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Abstract 

 

Research background: Increasing CO2 emissions place considerable strain on environmental 

performance, whereas the digital economy, as a transformative economic paradigm, has been 

identified as an essential catalyst for mitigating environmental effects. However, the inherent 

limitations of conventional decomposition models have led previous decomposition analyses 

to overlook the driving effect of the digital economy on CO2 emissions. 

Purpose of the article: Examining the impacts of the digital economy within the framework of 

CO2 emissions disaggregation and subsequently projecting the future pathways of CO2 emis-

sions. Ultimately, the research aims to offer scientific insights and recommendations for 

achieving low-carbon development through digital economic support. 

Methods: The actual contribution of the digital economy to CO2 emissions is assessed through 

a novel Generalized Divisia Index (GDI) model. Further, the Stochastic Impacts by Regression 

on Population, Affluence, and Technology (STIRPAT) model is extended to project the CO2 

trajectories across distinct scenarios. 

Findings & value added: The results unveil that the digital economy plays a weaker driving 

force in cutting CO2 emissions. Carbon intensity and energy intensity within the digital econ-

omy show substantial potential to deliver CO2 emission abatement, especially in the provinces 

of eastern and western regions. The carbon factor is manifested as the main accelerator of 

increasing CO2 emissions. Under the low-CO2 scenario, CO2 emissions driven by the digital 

economy will meet the emission goals ahead of schedule, while reductions will suffer con-

straints in the baseline and high-CO2 scenarios. The findings provide an empirical basis and 

scientific reference at the factor decomposition level for the digital economy to support CO2 

reduction. 

 

 

Introduction 

 

Global warming has been driven by  greenhouse gases emissions, primarily 

CO2, adversely affecting environmental performance (Doryń & Wawrzyni-

ak, 2024). By 2023, global energy-related CO2 emissions had risen to a stag-

gering 37.4 billion tons, and the regulation of CO2 emissions has emerged 

as a global imperative (IEA, 2024). Given this context, China has introduced 

the “3060” target to mitigate climate change, optimize energy structures, 

and promote high-quality economic growth. Striking the balance between 

economic expansion and emission reduction presents an urgent dilemma 

for China. As a transformative economic model, the digital economy has 

profoundly driven the reshaping of industrial structure and technological 

innovation, providing a new path for green development (Yu, 2025). The 

digital economy has made advanced significantly in China, even surpas-

sing the secondary industry in its contribution to GDP in 2022 (CAICT, 

2023). Consequently, the  digital  economy  has  been  considered  a  pivotal  
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engine for driving green development, particularly through its integration 

into the energy and environmental sectors. 

Summarizing relevant research, the digital economy exerts multiple ef-

fects on CO2 emissions evolution (as illustrated in Figure 1). First, the digi-

tal economy has facilitated technological upgrading, while the delivery of 

digitized information has expedited the innovation of green technologies 

(Zhang et al., 2024; Zhou & Liu, 2024). New low-carbon technologies foster 

efficiency of energy usage and optimize the energy mix in production and 

transportation (Luo et al., 2024; Zhou & Wang, 2024). Secondly, digital 

technology provides efficient information transmission and lower infor-

mation collection costs, allowing enterprises to obtain new competitive 

advantages (Yang et al., 2023). Additionally, the investment of digital prod-

ucts promotes industrial upgrading, which alleviates CO2 emissions. Nev-

ertheless, given the coal-dominated energy endowment of China, digital 

technologies cannot assist China in transitioning away from its energy-

intensive structure in the short term (Bai et al., 2024). Third, a rebound ef-

fect may occur in energy consumption, where the reduced cost of energy 

from digital technologies could lead to higher consumption, partially ne-

gating the emissions reductions from digitization (Lange et al., 2020). 

Although several researchers have attempted to evaluate how digital 

economic growth correlates with CO2 emission changes by applying econ-

ometric methods, such methods exhibit significant limitations when deal-

ing with nonlinear relationships, and the results are relatively complex to 

interpret (Niu et al., 2024). In contrast, decomposition methods, represented 

by the Logarithmic Mean Divisia Index (LMDI), can study nonlinear rela-

tionships and offer greater intuitiveness, visualization, and interpretability 

in the study of CO2 emission dynamics (Li et al., 2023a). However, current 

decomposition analyses fail to quantify the actual contribution of the digi-

tal economy. It may be ascribed to traditional LMDI methods that can 

quantify the impact of a single absolute factor on CO2 emissions, like GDP 

or energy (Shui et al., 2024). Furthermore, although combining the STIRPAT 

model and LMDI has been proven effective in analyzing carbon peak 

pathways (Zhang et al., 2023), there exists no research that combines the 

STIRPAT model with the GDI method. This gap hinders the further devel-

opment of the GDI model. 

In response to the identified research gaps, it is proposed to develop 

a novel GDI model, which is integrated with an enhanced STIRPAT frame-

work to address the following doubts: (i) How might systematic decompo-
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sition methods capture the digital transformation’s influence on CO₂ emis-

sions? (ii) How can factors associated with the digital economy be effective-

ly incorporated into the decomposition mechanism? (iii) What are the pro-

jected CO2 emission trends across various provinces in China, influenced 

by the digital economy? The contribution of this study is threefold: (i) This 

study introduces an innovative GDI model of CO2 emission that can cap-

ture the effects of the digital economy, and other relevant indicators simul-

taneously. The new proposed model addressed the interdependencies pre-

sent in the traditional LMDI model. (ii) Furthermore, an extended STIRPAT 

model is integrated with the GDI model to simulate the potential CO2 evo-

lution trends under the digital economy. The integration of these two 

methods fills a theoretical research gap and expands the analytical frame-

work for CO2 emission impact studies. (iii) The proposed models help to 

determine the elements that influence CO2 emissions in practice, thereby 

offering a foundation for decision-making aimed at targeted CO2 emission 

reduction within the rapidly evolving digital economy landscape. 

Section 2 reviews the findings and methodology of the relevant studies. 

Section 3 details the modeling procedures for the novel GDI and STIRPAT 

models, including data sources. Section 4 provides descriptive statistical 

analyses of the various drivers and empirical results. The findings are eval-

uated and discussed in Section 5. The final section summarizes the research 

limitations, future perspectives, and policy implications. The research logic 

is illustrated in Figure 2. 

 

 

Literature review 

 

Relation of digital economy and CO2 emissions 

 

The commercialization of the Internet has driven the rapid emergence of 

the global digital economy since the 1990s (Rehman & Nunziante, 2023). In 

the 21st century, disruptive innovations in digital technologies have further 

accelerated economic digitalization, fostering industrial restructuring and 

business model innovation (Negi et al., 2024). Given this, the rapid trans-

formation of the digital economy has become a key driver of green socio-

economic development, attracting significant scholarly and institutional 

attention regarding its implications for energy utilization and CO₂ emis-

sions (Owusu & Acheampong, 2025). For instance, through panel data 
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analyses across various countries, Shahbaz et al. (2022) and Sultanova et al. 

(2022) have proven that the digital economy facilitates improvements in 

renewable energy and power generation structures, thereby contributing to 

CO₂ emission reductions. Kurniawan et al. (2023) highlighted that digitiza-

tion of the waste recycling sector enables cost savings in urban waste man-

agement while enhancing CO₂ mitigation efficiency. Similarly, Wulf et al. 

(2024) found that digitalization has fostered the emergence of circular busi-

ness models in the furniture industry, promoting resource recycling and 

CO₂ reduction. Additionally, Jalil et al. (2025) emphasized that green digital 

technologies support the efficiency of energy management and operations 

in the manufacturing sector, facilitating the effective decarbonization of 

green hydrogen systems. 

The digital economy has affected CO2 evolution through various digital 

technological means (Balsalobre-Lorente & Shah, 2024). Based on Ullah et 

al. (2024), the application of digital instruments such as the Internet of 

Things (IoT) facilitates the energy transition in green economies. This in-

cludes implementing smart grid technologies, which enable users to track 

energy usage in real-time and make it easier to incorporate renewable en-

ergy sources into electrical systems. As a result, such advancements lessen 

dependency on fossil fuels and contribute to accomplishing sustainable 

development objectives. Does the application of digital technologies inevi-

tably result in lower CO₂ emissions? The answer is negative. For example, 

from the standpoint of digital finance, Ali et al. (2023) and Khan et al. (2023) 

found that digital financial inclusion exhibits a significant positive correla-

tion with CO2 emissions. In contrast, Zaman et al. (2025) suggested that 

integrating climate change technology with green digital finance could 

redirect financial resources toward carbon reduction efforts, thereby en-

hancing the stability of decarbonization initiatives and promoting envi-

ronmental sustainability. As for AI, Yin et al. (2023) pointed out that the 

development of AI-driven software leads to more efficient utilization of 

renewable energy, and that government support for renewable energy 

technologies is critical in this process. Furthermore, carbon prediction and 

carbon capture are rendered easier by the combination of big data pro-

cessing and machine learning, which successfully lowers CO₂ emissions 

linked to human activities (Chauhan et al., 2023). However, due to rebound 

effects and technical constraints, AI models, particularly in their early stag-

es of application, consume substantial energy for training and inference, 

which raises CO2 emissions (Delanoë et al., 2023). 
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International evidence suggests significant disparities regarding the ef-

fects of the digital economy on CO2 emissions, which provides valuable 

insights for assessing its impact under China’s digital transformation con-

text. Accelerated penetration of digitalization has enhanced economic effi-

ciency and industrial structure (Zha et al., 2022; Tan et al., 2024). Neverthe-

less, due to the vast geographical area and fossil fuel-based energy struc-

ture, there exists a substantial heterogeneity in the performance of digitiza-

tion in China. The transition and upgrading of digital production inevita-

bly resulted in higher non-clean energy utilization and CO2 emissions 

(Zhong et al., 2022; Dong et al., 2022). Moreover, the “rebound effect” of 

digital technologies can result in a simultaneous increase in energy effi-

ciency and energy use (Wang et al., 2022; Zhu & Lan, 2023). The pathways 

through which the digital economy drives CO₂ evolution are multifaceted, 

shaped by variations in economic development, digital technology applica-

tions, and resource endowments (Li & Wang, 2022). This complexity sug-

gests that prior research relying on single-model approaches linking digital 

economic development and CO₂ emissions requires refinement. Addition-

ally, research exploring the intricate connections between these two aspects 

at the indicator level requires supplementation. Conventional econometric 

methods employed in previous studies have struggled to accurately identi-

fy the primary factors of CO₂ emissions changes and quantify the contribu-

tion of factors associated with the digital economy to CO2 changes. The 

factor decomposition approach offers a more sophisticated analytical 

framework by integrating pertinent variables into the decomposition 

mechanism of CO₂ changes, resolving these methodological constraints and 

offering a quantitative evaluation of each variable’s contribution. 

 

Decomposition and predicting the effects of the digital economy 

 

Factor decomposition analysis has been extensively utilized to assess 

the specific contribution of correlated elements to target variables. Particu-

larly in the study of CO2 emission changes, Index Decomposition Analysis 

(IDA) is favored by scholars for its practicality for model construction and 

data processing (Jia et al., 2023). Among them, LMDI avoids residuals and 

is easy to calculate, which has become a commonly used model for decom-

posing target variables such as CO2 changes (Chen et al., 2023). For exam-

ple, Ni et al. (2024) revealed the remarkable correlation between China’s 

CO2 changes and the flourishing digital economy by applying the Kaya-
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LMDI model. However, the LMDI method is limited by its reliance on the 

Kaya equation, which makes the decomposition results affected by factor 

selection and decomposition form, thereby reducing the scientific value of 

the findings (Wang & Balezentis, 2023). In contrast, the GDI model pro-

posed by Vaninsky (2014) identifies intricate connections among relative 

and absolute factors, providing a more accurate technique for assessing 

CO2 emissions changes. What’s more, more influential factors are encom-

passed in the GDI model, which covers more absolute and relative factors 

and possesses higher practical application value (Sui et al., 2024). Conse-

quently, the GDI model is employed to evaluate the specific contribution of 

the relevant factors to CO2 emissions. 

Furthermore, the accurate prediction of CO2 emission is essential 

(Chang et al., 2023; Lu et al., 2024). It assists the relevant sectors in identify-

ing effective pathways for emission reductions and minimizes trial and 

error costs. Relevant studies combine decomposition analysis with forecast-

ing methods, and such a composite of studies is conducive to revealing the 

impacts of the factors on the target variables (Li et al., 2023b; Wang et al., 

2024). Given the influence of digital economy trends and associated poli-

cies, there arises a necessity to delineate the future evolution pathways of 

CO2 emissions. The IPAT equation decomposes environmental pressure by 

examining factors such as population size, wealth, and technological ad-

vancement, which have been extensively applied in environmental research 

(Gan et al., 2023). With the deepening of research, Dietz and Rosa (1994) 

introduced differential elasticity and error terms into the IPAT equation, 

establishing the STIRPAT model. This model possesses the advantage of 

expanding the measurement equations depending on the field of research, 

providing greater flexibility and application value (Wang & Zhu, 2023; Wei 

et al., 2023). Moreover, the scenario analysis methods are applied in studies 

associated with CO2 emission projections, which allow for a comprehensive 

assessment of possible states under different predetermined conditions. 

Therefore, the STIRPAT model has been extended from the digital economy 

perspective and combined with scenario analysis methods. It provides 

a scientific reference for analyzing the dynamics of CO2 emissions driven 

by the digital economy. 
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Methods and data 

 

A novel GDI model  

 

The GDI decomposition method captures non-linear associations among 

factors, thereby compensating for the interdependence of variables in other 

decomposition models (Yan et al., 2019a). This model offers a more precise 

and comprehensive approach to analyzing the actual contribution of fac-

tors associated with the digital economy to CO2 emission changes. By syn-

thesizing the dynamics of the digital economy, CO2 evolving characteris-

tics, and the theoretical structure of the GDI model, this study establishes 

a novel GDI model that connects the digital economy with energy and CO2 

emission within an indicator framework. Given the crucial effect of digiti-

zation on green development, the added value of the digital economy (DV) 

was calculated as one of the absolute factors. Energy systems produce the 

largest share of CO2 emissions in the world, thereby energy consumption 

(E) is selected as another key absolute factor of CO2 changes (Yan et al., 

2019b). Within the index decomposition framework, relative driving factors 

are constructed based on the target variables and the selected absolute fac-

tors. Specifically, CO2 emissions per unit of absolute factor represents the 

carbon intensity of the factor, and energy consumption per unit of absolute 

factor denotes the energy intensity of the factor (Sui et al., 2024). Combined 

with the analysis of Wang et al. (2021) for digital communication technolo-

gies affecting CO2, the carbon intensity of digital economy (DCI), the ener-

gy intensity of digital economy (DEI), and the carbon intensity of energy 

consumption (carbon factor, ECI) are constructed as the relative factors for 

CO2 emission evolutions. Table 1 shows the interpretation of each factor. 

Referring to the five-factor GDI modeling framework designed by Wang 

et al. (2023), this study incorporates the above-selected and constructed 

factors into the decomposition mechanism. The five-factor GDI model con-

tains two absolute factors (X1, X3) and three relative factors (X2, X4, X5). The 

target variable Z is expressed as a function of Xi (where i=1, 2, 3, 4, 5), as 

shown in equation (1) and (2). 

 � = �� ⋅ �� = �� ⋅ ��                                         (1) 

 

	 �� = �/���� = �/���� = ��/��
                                                   (2) 
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Combining the above equations gives 

 

�
� = �� ⋅ �� − �� ⋅ ��
� = �� − �� ⋅ �� .                                        (3) 

 

Then, the Jacobian matrix shown as equation (4) is obtained from the 

first-order partial derivatives of 
 = [
�, 
�]. 

 

�� = ��� �� −�� −�� 01 0 −�� 0 −��� �
                           (4) 

 

Based on the GDI model, the variations of the target variable C are dis-

aggregated into the summation of the contributions of the driving factors 

(ΔCE, ΔCDV, ΔCECI, ΔCDCI, ΔCDEI), as displayed in equation (5)–(6). 

 ����|�� = � ���� − ����!"#�                             (5) 

 �� = ��$ + ��$&' + ��() + ��(&' + ��($'                      (6) 

 

where ��! = ������"*���� and �� = ���, ��, 0,0,0"�. The operation of the 

GDI model is accomplished through the R programming language. 

 

An extended STIRPAT model 

 

The STIRPAT model is capable of extending the model according to spe-

cific studies and has manifested as a randomized version of the IPAT equa-

tion (Zhou et al., 2023a). Accordingly, based on the STIRPAT framework, 

this study introduces the potential CO2 reduction factors of the digital 

economy derived from the decomposition results into the CO2 emission 

prediction mechanism. Further, possible trends in the digital economy 

driving CO2 emissions will be explored and analyzed. The standard form 

of the STIRPAT model exhibits the basic predictors that drive changes in 

environmental stress (I), including population (P), affluence (A), and tech-

nology (T). The expression can be represented as 

  + = ,-.+/01+/23+/45 .                                      (7) 

 

where α0 represents the constant term. α1, α2, α3 are exponential terms. e is 

the error term. For equation (7), take the logarithm on both sides: 
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67  + = 67 ,- + ,� 67 .+ + ,� 67 1+ + ,� 67 3+ + 8+.                        (8) 

 

Expanding on the STIRPAT model expressed in equation (8). Given the 

powerful abatement potential presented by DCI and DV in the decomposi-

tion mechanism of CO2 change, these two factors are selected to replace the 

technology variable. In addition, considering that the strike of digital tech-

nologies on the industrial structure affects CO2 emissions dramatically, the 

ratio of tertiary industry to GDP (IS) is selected as one of the predictors 

(Zhou et al., 2023b). Accordingly, the extended STIRPAT model aiming at 

explaining the CO2 emission volume as follows. 

 67�+ = 67,- + ,�67.+ + ,�67 9+ + ,�67:;+ + ,�67:� + + 678+      (9)
 

 

Forecasting the possible paths of CO2 emissions under diverse scenarios 

facilitate probing efficient digitalized energy-saving and carbon-reducing 

pathways. According to the economic and policy interventions, a combina-

tion of the extended STIRPAT model and the scenario forecasting method is 

adopted as a strategy in this paper. The setting scenarios include baseline 

(BCS), high-CO2 (HCS), and low-CO2 scenarios (LCS). Specifically, the BCS 

depicts a scenario that is consistent with the current trends in socio-

economic growth and technological development. This scenario is realized 

by following current green development policies and measures. As one of 

the comparison scenarios, the HCS assumes that economic development 

will be constrained by reverse globalization. Both the digital economy and 

the abatement process in the HCS fall behind the other two scenarios, with 

lagging characteristics in both the upfront energy consumption and the 

later emission reduction. The LCS is another contrasting scenario in which 

people consciously address climate change and stimulate low-carbon tech-

nological innovation through digital channels. Based on this, energy utili-

zation efficiency and industrial structure were upgraded promoted, and 

the process of saving energy and reducing CO2 emissions has been acceler-

ated. 

 

Data sources 

 

Given data availability and accuracy, this study takes a sample of 30 

provinces in China. Since the input-output tables have provided a more 

detailed categorization of the industries associated with information tech-
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nology since 2002, this paper sets 2002 as the starting year of the study. The 

data for measuring DV were sourced from provincial input-output tables, 

supplemented by the Economic Census Yearbook and Statistical Yearbook 

of China. Converting E to fuel consumption by standard coal coefficient, 

the data is available from the China Energy Statistical Yearbook. Referring 

to the CO2 emission calculation methodology supplied by the Intergov-

ernmental Panel on Climate Change (IPCC), C can be calculated via equa-

tion (10). 

 �<+ = =<+ × ;< × ?< × @< × A                                   (10) 

 

where t

i
E  symbolizes the consumed volume from fuel i during year t, and 

Vi denotes the calorific index of the i fuel, and the data were collected from 

the China Energy Statistical Yearbook. Fi denotes the carbon content per 

calorific value and Oi indicates the CO2 oxidation rate, and the relevant 

data originate from the IPCC. M denotes the conversion of carbon mass to 

CO2 mass, typically with a value of 44/12. 

The parameter settings in the prediction model (Eq. 9) are presented in 

Table 2. The projected average annual growth rates (AAGRs) of P are set 

according to Yu et al. (2023). The proportion of the tertiary sector will be 

affected by shifts in demographic trends and the expansion of digital tech-

nology (Liu & Li, 2024). It is expected that the growth rates of the primary 

and secondary sectors will decrease, while the tertiary sector is likely to 

experience growth (Huang et al., 2023). In addition, advanced digital tech-

nologies will provide a robust impetus for the transition to a green econo-

my. Consequently, the driving effect of increasing DV and decreasing DCI 

on CO2 abatement will gradually strengthen. In conjunction with the “14th 

Five-Year Plan” for the Development of the Digital Economy and the Digital 

China Development Report, the projected AAGRs for DV and DCI have been 

determined. 

 

 

Results 

 

Dynamics of driving factors 

 

Figure 3 shows the dynamic growth of the digital industry and its re-

gional differences. From 2002 to 2020, the development of the digital econ-



Oeconomia Copernicana, 16(1), 247–281 

 

258 

omy exhibited an upward trend in all regions of China. Especially the east-

ern region, where DV has surged from 454.07 billion yuan to 304.92 billion 

yuan during 2002–2020. It is largely owed to the more advanced economic 

development and digital capacity of the eastern region. Although the mid-

western region do not dominate the digital industry, their spatial structure 

share has increased from 2002 to 2020. In particular, the AAGR of DV in the 

western region reaches 15%, exceeding that of the eastern (11%) and north-

eastern (10%) regions. By contrast, both the eastern and northeastern re-

gions saw a decrease in their share of spatial structure, from 74% and 10% 

in 2002 to 65% and 4% in 2020, respectively. This shift might benefit from 

the synergistic development strategy of arithmetic resources in China. In 

recent years, the data center has received synergistic development with the 

network, energy, arithmetic, data, and other elements. 

From a provincial level, Guangdong and Jiangsu exhibit stronger 

strengths in digital industry development, while Ningxia, Xinjiang, and 

Gansu are relatively weaker. Provinces with higher digital economy devel-

opment growth rates than their regional AAGR include Jiangsu, Jiangxi, 

Shanxi, Anhui, Chongqing, Guizhou, and Jilin. Provinces with digital 

economy development growth rates higher than their regional AAGR in-

clude Jiangsu, Jiangxi, Shanxi, Anhui, Chongqing, Guizhou, and Jilin. In 

contrast, Zhejiang, Hunan, Gansu, Xinjiang, and Heilongjiang show a low-

er digital economy development momentum than their regional AAGRs. 

The dynamic evolution of the digital economy exhibits distinct regional 

disparities. Accordingly, the relevant sectors should emphasize guiding the 

scale and intensive development of data centers, as well as promoting the 

efficient complementarity and synergy of regional arithmetic power. 

Figure 4(a) illustrates the trends in absolute factors (E and DV). It can be 

observed that the growth trends of E and DV performed consistently dur-

ing 2002-2010. Nevertheless, DV has demonstrated a powerful growth 

momentum since 2010, with an AAGR of 11.97% from 2002 to 2020. The 

innovation and application of digital technologies has yielded notable 

achievements, and various industries are moving forward with robust 

momentum in their digital transformation. Despite the obvious moderation 

in the growth rate of E from 2011, its AAGR remains at a high level (6.78%). 

Obviously, the energy efficiency of China has been upgraded, but the ener-

gy structure transformation requires further strengthening. 

Figure 4(b) demonstrates the trends of the relative factors (ECI, DCI, 

DEI). Specifically, the general trend of ECI performs relatively stable. It 
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suggests that the structural transformation of energy usage performs inad-

equately and that the most prominent source of CO2 emissions stays with 

the energy system. Both DCI and DEI exhibited marked decreases with 

similar magnitudes (AAGRs of -4.67% and -4.64% respectively). It implies 

that digital technologies can boost energy efficiency, although improving 

the energy mix brings high CO2 emissions. On this basis, to accomplish an 

efficient digital energy-saving and carbon-reducing process, digital low-

carbon technological innovation should be promoted positively. Enhancing 

the utilization efficiency of renewable energy in light of the existing energy 

endowment is an essential issue for enterprises and relevant departments. 

 

Decomposition results 

 

National decomposition results 

 

According to the GDI model constructed above, CO2 changes are de-

composed over successive years. This decomposition logic reveals the vari-

ation in the driving capacity of each factor (see Figure 5). The growth rate 

of C declined dramatically in 2011. This may be due to the fact that China 

accelerated its industrial and energy restructuring, which resulted in the 

consumption of fossil energy and energy-related CO2 emissions. Specifical-

ly, ECI and E exhibit high promoting effects, with annual average contribu-

tions of 4.56% and 0.85%, respectively, over the 2011-2020 period.  

Relative factors relevant to the digital economy exhibit greater potential 

for mitigating CO2 emissions. The average annual contribution of DCI is       

-3.58%, suggesting that digital transformation serves an important role in 

minimizing CO2 emissions. Nevertheless, the carbon reduction power that 

DEI has exhibited in successive years was unremarkable, with an average 

annual contribution of only -0.22% after 2011. It can be concluded that the 

core technologies for digital energy saving need to be further explored, 

which requires endeavors to promote the energy efficiency of the digital 

industry. Moreover, the average annual contribution of DV to mitigate CO2 

emissions (-1.21%) exceeds that of DEI during 2011–2020, despite the driv-

ing effect of DV showing positive in certain years. There exists a compelling 

need to enhance resource utilization through ICT measures to assist enter-

prises in improving quality, increasing efficiency, and reducing consump-

tion and emissions. 
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According to the above decomposition analysis for consecutive years, it 

is revealed that the factors exhibited varying contributions in different time 

intervals. Figure 6(a) presents the stage decomposition results at the na-

tional level. Both DCI and DEI exhibit the ability to reduce CO2 emissions 

at all stages. Particularly in the 2010-2015 period, these two factors account 

for the primary share of decreasing CO2 emissions. The subsequent phase 

(2015-2020) shows a weakened contribution to reducing emissions, which is 

mainly attributed to the decreasing rate of CO2 emissions. Moreover, the 

CO2 emissions increased by E and ECI exhibit a phased weakening trend, 

which proves that digitalization displays excellent energy-saving and car-

bon-reducing effects. Therefore, the convergence of digital industries has 

promoted the efficiency and structure of energy. 

The stage decomposition results for the four regions can be compared 

and analyzed from Figs. 6(b)-(e). The direct driving effect on CO2 change 

exhibited by DV is insignificant in all four regions. Obviously, the digital 

economy provides indirect abatement of CO2 emissions primarily through 

channels such as digital technology. Although the abatement capacity of 

DCI and DEI in the mid-west lagged behind that of other regions during 

2002-2005, they overtook in the following three five-year cycles. The revolu-

tion in digital technology has facilitated energy efficiency in energy-rich 

regions, largely avoiding additional CO2 emissions. The energy structure 

effect demonstrates better optimization in the eastern region, as evidenced 

by the significant downward trend in CO2 contributed by ECI. 

 

Provincial decomposition results 

 

Given that resource endowment and digital economy development ex-

hibit significant regional variability, the contributing effects of factors 

across the 30 provinces are quantified in this section. According to the 

analysis in the above section, the growing rate of CO2 emissions changed 

dramatically in the year 2011, therefore, the CO2 emission changes are de-

composed for the stages of 2002–2010 and 2010–2020 respectively. As 

shown in Figure 7(a), CO2 maintains a high growth rate during 2022-2010. 

The effect of E and ECI in raising CO2 emissions is evident, especially in 

Shanxi, Inner Mongolia, and Guizhou, which possess better energy en-

dowments. Even though DV and DEI exhibited the ability to reduce CO2 in 

most provinces, the abatement power is feeble. In contrast, DCI exerts 

a pivotal force towards mitigating CO2 emissions in most provinces, espe-
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cially in Jiangxi  (-43.03%) and Chongqing (-48.17%). Social production 

during the period 2002–2010 was dominated by the large consumption of 

fossil fuels, and technologies for clean energy utilization were not well 

developed. It is evident that this emerging economic situation has not been 

exploited efficiently in the past constrained by digital technology and digi-

tal dividends. 

With the popularization and deployment of ICT and other digital tech-

nologies, the social benefits of the digital economy have been manifested. 

As illustrated in Figure 7(b), the influence of E and ECI in stimulating CO2 

has decreased over 2010–2020. The ability to reduce CO2 in DV has en-

hanced, especially in Beijing (-11.27%). Furthermore, the mitigating effect 

of DEI on CO2 emissions was manifested, with Beijing (-13.67%) and 

Chongqing (-14.29%) being the most prominent. Meanwhile, DCI exerts the 

most prominent carbon reduction effect in all provinces except Xinjiang. It 

can be noted that the energy-saving and CO2-reducing effect promoted by 

the digital economy is evident in more provinces, and this effect is spread-

ing across the entire country. This may be attributed to the full considera-

tion of factors such as regional development, environmental governance 

and protection by the relevant departments, as well as their focus on 

strengthening regional collaboration and deepening the application of data 

resources in various industries. 

 

Forecasting results 

 

National forecasting results 

 

According to the current state of China’s economic and digital technol-

ogy, different prediction scenarios are designed to portray the possible 

evolution path of CO2 emissions. Figure 8 presents the forecast results of 

national CO2 emissions under each scenario. The black line (under BCS) 

indicates the trend of potential CO2 change without additional economic 

interventions and energy-saving low-carbon policies. The factors will fol-

low past population structure and economic development inertia to drive 

CO2 changes. Under this scenario, CO2 emissions will probably keep grow-

ing until 2030, and the emissions are expected to reach 13.07 Gt by 2030.The 

potential AAGR of CO2 under this scenario reaches -7.15% between 2021 

and 2060. Further, the other two scenarios (LCS and HCS) are developed by  
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increasing or decreasing the intensity of digital economy development 

based on BCS.  

Under LCS, more information platforms and digital industries are ex-

ploding, while economic development shifts digitally to a greater extent. 

As the blue line suggests the possible trend of CO2 emissions, CO2 under 

LCS will grow at a faster rate until 2025 compared to BCS, with emissions 

estimated to be 13.18 Gt by 2025. It takes a certain time for energy-efficient 

low-carbon technologies to transition from digital upgrading to mature 

applications. After a transition to a low rate of CO2 mitigation during 2025-

2030, CO2 emissions under LCS decline rapidly, driven by mature digital 

low-carbon technologies. With a projected AAGR of -8.67% for CO2 emis-

sions over 2021-2060, LCS outperforms the BCS scenario in terms of miti-

gating emissions after 2030. In contrast, under the HCS (illustrated by the 

red line) the initial restricted economic development trend results in lower 

CO2 emissions than the BCS. However, with the penetration of the global 

digital transformation momentum, the thick economic development makes 

its CO2 emissions surpass the other two scenarios after 2034. The delayed 

digital transformation and application fail to minimize CO2 emissions, with 

an AAGR of -6.21%. It suggests that the building of digital infrastructure 

should be expedited at this stage, and the cross-fertilization of digitized 

green technologies into multiple industries requires to be fostered. 

 

Provincial forecasting results 

 

Portraying the potential tendencies of provincial CO2 emissions con-

tributes to revealing the regional characteristics of digital carbon abate-

ment. Figure 9 summarizes the future CO2 emission evolution paths of the 

30 provinces under the three scenarios. From the projections, it can be no-

ticed that more provinces trade lower CO2 emissions for slower socio-

economic development under the HCS. Under BCS, the CO2 reduction effi-

ciency of Beijing, Tianjin, Jiangsu, and Hainan in the eastern region lags 

behind the historical stage. There exists greater room for upgrading the 

implementation of the current economic development and low-carbon 

transition measures. Digitization eliminates geographic constraints, reduc-

es the cost of knowledge search and management, and facilitates technolog-

ical innovation efficiency, thereby reducing CO2 emissions. In the LCS 

where digital technologies are effectively employed, the CO2 abatement 

process will advance faster in most provinces. In particular, the eastern 
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region (Hebei, Zhejiang), the central region (Anhui, Shanxi, Fujian), and the 

western region (Guangxi, Yunnan, Shaanxi) possess more strengths in mit-

igating CO2 emissions under this scenario. 

 

 

Discussion 

 

The study applied a factor decomposition mechanism to identify and quan-

tify the contribution of the digital economy to CO₂ emissions, which in turn 

outlines the future evolution of CO₂ emissions driven by digitalization 

under different scenarios. Dogan et al. (2025) and Rani et al. (2025) utilized 

econometric methods to investigate the causal relations of digital economic 

transformation, clean energy utilization, and CO₂ emissions in BRICS coun-

tries. On the other hand, Vu and Hartley (2022) and Ni et al. (2024) applied 

index decomposition techniques to demonstrate the productivity benefits 

of digital transformation and reveal key drivers of CO2 emissions in data 

centers. This study integrates factor decomposition with econometric tech-

niques and designs a GDI factor decomposition model that incorporates 

digital economy and energy indicators. This model pinpoints the primary 

forces behind or obstacles to CO2 reduction by accurately estimating the 

rate at which each component contributes to changes in CO₂ emissions, 

providing more intuitive policy recommendations. 

Consistent with prior findings, the decomposition results revealed that 

E and ECI were positively correlated with CO2 changes. As noted by Hor-

vey et al. (2024), accelerating the efficient transition to clean energy and 

enhancing its utilization efficiency are essential prerequisites for environ-

mental sustainability. Nonetheless, the green transformation of the energy 

structure cannot be achieved overnight; it necessitates continuous innova-

tion in digital technologies to improve energy efficiency (Lee & Yan, 2024). 

According to Shahbaz et al. (2022) and Ullah et al. (2024), digital transfor-

mation assists in adopting cleaner energy sources and optimizing the ener-

gy structure, thereby lowering CO2 emissions. Nevertheless, the factor de-

composition analysis in this study reveals that, at the current stage, the 

mitigating effects of DV and DEI on CO₂ emissions remain insignificant. 

Similarly, Ozturk and Ullah (2022) believe that the inclusivity of green digi-

tal finance should be improved, as digital inclusive finance has driven eco-

nomic growth while also bringing higher CO2 emissions. 
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In addition, several studies have examined the regional heterogeneity in 

the effects of the digital economy. Razzaq et al. (2023) investigated the role 

of digital finance and green technological innovation in promoting green 

growth in diverse areas. The effects of the digital economy on CO₂ emis-

sions vary depending on regional resource dependency (Hwang & Venter, 

2025). Therefore, in addition to conducting a national-level decomposition, 

this study further performs regional and provincial factor decompositions. 

The eastern region demonstrates superior performance in energy mix ef-

fects, with a significant downward trend in the CO2 emissions contributed 

by ECI. DCI and DEI exhibit better effects in reducing emissions in the mid-

west, indicating that the digital technology revolution has effectively im-

proved energy efficiency in resource-rich areas while mitigating additional 

CO₂ emissions. The eastern region of China benefits from a well-established 

big data infrastructure and mature digital industries, whereas the mid-

western region possesses comparative advantages in energy resources. The 

empirical findings of this study at the regional level align with the conclu-

sions of Hwang and Venter (2025). Accordingly, policymakers should fully 

account for regional disparities and collaboratively allocate technological, 

financial, and human resources to enhance energy efficiency and reduce 

CO₂ emissions effectively. 

Furthermore, considering China’s socio-economic realities, this study 

incorporates three perspectives (baseline, high-carbon, and low-carbon) 

when forecasting CO₂ emissions, aligning with the scenario settings of 

Chen et al. (2023) and Shi et al. (2023). The difference lies in the screening of 

key elements associated with the digital economy, enabling the construc-

tion of a novel STIRPAT model to predict future CO2 emission changes. 

Driven by the digital economy, a new wave of the information technology 

revolution is emerging, profoundly reshaping production and lifestyles 

(Mukalayi & Inglesi-Lotz, 2023). Consistent with the empirical findings of 

Balsalobre-Lorente and Shah (2024), CO₂ reduction is most pronounced 

when the digital economy fosters renewable energy consumption, drives 

green technological innovation, and supports digital green transformation 

across industries. This effect is most evident in most provinces in the east-

ern and central regions, including Hebei, Zhejiang, and Anhui. Given that 

digital technology provides a critical impetus to carbon mitigation, efforts 

should be made to expedite the digital transformation of carbon trading 

markets and leverage digital platforms to promote the green transition of 

household consumption. 
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Specifically, this study also provides a preliminary assessment of the 

CO2 reduction effects of digital transformation across provinces, depending 

on the current status of China’s digital industry and the potential pathways 

of CO₂ emissions. As depicted in Figure 10, for most of the provinces in the 

eastern region, despite the wider distribution of data centers bringing in 

more energy consumption, the region has achieved energy efficiency and 

avoided additional CO2 emissions with the assistance of fast-developing 

digital technologies. Consequently, except for Hebei, Shandong and 

Zhejiang, which require further digital emission reduction efforts, the other 

eastern provinces have to maintain their current digital economy develop-

ment efforts. In contrast, the western region possesses ample resources, 

particularly clean energy, which provides a potential for developing data 

hubs and taking over the arithmetic demand from the east. Driven by the 

future big data industry, most provinces across the western region will 

largely realize the digitalization of economic development and strengthen 

digital emission reduction. In addition, Liaoning, Shanxi, Fujian and Jiang-

xi also require high-speed data transmission networks to promote efficient 

complementarity and synergy of digital energy-saving technologies. 

 

 

Conclusions 

 

The disruptive growth of the digital economy has stimulated significant 

reforms in industrial structures and business models, affecting energy sys-

tems and driving the evolution of CO₂ emissions. Exploring the relations of 

the digital economy on CO₂ emissions and leveraging digital technologies 

to facilitate energy conservation and carbon reduction has become a key 

issue in current research. However, the digital economy, as a critical factor, 

has not been explored within the decomposition mechanisms of CO₂ emis-

sion changes. This study fills this gap by upgrading the GDI model, which 

minimizes residual interference and accommodates a broader range of 

absolute factors, which enables accurate quantification of digital economy 

indicators within the decomposition framework of CO₂ emission changes. 

This approach enables the study to pinpoint the primary factors driving 

CO₂ emission evolution in terms of the digital economy. Furthermore, an 

extended STIRPAT model was constructed to simulate the potential trends 

of CO₂ emissions driven by digital economy development under different 

scenarios. 
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Results of factor decomposition indicate that E and ECI exert a positive 

driving effect in the historical evolution of CO2 emissions, and this effect 

exhibits a weakening trend. Although DV makes an insignificant contribu-

tion to mitigating CO2 emissions, its alleviation capacity shows an increas-

ing trend. DCI provides the strongest driving force for CO2 reduction, with 

most provinces in the eastern and western regions performing more prom-

inently. DEI exhibits considerable potential for CO2 abatement, especially 

in Beijing, Tianjin, Chongqing, and Sichuan. Furthermore, the forecast re-

sults demonstrate that under the LCS with enhanced digital economic de-

velopment and digital energy saving, the whole country and provinces will 

be able to achieve effective reductions in CO2 emissions and contribute to 

the early completion of the “dual-carbon” target. In terms of provincial 

prediction, Beijing, Henan and Chongqing stand out in terms of their abil-

ity for digital emission control. Provinces such as Shandong, Inner Mongo-

lia and Shaanxi, on the other hand, require further consideration of the 

potential of digitization in their carbon abatement policies 

The integration and development of high energy-consuming industries 

with advanced digital technologies should be fostered to promote the low-

carbon transformation in enterprise production and management. Digital 

platforms such as energy management systems ought to be upgraded to 

foster the quick penetration of digital energy efficiency and digital low-

carbon technologies into energy-intensive sectors. For example, this system 

provides real-time monitoring of enterprise production to analysis of ener-

gy consumption. In turn, it is imperative to combine the digital manage-

ment platform organically with information technology tools (such as arti-

ficial intelligence) in order to adopt intelligent control measures, optimize 

energy utilization strategies, and achieve efficient management and com-

prehensive utilization of energy. 

A regional synergetic mechanism of “digitalization-energy-CO2” should 

be established. In contrast to decentralized efforts, regions are expected to 

develop joint action frameworks to maximize regional advantages and 

energy efficiency. For instance, building a regional carbon reduction shar-

ing platform to realize the accumulation of regional carbon factor (energy 

structure) data, support carbon disclosure and carbon footprint digitiza-

tion, as well as promote the upgrading of carbon management and carbon 

trading models. Each region should collaborate to foster the digital trans-

formation  of  low-carbon  technologies,  achieve  high-quality  trading  and  
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utilization of energy, and assist the national energy-saving and carbon-

reducing strategy with a regional Internet model for emission reduction. 

This study extended the factor decomposition system for CO2 emission 

and provided support and a decision-making basis for related sectors to 

develop specific digital energy saving and digital carbon reduction policies. 

The study features certain limitations. Given that this study focuses on 

China, it covers digital economic production, digital economic exchange, 

and digital circulation when calculating the indicators, that can effectively 

measure its digital economy development. However, the definition and 

classification of the digital economy vary across different countries and 

regions. Therefore, when studying other countries, it should not be limited 

to the measurements in this study. Yin et al. (2023) and Zaman et al. (2025) 

focus on micro-level aspects such as AI software and digital finance. This 

study focused on the macro level, aiming to incorporate digital economy 

indicators into the factor decomposition system and offering a novel per-

spective on CO₂ reduction driven by the digital economy. As such, it cannot 

provide specific guidance for energy-saving and carbon-reduction strate-

gies related to segmented digital technologies. This study used scenario 

analysis with diverse scenarios for assessing the potential dynamics in the 

CO2 emission.  

As the digital economy permeates various aspects of the economic sys-

tem, future studies could introduce additional absolute factors into the 

decomposition mechanism, such as industrial structure and investment, to 

examine the synergistic impacts of the digital economy with other systems 

on CO₂ evolutions. Subsequent studies can further refine the indicator set 

by concentrating on specific digital economy sectors, such as AI and big 

data analytics. It can reveal the differentiated impacts of specific digital 

technologies on CO₂ emissions from a micro perspective. Future research 

may also seek to forecast the underlying variables using quantitative ap-

proaches and perform the decomposition analysis based on the forecast 

results. Also, the accuracy of such forecasts may be ensured by embarking 

on ex-post forecasting.  
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Annex 
 

 

Table 1. The definitions of five factors 

 
Symbols Calculation Meaning Unit 

Z=C - CO2 emissions Mt CO2 

X1=E - Energy consumption Mtce 

X2=ECI
 

C/E Carbon factor Mt CO2/Mtce 

X3=DV
 

- Digital economy added value Billion CNY 

X4=DCI
 

C/DV Carbon intensity of digital economy Mt CO2/CNY 

X5=DEI
 

E/DV Energy intensity of digital economy Mtce/CNY 

 

 

Table 2. Parameter settings in different scenarios (%) 

 

Parameter Scenario 

Periods 

2020-

2025 

2025-

2030 

2030-

2035 

2035-

2040 

2040-

2045 

2045-

2050 

2050-

2055 

2055-

2060 

AAGRs of 

P  

LCS -0.08 -0.08 -0.37 -0.37 -0.66 -0.66 -0.95 -0.95 

BCS 0.02 0.02 -0.30 -0.30 -0.58 -0.58 -0.80 -0.80 

HCS 0.10 0.10 -0.22 -0.22 -0.45 -0.45 -0.65 -0.65 

Share of 

tertiary 

sector, IS 

LCS 62.40 62.40 66.5 66.50 70.30 70.30 73.60 73.60 

BCS 62.40 62.40 66.5 66.50 69.80 69.80 73.00 73.00 

HCS 60.10 60.10 63.7 63.70 67.00 67.00 70.30 70.30 

AAGRs of 

DV  

LCS 6.25 6.25 3.34 3.34 1.86 1.86 0.76 0.76 

BCS 5.34 5.34 3.29 3.29 1.65 1.65 0.55 0.55 

HCS 4.69 4.69 2.22 2.22 0.72 0.72 0.11 0.11 

AAGRs of 

DCI  

LCS -3.90 -6.00 -8.00 -10.00 -12.00 -14.00 -16.00 -18.00 

BCS -3.90 -4.40 -6.00 -8.00 -10.00 -12.00 -14.00 -16.00 

HCS -3.90 -4.00 -4.00 -6.00 -8.00 -10.00 -12.00 -14.00 

 

 

Figure 1. Possible pathways for the digital economy to drive change in CO2 

emission 

 

 



Figure 2. Research framework 

 

 
 

 

Figure 3. The dynamics and regional disparities of the digital economy, 2002–2020 

 

 



Figure 4. The trend of absolute and relative factors, 2002–2020 

 

 
 

 

Figure 5. Decomposition results of CO2 changes in successive years 

 

 
 

 

 

 



Figure 6. The decomposition results for the whole country and four regions 

 

 
 

 

 

 

 

 

 

 



Figure 7. Decomposition of changes in CO2 emission in 30 provinces 

 

 
 

 

Figure 8. Potential pathways for CO2 emission at the national level 

 

 
 

 

 

 

 

 

 

 



Figure 9. Potential pathways for CO2 at the provincial level 

 

 
 

 

Figure 10. The directions on strengthening the digitization to achieve emission 

reductions 
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