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Abstract: The growing need for sustainable energy solutions has propelled the development
of Hybrid Renewable Energy Systems (HRESs), which integrate diverse renewable sources
like solar, wind, biomass, geothermal, hydropower and tidal. This review paper focuses
on balancing economic, environmental, social and technical criteria to enhance system
performance and resilience. Using comprehensive methodologies, the review examines
state-of-the-art algorithms such as Multi-Objective Particle Swarm Optimization (MOPSO)
and Non-Dominated Sorting Genetic Algorithm II (NSGA-II), alongside Crow Search
Algorithm (CSA), Grey Wolf Optimizer (GWO), Levy Flight-Salp Swarm Algorithm
(LF-SSA), Mixed-Integer Linear Programming (MILP) and tools like HOMER Pro 3.12–3.16
and MATLAB 9.1–9.13, which have been instrumental in optimizing HRESs. Key
findings highlight the growing role of advanced, multi-energy storage technologies in
stabilizing HRESs and addressing the intermittency of renewable sources. Moreover,
the integration of metaheuristic algorithms with machine learning has enabled dynamic
adaptability and predictive optimization, paving the way for real-time energy management.
HRES configurations for cost-effectiveness, environmental sustainability, and operational
reliability while also emphasizing the transformative potential of emerging technologies
such as quantum computing are underscored. This review provides critical insights into
the evolving landscape of HRES optimization, offering actionable recommendations for
future research and practical applications in achieving global energy sustainability goals.

Keywords: hybrid renewable energy systems; optimization techniques; optimization
criteria; computation efficiency; sustainable energy; innovations

1. Introduction
The configuration of energy systems has changed over decades during the 20th century

from individual energy devices and small sub-systems into complex centralized systems
with enormous power generation capacities [1]. At the beginning of the 21st century, it
was recognized worldwide that we need to drastically reduce greenhouse gas emissions
to avoid catastrophic consequences for our planet and humanity. The Paris Agreement
is a good illustration of understanding this challenge—196 countries have committed to
reduce emissions under the framework of this Agreement on climate change [2]. The
Paris Agreement declares the ambitious target—to limit global temperature increases to
as close as possible to 1.5 degrees Celsius. The energy transition is unavoidable; therefore,
climate-neutral energy generation and energy storage technologies play a vital role in
achieving this target.

The combination and integration of different renewable energy generation technolo-
gies in an optimal way, considering technical, environmental, economic, and social criteria,
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becomes an important challenge. The development of hybrid renewable energy systems
(HRESs), the robust design of various RES technologies, the algorithms of their optimiza-
tion, and comprehensive considerations of the above-mentioned criteria are needed to
address this challenge. This diverse body of research reveals the importance of inter-
disciplinary research on the evolution of HRESs and the importance of interdisciplinary
approaches in achieving sustainable energy solutions. There is a lot of research investigat-
ing the performance of energy systems, but the adequacy and suitability of various analysis
methods and tools for the optimization of HRESs are often questioned.

The objective of this paper is to review the latest scientific papers on HRES optimization
analysis and define its advantages, challenges, and future perspectives. The optimization
focuses on technology selection and development assessment.

This article further integrates insights from various studies on innovative approaches
to HRES optimization. It provides an overview of the developments in this field and the
ongoing challenges and innovations that continue to drive its evolution. It presents an
extensive examination of HRES optimization, highlighting critical advancements in design,
performance evaluation, and optimization methodologies.

HRES optimization will remain critical for addressing the growing global demand
for clean, reliable, and affordable energy. As renewable energy sources like solar and
wind become more prevalent, their inherent intermittency and variability necessitate ad-
vanced optimization techniques to ensure stability and efficiency in energy systems [3,4].
By integrating energy storage solutions, such as batteries and hydrogen, with robust con-
trol strategies, HRESs can meet energy demands even during fluctuating environmental
conditions [5–7]. Furthermore, as energy systems grow in complexity, combining multi-
ple renewable sources in a single hybrid configuration offers opportunities to improve
resilience, reduce dependency on fossil fuels, and optimize cost-effectiveness [8,9].

In the future, the role of HRESs will expand beyond technical performance to include
broader considerations such as environmental sustainability, social acceptance, and eco-
nomic feasibility. Existing multi-objective optimization frameworks, like those highlighted
in [10,11], will be essential research objects for balancing diverse criteria. Moreover, the in-
tegration of advanced technologies, such as machine learning and artificial intelligence [12],
will enable real-time adaptability and predictive maintenance, ensuring that these sys-
tems can evolve alongside advancements in technology and policy [13,14]. As climate
change and energy equity continue to drive global energy transitions, optimizing HRESs
will be pivotal for meeting sustainability goals while providing reliable energy access to
underserved regions [15,16]. By fostering local participation, renewable energy adoption,
and decentralized energy sharing, energy resilience is significantly strengthened, making
these approaches not only practical but essential for a sustainable and equitable energy
future [17]. Therefore, the ongoing analysis and improvement in optimization method-
ologies and tools for HRESs are crucial to determine optimal configurations of integrated
energy systems in terms of reliability, safety, environmental, and economic parameters by
achieving long-term sustainability goals.

2. Methodology
The authors developed a literature selection methodology to perform a comprehensive

literature review. The Scopus, ScienceDirect, and Google Scholar databases were utilized to
search for relevant scientific papers published since 2017. Initially, a literature search was
performed to find articles by title, abstract, and keywords. The search was primarily based
on the use of logical combinations presented in Figure 1.

Moreover, the search results have a multi-stage filtering process based on criteria
such as publication year, citation ranking, abstract, conclusions, scheme of the system,
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and focus on system optimization tools. A systematic review database was created for all
prioritized studies. Based on the mentioned data, only articles analyzing HRESs, with at
least two renewable energy sources, not thorough reviews, and with system optimization
tasks, were selected and cited in Section 3. In total, from 182 downloaded articles, journals,
books, papers, and technical reports, just 55 are cited in Section 3 for the selection of
commonly used optimization methods for HRESs. Furthermore, all relative information,
such as computation efficiency and optimization limits, was selected using direct queries
in scientific literature databases, skipping Step 1 “Literature search” and finishing with
Step 2 “Selection”.
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Figure 1. Literature selection process (developed by the authors).

Integrating different renewable energy and energy storage technologies into one HRES
achieves more reliable and sustainable energy generation. Sections 3.1–3.3 analyze recent
research publication trends regarding the diversity of renewable energy technologies,
energy storage solutions and grid connection type. This analysis indicates the likely
development trajectory of HRESs in the future and amplifies the importance of optimizing
diverse technologies.

3. HRES Design
HRESs represent an innovative approach to utilizing the diverse potential of renewable

energy sources. Taking each type of renewables, the vast majority are characterized by
inherent variability and intermittency. To enhance the stability and usability of these
systems, pumped hydro, battery, and hydrogen solutions play a pivotal role, offering
mechanisms to store excess energy during peak production periods and supply power
during deficits. Additionally, the incorporation of grid connection technologies serves as a
critical bridge, allowing HRESs to balance local energy demands with the distribution or
transmission energy networks, improve power quality, and provide backup during periods
of extended shortfall.

3.1. Renewables Diversity

The main part of an HRES belongs to renewable energy technologies. Figure 2 illus-
trates the distribution of renewable energy sources in cited articles published from 2017 to
2024. Each bar represents the total number of articles per year, with individual contribu-
tions from six renewable energy categories: solar, wind, biomass, geothermal, hydropower,
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and tidal energy. Figure 2 also demonstrates an increase in the number of scientific articles
analyzing HRESs.
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The most typical composition of HRESs includes solar and wind energy (see Table 1).
The most difficult structures combine solar, wind, biomass/geothermal and hydro compo-
nents [8,9,18,19]. The structured data indicates a growing diversification in research focus,
with hydropower and biomass gaining prominence in recent years. This trend underscores
an increasing interest in broadening the scope of renewable energy technologies beyond
the dominant solar and wind sources.

3.2. Energy Storage Solution

The energy produced from renewables with fluctuating generation needs energy
storage solutions to compensate for the imbalance between energy generation and demand
and ensure a more resilient and cost-effective system. Figure 3 illustrates the number
of articles published each year from 2017 to 2024 that focus on different energy storage
solutions (ESS), including various energy storage technologies.

Furthermore, the most innovative ESS contains pumped hydro, battery and hydrogen
technologies (see Table 1). Additionally, given data highlights a clear shift in focus over
time, with battery and hydrogen storage technologies becoming increasingly prominent in
academic research while pumped hydro remains relatively underrepresented. The rapid
rise in articles on hydrogen storage, especially in recent years, reflects growing interest in its
potential for long-term energy storage and decarbonization efforts. Moreover, nearly half
of the articles do not incorporate energy-saving solutions. HRESs with storage components
have been implemented worldwide to address energy needs in diverse contexts. For
instance, a solar–wind–biomass HRES was deployed in Northeast China, integrating
advanced energy storage solutions to address frequent power shortages in rural areas [20].
Similarly, in Algeria, off-grid HRESs combining PV, wind, diesel generators, and battery
storage have been installed to provide electricity to residential buildings in remote rural
regions [21]. Another notable example is the hydrogen-based HRES in Jeju Island, South
Korea, which integrates wind turbines, PV panels, and biomass gasifiers to supply hydrogen
for transportation and industrial uses [22].
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Almost half of the articles addressing ESS usually integrate hybrid storage solutions,
including battery and hydrogen components. This solution gains among researchers every
year, demonstrating a growing recognition of the importance of hybrid energy storage
systems to meet diverse energy needs and enhance system flexibility and resilience.

3.3. Grid Connection

Not only energy storage solutions but also grid connection type influence the opti-
mization model, so Figure 4 shows the number of articles published annually from 2017 to
2024, focusing on grid-connected (“on”) and off-grid (“off”) energy systems.
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The growing interest in grid-connected systems has been captured, particularly in
recent years. It indicates a shifting research focus towards the integration of energy sys-
tems with existing grids, gradually moving away from islanded grids and reflecting the
global expansion of electricity networks. Grid integration offers several advantages, such
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as improved access to renewable energy resources, reduced reliance on localized energy
generation, and enhanced system efficiency through centralized management and load
balancing. Successful examples include the European Union’s push for cross-border elec-
tricity markets [23] and the integration of large-scale renewable plants in China and the
United States, which leverage grid connectivity to meet national energy targets [24,25].
These advancements demonstrate how grid-connected systems support energy demand
and foster technological innovation, economic growth, and environmental sustainability,
making them a cornerstone of modern energy infrastructure development [26].

The practical applications of HRESs extend far beyond residential power supply. Some
telecommunication towers, which require continuous and reliable energy to maintain
connectivity, all around the World have been powered using core renewables, such as sun
and wind. Hydrogen and methanol fuel cells are incorporated in a grid-connected and
islanded HRES [27]. A notable real-world example is the microgrid on Kodiak Island. In
remote areas, HRESs are crucial for rural electrification, ensuring access to clean energy
where grid extension is economically unfeasible [21]. In industrial contexts, HRESs stabilize
the energy supply for manufacturing plants and support green hydrogen production, as
seen in large-scale projects in Queensland, Australia [28]. This example also provides
pelagic discrete energy trading system between Australia and Japan [29].

Additionally, HRESs are increasingly integrated into urban microgrids to improve grid
resilience and support demand-side management, leveraging real-time optimization algo-
rithms [20,30]. These diverse applications highlight the flexibility of HRESs in addressing
global energy challenges while promoting sustainability and energy equity.

Many grid-connected systems also support island mode operation, ensuring flexibility
and reliability during grid outages or disruptions (see Table 1). This dual-mode capability
highlights the importance of resilience in modern energy systems while emphasizing the
benefits of integration with broader electricity networks.

The synergy between renewable diversity, storage solutions, and grid integration
helps optimize system cost and energy utilization in a diverse geographical area and
paves the way for developing resilient and adaptable energy infrastructures from remote
areas to urban environments. These trends emphasize the dynamic nature of energy
research as it adapts to emerging challenges and opportunities in the energy transition to a
sustainable future.

3.4. Energy Community Framework

The reviewed articles (see Table 1) provide opportunities to identify the approach
of the energy communities, which can be characterized with five main characteristics:
local focus [20,31,32], member-driven [15], renewable energy [22,28], decentralization and
energy sharing [19,33,34]. However, the authors neither explicitly distinguish the concept
nor address the specific characteristics of the energy communities. This article under-
lines the exploration of energy community integration specifics as an area of growing
importance for enhancing local energy resilience and independence. By combining HRES
with demand response measures and collaborative energy-sharing strategies, energy com-
munities can address challenges such as privacy-preserving energy management and
real-time optimization [30,35]. Additionally, papers highlight the need for electric vehicle
charging station analysis, emphasizing their potential contributions to the advancement of
energy communities.

Energy community status empowers members with collective access to clean, afford-
able energy while fostering economic savings, energy independence, and environmental
sustainability. It promotes local job creation, innovation, and social cohesion, enabling
communities to take charge of their energy needs and benefit from favorable policies and
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incentives. This status strengthens resilience, supports modern energy technologies, and
ensures a greener, fairer future [36].

4. HRES Optimization
Building on the foundational aspects of HRES design, optimization is a critical process

that ensures these systems operate efficiently and reliably in real-world scenarios. While the
design phase lays the groundwork by selecting components and defining configurations,
optimization empowers these components to achieve maximum performance under specific
constraints such as cost, emissions, and reliability. Furthermore, the general principles
of energy system optimization, exploring techniques with their criteria, and identifying
patterns in reviewed scientific articles are provided in this article. Moreover, providing
guidance on selecting suitable optimization methods enables tailored solutions that account
for the unique characteristics of HRES. Lastly, synthesizing insights from reviewed studies,
this chapter bridges the gap between design and operation, identifies best practices, and
highlights opportunities for future research, particularly in multi-objective optimization.

4.1. General Principle of Energy System Optimization

The general principle of energy system optimization provides a structured process
that requires clear and systematic representation to ensure transparency and ease of un-
derstanding. Among the reviewed articles, flowcharts and pseudo-codes are the most
predominant methods for describing optimization algorithmic steps [37,38]. The energy
community framework of the research object is also discussed here.

4.1.1. Flowchart

The most widely used structure is the flowchart, it can visually represent many differ-
ent processes, algorithms and strategies: energy management strategy [31,39]; Aspen Plus
process flow diagram of the Anion Exchange Membrane (AEM) water electrolyzer [15];
structure of Back Propagation Neural Network (BPNN) algorithm [40]; solution flow of
two-stage robust optimization model [41]; PV–wind–H2 system energy flow [42]; optimiza-
tion and simulation flowchart [43]; strategy architecture of Bi-level gaming program [44];
Improved CSA implementation flowchart for solving the problem [45]; power manage-
ment of the HRES with charge and discharge strategies; and Flowchart of the Archimedes
optimization algorithm (AOA) [32]; block diagram of HRES energy production opera-
tion; and block diagram of whale optimization algorithm (WOA) implementation strategy
for HRES designing [46]; 2 flowcharts of Monte Carlo simulation (MCS) method [35];
NSGA-II optimization flowchart [19]; flow diagram of the proposed design approach of
100% renewable electricity supply and the framework of the developed hybrid Multi-
Criteria Decision Making (MCDM) approach [9]; Hybrid Grey Wolf Optimizer-Sine-
Cosine Algorithm (HGWO-SCA) algorithm flowchart is employed for the design of a
PV/WT/FC [47]; simplified flow chart of the proposed hybrid energy system [48], Grav-
ity Energy Storage sizing and implementation methodology [49]; operation strategy of
HRES composed of PV, WT, Bio-diesel generator, and battery; and flowchart and steps
of the emerging metaheuristic optimization method based on Harmony Search (HS) [33];
proposed framework for the robust planning of an IHS; Flowchart of the solution pro-
cess of the Hybrid Metaheuristic Algorithm; HMA-based Adaptive Robust Optimization
(ARO) [50]; flowchart of the optimization procedure [51]; Modified Multi-Objective Salp
Swarm Optimization Algorithm (MMOSSA) flowchart [31]. All mentioned flowcharts
provide a high-level visual representation of the decision-making process.

Flowcharts for HRES in the reviewed literature vary widely in design and focus, re-
flecting distinct methodologies and objectives. A comparison can be drawn based on three
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key aspects: optimization frameworks, energy management strategies, and component
integration. For instance, flowcharts using metaheuristic algorithms like Particle Swarm
Optimization (PSO) and genetic algorithms (GA) focus on cost and efficiency optimization,
often visualizing iterative processes for the sizing and placement of components [20,28].
In contrast, some studies emphasize energy management, illustrating real-time control
strategies for balancing supply and demand in microgrids, such as using hybrid algo-
rithms for load sharing and grid support [22,48]. Lastly, regarding component integration,
flowcharts differ by the extent of renewable and storage technologies included, with some
incorporating advanced hydrogen storage and electrolyzers alongside traditional PV and
wind setups [21,22]. As a result of this analysis, the most straightforward energy system
sizing flowchart of an off-grid 100 percent HRES is shown in Figure 5.
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4.1.2. Pseudocode

The second tool used to describe the operation of the system is the following pseudo-
code: PSO algorithm processes [24], GA-PSO algorithm processes [29], PSO algorithm
processes [41], Improved CSA algorithm process [31], Temporal Difference (TD) Lambda
within a Reinforcement Learning framework for HRES optimization [42], MOPSO solving
procedure [34], HGWO-SCA algorithm implementation methodology [35], and LF-SSA
implementation methodology [36]. It bridges the gap between visual diagrams and detailed
programming, offering a simplified, language-independent outline of the computational
logic behind the optimization. As a result of the literature analysis, the pseudo-code for the
same system as the flowchart is provided in Figure 6.
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In detail, the flowchart and the pseudo-code illustrate a simplified process for opti-
mizing an HRES by balancing energy supply, demand, and storage. The process starts by
initializing input data: P_(Load(t)), which represents the power demand, and P_(Ren(t)), the
renewable energy generation at a given time step. The iteration begins with i = 1, showing
the first step. The system first checks if the renewable energy generation is enough to meet
the load P_(Ren(t)) ≥ P_(Load(t)). If the generation exceeds the demand, the surplus energy is
used to charge the battery, provided the battery’s state of charge (SOC) is below its maxi-
mum capacity SOC_Max. The excess power generation is dumped if the battery is fully
charged [52]. When renewable energy is insufficient to meet the load P_(Load(t)) < P_(Ren(t)),
the system evaluates whether the battery can discharge enough energy to cover the deficit
SOC ≥ P_(Load(t)) − P_(Ren(t)). If not, the unmet load is recorded for later analysis. After each
time step, metrics such as unmet load and excess generation power are updated, and the
system moves to the next step i = i + 1. Once all time steps have been processed, the system
evaluates whether the combined excess and unmet power meet predefined operational
requirements. If the requirements are satisfied, then the process ends; otherwise, the system
is resized, components like battery capacity or renewable generation are adjusted, and the
process begins again. This iterative framework efficiently balances energy supply, battery
storage, and demand, minimizing energy losses and enhancing reliability.

In detail, the flowchart and the pseudo-code illustrate a simplified process for opti-
mizing an HRES by balancing energy supply, demand, and storage. The process starts by
initializing input data: P_(Load(t)), which represents the power demand, and P_(Ren(t)), the
renewable energy generation at a given time step. The iteration begins with i = 1, showing
the first step. The system first checks if the renewable energy generation is enough to meet
the load P_(Ren(t)) ≥ P_(Load(t)). If the generation exceeds the demand, the surplus energy is
used to charge the battery, provided the battery’s state of charge (SOC) is below its maxi-
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mum capacity SOC_Max. The excess power generation is dumped if the battery is fully
charged [52]. When renewable energy is insufficient to meet the load P_(Load(t)) <P_(Ren(t)),
the system evaluates whether the battery can discharge enough energy to cover the deficit
SOC ≥ P_(Load(t)) − P_(Ren(t)). If not, the unmet load is recorded for later analysis. After each
time step, metrics such as unmet load and excess generation power are updated, and the
system moves to the next step i = i + 1. Once all time steps have been processed, the system
evaluates whether the combined excess and unmet power meet predefined operational
requirements. If the requirements are satisfied, the process ends; otherwise, the system is
resized, components like battery capacity or renewable generation are adjusted, and the
process begins again. This iterative framework efficiently balances energy supply, battery
storage, and demand, minimizing energy losses and enhancing reliability.

Flowcharts and pseudo-codes are key tools for describing optimization processes in
HRES. The flowchart describes an energy management strategy, an optimization work-
flow, an algorithmic implementation, an energy flow, a system design approach and a
decision-making framework. The pseudo-code complements flowcharts by detailing com-
putational logic in a structured, replicable format. Additionally, their integration enhances
clarity and reproducibility by creating a comprehensive framework for understanding and
implementing optimization strategies [39,43].

4.2. Optimization Techniques

Following the creation of flowcharts and pseudo-codes, the next critical step in energy
system optimization is selecting appropriate optimization methods and establishing the
criteria for the mathematical model. The inherent complexity of HRES components and
interactions necessitates careful selection of optimization techniques. The adoption of
the right method ensures efficient system performance while optimizing the objective
functions, whether economic [31,53,54], environmental [31,55,56], technical [45,57], or multi-
objective [10,58,59]. Furthermore, this section delves into the methodologies used, captured
scientific principles, and the relationship between criteria identified in the reviewed studies.

Additionally, the methods summarized in Table 1 represent a wide range of optimiza-
tion and simulation techniques widely applied in various areas, including renewable energy
integration [31], energy storage optimization [45], power system reliability improvement
with uncertainty analysis [44], cost reduction in energy systems [43]. HOMER Pro 3.12–3.16
and MATLAB 9.1–9.13 are prominent simulation tools in this field. HOMER Pro 3.12–3.16
are extensively used for microgrid design [53], while MATLAB 9.1–9.13 provides a flexible
programming environment for implementing diverse optimization algorithms [60]. MILP
is a deterministic optimization technique, is well-suited for handling discrete and continu-
ous decision variables in linear energy planning and scheduling [61]. On the other hand,
metaheuristic algorithms like MOPSO excel in solving complex, non-linear, and multi-
modal problems and are effective for multi-objective optimization [43]. PSO is frequently
applied to optimize continuous variables [8]. CPLEX commercial is a robust optimization
solver for linear and integer programming problems [41]. NSGA-II, a genetic algorithm,
is particularly well-suited for multi-objective optimization, where generating a Pareto
front ensures that no single objective can be improved without degrading another [35].
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), a widely used
multi-criteria decision-making method, ranks solutions based on their proximity to an ideal
solution [62]. Nature-inspired algorithms, such as the CSA, GWO, and LF-SSA, are gaining
popularity due to their ability to balance exploration and exploitation in solving non-linear,
multi-modal optimization problems [45,47,48]. Additionally MCS is a powerful tool for
probabilistic and uncertainty analyses [30], while the ε-Constraint Method is instrumental
in converting multi-objective problems into single-objective ones [21].
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Moreover, the analyzed articles reveal scientific principles for HRES
optimization techniques:

• Simulation tools are combined with optimization techniques. MATLAB 9.1–9.13 is paired
with algorithms like MOPSO, demonstrating their utility in combining simulation-
based scenario analysis with robust optimization for better system design [58]. Also,
its HOMER Pro 3.12–3.16 is used to solve the optimization problem using GA [49].
HOMER 3.14 simulates system configurations and compares the results with GWO [37].
MATLAB’s 9.1–9.13 computational capabilities are incorporated with PSO to optimize
energy system planning parameters [8].

• Metaheuristic algorithms are blended with decision-making methods. Firstly, the MOPSO
and TOPSIS combination effectively balances optimization with multi-criteria decision-
making, highlighting its use for selecting optimal Pareto solutions in multi-objective
problems [62]. Secondly, NSGA-II and Linear Programming (LP) adaptation effec-
tively apply bi-level optimization for capacity planning and environmental impact
reduction [10].

• HRES performance improved by combining metaheuristic algorithms. Hybridized GA-PSO
and MOPSO algorithm balances global and local exploration, optimizing renewable
energy penetration while minimizing costs [43].

• Multi-Objective Optimization is used together with Pareto Analysis. The aim is to use
NSGA-II [10], [19] or MOPSO [59] algorithms to determine the minimum energy cost
and lifecycle emissions and to maximize job creation indicators. The best solution for
the multi-objective optimization task was chosen by employing the Pareto front.

This article focuses on MATLAB 9.1–9.13 and HOMER Pro 3.12–3.16 software. In the
time domain simulation, ten of the most typical examples were identified using HOMER
Pro 3.12–3.16, where the HRES simulation took 1 year [15,34,37,38,48,53–56,63,64]. Seven
cases were found using MATLAB 9.1–9.13. The major part [41,49,55,58] simulated 1 year
period of HRES, 1 article [65] presents week-long results widely analyzing the problem
and 2 articles [8,60] focus on more precise security and real-time modeling. So, more
precise results are required as the shortest period is simulated. This manuscript focuses on
sizing HRES components based on averaged prognosis data, so the significant number of
articles the time domain is extended to 1 year because it captures the full range of seasonal
variations in renewable energy availability, load demand, and environmental conditions.

4.3. Optimization Criteria

Furthermore, the reviewed studies also emphasize a wide array of the most used
broad-spectrum criteria in HRES optimization (see Table 1), categorized into economic,
environmental, energy, and social dimensions. Economically, Total Net Present Cost
(TNPC) [28,38,42] and Levelized Cost of Energy (LCOE) [10,20,63,66] appear as dominant
measures, complemented by Operation and Maintenance Cost (OMC) [15,58,67]. Envi-
ronmentally, CO2 emissions [35,50] and Renewable Fraction (RF) [32,53] are recurrent
metrics, reflecting sustainability concerns. In terms of energy performance, key metrics
include Loss of Power Supply Probability (LPSP) [19,48,64,68] and Energy Not Supplied
(ENS) [57,58,68], which evaluate system reliability and efficiency. On the social front, cri-
teria like Job Creation Potential (JOBC) [9,10] are used. These widely adopted criteria
underscore a comprehensive approach to balancing economic feasibility, environmental
sustainability, operational reliability, and social benefits in HRES optimization.

To conclude, here are some observed relationships between criteria and optimization
methods across the reviewed articles:
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• Economic indicators on multi-objective approaches. Economic optimization criteria like
TNPC and LCOE are most frequently paired with MOPSO [31,43,59,62]. This technique
is used in studies focusing on cost optimization and energy management.

• Environmental criteria on evolutionary algorithms. CO2 emissions [21,39,50] and Renew-
able Fraction (RF) [32,53] as a part of environmental indicators are often used together
with nature-inspired algorithms like PSO, CSA and Strength Pareto Evolutionary
Algorithm 2 (SPEA2). These methods provide robust solutions to highly non-linear,
multi-modal optimization problems where ecological considerations are crucial.

• Reliability criteria on simulation-driven techniques. Reliability measures like Loss of
Power Supply Probability (LPSP) [37,48,59] and ENS [58], are predominantly op-
timized through a combination of simulation tools such as HOMER Pro 3.12–3.16
and MATLAB 9.1–9.13. These criteria are addressed within multi-criteria decision-
making solutions like TOPSIS and Evaluation Based on Distance from Average Solu-
tion (EDAS), highlighting their adaptability.

• Social criteria on emerging frameworks. During the analysis 2 social indicators were
found: the JOBC [9] and the Composite Sustainability Index (CSI) [10] are addressed
within multi-criteria decision-making solutions like TOPSIS and EDAS, highlighting
their adaptability.

4.4. Computation Efficiency

Several critical factors influence the computation efficiency and speed in HRES opti-
mization (see Figure 7).
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The design and complexity of the algorithm play a pivotal role, with iterative pro-
cesses, large solution spaces, and non-linear problems significantly increasing computation
time. Problem size and scale, including the number of variables, constraints, and objectives,
directly affect resource demands, with large-scale tasks such as grid-wide simulations re-
quiring extensive computational resources. Leveraging parallel computing techniques can
mitigate these challenges by distributing tasks across multiple processors, although efficient
task decomposition and minimizing synchronization overhead are essential for success.
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Hardware architecture greatly influences performance, as do factors such as processor
speed, memory bandwidth, and I/O capabilities. Software optimization enhances speed
through efficient data structures, memory management, and load balancing, especially in
high-performance computing environments. However, data communication overhead in
distributed systems can be a bottleneck, making its minimization essential. Additionally,
numerical precision affects computational resources, requiring a balance between accuracy
and efficiency. In addition, energy-efficient systems, while conserving power, may impose
performance limits that also affect computational speed [69]. Besides, it was decided to
rank optimization methods based on four key criteria: Numerical Precision and Accuracy,
Hardware Architecture, Problem Size and Scale, and Algorithm Design and Complexity.
Each of these criteria was assessed and rated on a scale of 1 to 3, with corresponding
values: 1—“Low”, 2—“Medium” and 3—“High”. Where a higher value indicates a more
significant impact or higher complexity for that component.

4.4.1. Algorithm Design and Complexity

Methods were evaluated based on their computational and structural demands. MILP,
MATLAB 9.1–9.13, NSGA-II, MOPSO and LF-SSA ranked “High”, as their relies on rigorous
mathematical formulations and complex constraint handling, making it highly accurate
but computationally intensive [16,70], and its ability to support diverse and complex opti-
mization algorithms. These methods require advanced algorithmic sophistication [71,72].
In contrast, simpler heuristic-based approaches like GWO, CSA, PSO and HOMER Pro
3.12–3.16 scored “Medium” as they rely on relatively straightforward iterative frameworks
([71,73,74]). TOPSIS was the least complex and was assigned to “Low”, as it focuses on
simple ranking metrics rather than intricate optimization processes [9,62].

4.4.2. Problem Size and Scale

The ability of methods to handle larger datasets and increasingly complex problems is
considered. MILP, MATLAB 9.1–9.13 and NSGA-II were again among the top performers,
with scores of “High”, respectively, due to their ability to solve high-dimensional problems,
whilst with increased computational effort [70,72], and its parallelization capabilities allow
it to handle extensive simulations effectively [71,73]. MOPSO and LF-SSA, GWO, CSA and
PSO utilize multi-objective capabilities, included in “Medium”, while heuristic methods like
PSO and GWO achieved moderate scalability [75,76]. Simpler methods like HOMER Pro
3.12–3.16 and TOPSIS are more appropriate for small-scale or less computationally intensive
tasks, attached to “Low”, highlighting its limited applicability to larger datasets [9,74].

4.4.3. Hardware Architecture

Here assessed the dependence of methods on computing resources. MILP and MATLAB
9.1–9.13 are both assigned to “High”, reflecting their reliance on high memory capacity
for large-scale computations, leverage advanced hardware capabilities such as parallel
processing but are not inherently optimized for graphics processing units or distributed
computing environments [69,70]. NSGA-II, MOPSO and LF-SSA, GWO, CSA, PSO are
in group “Medium”, as they require robust hardware for managing multi-objective op-
timization problems but can perform adequately on less advanced systems with minor
adjustments [72,76], heuristic-based methods, as they operate efficiently on standard hard-
ware, making them more accessible [71,74], though they lack specialized hardware de-
signs [20,74,77]. HOMER Pro 3.12–3.16 and TOPSIS are a part of “Low”, as they require
minimal hardware resources, reflecting their lightweight computational nature [9,62].

The advent of new quantum artificial intelligence (AI) processors has the potential to
revolutionize the scientific world, particularly in the domain of HRES optimization. Quan-
tum computing’s unparalleled ability to perform parallel computations and solve complex
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optimization problems exponentially faster than classical processors could drastically re-
duce computation time for resource-intensive methods like PSO, Genetic Algorithms (GA),
and machine-learning-based predictive models. On conventional processors, calculations
that traditionally require hours or days could be completed in seconds or minutes on a
quantum chip, enabling real-time simulations and optimizations for HRES design and
operation. This speed-up would allow scientists to explore larger solution spaces, refine
multi-objective optimization problems more effectively, and model more complex systems
without the bottleneck of computational delays [78–80].

4.4.4. Numerical Precision and Accuracy

The computational methods and tools exhibit varying levels of precision and accu-
racy depending on their design and intended applications. It was ranked on its ability
to deliver precise and accurate solutions to reviewed articles. MILP, MATLAB 9.1–9.13,
NSGA-II, MOPSO and LF-SSA ranked as “High”, as excel in precision, offering highly
accurate solutions, particularly for complex energy systems multi-objective optimization.
This group has precise mathematical formulations [16,70–72] and offers robust accuracy
and balances between precision and heuristic adaptability [72,76]. GWO, CSA, PSO, and
HOMER Pro 3.12–3.16 got “Medium”, as they achieve moderate precision, focusing on
approximate or heuristic solutions [37,77], delivered acceptable results without requiring
high precision [20,74], especially TOPSIS, designed for simplicity, as it prioritizes approxi-
mate, but acceptable solutions over precision [74]. Based on the selected papers, researchers
generally focus on developing hybrid frameworks that combine quantum and classical
computing for maximum efficiency.

4.5. Weakness and Limits of Optimization Methods

The reviewed methods, referenced in more than one article from 2017 to 2024, reveal
significant limitations in addressing complex optimization challenges in energy systems.
HOMER Pro 3.12–3.16 struggles with modeling advanced utility billing structures, multi-
objective optimization, and machine learning capabilities, while MILP, despite its efficiency,
faces scalability issues and lacks integration with energy management systems (EMS).
PSO and Constrained Multi-Objective Particle Swarm Optimization (CMOPSO)-Multi
Strategy Integration (MSI) algorithms are hindered by slower convergence, sensitivity to
parameter settings, and high computational demands. NSGA-II and SSA suffer from weak
convergence and high computational costs, with SSA particularly limited in mitigating
local optima and optimizing load-shifting tasks. GWO and CSA exhibit challenges in
scalability, dynamic adaptation, and balancing exploration with exploitation. Additionally,
TOPSIS lacks a robust distance-weighting mechanism, further had the need for more
comprehensive and efficient approaches to solving real-world energy system problems (see
Table 1).

Table 1. Weakness and limits of optimization methods (structured by the authors).

Article Method Weakness/Limits

[81] HOMER Pro 3.12–3.16

The system faces significant limitations, including an inability to model
various electric utility billing structures and complex pricing methodologies
and the absence of machine learning-based predictive modeling capabilities. It
lacks novel storage systems and advanced thermal modules utilizing heat
pumps, along with optimization and modeling for these systems. High costs
restrict accessibility for low-resource laboratories and individuals, while the
system cannot perform multi-objective optimization or support innovations in
HRES design and operation. Users encounter challenges in defining specific
prices and costs in inputs, further limiting their flexibility and practicality.
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Table 1. Cont.

Article Method Weakness/Limits

[16,70,82] Mixed-Integer
Linear Programming

The MILP method, while highly efficient in achieving optimality and reducing
computational effort, sacrifices some accuracy due to linearization, though this
trade-off is generally acceptable. However, it faces challenges such as
computational complexity, extensive data requirements, and scalability issues,
particularly in problems involving complex non-linear interactions among
variables. The method’s practicality diminishes with an increasing number of
time steps and binary variables, pushing it to the limits of applicability.
Additionally, MILP does not account for energy management systems and
becomes computationally intensive and difficult to manage when addressing
large-scale problems.

[71,83,84] Particle Swarm Optimization

The randomness is determined by the default settings of the MATLAB 9.1–9.13
function. Moreover, the PSO-Proportional-Integral-Derivative (PID) controller
tends to have slower convergence and higher computational complexity
compared to the traditional PID controller. Additionally, it may converge to
local optima, and its performance is highly sensitive to parameter settings,
such as inertia weight and cognitive and social parameters, which require
careful tuning to achieve optimal results.

[85] Multi-Objective Particle
Swarm Optimization

The CMOPSO-MSI algorithm demonstrates superior performance by being
closer to the origin and exhibiting a more favorable distribution, while also
achieving the smallest voltage fluctuations compared to other approaches.
This algorithm demonstrates the most negligible voltage fluctuations, but its
overall performance improvement is limited despite an upward trend with
increased training time.

[72,84,86] Non-Dominated Sorting
Genetic Algorithm

The model requires significant computational resources to simulate the
necessary data sets, which can restrict its applicability in certain scenarios.
Similarly, genetic algorithms face challenges, including the need for a large
number of iterations to converge in complex problems or large search spaces,
as well as the time-consuming process of fine-tuning multiple parameters for
optimal performance. Additionally, the high computational costs and weak
convergence in complex real-world problems, along with the lack of
consideration for energy management systems, further limit the practicality of
these approaches.

[87] TOPSIS It uses the weighting of normalized performance ratings and does not
explicitly apply the distance weighting concept.

[84] Crow Search Algorithm

The CSA algorithm occasionally gets stuck in local optima, particularly in
high-dimensional search spaces where it also exhibits slow convergence. Its
performance is affected by an imbalance between exploitation and exploration
at various levels, which can hinder optimization.

[73,88] Grey Wolf Optimizer

The GWO algorithm faces several limitations, including its lack of
consideration for energy management systems and reliability, as well as its
computational complexity. It struggles to manage multiple variables and has
not yet been adapted for dynamic situations. Exploring appropriate operators,
such as multi-swarm approaches, repositories, or performance measures, is
essential in evolving dynamic search spaces. Additionally, addressing
uncertainties in inputs, outputs, objective functions, and constraints is critical
for effectively solving real-world problems, which the GWO method has yet to
achieve comprehensively.

[75,76,89] Salp Swarm Algorithm

The SSA algorithm suffers from low convergence and precision, and its
performance in optimizing load-shifting, reducing delays, and minimizing
electricity cost reduction is often inferior to that of GA. While the
incorporation of Leavy Flight algorithm has improved its search trends, the
initial SSA cannot effectively perform well-distributed or focused searches.
Furthermore, it struggles to mitigate the impact of local optima on its search
direction, often falling into regional areas and failing to maintain the right
balance between diversification and intensification.
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5. Suggestions from Previous Research
While Section 4 presents the weaknesses and limits of optimization techniques, re-

searchers have also proposed valuable future directions, which might cover a few negative
issues. This chapter compiles research suggestions from 2020 to the present, categorizing
them into nine key areas: system optimization and modeling; reliability and uncertainty
analysis; integration of renewable energy sources; data and monitoring systems; demand-
side management; advanced optimization techniques; technology improvements; economic
and policy implications; and future scope for specific systems (see Table 2).

Table 2. Suggestions for future research (structured by the authors).

Topic Article, Year of the Publication Suggestions for Future Research

System Optimization and Modeling

[90], (2021) Optimization of component sizes and control strategies via
Genetic Algorithm.

[62], (2021) Supply chain optimization and advanced system
integration theories.

[68], (2024) Development of grid-connected microgrid systems.

[31], (2024) Continuous search space and thermal energy storage modeling
for energy and economic benefits.

Reliability and Uncertainty Analysis

[57], (2020) Expansion to larger-scale systems with advanced energy
conversion/storage technologies for reliability and stability.

[50], (2021)
Reliability/cost assessment under uncertainties in load and
renewable resources using computationally intensive and
time-consuming algorithms like MCS.

[67], (2022) Probabilistic reliability assessment and control strategies in
distributed generation.

[91] (2024) Risk and uncertainty analysis for microgrid reliability evaluation.

Integration of Renewable Energy Sources

[56], (2020) Feasibility of energy systems in other locations.

[49], (2022) Optimization of solar–wind HRES for electric vehicle
charging stations.

[7], (2023) Integration of biomass and geothermal energy in
multigenerational systems.

[53], (2023) Involving geothermal heat and wave power in RES analysis.
[60], (2024) Implementation of combined heat and power in industrial HRES.

Data and Monitoring Systems [38], (2023) Importance of monitoring solar and tidal resources for
system optimization.

[48], (2024) Continuous monitoring of battery charging and discharging rates.

Demand-Side Management

[47], (2021) Incorporating interactive community responses and
incentive-based demand response.

[37], (2021) Game-theory-based demand response for realistic
microgrid scheduling.

[60], (2024) Demand-side management in hybrid industrial systems.

[83], (2022)
To stagger the demand with proportional increases, the stochastic
variation of resources and their repercussions on the electrical
network capacities.

Advanced Optimization Techniques

[92], (2020) Multi-objective optimization for green hydrogen energy systems.

[20], (2023) Application of advanced algorithms to improve energy system
optimization accuracy such as MOPSO and NSGA-II algorithms.

[40], (2023) Combining MOPSO with harmony search and cuckoo
search algorithms.

Technology Improvements

[44], (2023) Focus on advanced battery technologies for power management.
[48], (2024) Incorporation of Zn-ion batteries in energy storage systems.

[63], (2024) Transition from polymer electrolyte membrane to
alkaline electrolyzers.

Economic and Policy Implications
[33], (2023) Impact of weather patterns on economic and energy systems.
[55], (2023) Job creation assessment for battery storage systems.
[93], (2024) Methodology application to address economic concerns in hotels.

Future Scope for Specific Systems [93], (2022) Updating route tables for better system exploitation.
[94], (2024) Development of prototypes for experimental investigations.
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6. Discussion
The reviewed articles offer a comprehensive analysis of HRES design, optimization

techniques, and future insights. Its scope is illustrated in Figure 8.

Optimization approaches advantages:

• This research highlights the trade-offs between complexity, scalability, hardware de-
pendence, and accuracy for each optimization technique. MILP and MATLAB 9.1–9.13
are the most flexible and suitable for HRES multi-objective optimization for their
precision and versatility, but they require significant computational resources (see
Section 4.4).

• Four scientific principles for HRES optimization are revealed: simulation tools are
combined with optimization techniques, metaheuristic algorithms are blended with
decision-making methods, metaheuristic methods are combined in between, and multi-
objective optimization is used together with Pareto Analysis (see Section 4.2). These
principles are crucial for HRES optimization as they enable precise modeling of com-
plex systems, efficient exploration of solution spaces, and practical decision-making.

• Four relationships between criteria and optimization methods were identified: eco-
nomic indicators for multi-objective approaches, environmental criteria for evolution-
ary algorithms, reliability criteria for simulation-driven techniques, and social criteria
for emerging frameworks (see Section 4.3). Incorporating social criteria, such as job
creation and public acceptability, alongside traditional metrics like carbon emissions
ensures technically robust and socially beneficial HRES designs. Balancing competing
objectives like cost, efficiency, and sustainability ensures innovative, scalable, and
actionable solutions for real-world energy challenges.

Optimization techniques challenges:

• As the diversity of renewable energy sources in HRESs increases, along with the
integration of more energy storage solutions and the development of both islanded
and grid-connected HRESs (see Section 3), the demand for innovative optimization
solutions, their integration, and the selection of appropriate criteria is growing.

• This article collects challenges (see Table 1) that researchers faced, so the directions
clearly emphasize advancing HRES optimization, control, and integration of renew-
able resources [62,68,90]. Reports are increasingly addressing uncertainties [50,67,91],
improving demand-side management [47,60], and developing advanced optimization
techniques [20,40,92] to enhance system efficiency and scalability. HRES integration
is often coupled with innovative technologies like advanced batteries and AI-based
optimization [44,48,63]. Optimization challenges underscore a growing need for sus-
tainable and resilient solutions. Economic and policy considerations are also gaining
prominence, particularly in evaluating job creation [55,93]. Robust monitoring systems
and dynamic modeling remain crucial for ensuring adaptability and precision in HRES
performance [38,48].

Future perspectives:

• The roadmap for future research consisting of nine areas (see Table 2) was devel-
oped to address existing issues and foster advancements in HRESs, enabling efficient
integration, improved reliability, and broader adoption in diverse energy landscapes.

• Future advancements in HRESs will likely focus on dynamic optimization that in-
corporates high-resolution renewable resource forecasting and real-time adaptability
of HRESs [31,68]. Scaling these systems to integrate diverse energy sectors, includ-
ing industrial and agricultural loads, will further enhance their applicability and
impact [57,68]. Efficient algorithm designs will play a role as HRESs expand globally,
emphasizing the need for lightweight and scalable algorithms.
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• The future lies in integrating quantum computing, which can drastically accelerate
complex tasks and enable the exploration of previously unfeasible problems such as
real-time dynamic pricing in HRESs, microgrid control, or detailed life cycle assess-
ments of HRESs [79,80]. The speed of quantum computing compensates for the low
performance of the optimization methods, its real benefit lies in tackling complex prob-
lems that require high computational depth, expanding the scope of HRES research.

• The growing importance of enhancing local energy resilience and independence
underlines the need to integrate and explore energy sustainability at local and regional
levels. It can be done using an energy community framework to get additional benefits
for community members and ensure a resilient, efficient, and sustainable energy future
(see Section 3.4).
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ARO Adaptive Robust Optimization
ASAI Average System Availability Index
BFS Breadth-First Search
BPNN Back Propagation Neural Network
C & CG Column Constraint Generation Algorithm
CAIDI Customer Average Interruption Duration Index
CAPS Probability of Unmet Load
CMOPSO Constrained Multi-Objective Particle Swarm Optimization
COE Cost of Electricity; Cost of Energy
CRF Capacity Recovery Factor
CSA Crow Search Algorithm
DPP Deficit Power Probability
EAC Equivalent Annual Costs
ECSR Electricity Capacity Shortfall Rate
EDAS Evaluation Based on Distance from Average Solution
EF Electrolyzer Efficiency
ELF Equivalent Loss Factor
EMS Energy Management System
EMV Energy Matching Variance
ENS Energy Not Supplied
EPC Energy Purchase Cost
ESOA Ebola Optimization Search Algorithm
ESS Energy Storage System
GA Genetic Algorithm
GWO Grey Wolf Optimizer
HGWO-SCA Hybrid Grey Wolf Optimizer—Sine Cosine Algorithm
HMA Hybrid Metaheuristic Algorithm
HRES Hybrid Renewable Energy System
HS Harmony Search
IP Interruption Probability
JOBC Number of Manpower; Employment Opportunities; Job Creation Potential
LCE Life Cycle Emission
LCOE Levelized Cost of Energy
LCOH Levelized Cost of Hydrogen
LDP Load Deficit Probability
LF-SSA Hybrid Levy Flight-Salp Swarm Algorithm
LIP Load Interruption Probability
LOLE Loss of Load Expected
LOLP Loss of Load Probability
LPSP Loss of Power Supply Probability
MCDM Multi-Criteria Decision Making
MCS Monte Carlo simulation
MHOGA MegaWatt Hybrid Optimization by Genetic Algorithms
MILP Mixed-Integer Linear Programming
MMOSSA Modified Multi-Objective Salp Swarm Optimization Algorithm
MOMFO Multi-Objective Optimization Metaheuristic Algorithm
MOORA Multi-Objective Optimization on the Basis of Ratio Analysis
MOPSO Multi-Objective Particle Swarm Optimization
MSI Multi-Strategy Integration
NPV Net Price Value
NSGA-II Non-Dominated Sorting Genetic Algorithm II
OMC Operation and Maintenance Cost
PCOE Penalty Cost of Emission
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PDR Power Discard Rate
PESA II Pareto Envelope-Based Selection Algorithm II
PID Proportional-Integral-Derivative
PRER Primary Renewable Energy Rate
PSO Particle Swarm Optimization
PSP Power Supply Probability
RC Replacement Cost
REC Renewable Energy Contribution
REU Renewable Energy Utilization
RF Renewable Fraction; Renewable Energy Fraction
RFI Renewable Fraction Index
RI Reliability Index
RSM Statistical Approach of the Response Surface Method
SAIDI System Average Interruption Duration Index
SAIFI Average Interruption Frequency Index
SOC State of Charge
SPEA2 Strength Pareto Evolutionary Algorithm 2
TAC Total Annual Cost
TD Temporal Difference
TFC Total Fixed Cost
TIC Total Investment Cost
TLCC System Total Life Cycle Cost
TNPC Total Net Present Cost
TOPSIS Technique for Order Preference by Similarity to Ideal Solution
UEL Unmet Electricity Load
WOA Whale Optimization Algorithm Anion Exchange Membrane



Appl. Sci. 2025, 15, 1744 21 of 30

Appendix A

Table 1. A detailed review of literature sources (developed by the authors).

Article, Year Renewables Energy Storage System Grid Optimization Technique Criteria

[22], 2017 Solar/Wind/Biomass Hydrogen On Mixed-integer linear programming (MILP) Total Annual Cost (TAC)

[58], 2017 Solar/Wind Hydrogen Off Multi Objective Particle Swarm Optimization (MOPSO),
MATLAB 9.1

Total Annual Cost (TAC), Replacement Cost (RC),
Operation and Maintenance Cost (OMC), Total Investment

Cost (TIC), Loss of Load Expected (LOLE), Energy Not
Supplied (ENS), Loss of Power Supply Probability (LPSP),

Equivalent Loss Factor (ELF)

[54], 2018 Solar/Wind Battery/Hydrogen On HOMER Pro 3.12 Levelized Cost of Hydrogen (LCOH), Levelized Cost of
Energy (LCOE), Electrolyzer Efficiency (EF)

[43], 2018 Solar/Wind Off Genetic Algorithm Particle Swarm Optimization (GA-PSO),
Multi-Objective Particle Swarm Optimization (MOPSO)

Total Net Present Cost (TNPC), Levelized Cost of Energy
(LCOE), Loss of Power Supply Probability (LPSP)

[45], 2019 Solar/Wind Off Crow Search Algorithm (CSA)

Total Net Present Cost (TNPC), Power Supply Probability
(PSP), Loss of Power Supply Probability (LPSP), Loss of

Load Probability (LOLP), Deficit Power Probability (DPP),
Interruption Probability (IP)

[39], 2020 Solar/Wind Hydrogen On Particle Swarm Optimization (PSO) Total Net Present Cost (TNPC), CO2 Emissions,
CH4 Emissions

[57], 2020 Solar/Wind Off
Breadth-First Search (BFS), Inverse Transform Method,

Mixed-Integer Multi-Objective Particle Swarm
Optimization (MOPSO)

System Average Interruption Duration Index (SAIDI),
System Average Interruption

Frequency Index (SAIFI), Customer Average
Interruption Duration Index (CAIDI), Average System
Availability Index (ASAI), Energy Not Supplied (ENS),

Total Investment Cost (TIC)

[92], 2020 Wind/Hydro On Ant Colony Optimization, Simulated Annealing Method

System Average Interruption Duration Index (SAIDI),
System average interruption

frequency index (SAIFI), Customer Average
Interruption Duration Index (CAIDI)

[56], 2020 Solar/Wind On Non-Dominated Sorting Genetic Algorithm II (NSGA-II),
HOMER Pro 3.12

Total Net Present Cost (TNPC), CO2 Emissions,
Environmental footprint

[65], 2020 Solar/Wind Off Mixed-Integer Linear Programming (MILP),
MATLAB 9.7, INTLINPROG Equivalent Annual Costs (EAC)

[90], 2021 Solar/Wind On Stochastic Optimization Theory, Monte Carlo
Simulation (MCS)

Energy Purchase Cost (EPC), Maintenance Cost, Carbon
Emission Cost, Daily Operation Cost

[62], 2021 Solar/Wind On
Multi-Objective Particle Swarm Optimization (MOPSO),

Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) method

Cost of Electricity (COE)
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Table 1. Cont.

Article, Year Renewables Energy Storage System Grid Optimization Technique Criteria

[46], 2021 Solar/Wind/Tidal Hydrogen Off Whale Optimization Algorithm (WOA) Total Net Present Cost (TNPC), Levelized Cost OF Energy
(COE), Load Deficit Probability (LDP)

[21], 2021 Solar/Wind Off Particle Swarm Optimization Algorithm,
ε-constraint Method

Cost of Electricity (COE), Capacity Recovery Factor (CRF),
Loss of Power Supply Probability (LPSP), CO2 Emissions,

Renewable Energy Contribution (REC), Renewable
Fraction (RF)

[9], 2021 Solar/Wind/Biomass/Hydro On

Fuzzy Analytical Hierarchy Process, Multi-Objective
Optimization on the basis of Ratio Analysis (MOORA),
Technique for Order Preference by Similarity to Ideal

Solution (TOPSIS) method, Evaluation Based on Distance
from Average Solution (EDAS), Data-Driven methodology

and Quality Management Approach (Six Sigma)

System Total Life Cycle Cost (TLCC), Probability of Unmet
Load (CAPS), CO2 emissions, Total Area Required

(AREA), Number of Manpower (JOBC)

[59], 2021 Solar/Wind Off
Multi-Objective Particle Swarm Optimization (MOPSO),
Pareto Envelope-Based Selection Algorithm II (PESA II),

Strength Pareto Evolutionary Algorithm 2 (SPEA2)

Total Net Present Cost (TNPC), Penalty Cost of Emission
(PCOE), CO2 Emissions, Loss of Power Supply Probability
(LPSP), Availability, Renewable Fraction, Levelized cost of

energy (LCOE)

[47], 2021 Solar/Wind Hydrogen Off Hybrid Grey Wolf
Optimizer—Sine Cosine Algorithm (HGWO-SCA)

Total Life Cycle Cost (TLCC), Load Interruption
Probability (LIP)

[37], 2021 Solar/Wind Off Grey Wolf Optimizer (GWO), HOMER Pro 3.14 Loss of Power Supply Probability (LPSP), Levelized Cost
of Energy (LCOE)

[50], 2021 Solar/Wind Off Sine-Cosine Algorithm, Crow Search Algorithm (CSA),
ε-Constraint Method

Total Annual Cost (TAC), Nox Emissions, CO2 Emissions,
SO2 Emissions

[34], 2022 Solar/Wind Battery/Hydrogen Off HOMER Pro 3.14, Criteria-COPRAS
Levelized Cost of Energy (LCOE), Levelized Cost of
Hydrogen (LCOH), Operation Cost, Nox Emissions,

Capacity shortage, Excess electricity

[67], 2022 Solar/Wind Battery/Hydrogen On Mixed-Integer Linear Programming (MILP),
GAMS, CPLEX Operation and Maintenance Cost (OMC)

[93], 2022 Solar/Wind Hydrogen On CPLEX Levelized Cost of Energy (LCOE), Levelized Cost of
Hydrogen (LCOH), Utilization Efficiency of Renewables

[30], 2022 x Off
Jaya algorithm, Interior Point Method (IPM), CPLEX,

Particle Swarm Optimization (PSO), Monte Carlo
Simulations (MCS)

Total Net Present Cost (TNPC), Present Confidence level

[35], 2022 Solar/Wind Battery/Hydrogen On Multi-Objective Particle Swarm Optimization (MOPSO),
Non-Dominant Sorting Genetic Algorithm II (NSGA-II)

Life Cycle Cost (LCC), Loss of Power Supply Probability
(LPSP), CO2 Emissions

[19], 2022 Solar/Wind/Biomass/Hydro Off Non-Dominated Sorting Genetic Algorithm (NSGA-II)
Cost of Energy (COE), Life Cycle Emission (LCE), Job

Creation Potential, Loss of Power Supply
Probability (LPSP)
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Table 1. Cont.

Article, Year Renewables Energy Storage System Grid Optimization Technique Criteria

[49], 2022 Solar/Wind On Genetic Algorithm (GA), MATLAB 9.10 Total Net Present Cost (TNPC)

[18], 2023 Solar/Wind/Biomass/Hydro Battery/Hydrogen Off Multi-Period P-Graph Levelized Cost of Hydrogen (LCOH), Gross Profit,
Environmental Cost

[61], 2023 Solar/Wind/ Battery/Hydrogen Off Mixed-Integer Linear Programming (MILP) Total Net Present Cost (TNPC), CO2 Emissions

[38], 2023 Solar/Tidal Off Particle Swarm Optimization (PSO), Cuckoo Optimization,
HOMER Pro 3.15

Total Net Present Cost (TNPC), Excess Electricity, Unmet
Electricity Load (UEL), Capacity Shortage

[15], 2023 Solar/Wind/Biomass Hydrogen On HOMER Pro 3.15

Levelized Cost of Energy (LCOE), Operation and
Maintenance Cost (OMC), Total Net Present Cost (TNPC).
CO2 Emissions, CO Emissions, Unburned Hydrocarbons
Emissions, Particulate Matter Emissions, SO2 Emissions,

NOx Emissions

[40], 2023 Solar/Wind Pumped hy-
dro/Battery/Hydrogen Off Equilibrium Optimizer Algorithm, Artificial Bee Colony,

Lightning Search Algorithm, Gray Wolf Optimizer (GWO) Levelized Cost of Energy (LCOE), Exergy Efficiency

[44], 2023 Solar/Wind On Master-Followers Bi-Level Gaming Model Gross Profit, Loss of Power Supply Probability (LPSP)

[7], 2023 Solar/Wind On Loss Reduction Method, Voltage Improvement Method

System Average Interruption Duration Index (SAIDI),
System average interruption frequency index (SAIFI),

Customer Average Interruption Duration Index (CAIDI),
Average System Availability Index (ASAI)

[66], 2023 Solar/Wind On
Multi-Objective Optimization Metaheuristic Algorithm

(MOMFO), Taguchi Method, fuzzy decision-maker-based
multi-objective optimization algorithm

Levelized Cost of Energy (LCOE), Loss of Power Supply
Probability (LPSP), Renewable Energy Fraction (RF)

[32], 2023 Solar/Wind Off Archimedes Optimization Algorithm Total Net Present Cost (TNPC), Renewable Fraction Index
(RFI), Loss of Power Supply Probability (LPSP)

[74], 2023 Solar On Non-Dominated Sorting Genetic Algorithm (NSGA-II),
TOPSIS method

Renewable Energy Fraction, Loss of Power Supply
Probability (LPSP), Total Life Cycle Cost (TLCC), Waste of

Energy, Energy Matching Variance (EMV)

[20], 2023 Solar/Wind/Tidal Battery/Hydrogen Off Chameleon Swarm Algorithm
Total Net Present Cost (TNPC), Levelized Cost of Energy

(LCOE), Loss of Power Supply Probability (LPSP),
Cost-benefit index

[33], 2023 Solar/Wind Off Harmony Search (HS) Total Annual Cost (TAC), Loss of Power Supply
Probability (LPSP)

[51], 2023 Solar/Wind Battery/Hydrogen Off TRNSYS, Design of Experiments (DOE) Technique,
Statistical Approach of The Response Surface Method (RSM) Total Life Cycle Cost (TLCC), Predicted Mean Vote (PMV)

[55], 2023 Solar/Wind Battery/Hydrogen On HOMER Pro 3.16, MATLAB 9.13 Total Net Present Cost (TNPC), CO2 Emissions, Loss of
Power Supply Probability (LPSP)
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Table 1. Cont.

Article, Year Renewables Energy Storage System Grid Optimization Technique Criteria

[53], 2023 Solar/Wind/Biomass On HOMER Pro 3.16 Net Present Cost (NPC), Levelized Cost of Electricity
(LCOE), Renewable Fraction (RF)

[28], 2024 Solar/Wind Hydrogen On Sizing Based on Peak Power Levelized Cost of Hydrogen (LCOH), Total Net Present
Cost (TNPC)

[41], 2024 Solar/Wind Battery/Hydrogen On Column Constraint Generation Algorithm (C & CG),
MATLAB 9.8, CPLEX

Operation and Maintenance Cost (OMC), Flexible Electric
Load Dispatch Compensation Cost, Transaction Cost In

Between System and Power Grid, Total Net Present
Cost (TNPC)

[42], 2024 Solar/Wind Hydrogen On MegaWatt Hybrid Optimization by Genetic
Algorithms (MHOGA)

Levelized Cost of Hydrogen (LCOH), Total Net Present
Cost (TNPC)

[64], 2024 Solar/Wind/Biomass Battery/Hydrogen Off HOMER Pro 3.16 Total Annual Cost (TAC), Loss of Power Supply
Probability (LPSP)

[94], 2024 Solar/Wind On Ebola Optimization Search Algorithm (ESOA), Particle
Swarm Optimization. Grid Reliability, Levelized Power Supply Price

[68], 2024 Solar/Wind/Biomass Off Markov Reliability Process
Failure rate, Reliability index (RI), Repair time,

Unavailability, Energy not Supplied (ENS), Loss of Power
Supply Probability (LPSP), Availability

[91], 2024 Solar/Wind On TD Lambda Algorithm Fuel Cost, Battery Depletion Expenses, Renewable Energy
Utilization (REU)

[8], 2024 Solar/Wind/Geothermal/Hydro On
Particle Swarm Optimization (PSO), Mixed-Integer Linear

Programming (MILP),
MATLAB 9.10

Operation Cost, Share of Renewables

[60], 2024 Biomass/Geothermal Off Multi-Objective Grey Wolf Optimization, Engineering
Equation Solver (EES), MATLAB 9.14

Exergy Efficiency, Annual Money Savings (AMS), Total
Fixed Cost (TFC), Net Price Value (NPV)

[10], 2024 Solar/Wind Hydrogen On Non-Dominated Sorting Genetic Algorithm (NSGA-II)
with Linear Programming

Primary Renewable Energy Rate (PRER), Loss of Power
Supply Probability (LPSP), Power Discard Rate (PDR),

Levelized Cost of Energy (LCOE), Total Net Present Cost
(TNPC), CO2 Emission, SO2 Emissions, NOx Emissions,

PM25 Emissions, Employment Opportunities (JOBC),
Composite Sustainability Index (CSI)

[48], 2024 Solar/Wind/Biomass Battery/Hydrogen Off Levy Flight-Salp Swarm Algorithms (LF-SSA),
HOMER Pro 3.16

Total Annual Cost (TAC), Levelized Cost of Energy
(LCOE), Loss of Power Supply Probability (LPSP)

[31], 2024 Solar/Wind On Modified Multi-Objective Salp Swarm Optimization
Algorithm (MMOSSA)

Total Net Present Cost (TNPC), Levelized Cost of Energy
(LCOE), Energy loss, Frequency Deviation, Voltage

Stability Indicator, CO2 Emissions
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Table 1. Cont.

Article, Year Renewables Energy Storage System Grid Optimization Technique Criteria

[93], 2024 Biomass/Geothermal Hydrogen On Bi-Objective Optimization Levelized cost of product, Total Net Present Cost (TNPC),
CO2 Emissions, Exergo-Environmental Index (EEI)

[63], 2024 Solar/ Wind Hydrogen On HOMER Pro 3.16

Total Net Present Cost (TNPC), Investment Cost,
Operation Cost, Levelized Cost of Energy (LCOE),

Electricity Capacity Shortfall Rate (ECSR), Hydrogen
Capacity Shortfall Rate, Excess Power Rate



Appl. Sci. 2025, 15, 1744 26 of 30

References
1. Kabeyi, M.J.B.; Olanrewaju, O.A. Smart grid technologies and application in the sustainable energy transition: A review. Int. J.

Sustain. Energy 2023, 42, 685–758. [CrossRef]
2. United Nations Framework Convention on Climate Change (UNFCCC). Paris Agreement. 2015. Available online:

https://unfccc.int/sites/default/files/resource/parisagreement_publication.pdf (accessed on 5 January 2025).
3. Bamisile, O.; Cai, D.; Adun, H.; Dagbasi, M.; Ukwuoma, C.C.; Huang, Q.; Johnson, N.; Bamisile, O. Towards renewables

development: Review of optimisation techniques for energy storage and hybrid renewable energy systems. Heliyon 2024, 10,
e37482. [CrossRef] [PubMed]

4. Mancò, G.; Tesio, U.; Guelpa, E.; Verda, V. A review on multi-energy systems modelling and optimisation. Appl. Therm. Eng. 2024,
236, 121871. [CrossRef]

5. Bornemann, L.; Lange, J.; Kaltschmitt, M. A rigorous optimisation method for long-term multi-stage investment planning:
Integration of hydrogen into a decentralized multi-energy system. Energy Rep. 2025, 13, 117–139. [CrossRef]

6. Hannan, M.A.; Wali, S.B.; Ker, P.J.; Rahman, M.S.A.; Mansor, M.; Ramachandaramurthy, V.K.; Muttaqi, K.M.; Mahlia, T.M.I.; Dong,
Z.Y. Battery energy-storage system: A review of technologies, optimisation objectives, constraints, approaches, and outstanding
issues. J. Energy Storage 2021, 42, 103023. [CrossRef]

7. Haldia, P.; Kumar, S.; Negi, S.; Sagar, N. Reliability Improvement Technique Considering Various Renewable Energy Sources.
In Proceedings of the IEEE International Conference on Industrial Electronics: Developments and Applications (INDUC 2023),
Imphal, India, 18–22 August 2023; IEEE: New York, NY, USA, 2023; pp. 372–380. [CrossRef]

8. Zhang, H.; Liao, K.; Yang, J.; Zheng, S.; He, Z. Frequency-Constrained Expansion Planning for Wind and Photovoltaic Power in
Wind-Photovoltaic-Hydro-Thermal Multi-Power Systems. Appl. Energy 2024, 356, 122401. [CrossRef]

9. Ullah, Z.; Elkadeem, M.R.; Kotb, K.M.; Taha, I.B.M.; Wang, S. Multi-criteria decision-making model for optimal planning of
on/off-grid hybrid solar, wind, hydro, biomass clean electricity supply. Renew. Energy 2021, 179, 885–910. [CrossRef]

10. Liu, L.; Zhai, R.; Xu, Y.; Hu, Y.; Liu, S.; Yang, L. Comprehensive sustainability assessment and multi-objective optimisation of a
novel renewable energy-driven multi-energy supply system. Appl. Therm. Eng. 2024, 236, 121461. [CrossRef]

11. Oliveira, G.C.; Bertone, E.; Stewart, R.A. Optimisation modelling tools and solving techniques for integrated precinct-scale
energy–water system planning. Appl. Energy 2022, 318, 119190. [CrossRef]

12. Nutakki, M.; Mandava, S. Review on optimisation techniques and the role of Artificial Intelligence in home energy management
systems. Eng. Appl. Artif. Intell. 2023, 119, 105721. [CrossRef]

13. Alabi, T.M.; Aghimien, E.I.; Agbajor, F.D.; Yang, Z.; Lu, L.; Adeoye, A.R.; Gopaluni, B. A review on the integrated optimisation
techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems. Renew.
Energy 2022, 194, 822–849. [CrossRef]

14. Mukelabai, M.D.; Barbour, E.R.; Blanchard, R.E. Modeling and optimisation of renewable hydrogen systems: A systematic
methodological review and machine learning integration. Energy AI 2024, 18, 100455. [CrossRef]

15. Gul, E.; Baldinelli, G.; Farooqui, A.; Bartocci, P.; Shamim, T. AEM-Electrolyzer Based Hydrogen Integrated Renewable Energy
System Optimisation Model for Distributed Communities. Energy Convers. Manag. 2023, 285, 117025. [CrossRef]

16. Song, Y.; Mu, H.; Li, N.; Wang, H. Multi-objective optimisation of large-scale grid-connected photovoltaic-hydrogen-natural gas
integrated energy power station based on carbon emission priority. Int. J. Hydrogen Energy 2023, 48, 4087–4103. [CrossRef]

17. Abu, S.M.; Hannan, M.A.; Rahman, S.A.; Long, C.Y.; Ker, P.J.; Wong, R.T.K.; Jang, G. An effective optimisation algorithm for
hydrogen fuel cell-based hybrid energy system: A sustainable microgrid approach. Int. J. Hydrogen Energy 2025, 98, 1341–1355.
[CrossRef]

18. Ji, M.; Zhang, W.; Xu, Y.; Liao, Q.; Klemeš, J.J.; Wang, B. Optimisation of Multi-Period Renewable Energy Systems with Hydrogen
and Battery Energy Storage: A P-Graph Approach. Energy Convers. Manag. 2023, 281, 116826. [CrossRef]

19. Hassan, R.; Das, B.K.; Hasan, M. Integrated off-grid hybrid renewable energy system optimisation based on economic, environ-
mental, and social indicators for sustainable development. Energy 2022, 250, 123823. [CrossRef]

20. Zhou, J.; Xu, Z. Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different
energy storage employing chameleon swarm algorithm: A rural case in Northeast China. Renew. Energy 2023, 202, 1110–1137.
[CrossRef]

21. Mokhtara, C.; Negrou, B.; Settou, N.; Settou, B.; Samy, M.M. Design optimisation of off-grid Hybrid Renewable Energy Systems
considering the effects of building energy performance and climate change: Case study of Algeria. Energy 2021, 219, 119605.
[CrossRef]

22. Won, W.; Kwon, H.; Han, J.H.; Kim, J. Design and operation of renewable energy sources-based hydrogen supply system:
Technology integration and optimisation. Renew. Energy 2017, 103, 226–238. [CrossRef]

23. European Commission. Clean Energy for All Europeans Package; European Commission: Brussels, Belgium, 2019; pp. 1–33.
Available online: https://energy.ec.europa.eu/document/download/4d355bf1-1381-4d95-9c48-3b5b8c58469e_en?filename=
cleanenergy_com_en.pdf (accessed on 5 January 2025).

https://doi.org/10.1080/14786451.2023.2222298
https://unfccc.int/sites/default/files/resource/parisagreement_publication.pdf
https://doi.org/10.1016/j.heliyon.2024.e37482
https://www.ncbi.nlm.nih.gov/pubmed/39416839
https://doi.org/10.1016/j.applthermaleng.2023.121871
https://doi.org/10.1016/j.egyr.2024.11.079
https://doi.org/10.1016/j.est.2021.103023
https://doi.org/10.1109/ICIDeA59866.2023.10295062
https://doi.org/10.1016/j.apenergy.2023.122401
https://doi.org/10.1016/j.renene.2021.07.063
https://doi.org/10.1016/j.applthermaleng.2023.121461
https://doi.org/10.1016/j.apenergy.2022.119190
https://doi.org/10.1016/j.engappai.2022.105721
https://doi.org/10.1016/j.renene.2022.05.123
https://doi.org/10.1016/j.egyai.2024.100455
https://doi.org/10.1016/j.enconman.2023.117025
https://doi.org/10.1016/j.ijhydene.2022.10.121
https://doi.org/10.1016/j.ijhydene.2024.12.176
https://doi.org/10.1016/j.enconman.2023.116826
https://doi.org/10.1016/j.energy.2022.123823
https://doi.org/10.1016/j.renene.2022.12.005
https://doi.org/10.1016/j.energy.2020.119605
https://doi.org/10.1016/j.renene.2016.11.038
https://energy.ec.europa.eu/document/download/4d355bf1-1381-4d95-9c48-3b5b8c58469e_en?filename=cleanenergy_com_en.pdf
https://energy.ec.europa.eu/document/download/4d355bf1-1381-4d95-9c48-3b5b8c58469e_en?filename=cleanenergy_com_en.pdf


Appl. Sci. 2025, 15, 1744 27 of 30

24. International Renewable Energy Agency (IRENA). Renewable Energy Integration in Power Grids; IRENA: Abu Dhabi, United Arab
Emirates, 2020; pp. 1–72. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Jul/
IRENA_Renewable_Energy_Statistics_2020.pdf (accessed on 5 January 2025).

25. U.S. Department of Energy (DOE). Grid Modernization Initiative; DOE: Washington, DC, USA, 2021; pp. 1–30. Available
online: https://www.energy.gov/sites/prod/files/2021/02/f82/GMI_Strategy_FINAL%20as%20of%201.20.21.pdf (accessed
on 1 January 2025).

26. International Energy Agency (IEA). World Energy Outlook 2021; IEA: Paris, France, 2021; pp. 1–386. Available online:
https://www.iea.org/reports/world-energy-outlook-2021 (accessed on 1 January 2025).

27. Deevela, N.R.; Kandpal, T.C.; Singh, B. A Review of Renewable Energy-Based Power Supply Options for Telecom Towers. Environ.
Dev. Sustain. 2024, 26, 2897–2964. [CrossRef] [PubMed]

28. Rezaei, M.; Akimov, A.; Gray, E.M. Economics of Renewable Hydrogen Production Using Wind and Solar Energy: A Case Study
for Queensland, Australia. J. Clean. Prod. 2024, 435, 140476. [CrossRef]

29. Queensland Government. New Green Hydrogen Investment Set to Boost Queensland Economy. 2024. Available online:
https://statements.qld.gov.au/statements/101665 (accessed on 3 January 2025).

30. Li, Y.; Li, K.; Yang, Z.; Yu, Y.; Xu, R.; Yang, M. Stochastic optimal scheduling of demand response-enabled microgrids with
renewable generations: An analytical-heuristic approach. J. Clean. Prod. 2022, 330, 129840. [CrossRef]

31. Abid, M.S.; Ahshan, R.; Al Abri, R.; Al-Badi, A.; Albadi, M. Techno-economic and environmental assessment of renewable energy
sources, virtual synchronous generators, and electric vehicle charging stations in microgrids. Appl. Energy 2024, 353, 122028.
[CrossRef]

32. Kharrich, M.; Selim, A.; Kamel, S.; Kim, J. An effective design of hybrid renewable energy system using an improved Archimedes
Optimisation Algorithm: A case study of Farafra, Egypt. Energy Convers. Manag. 2023, 283, 116907. [CrossRef]

33. Fan, J.; Zhou, X. Optimisation of a hybrid solar/wind/storage system with bio-generator for a household by emerging meta-
heuristic optimisation algorithm. J. Energy Storage 2023, 73, 108967. [CrossRef]

34. Babatunde, O.M.; Munda, J.L.; Hamam, Y. Hybridized Off-Grid Fuel Cell/Wind/Solar PV/Battery for Energy Generation in a
Small Household: A Multi-Criteria Perspective. Int. J. Hydrogen Energy 2022, 47, 6437–6452. [CrossRef]

35. Sadeghi, D.; Ahmadi, S.E.; Amiri, N.; Marzband, M.; Abusorrah, A.; Rawa, M. Designing, optimizing and comparing distributed
generation technologies as a substitute system for reducing life cycle costs, CO2 emissions, and power losses in residential
buildings. Energy 2022, 253, 123947. [CrossRef]

36. European Commission. Energy Communities. Available online: https://energy.ec.europa.eu/topics/markets-and-consumers/
energy-consumers-and-prosumers/energy-communities_en (accessed on 3 January 2025).

37. Emad, D.; El-Hameed, M.A.; El-Fergany, A.A. Optimal techno-economic design of hybrid PV/wind system comprising battery
energy storage: Case study for a remote area. Energy Convers. Manag. 2021, 249, 114847. [CrossRef]

38. Khare, V.; Khare, C.J.; Bhuiyan, M.A. Design, Optimisation, and Data Analysis of Solar-Tidal Hybrid Renewable Energy System
for Hurawalhi, Maldives. Clean. Energy Syst. 2023, 6, 100088. [CrossRef]

39. HassanzadehFard, H.; Tooryan, F.; Collins, E.R.; Jin, S.; Ramezani, B. Design and Optimum Energy Management of a Hybrid
Renewable Energy System Based on Efficient Various Hydrogen Production. Int. J. Hydrogen Energy 2020, 45, 30113–30128.
[CrossRef]

40. Ghandehariun, S.; Ghandehariun, A.M.; Ziabari, N.B. Performance Prediction and Optimisation of a Hybrid Renewable-Energy-
Based Multigeneration System Using Machine Learning. Energy 2023, 282, 128908. [CrossRef]

41. Xia, L.; Wu, B.; Zhou, L.; Liang, T.; Liu, Z. Scheduling of Renewable Energy Hydrogen Production System Based on Two-Stage
Distribution Robust Optimisation. In Proceedings of the 10th Hydrogen Technology Convention (WHTC 2023), Foshan, China,
22–26 May 2023; Springer: Singapore, 2024; Volume 1, pp. 222–243. [CrossRef]

42. Dufo-López, R.; Lujano-Rojas, J.M.; Bernal-Agustín, J.L. Optimisation of size and control strategy in utility-scale green hydrogen
production systems. Int. J. Hydrogen Energy 2024, 50, 292–309. [CrossRef]

43. Ghorbani, N.; Kasaeian, A.; Toopshekan, A.; Bahrami, L.; Maghami, A. Optimizing a hybrid wind-PV-battery system using
GA-PSO and MOPSO for reducing cost and increasing reliability. Energy 2018, 154, 581–591. [CrossRef]

44. Chen, B.; Chen, Y.; Zhou, H.; Bai, X.; Li, B.; Guo, X. A bi-level gaming programming for regional integrated energy system
considering the users’ reliability incentive. Reliab. Eng. Syst. Saf. 2023, 229, 108839. [CrossRef]

45. Moghaddam, S.; Bigdeli, M.; Moradlou, M.; Siano, P. Designing of Stand-Alone Hybrid PV/Wind/Battery System Using
Improved Crow Search Algorithm Considering Reliability Index. Int. J. Energy Environ. Eng. 2019, 10, 429–449. [CrossRef]

46. Naderipour, A.; Abdul-Malek, Z.; Arabi Nowdeh, S.; Kamyab, H.; Ramtin, A.R.; Shahrokhi, S.; Klemeš, J.J. Comparative
evaluation of hybrid photovoltaic, wind, tidal, and fuel cell clean system design for different regions with remote application
considering cost. J. Clean. Prod. 2021, 283, 124207. [CrossRef]

https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Jul/IRENA_Renewable_Energy_Statistics_2020.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Jul/IRENA_Renewable_Energy_Statistics_2020.pdf
https://www.energy.gov/sites/prod/files/2021/02/f82/GMI_Strategy_FINAL%20as%20of%201.20.21.pdf
https://www.iea.org/reports/world-energy-outlook-2021
https://doi.org/10.1007/s10668-023-02917-7
https://www.ncbi.nlm.nih.gov/pubmed/36687741
https://doi.org/10.1016/j.jclepro.2023.140476
https://statements.qld.gov.au/statements/101665
https://doi.org/10.1016/j.jclepro.2021.129840
https://doi.org/10.1016/j.apenergy.2023.122028
https://doi.org/10.1016/j.enconman.2023.116907
https://doi.org/10.1016/j.est.2023.108967
https://doi.org/10.1016/j.ijhydene.2021.12.018
https://doi.org/10.1016/j.energy.2022.123947
https://energy.ec.europa.eu/topics/markets-and-consumers/energy-consumers-and-prosumers/energy-communities_en
https://energy.ec.europa.eu/topics/markets-and-consumers/energy-consumers-and-prosumers/energy-communities_en
https://doi.org/10.1016/j.enconman.2021.114847
https://doi.org/10.1016/j.cles.2023.100088
https://doi.org/10.1016/j.ijhydene.2020.08.040
https://doi.org/10.1016/j.energy.2023.128908
https://doi.org/10.1007/978-981-99-8631-6
https://doi.org/10.1016/j.ijhydene.2023.08.273
https://doi.org/10.1016/j.energy.2017.12.057
https://doi.org/10.1016/j.ress.2022.108839
https://doi.org/10.1007/s40095-019-00319-y
https://doi.org/10.1016/j.jclepro.2020.124207


Appl. Sci. 2025, 15, 1744 28 of 30

47. Jahannoosh, M.; Nowdeh, S.A.; Naderipour, A.; Kamyab, H.; Davoudkhani, I.F.; Klemeš, J.J. New hybrid meta-heuristic algorithm
for reliable and cost-effective designing of photovoltaic/wind/fuel cell energy system considering load interruption probability.
J. Clean. Prod. 2021, 278, 123406. [CrossRef]

48. Modu, B.; Abdullah, M.P.; Bukar, A.L.; Hamza, M.F.; Adewolu, M.S. Operational strategy and capacity optimisation of standalone
solar-wind-biomass-fuel cell energy system using hybrid LF-SSA algorithms. Int. J. Hydrogen Energy 2024, 50, 92–106. [CrossRef]

49. Emrani, A.; Berrada, A.; Bakhouya, M. Optimal sizing and deployment of gravity energy storage system in hybrid PV-Wind
power plant. Renew. Energy 2022, 183, 12–27. [CrossRef]

50. Yang, Z.; Ghadamyari, M.; Khorramdel, H.; Seyed Alizadeh, S.M.; Pirouzi, S.; Milani, M.; Banihashemi, F.; Ghadimi, N. Robust
multi-objective optimal design of islanded hybrid system with renewable and diesel sources/stationary and mobile energy
storage systems. Renew. Sustain. Energy Rev. 2021, 148, 111295. [CrossRef]

51. Assareh, E.; Dejdar, A.; Ershadi, A.; Jafarian, M.; Mansouri, M.; Roshani, A.S.; Azish, E.; Saedpanah, E.; Lee, M. Techno-economic
analysis of combined cooling, heating, and power (CCHP) system integrated with multiple renewable energy sources and energy
storage units. Energy Build. 2023, 278, 112618. [CrossRef]

52. Sanajaoba, S.; Fernandez, E. Maiden application of Cuckoo Search algorithm for optimal sizing of a remote hybrid renewable
energy system. Renew. Energy 2016, 96, 1–10. [CrossRef]

53. Abdelhady, S. Techno-economic study and the optimal hybrid renewable energy system design for a hotel building with net zero
energy and net zero carbon emissions. Energy Convers. Manag. 2023, 289, 117195. [CrossRef]

54. Gökçek, M.; Kale, C. Techno-economical evaluation of a hydrogen refuelling station powered by Wind-PV hybrid power system:
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