0                 | 65         | -9.22%                                    |        | 24.94%                    |        | 31.28%                       |
| 11.27     |       | 283                | 3.72               | 4.                | 33.98                | 314.3                 | 38         | -10.81%                                   | )      | 27.56%                    |        | 34.62%                       |
| 10.00     | 0.75  | 353                | 3.69               | 5:                | 50.97                | 399.0                 | 64         | -12.99%                                   | )      | 27.47%                    |        | 35.81%                       |
| 9.09      |       | 419                | 9.86               | 6                 | 66.68                | 482.9                 | 92         | -15.02%                                   | )      | 27.56%                    |        | 37.02%                       |
| 8.00      |       | 52:                | 5.72               | 8                 | 60.9                 | 619.2                 | 72         | -17.88%                                   | )      | 28.01%                    |        | 38.93%                       |
| 6.67      |       | 714                | 4.41               | 12                | 39.69                | 873.0                 | 51         | -22.28%                                   | )      | 29.53%                    |        | 42.37%                       |
| 6.40      |       | 76                 | 5.15               | 13                | 45.15                | 941.0                 | 06         | -22.99%                                   | )      | 30.04%                    |        | 43.12%                       |

68 lentelė. Juostos plastifikacijos irties lyginamoji analizė, įvertinant įrąžas santvaros juostoje, priklausomai nuo rodiklio  $\beta$ 

| γ  | β      | N <sub>i,Rd(EN)</sub> ,kN | N <sub>i,Rd(STR)</sub> ,kN | $N_{i,Rd(anal)},kN$ |
|----|--------|---------------------------|----------------------------|---------------------|
|    | 0.3125 | 71.96                     | 142.22                     | 106.88              |
| 10 | 0.5000 | 192.70                    | 231.12                     | 160.86              |
| 10 | 0.6250 | 273.20                    | 340.17                     | 231.70              |
|    | 0.7500 | 353.69                    | 550.97                     | 399.64              |

### Y tipo mazgų juostos sienelės išklupimo irties lyginamoji analizė

69 lentelė. Y tipo mazgo sienelės išklupimo irties lyginamoji analizė, kai rodiklis  $\beta = 0.3125$ 

| β      | b <sub>0</sub> /t <sub>0</sub> | N <sub>i,Rd (EN)</sub> , kN | N <sub>i,Rd (str)</sub> , kN | $N_{i,Rd (EN)}/N_{i,Rd (str)}$ |
|--------|--------------------------------|-----------------------------|------------------------------|--------------------------------|
| ·      | 40                             | 47.89                       | 80.61                        | 40.59%                         |
|        | 32                             | 90.24                       | 100.77                       | 10.45%                         |
|        | 26.67                          | 145.76                      | 120.92                       | -20.54%                        |
|        | 25.4                           | 164.5                       | 126.96                       | -29.57%                        |
| 0.2125 | 22.54                          | 218.2                       | 143.09                       | -52.49%                        |
| 0.3123 | 20                             | 284.05                      | 161.22                       | -76.19%                        |
|        | 18.18                          | 346.74                      | 177.35                       | -95.51%                        |
|        | 16                             | 447.72                      | 201.53                       | -122.16%                       |
|        | 13.33                          | 634.51                      | 241.84                       | -162.37%                       |
|        | 12.8                           | 684.9                       | 251.91                       | -171.88%                       |

70 lentelė. Y tipo mazgo sienelės išklupimo irties lyginamoji analizė, kai rodiklis  $\beta = 0.5$ 

| β   | $b_0/t_0$ | N <sub>i,Rd (EN)</sub> , kN | N <sub>i,Rd (str)</sub> , kN | $N_{i,Rd (EN)}/N_{i,Rd (str)}$ |
|-----|-----------|-----------------------------|------------------------------|--------------------------------|
|     | 40        | 68.44                       | 128.98                       | 46.94%                         |
|     | 32        | 126.38                      | 161.22                       | 21.61%                         |
|     | 26.67     | 200.5                       | 193.47                       | -3.63%                         |
|     | 25.4      | 225.14                      | 203.14                       | -10.83%                        |
| 0.5 | 22.54     | 294.89                      | 228.94                       | -28.81%                        |
| 0.5 | 20        | 378.89                      | 257.96                       | -46.88%                        |
|     | 18.18     | 457.6                       | 283.76                       | -61.26%                        |
|     | 16        | 582.29                      | 322.45                       | -80.58%                        |
|     | 13.33     | 807.92                      | 386.94                       | -108.80%                       |
|     | 12.8      | 867.93                      | 403.06                       | -115.34%                       |

71 lentelė. Y tipo mazgo sienelės išklupimo irties lyginamoji analizė, kai rodiklis  $\beta = 0.625$ 

| β     | $b_0/t_0$ | N <sub>i,Rd (EN)</sub> , kN | N <sub>i,Rd (str)</sub> , kN | $N_{i,Rd (EN)}/N_{i,Rd (str)}$ |
|-------|-----------|-----------------------------|------------------------------|--------------------------------|
|       | 40        | 82,14                       | 161,22                       | 49.05%                         |
|       | 32        | 150.48                      | 201.53                       | 25.33%                         |
|       | 26.67     | 236.99                      | 241.84                       | 2.01%                          |
|       | 25.4      | 265.57                      | 253.93                       | -4.58%                         |
| 0.625 | 22.54     | 346.01                      | 286.17                       | -20.91%                        |
| 0.023 | 20        | 442.12                      | 322.45                       | -37.11%                        |
|       | 18.18     | 531.51                      | 354.69                       | -49.85%                        |
|       | 16        | 672.01                      | 403.06                       | -66.73%                        |
|       | 13.33     | 923.53                      | 483.67                       | -90.94%                        |
|       | 12.8      | 989.94                      | 503.83                       | -96.48%                        |

72 lentelė. Y tipo mazgo sienelės išklupimo irties lyginamoji analizė, kai rodiklis  $\beta = 0.75$ 

|   |           | N <sub>i,Rd (EN)</sub> , | N <sub>i,Rd (str)</sub> , | $N_{i,Rd (EN)} / N_{i,Rd}$ |
|---|-----------|--------------------------|---------------------------|----------------------------|
| β | $b_0/t_0$ | kN                       | kN                        | (str)                      |

|      | 40    | 95.84   | 193.47 | 50.46%  |
|------|-------|---------|--------|---------|
|      | 32    | 174.57  | 241.84 | 27.82%  |
|      | 26.67 | 273.48  | 290.2  | 5.76%   |
|      | 25.4  | 305.99  | 304.71 | -0.42%  |
| 0.75 | 22.54 | 397.13  | 343.41 | -15.64% |
| 0.75 | 20    | 505.34  | 386.94 | -30.60% |
|      | 18.18 | 605.42  | 425.63 | -42.24% |
|      | 16    | 761.72  | 483.67 | -57.49% |
|      | 13.33 | 1039.13 | 580.41 | -79.03% |
|      | 12.8  | 1111.96 | 604.59 | -83.92% |

73 lentelė. Y tipo mazgo sienelės išklupimo irties lyginamoji analizė, kai rodiklis  $\beta = 0.875$ 

| β     | $b_0/t_0$ | N <sub>i,Rd (EN)</sub> , kN | N <sub>i,Rd (str)</sub> , kN | $N_{i,Rd (EN)}/N_{i,Rd (str)}$ |
|-------|-----------|-----------------------------|------------------------------|--------------------------------|
|       | 40        | 109.54                      | 225.71                       | 51.47%                         |
|       | 32        | 198.67                      | 282.14                       | 29.58%                         |
|       | 26.67     | 309.97                      | 338.57                       | 8.45%                          |
|       | 25.4      | 346.42                      | 355.5                        | 2.55%                          |
| 0.875 | 22.54     | 448.25                      | 400.64                       | -11.88%                        |
| 0.875 | 20        | 568.57                      | 451.43                       | -25.95%                        |
|       | 18.18     | 679.32                      | 496.57                       | -36.80%                        |
|       | 16        | 851.43                      | 564.29                       | -50.89%                        |
|       | 13.33     | 1154.74                     | 677.14                       | -70.53%                        |
|       | 12.8      | 1233.98                     | 705.36                       | -74.94%                        |

74 lentelė. Y tipo mazgo sienelės išklupimo irties lyginamoji analizė, kai rodiklis  $\beta = 1,0$ 

| β | $b_0/t_0$ | N <sub>i,Rd (EN)</sub> , kN | N <sub>i,Rd (str</sub> ), kN | $N_{i,Rd (EN)}/N_{i,Rd (str)}$ |
|---|-----------|-----------------------------|------------------------------|--------------------------------|
|   | 40        | 123.24                      | 257.96                       | 52.23%                         |
|   | 32        | 222.76                      | 322.45                       | 30.92%                         |
|   | 26.67     | 346.47                      | 386.94                       | 10.46%                         |
|   | 25.4      | 386.85                      | 406.29                       | 4.78%                          |
| 1 | 22.54     | 499.38                      | 457.88                       | -9.06%                         |
| 1 | 20        | 631.8                       | 515.92                       | -22.46%                        |
|   | 18.18     | 753.23                      | 567.51                       | -32.73%                        |
|   | 16        | 941.15                      | 644.9                        | -45.94%                        |
|   | 13.33     | 1270.35                     | 773.88                       | -64.15%                        |
|   | 12.8      | 1356                        | 806.12                       | -68.21%                        |

75 lentelė. Y tipo mazgo sienelės išklupimo irties lyginamoji analizė priklausomai nuo rodiklio  $\beta$ 

| β      | $b_0/t_0$ | N <sub>i,Rd (EN)</sub> , kN | N <sub>i,Rd (str)</sub> , kN |
|--------|-----------|-----------------------------|------------------------------|
| 0.3125 |           | 284.05                      | 161.22                       |
| 0.5    |           | 378.89                      | 257.96                       |
| 0.625  | 20        | 442.12                      | 322.45                       |
| 0.75   | 20        | 505.34                      | 386.94                       |
| 0.875  |           | 568.57                      | 451.43                       |
| 1      |           | 631.8                       | 515.92                       |

# Y tipo mazgo įtempių ir deformacijų pasiskirstymas



1 pav. Y tipo mazgo skaičiuojamoji schema

76 lentelė. Y tipo mazgo įtempių ir deformacijų pasiskirstymas, kai rodiklis  $\beta = 0.75$ 

| β=0,75 | $b_0/t_0$ | σ <sub>juostoje</sub> ,<br>MPa | Ejuostoje | σ <sub>sienelėje</sub> ,<br>MPa | E <sub>sienelėje</sub> | $\epsilon_{sienelėje}/\epsilon_{juostoje}$ |
|--------|-----------|--------------------------------|-----------|---------------------------------|------------------------|--------------------------------------------|
|        | 32        | 1050.8                         | 0.003082  | 329.95                          | 0.001274               | 58.65%                                     |
|        | 26.67     | 754.31                         | 0.002534  | 271.4                           | 0.001045               | 58.78%                                     |
|        | 25.4      | 715.56                         | 0.002543  | 262.85                          | 0.000988               | 61.13%                                     |
|        | 22.54     | 548.65                         | 0.002313  | 228.16                          | 0.000787               | 66.00%                                     |
| 0.75   | 20        | 406.19                         | 0.002423  | 193.39                          | 0.000762               | 68.56%                                     |
|        | 18.18     | 368.39                         | 0.001957  | 179.69                          | 0.000695               | 64.50%                                     |
|        | 16        | 296.08                         | 0.001145  | 156.5                           | 0.000594               | 48.16%                                     |
|        | 13.33     | 224.09                         | 0.000664  | 124.38                          | 0.000489               | 26.36%                                     |
|        | 12.8      | 267.11                         | 0.000547  | 121.39                          | 0.000436               | 20.28%                                     |

<sup>77</sup> lentelė. Y tipo mazgo įtempių ir deformacijų pasiskirstymas, kai rodiklis  $\beta = 0.875$ 

| β=0,875 | $b_0/t_0$ | σ <sub>juostoje</sub> ,<br>MPa | Ejuostoje | σ <sub>sienelėje</sub> ,<br>MPa | Esienelėje | Esienelėje/Ejuostoje |
|---------|-----------|--------------------------------|-----------|---------------------------------|------------|----------------------|
|         | 32        | 951.54                         | 0.002827  | 483.74                          | 0.001759   | 37.80%               |
|         | 26.67     | 760.68                         | 0.001718  | 400.14                          | 0.001513   | 11.94%               |
|         | 25.4      | 737.38                         | 0.001645  | 381.15                          | 0.001427   | 13.27%               |
|         | 22.54     | 697.21                         | 0.001489  | 330.18                          | 0.001247   | 16.22%               |
| 0.875   | 20        | 710.51                         | 0.001353  | 282.54                          | 0.001096   | 19.03%               |
|         | 18.18     | 549.16                         | 0.001058  | 268.45                          | 0.001008   | 4.74%                |
|         | 16        | 403.66                         | 0.001     | 228.79                          | 0.000858   | 14.21%               |
|         | 13.33     | 221.73                         | 0.000891  | 182.39                          | 0.000673   | 24.47%               |
|         | 12.8      | 189.28                         | 0.000861  | 177.44                          | 0.000674   | 21.72%               |
|         |           |                                |           |                                 |            |                      |

78 lentelė. Y tipo mazgo įtempių ir deformacijų pasiskirstymas, kai rodiklis  $\beta = 1,0$ 

| β=1,0 | b <sub>0</sub> /t <sub>0</sub> | σ <sub>juostoje</sub> ,<br>MPa | Ejuostoje | σ <sub>sienelėje</sub> ,<br>MPa | Esienelėje | €sienelėje∕Ejuostoje |
|-------|--------------------------------|--------------------------------|-----------|---------------------------------|------------|----------------------|
| 1     | 32                             | 640.59                         | 0.002112  | 553.18                          | 0.002019   | 4.40%                |
|       | 26.67                          | 541.94                         | 0.001981  | 455.69                          | 0.001747   | 11.80%               |

| 25.4  | 518.43 | 0.00189  | 438.04 | 0.001636 | 13.42% |
|-------|--------|----------|--------|----------|--------|
| 22.54 | 462.94 | 0.0017   | 370.49 | 0.001433 | 15.69% |
| 20    | 429.58 | 0.001368 | 325.2  | 0.001267 | 7.35%  |
| 18.18 | 384.33 | 0.001279 | 301.93 | 0.001165 | 8.94%  |
| 16    | 340.52 | 0.001148 | 264.61 | 0.000994 | 13.45% |
| 13.33 | 302.66 | 0.00102  | 206.31 | 0.000801 | 21.41% |
| 12.8  | 293.2  | 0.000988 | 203.27 | 0.000762 | 22.95% |

# K tipo mazgų įtempių ir deformacijų pasiskirstymas



2 pav. K tipo mazgo skaičiuojamoji schema

| 79 lentelė. | K tipo mazgo | itempiu ir | deformaciju | pasiskirstymas. | kai rodiklis | $\beta = 0.3125$ |
|-------------|--------------|------------|-------------|-----------------|--------------|------------------|
|             |              | 1 1        |             |                 |              |                  |

| β=0,3125    | γ                                                                                  | σ <sub>juostoje</sub> ,<br>MPa | Ejuostoje | σ <sub>sienelėje</sub> ,<br>MPa | € <sub>sienelėje</sub> | $\epsilon_{sienelėje}/\epsilon_{juostoje}$ | $\sigma_{sienelėje}/\sigma_{juostoje}$ |
|-------------|------------------------------------------------------------------------------------|--------------------------------|-----------|---------------------------------|------------------------|--------------------------------------------|----------------------------------------|
| 0.3125      | 16.00                                                                              | 3406.1                         | 0.02432   | 1119.7                          | 0.01008                | 58.55%                                     | 67.13%                                 |
|             | 13.34                                                                              | 2526.6                         | 0.017996  | 775.32                          | 0.006993               | 61.14%                                     | 69.31%                                 |
|             | 12.70                                                                              | 2016.6                         | 0.015559  | 704.38                          | 0.006242               | 59.88%                                     | 65.07%                                 |
|             | 11.27                                                                              | 2298.1                         | 0.012405  | 532.75                          | 0.004735               | 61.83%                                     | 76.82%                                 |
|             | 10.00                                                                              | 1257.5                         | 0.01002   | 558.4                           | 0.003803               | 62.05%                                     | 55.59%                                 |
|             | 9.09                                                                               | 1030                           | 0.008401  | 321.76                          | 0.003155               | 62.44%                                     | 68.76%                                 |
|             | 8.00                                                                               | 1226.2                         | 0.007535  | 254.53                          | 0.002463               | 67.31%                                     | 79.24%                                 |
|             | 6.67                                                                               | 885.6                          | 0.00624   | 166.79                          | 0.001659               | 73.42%                                     | 81.17%                                 |
|             | 6.40                                                                               | 821.88                         | 0.005668  | 152.87                          | 0.001507               | 73.42%                                     | 81.40%                                 |
| 80 lentelė. | . K tipo mazgo įtempių ir deformacijų pasiskirstymas, kai rodiklis $\beta = 0,625$ |                                |           |                                 |                        |                                            |                                        |
| β=0,625     | γ                                                                                  | σ <sub>juostoje</sub> ,<br>MPa | Ejuostoje | σ <sub>sienelėje</sub> ,<br>MPa | E <sub>sienelėje</sub> | Esienelėje/Ejuostoje                       | $\sigma_{sienelėje}/\sigma_{juostoje}$ |
| 0.625       | 16.00                                                                              | 3563.1                         | 0.025752  | 1166                            | 0.009908               | 61.53%                                     | 67.28%                                 |
|             | 13.34                                                                              | 2782                           | 0.020129  | 1231.3                          | 0.008071               | 59.90%                                     | 55.74%                                 |
|             | 12.70                                                                              | 2614.9                         | 0.015646  | 827.94                          | 0.007341               | 53.08%                                     | 68.34%                                 |
|             | 11.27                                                                              | 2082.1                         | 0.012321  | 663                             | 0.005736               | 53.45%                                     | 68.16%                                 |
|             | 10.00                                                                              | 1289.4                         | 0.009622  | 553.86                          | 0.004232               | 56.02%                                     | 57.05%                                 |
|             | 9.09                                                                               | 1171                           | 0.00839   | 505.76                          | 0.003587               | 57.25%                                     | 56.81%                                 |
|             | 8.00                                                                               | 990.68                         | 0.007398  | 447.68                          | 0.002789               | 62.30%                                     | 54.81%                                 |
|             | 6.67                                                                               | 1181.2                         | 0.007592  | 353.53                          | 0.002485               | 67.27%                                     | 70.07%                                 |
|             | 6.40                                                                               | 1036.8                         | 0.007446  | 338.58                          | 0.001836               | 75.34%                                     | 67.34%                                 |
| β=0,5       | γ                                                                                        | σ <sub>juostoje</sub> ,<br>MPa | Ejuostoje | σ <sub>sienelėje</sub> ,<br>MPa | Esienelėje | σ <sub>c,brace,j</sub> ,<br>Mpa | σ <sub>c,brace</sub> ,<br>MPa | $\epsilon_{sienelėje}/\epsilon_{juostoje}$ | $\sigma_{sienelėje}/\sigma_{juostoje}$ | $\sigma_{juostoje}/\sigma_{c,bracej}$ | $\sigma_{sienelėje}/\sigma_{c,brace}$ |  |
|-------------|------------------------------------------------------------------------------------------|--------------------------------|-----------|---------------------------------|------------|---------------------------------|-------------------------------|--------------------------------------------|----------------------------------------|---------------------------------------|---------------------------------------|--|
| 0.5         | 16.00                                                                                    | 3665.7                         | 0.025213  | 1212                            | 0.010539   | 3661                            | 891.3                         | 58.20%                                     | 66.94%                                 | -0.13%                                | -35.98%                               |  |
|             | 13.34                                                                                    | 2833.8                         | 0.021288  | 1590                            | 0.009651   | 3002                            | 836.1                         | 54.67%                                     | 43.89%                                 | 5.60%                                 | -90.17%                               |  |
|             | 12.70                                                                                    | 2577.8                         | 0.018535  | 1421.1                          | 0.008597   | 2823                            | 831.7                         | 53.62%                                     | 44.87%                                 | 8.69%                                 | -70.87%                               |  |
|             | 11.27                                                                                    | 2042.8                         | 0.01339   | 691.23                          | 0.006195   | 2461                            | 827.3                         | 53.74%                                     | 66.16%                                 | 16.99%                                | 16.45%                                |  |
|             | 10.00                                                                                    | 1677.7                         | 0.009495  | 520.68                          | 0.004661   | 2108                            | 838                           | 50.92%                                     | 68.96%                                 | 20.41%                                | 37.87%                                |  |
|             | 9.09                                                                                     | 1350.1                         | 0.008372  | 469.35                          | 0.003891   | 1890                            | 833.4                         | 53.52%                                     | 65.24%                                 | 28.57%                                | 43.68%                                |  |
|             | 8.00                                                                                     | 1066.9                         | 0.00697   | 422.09                          | 0.003071   | 1597                            | 829.6                         | 55.95%                                     | 60.44%                                 | 33.19%                                | 49.12%                                |  |
|             | 6.67                                                                                     | 1027.1                         | 0.006483  | 306.15                          | 0.002297   | 1240                            | 819.8                         | 64.57%                                     | 70.19%                                 | 17.17%                                | 62.66%                                |  |
|             | 6.40                                                                                     | 961.25                         | 0.00641   | 293.45                          | 0.002055   | 1179                            | 818.2                         | 67.93%                                     | 69.47%                                 | 18.47%                                | 64.13%                                |  |
| 82 lentelė. | lentelė. K tipo mazgo įtempių ir deformacijų pasiskirstymas, kai rodiklis $\beta = 0,75$ |                                |           |                                 |            |                                 |                               |                                            |                                        |                                       |                                       |  |
| β=0,75      | γ                                                                                        | σ <sub>juostoje</sub> ,<br>MPa | Ejuostoje | σ <sub>sienelėje</sub> ,<br>MPa | Esienelėje | σ <sub>c,brace,j</sub> ,<br>Mpa | σ <sub>c,brace</sub> ,<br>MPa | Esienelėje/Ejuostoje                       | $\sigma_{sienelėje}/\sigma_{juostoje}$ | $\sigma_{juostoje}/\sigma_{c,bracej}$ | $\sigma_{sienelėje}/\sigma_{c,brace}$ |  |
| 0.75        | 16.00                                                                                    | 3124.4                         | 0.021685  | 1014.5                          | 0.008008   | 1729                            | 797.5                         | 63.07%                                     | 67.53%                                 | -80.71%                               | -27.21%                               |  |
|             | 13.34                                                                                    | 2430                           | 0.015777  | 875.74                          | 0.006961   | 1489                            | 789.5                         | 55.88%                                     | 63.96%                                 | -63.20%                               | -10.92%                               |  |
|             | 12.70                                                                                    | 2198.1                         | 0.012949  | 745.71                          | 0.006149   | 1388                            | 792.4                         | 52.51%                                     | 66.07%                                 | -58.36%                               | 5.89%                                 |  |
|             | 11.27                                                                                    | 1946.3                         | 0.010838  | 605.29                          | 0.004782   | 1263                            | 791.6                         | 55.87%                                     | 68.90%                                 | -54.10%                               | 23.54%                                |  |
|             | 10.00                                                                                    | 1621                           | 0.011454  | 546.97                          | 0.003583   | 1161                            | 794.5                         | 68.72%                                     | 66.26%                                 | -39.62%                               | 31.16%                                |  |
|             | 9.09                                                                                     | 1954.6                         | 0.009736  | 498.93                          | 0.002958   | 1060                            | 789.3                         | 69.62%                                     | 74.47%                                 | -84.40%                               | 36.79%                                |  |
|             | 8.00                                                                                     | 1323.2                         | 0.008871  | 444.34                          | 0.002374   | 917.5                           | 776.9                         | 73.24%                                     | 66.42%                                 | -44.22%                               | 42.81%                                |  |
|             | 6.67                                                                                     | 1396.4                         | 0.009007  | 371.46                          | 0.00172    | 766.3                           | 767.2                         | 80.91%                                     | 73.40%                                 | -82.23%                               | 51.58%                                |  |

81 lentelė. K tipo mazgo įtempių ir deformacijų pasiskirstymas, kai rodiklis  $\beta = 0,5$ 

## 9 priedas

# Analitiniai modeliai santvaros iš kvadratinių vamzdžių tiesioginio jungimo mazgų skaičiavimo algoritmų sudarymui pagal EC3

(11-oji jaunųjų mokslininkų konferencija "Mokslas – Lietuvos ateitis")



#### STATYBA

11-osios Lietuvos jaunųjų mokslininkų konferencijos "Mokslas – Lietuvos ateitis", įvykusios Vilniuje 2008 m. balandžio mėn. 2–4 d., medžiaga

### ANALITINIAI MODELIAI SANTVAROS IŠ KVADRATINIŲ VAMZDŽIŲ TIESIOGINIO JUNGIMO MAZGŲ SKAIČIAVIMO ALGORITMŲ SUDARYMUI PAGAL EC3

#### Ieva Misiūnaitė

Magistrantė, Vilniaus Gedimino technikos universitetas, el. p. Miseva0105@yahoo.com

Anotacija. Nagrinėjama tiesioginio jungimo virintinių mazgų iš kvadratinių vamzdžių elgsena veikiant statinei apkrovai. Mazgo elgsena iliustruojama projektavimo normose Eurokodas 3. 1-8 dalis (EC3) pateikiamomis pagrindinėmis irties formomis. Aptariamas supaprastintų analitinių modelių taikymas skaičiavimo algoritmams išvesti.

#### Įvadas

Elementai mazge išorinių jėgų veikiami sąveikauja, vyksta kompleksinis jėgų persiskirstymas, kurio įtaka pasireiškia deformacijų forma. Elementų elgsena mazge buvo tiriama eksperimentiškai, lygiagrečiai stengiantis analitinėmis programomis sukurti skaitinę jos išraišką. Taip plieninių konstrukcijų projektavimo dokumentuose buvo suformuluoti algoritmai tipinių mazgų skaičiavimui.

Analitiniai modeliai mazgų skaičiavime naudojami elementų elgsenai jungtyje aprašyti ir pagrindiniams veikiantiems parametrams nustatyti. Modelis, kuris įvertintų visus veikiančius parametrus būtų per daug sudėtingas. Todėl naudojami idealizuoti ir supaprastinti modeliai, kuriuose įvertinami tik pagrindiniai, didžiausią įtaką turintys dydžiai, mazgo stipriui nustatyti, atsižvelgiant į elementų sudarančių jungtį elgseną. Toks analitinis modeliavimas, pagrįstas ekperimentais leido suformuluoti pusiau empirines formules mazgų skaičiavimui.

#### Takumo linijos modelis

Takumo linijos modelio taikymas skaičiavimo algoritmų, pateikiamų EC3, sudarymui pagrįstas lygybe tarp išorinių ir vidinių jėgų darbo. Vidinių jėgų darbas plastinių šarnyrų sistemoje, tai energija sukaupta vykstant juostos paviršiaus plastifikacijai (Wardiener, J. 1986; Partanen 1991)

Atspario skaičiavimo išraiškai gauti pasinaudosime irties mechanizmu dėl juostos plastifikacijos Y tipo mazge (1 pav.).



1 pav. Mazgo Y juostos paviršiaus irties mechanizmas (skaičiais 1-5 pažymėtos takumo linijos)

Taigi vidinis plastinių šarnyrų sistemos (ilgis  $l_i$  ir posūkio kampas  $\varphi_i$ ) darbas bus lygus takumo linijų energijai, užrašytai:

$$E = \sum l_i \cdot \varphi_i \cdot m_p , \qquad (1)$$

Plokštumos posvyrio kampas  $\varphi_i$ , remiantis poslinkių mažumo principu, užrašomas pagal trikampio ABC geometrines charakteristikas (1 pav.), tada energiją kikvienos iš penkių takumo linijų (1 pav.):

takumo linija 1: 
$$2b_0 \frac{2\delta}{(b_0 - b_i)\cot\alpha} \cdot m_p = \frac{4\tan\alpha}{1 - \beta} \cdot \delta \cdot m_p$$
, (2)

takumo linija 2:  $2b_i \frac{2\delta}{(b_0 - b_i)\cot\alpha} \cdot m_p = \frac{4b_i \tan\alpha}{b_0(1 - \beta)} =$  $= \frac{4\tan\alpha}{1 - \beta} \beta \cdot \delta \cdot m_p$ (3)
takumo linija 3:  $2\left(\frac{h_i}{\sin\theta_i} + 2\frac{b_0 - b_i}{2}\cot\alpha\right)\frac{2\delta}{b_0 - b_i} \cdot m_p =$   $= \left(\frac{4\eta}{(1 - \beta)\sin\theta_i} + 4\cot\alpha\right) \cdot \delta \cdot m_p$ (4)

čia:  $\eta = \frac{h_i}{b_0}$  - tinklelio elemento skerspjūvio aukščio ir juostos skerspjūvio pločio santykis.

takumo linija 4: 
$$2\frac{h_i}{\sin\theta_i} \cdot \frac{2\delta}{b_0 - b_i} \cdot m_p = \frac{4\eta}{(1 - \beta)\sin\theta_i} \cdot \delta \cdot m_p$$
, (5)  
takumo linija 5:  $4l_5 \left(\frac{\delta}{l_5 \cdot \tan\alpha} + \frac{\delta}{l_5 \cdot \cot\alpha}\right) \cdot m_p = ,$  (6)  
 $= 4(\tan\alpha + \cot\alpha) \cdot \delta \cdot m_p$ 

Ribinė lenkimo momento ilgio vienete reikšmė:  $m_p = \frac{f_y t_o^2}{4}$ , tada visa energija bus lygi:

$$E = \frac{8 \cdot m_p \cdot \delta}{(1 - \beta)} \left( \tan \alpha + \frac{(1 - \beta)}{\tan \alpha} + \frac{\eta}{\sin \theta_i} \right) = \frac{f_y t_0^2}{(1 - \beta)} \times \left( \frac{2\eta}{\sin \theta_i} + 2 \tan \alpha + 2 \frac{(1 - \beta)}{\tan \alpha} \right) \cdot \delta$$
(7)

Pasinaudoję matematinėmis nelygybėmis, pažymėtą išraiškos dalį galime užrašyti taip:

$$2\frac{\left(\tan^{2}\alpha + \sqrt{1-\beta}\right)}{\tan\alpha} \ge 2\left(\frac{2\tan\alpha \cdot \sqrt{1-\beta}}{\tan\alpha}\right) \cong 4\sqrt{1-\beta} , \qquad (7.1)$$

Iš pusiausvyros sąlygos:

$$\frac{N_{i,Ed}}{\sin\theta_i} \mathscr{I} = \frac{f_y t_0^2}{(1-\beta)} \left( \frac{2\eta}{\sin\theta_i} + 4\sqrt{1-\beta} \right) \cdot \mathscr{I} , \qquad (8)$$

Tuomet remiantis didelių apribojimų teorema (Coutie, M.G.; Davies, G. 1993), galime užrašyti mazgo atparumo sąlygą:

$$\frac{N_{i,Ed}}{\sin \theta_i} \le N_{i,Rd} \Longrightarrow N_{i,Ed} \le N_{i,Rd} \cdot \sin \theta_i, \qquad (9)$$

Mazgo atparis iš (8) ir (9) sąlygų yra lygus (Eurokodas 3. 1-8 dalis):

$$N_{i,Rd} = \frac{f_{y0}t_0^2}{(1-\beta)\sin\theta_i} \left(\frac{2\eta}{\sin\theta_i} + 4\sqrt{1-\beta}\right),\tag{10}$$

#### Juostos sienelės išsipūtimo arba lokalinio išklupimo modelis

T, Y, X mazguose, kai parametras  $\beta$  kinta ribose  $0.85 \le \beta \le 1.0$ , irtis gali įvykti, tiek dėl juostos plastifikacijos, tiek ir dėl juostos sienelės išklupimo.

Priimame, kad kai parametras  $\beta$  įgyja reikšmę – 1.0, mazgo irtis įvyks dėl juostos sienelės išklupimo. Irties mechanizmo schema pateikiama 2 pav.:



2 pav. juostos irties dėl sienelės išklupimo schema

Paveiksle matome, kad įtempiai juostos paviršiuje pasiskirsto  
ilgyje 
$$l = \frac{h_i}{\sin \theta_i} + 5t_0$$
, tada mazgo atparis apskaičiuojamas taip:

$$N_i = f_b \cdot t_0 \cdot 2l \cdot \frac{1}{\sin \theta_i} = f_b \cdot t_0 \cdot \left(\frac{2h_i}{\sin \theta_i} + 10t_0\right) \frac{1}{\sin \theta_i}, \quad (11)$$

čia:  $f_b$  - įtempiai juostoje, kadangi atspario reikšmė skaičiuojama ribiniu atveju, tai veikiant tempimo įrąžai  $f_b = f_{y0}$ , gniuždymo atveju, juostoje įvertinama lokalinio išklupimo galimybė, todėl  $f_b = \chi f_{y0}$  (T, Y tipo mazgams),  $f_b = 0.8\chi(\sin\theta_i)f_{y0}$  (X tipo mazgams), kur  $\chi$  - klupumo koeficientas, taigi  $f_b$  kritiniai klupumo įtempiai, kurie yra juostos liaunio funkcija  $f\left(\frac{h_0}{t_0}\right)$ .

EC3 pateikiama tokia klupumo koeficiento priklausomybė nuo elemento sąlyginio liaunio (Eurocode 3. Part 1-1):

$$\chi = \frac{1}{\phi + \sqrt{\phi^2 - (\bar{\lambda})^2}},$$
(12)

čia:  $\phi$ , kvadratinė sąlyginio liaunio funkcija (Eurocode 3. Part 1-1):

$$\phi = 0.5 \cdot \left[ 1 + \alpha \left( \overline{\lambda} - 0.2 \right) + \left( \overline{\lambda} \right)^2 \right], \tag{13}$$

čia:  $\alpha$  - pataisos koeficientas priklausantis nuo klupumo kreivės (Eurocode 3. Part 1-1).

Juostos sienelėje išskiriamas elementas (2 pav.), priimamas kaip strypas įtvirtintas dvipusiu lankstu, tada galime pasinaudoti Oilerio formule kritinei jėgai ir žinodami, kad ji naudojama tik proporcingo deformavimo ribose (Huko dėsnis), išvesime sąlyginio liaunio išraišką nagrinėjamam atvejui:

$$\overline{\lambda} = \frac{\lambda}{\pi} \sqrt{\frac{f_y}{E}} \equiv \sqrt{\frac{f_{y0}}{\sigma_{cr}}} = \sqrt{\frac{Af_{y0}}{F_{cr} \cdot \sin \theta_i}} = \frac{L_{cr}}{\pi \cdot i} \sqrt{\frac{f_{yo}}{E\left(\sin \theta_i\right)}}, \quad (14)$$

Elemento kritinis ilgis bus lygus:

$$L_{cr} = h_0 - 2t_0 \,, \tag{15}$$

Inercijos spindulio išraiška nagrinėjamam elmentui (elemento inercijos momentui išreikšti išskiriamas jo ploto elementas, kurio padėtis (atstumas nuo x ašies) yra y, o matmenys dy ir db):

$$i = \sqrt{I / A} = \sqrt{\left[\int_{A} y^{2} dA = \int_{-t_{0}/2}^{t_{0}/2} db \cdot y dy\right] / dbt_{0}} = \frac{1}{\sqrt{12}} t_{0} = \frac{1}{\sqrt{12}} t_{0} = \frac{1}{3.46} t_{0}$$
(16)

Tada sąlyginio liaunio išraiška gaunama (15) ir (16) sąlygas įrašius į (14) (Eurokodas 3. 1-8 dalis):

$$\overline{\lambda} = \frac{(h_0 - 2t_0)}{\pi \cdot \frac{1}{3.46} t_0} \sqrt{\frac{f_{yo}}{E(\sin \theta_i)}} = 3.46 \left(\frac{h_0}{t_0} - 2\right) \sqrt{\frac{f_{yo}}{E(\sin \theta_i)}} \frac{1}{\pi}, \quad (17)$$

#### Išplėšimo šlyties modelis

Šis modelis skirtas mazgo elementų elgsenai aprašyti, kai tinklelio elemente veikia tempimo įrąža ir santvaros juostoje sąlygojami tangentiniai įtempimai - grynoji šlytis. Ribinėje būsenoje pasireiškia juostos irtis – išplėšimas.



3 pav. Juostos išplėšimo irties mechanizmas

Galime užrašyti išskirstytą šlyjamają galią (Partanen 1991) juostos paviršiuje (storyje  $t_0$ ):

$$q_{yl} = \frac{f_{y0}t_0}{\sqrt{3}},$$
 (18)

Tada iš paveikslo, matome kad ilgis kuriame pasireiškia šlytis gali būti užrašytas remiantis mazgo geometrija:

$$l = 2\frac{h_i}{\sin\theta_i} + 2b_{ep}, \qquad (19)$$

Iš mazgo pusiausvyros sąlygos (9) mazgo atsparis:

$$N_i \sin \theta_i = q_{iy} l \Longrightarrow N_i = \frac{f_{y0}}{\sqrt{3}} t_0 \left( \frac{2h_i}{\sin \theta_i} + 2b_{ep} \right) \frac{1}{\sin \theta_i}, \quad (20)$$

Įvertinus standžio kitimą skerspjūvio perimetre, visas perimetras negali būti priimamas absoliučiai efektyviu. Efektyviojo išplėšiamosios šlyties pločio reikšmė  $b_{ep}$  buvo nustatyta ekperimentų metu ir yra lygi (Eurokodas 3. 1-8 dalis):

$$b_{ep} = \frac{10t_0 \cdot b_i}{b_0} \le b_i \Longrightarrow b_{ep} = 10t_0 \cdot \beta , \qquad (21)$$

#### Efektyviojo tinklelio elemento pločio modelis

Anksčiau aprašytas išplėšiamosios šlyties modelis gali būti priskiriamas mazgams su plonasieniais tinklelio elemento profiliais; mazgams kuriuose tinklelio elemento vamzdžio sienelė traktuojama, kaip sąlygiškai stora,tinklelio elemento efektyvusis plotis gali tapti kritiniu. Mazgo atpario išraiška gali būti išvesta pasinaudojant išplėšiamosios šlyties analitiniu modeliu, tik jis turi būti paremtas tinklelio elemento geometriniais parametrais ir medžiagos savybėmis.



4 pav. Tinklelio elemento efektyviojo pločio fizikinė interpretacija

Ilgis kuriame gali pasireikšti takumo įtempiai bus lygus (4 pav.):

$$l = h_i - 2t_i + b_{eff} , \qquad (22)$$

Tada mazgo atspario sąlyga bus:

$$N_{i,Rd} = f_{yi} \cdot t_i \cdot 2l = f_{yi} \cdot t_i \left(2h_i - 4t_i + 2b_{eff}\right),$$
(23)

Tinklelio elemento efektyviojo pločio išraišką galima gauti redukuojant pagal juostos charakteristikas, kadangi šis modelis taikomas tuomet, kai įtempiai tinklelio elemente sąlygoja mazgo irtį:

$$\begin{aligned} A_{0,eff} f_{y0} &\leq A_{i,eff} f_{yi} \Longrightarrow b_{ep} t_0 \cdot f_{y0} \leq b_{eff} \cdot t_i \cdot f_{yi} \Longrightarrow \\ b_{eff} &= \frac{b_{ep} \cdot t_0 \cdot f_{y0}}{t_i \cdot f_{yi}} \end{aligned}$$

$$(24)$$

čia:  $A_{0,eff}$  - efektyvusis juostos vamzdžio plotas;  $f_{y0}$  - ribiniai takumo įtempiai juostoje;  $A_{i,eff}$  - efektyvusis tinklelio elemento vamzdžio plotas;  $f_{yi}$  - ribiniai takumo įtempiai tinklelio elemente.

#### Juostos elemento šlyjamosios irties modelis

Juostos atsparis šlyčiai mazge gali būti nustatytas analitiniu būdu pasinaudojant plastinės analizės pagrindinėmis formulėmis.

Atspario šlyčiai reikšmė apskaičiuojamas iš sąlygos:



**5 pav.** Juostos šlyjamosios irties modelis

Plotas juostos skerspjūvio sienelėje, kuriame pasireškia šlytis:

$$A_{\nu} = 2h_0 t_0 \,, \tag{26}$$

T, X, Y tipo mazgams atspario reikšmė, pasinaudojant (25) sąlyga bus lygi:

$$R_{i,Rd} = \frac{f_{yo}A_v}{\sqrt{3}\sin\theta_i},\tag{27}$$

N ir K tipo mazgams sąlyga (25), papildoma, taikant mažų tarpų analizę, juostos skerspjūvio viršutinės juostos dalimi, išnaudojama efektyviam šlyties perdavimui:

$$A_{v} = (2h_{0} + \alpha b_{0})t_{0}, \qquad (28)$$

čia:  $\alpha = f(g / t_0)$  funkcija (Eurokodas 3. 1-8 dalis; Partanen 1991):

$$a = \sqrt{\frac{1}{1 + \frac{4g^2}{3t_0^2}}},$$
 (29)

Skaičiuojant K ir N tipo mazgus su tarpais papildomai tikrinamas atsparis tarpo zonoje:

$$N_{0,gap,Sd} \le (A_0 - A_v) f_{y0} + A_v \cdot f_{y0} \sqrt{1 - \left(\frac{V_{Sd}}{V_{pl}}\right)^2} , \qquad (30)$$

Likusioji skerspjūvio dalis (neefektyvioji) perima ašinius įtempius, sąlygoje (29) pirmasis sumos narys. Antrasis narys įvertina juostos plastinio atspario sumažėjimą dėl skersinės jėgos. Paprastai šios sąveikos skaičiavimams gali būti naudojamas Von-Mizeso kriterijus (Packer, J.A).

#### Apibendrinimas

Pasinaudojant šiame straipsnyje pateiktais analitiniais modeliais įrodome, kad skaičiavimo algoritmai pateikiami projektavimo normose, nėra sudėtingi, beveik visus juos galima apibrėžti ribinių įtempių sąvoka. Svarbu tik žinoti mazgo elementų elgeseną jungtyje ribiniu atveju.

Žinoma besąlygiškai teigti, kad visi skaičiavimo algoritmai tai analitinė išraiška, negalima, kadangi sudėtingą įtempių būvį (būdingą K ir N tipo mazgams) aprašyti prireiktų griozdiškų formulių. To išvengti padeda daugkartinių eksperimentų metu gautos konstantos ir charakteringos funkcijos. Pavyzdžiui, juostos plastifikacijos atspario reikšmė EC3 papildoma funkcija f(n), įvertinančia įrąžas juostoje.

Nesuklysime teigdami, kad skaičiavimo algoritmai, kurie pateikiami projektavimo normose, yra gerai suderinta analitinė ir eksperimentinė mazgo irties interpretacija.

#### Ltieratūra

- CIDECT design guide for Ractangular Hollow Sections (RHS) joints under predominantly static loading, Germany.
- Coutie, M.G.; Davies, G. 1993. Tubular Structures V. London
- Eurocode 3 (1993). Design of Steel Structures- Part 1.1: "General -
- General Rules and Rules for Buildings", English Version, 2003

European Committee for Standardization, Brussels.

- Eurokodas 3 (1993). Plieninių konstrukcijų projektavimas. 1-8 dalis. Mazgų projektavimas. (LST EN 1993 1 8 :2005).
- Koskimaeki, M.; Niemi, E. (1989). Finite Element Studies on the Behavior of Rectangular Hollow Section K-joins. Tubular Structures, 3-rd International Symposium, Finland, p. 260-274.
- Liu, D. K.; Yu, Y.; Wardenier J. (1998a). Effect of boundary conditions and chord preload on the strength of RHS uniplanar gap K- joint. Tubular structures, 8-th International Symposium, Singapore, p. 231-238.
- Packer, J.A. Theoretical behavior and analysis of welded steel joints with RHS chords. CIDECT, Final Report 5U-78/19.
- Partanen, T. (1991). On convergence of yield line Theory and
- Nonlinear FEM results in plate Structures, Tubular Structures,
- 4th International Symposium, Delft, p. 313-323.
- Sarada, S.; Fleischer, O.; Puthli, R. (2002). Initial study on the static strength of thin walled Rectangular Hollow Section (RHS) K joint with gap. The 12-th International Offshore and Polar Engineering Conference Kitakyushu, Japan, p. 26-33.
- Wardenier, J.; Giddings, T.W. The strength and behavior of statically loaded connections in structural hollow sections, CIDECT Monograph No 6, 1986.
- Wardenier, J. (1982). Hollow section joints. Delft.
- Wardenier, J.; Stark, J.W.B. (1980). The static strength of welded lattice girder joints in structural, hollow sections, ECSC Report.

# ANALITICAL MODELS OF WELDED TRUSS JOINTS BETWEEN SQUARE HOLLOW SECTIONS FOR EQUATIONS IN EC3

#### I. Misiūnaitė

#### Summary

It was analysed the behaviour of welded connections between square hollow sections under predominantly static loading. The behaviour of joint was illustrated with failure modes from Eurocode 3. Part 1-8 (EC3). It was presented simplified analytical models used to determine estimations for joint strength calculations.