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LT-53361 Akademija, Lithuania; edita.meskinyte@gmail.com
7 Division of Human Genome Research Centre, Institute of Biosciences, Life Sciences Center,

Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania; aiste.skeberdyte@gmail.com
8 International School of Law and Business, Laisvss pr. 58, LT-05120 Vilnius, Lithuania; jo.cicenas@gmail.com
* Correspondence: j.cicenas@mapkinases.eu; Tel.: +370-667-04267

Academic Editor: Samuel C. Mok
Received: 22 March 2017; Accepted: 25 April 2017; Published: 28 April 2017

Abstract: Pancreatic cancer is a disease that has a very high fatality rate and one of the highest
mortality ratios among all major cancers, remaining the fourth leading cause of cancer-related deaths
in developed countries. The major treatment of pancreatic cancer is surgery; however, only 15–20%
of patients are candidates for it at the diagnosis of disease. On the other hand, survival in patients,
who undergo surgery, is less than 30%. In most cancers, genome stability is disturbed and pancreatic
cancer is not the exception. Approximately 97% of pancreatic cancers have gene derangements,
defined by point mutations, amplifications, deletions, translocations, and inversions. This review
describes the most frequent genetic alterations found in pancreatic cancer.
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1. Introduction

As opposed to steady or diminishing rates of most solid tumors, pancreatic cancer remains one
of the most deadly cancers. More than 43,000 patients are expected to die of pancreatic cancer in
the USA and 91,500 in the European Union in 2017 [1,2]. There are also some alarming predictions
that pancreatic cancer might soon become the second highest cause of cancer-related death in the
USA and the third highest in the EU. In addition, virtually the only possible treatment of pancreatic
cancer is surgery, but less than 20% of patients have operable tumors, and less than 30% of those
patients survive surgery [3,4]. Moreover, diagnosis of pancreatic cancer is quite challenging because
histological tests require invasive approaches, and high amounts of stromal cells in the tumor cause
biopsies to be insufficient for correct diagnosis [4,5]. Given all of this, pancreatic cancer is one of the
most investigated cancers both in basic and clinical science setups.

Most pancreatic cancers (97%) have gene alterations, such as amplifications, deletions,
translocations, inversions, frameshifts, and substitutions. Disruptions of several genes in pancreatic
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cancer are almost universal and are present in 70%–98% of patients [5–7]. Mutations of other genes are
less frequent [8] and some of them are derived from germline inheritance [9,10] (Figure 1). The mutation
of genes can either enhance the function of protein, sometimes making it even constitutively active
or diminish the function, sometimes abolishing it completely. Subsequently, the changes in protein
functions can cause uncontrolled proliferation, motility, and adhesion of cells, protection from apoptosis
or autophagy, DNA repair problems, microsatellite instability, and other processes, which lead to the
development, growth, and spread of cancer.
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2. Gene Mutations in Pancreatic Cancer

KRAS (also known as K-Ras 2, Ki-Ras, c-K-ras, or c-Ki-ras) is a small GTPase (21 kDa), which
binds guanosine triphosphate and diphosphate nucleotides. It is activated when bound to GTP and
deactivated when bound to GDP. Activated KRAS binds and activates RAF family kinases, RAF1,
BRAF, and ARAF [11]. Activated RAFs phosphorylate and activate MEK1 and MEK2 kinases, which
in turn phosphorylate and activate ERK1 and ERK2 kinases. ERKs phosphorylate various cytosolic
and nuclear proteins, such as transcription factors ELK1 and c-JUN, leading to cell proliferation [12].
Due to this, mutations, which cause constitutive activation of KRAS, lead to uncontrolled proliferation
and other processes causing cancer development and spreading. KRAS can also regulate other
signaling pathways, such as PI3K-AKT, PLC-PKC, and RAL, which are also known to be involved in
cancer progression [13]. KRAS is mutated in more than 20% of human cancers, mostly in pancreatic
(more than 90%), colorectal and lung cancers [13] as well as leukemias [14] (Table 1). Mutations of
the codons G12, G13, or Q61 are usually associated with constitutively active KRAS, and recurrent
mutations in K117 and A146 seem to be additional hotspots (Figure 2). Ninety-five percent of pancreatic
cancers carry activating mutations in KRAS and modifications in G12 account for 99% of all mutations
(G12D—50%) [15]. On the other hand, G13 mutations are much rarer than in some other cancers
(e.g., colorectal 17%). Clinical studies have shown that mutations of KRAS could be used as a significant
prognostic biomarker, as well as a tool for therapy prediction. In a study that examined 136 pancreatic
adenocarcinoma patients, 71 (52%) patients harbored point mutation in G12 (70) and Q61 (1) [16].
Patients with mutations showed a worse response to first-line gemcitabine-based chemotherapy
(11.3%) than those with wild-type KRAS (26.2%) and poorer survival (p = 0.001). In addition, survival
benefit was observed in the subgroup of patients treated with gemcitabine/erlotinib combination
(p = 0.002), but no survival difference was observed in the subgroup of patients treated only with
gemcitabine (p = 0.121). Another study in 173 patients, 121 (70%) of which had G12 mutations, showed
no association with response to erlotinib alone (p = 0.4), but KRAS wildtype patients had an improved
overall survival (p = 0.005) [17]. Phase I/II study using siRNA against G12D in combination with
chemotherapy was performed in 15 locally advanced pancreatic cancer patients [18]. None of the
12 patients analyzed later showed tumor progression, 10 had stable disease, 2 displayed partial
response, and median overall survival was 15.12 months. The study using a targeted deep sequencing
assay detected KRAS mutations in 96/100 (96%) patients. The patients were then separated into two
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groups: one having 0–2 mutations, and the other having 3. The presence of 3 mutations was prognostic
for a better overall survival (p = 0.004) [19]. Interestingly, activating mutations in kinase downstream of
KRAS signaling, BRAF (V599E), were found in 3/9 (33%) tumors, lacking KRAS mutations, but known
to have microsatellite instability [20].
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TP53 (also known as p53 or antigen NY-CO-13) is the tumor suppressor, which transcriptionally
activates target genes in response to cellular stress such as oxidative stress or DNA damage and thus
induces growth arrest or apoptosis [21]. It also increases cyclin-dependent kinase inhibitor CDKN1A
expression, thus stopping cell cycle progression [22]. TP53 is one of the most frequently mutated
genes in all cancers and is mutated in 70% of pancreatic cancers [23], mostly resulting in the loss
of DNA binding ability and thus subsequently gene transcription activation [24] (Figure 2, Table 1).
Some clinical evidence suggests that TP53 could be used as biomarker for prognosis and therapy
prediction. A study in 57 pancreatic ductal adenocarcinoma patients assessed TP53 mutations as
well as mRNA expression [25]. It was observed that patients with low TP53 mRNA expression were
associated with worse prognosis (p = 0.032), and the results were more significant in patients with
TP53 wild-type genes (p = 0.021). One quite promising study was published recently, stating that
mutated TP53 caused poor prognosis to pancreatectomy through upregulation of PTRF (cavin-1) in
patients with preoperative serum [26], but the publication was retracted due to the use of wrong
antibodies in the study [27]. Nevertheless, the result seems to be interesting, and it is hopeful that
the study will be repeated using suitable techniques. A study in pancreatic cancer patient tumors, of
which 4/50 (8%) had a complete loss of TP53 expression, 20/50 (40%) showed regular expression, and
26/50 (52%) patients showed overexpression, showed a significant improvement in progression-free
survival (p = 0.02) for patients with regular expression compared to complete loss [28]. The study
using a targeted deep sequencing assay detected TP53 mutations in 13/100 (13%) patients, and the
presence of 0–2 vs. 3 mutations was prognostic for better overall survival (p = 0.004) [19].

CDKN2A (also known as p16-INK4a, MTS-1, or CDK4I) is the tumor suppressor, which regulates
cell cycle progression by inhibiting cyclinD-CDK4 and cyclinD-CDK6 complexes responsible for
initiating the G1/S phase transition. This protein encoded by the CDKN2A gene, but is unrelated to
another tumor suppressor ARF, encoded by the same gene. Inherited modifications in CDKN2A cause
familial atypical multiple mole melanoma and an increased risk of pancreatic cancer [29,30]. It is one
of the most frequently altered genes in cancer, and the incidence of mutations in sporadic pancreatic
cancer is impressive, with inactivation occurring in 98% of cases [31] (Table 1). CDKN2A gene
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disruption happens by different types of mutations, such as the loss of heterozygosity, homozygous
deletion, or promoter silencing. There is some clinical evidence for the use of CDKN2A mutations
as prognostic and predictive biomarker. The study performed in 88 pancreatic cancer patients, 69 of
whom underwent pancreaticoduodenectomy and 19 did not undergo resection [32]. In 3’UTR C580T,
the mutation rate was different between patients that had pancreaticoduodenectomy and patients that
did not. In patients with surgery, 56 (81%) had the CC genotype, 13 (19%) had the CT genotype, and
none had the TT genotype, and of the patients without surgery, 12 (63%) had the CC genotype, 5 (26%)
had the CT genotype, and 2 (11%) had the TT genotype. There was significant disease-free survival
between CC and CT/TT genotypes (p = 0.039). In another study, 5/120 (4%) of pancreatic cancer
patients had CDKN2A mutations, namely G101W, E27X, and L65P [33]. Three of those patients had
melanoma-pancreatic cancer kindred, suggesting that cancers were familial. Since only about 10% of
pancreatic cancers are part of all familial cancers, the results showing substantially high mutation rates
suggested that detected CDKN2A mutations are prevalent in the region where analysis was performed.
Fluorescence in situ hybridization study showed CDKN2A deletion in 16/32 (50%) patients and
overall survival was shorter in patients with gene deletion (p = 0.002) [34]. The study using a targeted
deep sequencing assay detected CDKN2A mutations in 42/100 (42%) patients, and the presence of
0–2 vs. 3 mutations was prognostic for better overall survival (p = 0.004) [19].

SMAD4 (also known as DPC4 or MADH4) is tumor suppressor protein, which translocates
to the nucleus as heterotrimeric SMAD2/SMAD3-SMAD4 complex after TGFβ family receptors
activation, where it activates the expression of genes and causes growth inhibition [35,36]. Mutations
of SMAD4 occur in around 50% of pancreatic cancers, mostly leading to the loss of protein activated [37]
(Table 1). Approximately 30% of mutations occur by homozygous deletion. Clinical research results
show that SMAD4 inactivation by mutations could be used as a prognostic biomarker in pancreatic
cancers. The study in 90 pancreatic cancer patients showed that SMAD4 mutations were present in
17/90 patients (19%) and gene mutation status was significantly associated with overall survival
(p = 0.006) [38]. In another study, SMAD4 gene was inactivated in 8/25 (32%), 3/25 (12%) by
homozygous deletion, and 5/25 (20%) by mutations in MH2 domain [39]. The study using a targeted
deep sequencing assay detected SMAD4 mutations in 7/100 (7%) patients, and the presence of
0–2 vs. 3 mutations was prognostic for better overall survival (p = 0.004) [19].

BRCA1 (also known as RNF53) is a tumor suppressor, which acts as E3 ubiquitin-protein ligase
that mediates the formation of Lys-6-linked polyubiquitin chains [40]. It is regulating cellular responses
to DNA damage and thus is very important in DNA repair and G2/M cell cycle progression [41].
The gene is frequently mutated in quite a few familial cancers: it accounts for 45% of families with
a high incidence of breast cancer and 80% of families with an elevated frequency of both breast and
ovarian cancer [42]. Most of the BRCA1 mutations (88%) result in protein truncation and thus result
in the loss of function of the protein and subsequently contribute to tumorigenesis. On the other
hand, sporadic mutations of this gene is quite rare. Mutations of BRCA1 occur in approximately
6.6% of pancreatic patients and could be associated with familial pancreatic cancer risk [43] (Table 1).
There is no direct clinical evidence that BRCA1 could be used as predictive biomarker, but a preclinical
study using patient-derived xenografts showed that BRCA1 and BRCA2 mutations sensitize tumors to
cisplatin chemotherapy [44].

Table 1. Gene mutation frequency in pancreatic cancer.

Gene Frequency Reference

KRAS 70%–95% [15,16]
TP53 20%–76% [23,24]

CDKN2A 49%–98% [31,32]
SMAD4 19%–50% [37,38]
BRCA1 6.6%–14% [43,44]
BRCA2 3.6%–7.5% [9,10,43,44]
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BRCA2 (also known as FANCD1) is involved in double-strand break repair during the S
phase of the cell cycle, by activating RAD51 recombinase. It is also involved in cytokinesis,
centrosome duplication, and cell death [45]. Mutated and thus frequently inactivated BRCA2 cause an
increased risk of developing breast, ovarian, prostate, stomach, and pancreatic familial cancers [46,47].
Mutations of BRCA2 are found in approximately 7.3% of familial pancreatic cancer patients and
show the increased risk by up to 20-fold [9] (Table 1). However, in the case of sporadic cancer,
very few cases of somatic mutations of BRCA2 are reported. A number of clinical studies were
performed to estimate BRCA2 as potential prognostic and predictive biomarker for pancreatic cancer.
The two-stage association study on pancreatic cancer that included 981 cases and 1991 controls in the
first stage and 2603 cases and 2877 controls in a second stage showed that c.*532A>G variant located
in the 3′-UTR is significantly associated with sporadic pancreatic cancer (p < 0.0001) [48]. A patient
carrying rare BRCA2 1153insertionT mutation was unresponsive to gemcitabine therapy, but complete
remission was reached, when cisplatin was added in combination with gemcitabine [49]. Another case
of a pancreatic cancer patient with a 6174delT BRCA2 mutation showed prolonged survival after
docetaxel, capecitabine, and gemcitibine combination followed by single agent irinotecan, despite
prognostically unfavorable disease [50]. There was also a case of a patient with metastatic pancreatic
cancer responding to a combination of mitomycin C and capecitabine [51]. All these cases combined
show that BRCA2 mutations can be used as predictive biomarkers for increased sensitivity of pancreatic
tumors to DNA-intercalating agents.

3. Conclusions

Most cancers, including pancreatic, are very genetically complex diseases. Many cancers develop
because of gene mutations, which either render proteins in cells defective or totally delete them.
Therefore, cancer research is striving towards the detection of as many genetic alterations in important
genes as possible. New generation sequencing is an incredible technique, which helps to classify and
systematize the entire range and characteristics of somatic and germline alterations [52]. It is now
reaching a point where such a technique is going to be used by many laboratories for routine diagnostics,
prognostics, and therapy prediction. There are also a growing number of companies that specialize
in bioinformatics applications for clinical scientists to investigate data sets with hundreds of patient
gene mutations and related clinical parameters. Up to now, gene mutation studies have discovered
approximately 140 genes that can promote tumorigenesis when mutated. Normally, a tumor contains
2–8 of these “driver” mutations and the rest of them are passengers with no particular growth advantage
for the tumor. It is important to reach a point at which our knowledge of the genes mentioned in this
review will be sufficient to evaluate pancreatic cancer morbidity, mortality, and therapeutic approaches.
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