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Gabriela Vdoviak , Tomyslav Sledevič * , Artūras Serackis , Darius Plonis , Dalius Matuzevičius
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Abstract: Monitoring insect activity at hive entrances is essential for advancing precision
beekeeping practices by enabling non-invasive, real-time assessment of the colony’s health
and early detection of potential threats. This study evaluates deep learning models for
detecting worker bees, pollen-bearing bees, drones, and wasps, comparing different YOLO-
based architectures optimized for real-time inference on an RTX 4080 Super and Jetson
AGX Orin. A new publicly available dataset with diverse environmental conditions was
used for training and validation. Performance comparisons showed that modified YOLOv8
models achieved a better precision–speed trade-off relative to other YOLO-based architec-
tures, enabling efficient deployment on embedded platforms. Results indicate that model
modifications enhance detection accuracy while reducing inference time, particularly for
small object classes such as pollen. The study explores the impact of different annotation
strategies on classification performance and tracking consistency. The findings demonstrate
the feasibility of deploying AI-powered hive monitoring systems on embedded platforms,
with potential applications in precision beekeeping and pollination surveillance.

Keywords: beehive monitoring; pollination surveillance; insect detection; convolutional
neural networks; Jetson GPU

1. Introduction
Honeybees (Apis mellifera L.) play an essential role in global ecosystems as pollinators,

contributing significantly to global biodiversity and agricultural productivity [1]. However,
their populations face multiple threats, including habitat degradation, chemical exposure,
and elevated predation rates, which can result in colony stress and decline [2]. For this
reason, continuous monitoring of hive activity is crucial for evaluating the status of the
colony. Although direct observation at the hive entrance is not capable of diagnosing
internal conditions such as brood health or diseases, changes in foraging patterns, reduced
traffic, or increased mortality can serve as early indicators of environmental stressors,
predation pressure, or forage availability.

Traditional beekeeping practices rely on periodic manual inspections to evaluate
internal condition of the hive, and these inspections remain vital for maintaining colony’s
health. However, they are often time-consuming, labor-intensive, and can disturb the
colony’s environment. Automated vision-based monitoring systems offer an advanced
approach to continuous, non-intrusive assessment of external hive activity, supporting the
principles of precision beekeeping by providing real-time detection of changes in foraging
behavior, traffic patterns, or the presence of external threats. These capabilities ensure
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a more rapid identification of potential issues in comparison to periodic manual checks.
Furthermore, the implementation of such systems in multiple hives enables beekeepers to
prioritize interventions based on objective indicators of colony status.

However, the detection and classification of insect activity at the hive entrance presents
significant challenges due to the inherent complexities of the visual environment. Effective
models must maintain a high detection accuracy despite variations in illumination, back-
ground complexity, and frequent occlusions. Honeybees often appear partially occluded
or blurred due to movement, shadows, or overlapping individuals, further complicating
the detection process. In addition, models trained on limited insect classes can misclassify
morphologically similar insects, such as drones and wasps, which share overlapping mor-
phological features related to body size, shape, and coloration. This can lead to inaccurate
assessment of the hive’s condition.

A broader assessment of hive activity requires the simultaneous detection and classifi-
cation of multiple insect groups, including bees, pollen-carrying bees, drones, and wasps.
The presence and relative abundance of these groups provide critical insights into various
aspects of colony’s health and function [3–5]. Pollen collected by foragers is essential
for brood development [6–8], while drones contribute to genetic diversity through mat-
ing [9,10]. Predatory wasps, such as Vespa velutina and Vespa crabro, pose significant threats
by preying on bees and robbing hive resources [11–13]. Simultaneous monitoring of these
key insect groups offers a more holistic understanding of colony status and supports early
identification of potential threats, thereby enhancing the beekeeper’s ability to maintain
healthy and productive colonies.

Moreover, existing datasets for insect detection, while valuable, often exhibit limita-
tions that hinder the development of robust, field-deployable monitoring systems. Many
of them focus on only one or two insect classes [14–19], are collected at a single hive
location [14,15,17,19,20], or employ controlled, and often artificial lighting [21,22] or back-
ground conditions [14,17,18,23–25]. Some studies even use modifications to the hive
environment, such as shading from direct sunlight [15] or transparent corridors [15,18],
which can alter natural bee behavior and potentially confound the evaluation of the hive’s
condition. Furthermore, the use of specialized, often costly, equipment in some data acqui-
sition setups limits portability and scalability for deployment across multiple hives and
diverse apiary locations. Therefore, there is a clear need for comprehensive, multi-class
insect datasets that capture natural bee behavior under diverse and representative field
conditions to enable the development of generalizable, practical monitoring solutions.

To address these challenges, this paper focuses on the development of a model for
detecting worker bees, pollen-carrying bees, drones, and wasps on the native entrance
ramps of beehives as a key component of a broader bee behavior recognition system.
To ensure the model is robust under varying lighting conditions, landing board shapes,
backgrounds, bee concentrations, and partial occlusions, a new four-class dataset was
collected from video recordings of different beehive entrances within a single apiary and
meticulously annotated by two independent annotators. The detection model serves as
the foundation for future tracking algorithms, which will analyze insect movement paths
to enable behavior recognition. Therefore, this study evaluates various deep learning
models to determine the most suitable one for tracking applications. Additionally, multiple
detection architectures were tested, and targeted modifications were introduced to enhance
small object detectability, particularly for pollen-bearing bees. The models were also
assessed on the Jetson AGX Orin platform to ensure efficient deployment on embedded
systems. The proposed work represents the first step toward developing a long-term
automated monitoring system that directly processes visual data to extract behavioral
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statistics, identify significant events at the beehive entrance, and monitor hive conditions
through visual inspection.

Our contributions can be summarized as follows:

• A new dataset [26] was collected, annotated, and publicly provided for worker bee,
pollen, drone, and wasp detection at the hive entrance. It contains the following:

– A total 15 different beehives, 11,008 annotated frames, and 609 background images.
– A total 116,853 instances of worker bees, 14,062 pollen, 1320 drones, and

1405 wasps.

• We performed a comparative evaluation of various object detection models for worker
bee, pollen, drone, and wasp detection on an RTX 4080 Super 16 GB and a Jetson AGX
Orin 64 GB.

2. Related Works
Previous studies (Table 1) related to the presented work can be broadly categorized into

three main areas: studies focused solely on pollen detection, studies dedicated to invasive
insect detection, and research that addresses both tasks simultaneously. Pollen detection
studies generally involve either direct identification of pollen grains or classification of bees
based on their pollen-bearing status. Invasive insect detection research primarily aims to
identify and mitigate threats posed by invasive species such as hornets, wasps, and other
insects. Significant advancements have been made in these individual domains; however,
only a limited number of studies have attempted to integrate both aspects within a unified
framework. A summary of studies related to the detection of pollen and invasive species is
presented in Table 1, which is divided into three sections based on the scope of the tasks
addressed. The initial section presents studies that propose a solution to pollen detection.
The second section is dedicated to papers focusing on invasive insect detection, while the
third section presents works that address the detection of both pollen and invasive insects.
The following subsections provide a detailed review of prior work within each category.

Table 1. A comparative analysis of previous studies on pollen detection (PD) and invasive insects
detection (IID).

Objective Year Authors Proposed Method Dataset, Images Resolution, Pixels Accuracy, %

Pollen Detection

2016 Babic et al. [14] MOG, NMC 454 1280 × 720 88.7
2018 Rodriguez et al. [15] Shallow CNN 710 180 × 300 96.4

2018 Stojnic et al. [16] SIFT, VLAD 1000 86 × 86 91.5SVM
2019 Yang et al. [17] Faster R-CNN 2400 1920 × 1080 96
2021 Berkaya et al. [27] GoogLeNet 714 180 × 300 99.07
2021 Ngo et al. [18] YOLOv3-Tiny 3500 640 × 480 94
2023 Nhung et al. [28] Simplified CNN 714 180 × 300 100
2023 Yoo et al. [29] BeeNet 714 224 × 224 99.18

2024 Nguyen et al. [19] YOLOv5 2051 1920 × 1080 93
Faster R-CNN 95

Invasive Insects
Detection

2022 Hu et al. [30] DY-RetinaNet 16,000 640 × 640 97.38

2023 Nasir et al. [24]
Multi-modal

456,287 1240 × 760 97.1Recognition
Framework

Invasive Insects
and Pollen Detection 2019 Marstaller et al. [31] DeepBee 25,325 640 × 480 82.4 (IID)

40.14 (PD)
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2.1. Pollen Detection

Among the three primary research areas, pollen detection has received the most
extensive attention. This focus is driven by its critical role in understanding pollination
dynamics and monitoring the foraging behavior of bees, both of which are essential for
assessing colony health and ecosystem stability. Most studies have focused on classifying
honeybees as pollen-bearing or non-pollen bearing based on visual cues and leveraging
traditional computer vision, machine learning or deep learning techniques.

Rodriguez et al. [15] addressed this challenge by collecting a publicly available dataset
of 710 high-resolution images of honeybees, labeled as pollen-bearing or non-pollen bearing,
to perform automated analysis of foraging behavior. The authors investigated multiple
classification approaches, including baseline classifiers (KNN, SVM, and Naïve Bayes),
shallow Convolutional Neural Networks (CNNs), and deep learning models like VGG-16,
VGG-19, and ResNet-50. The results revealed that shallow CNNs outperformed both
traditional classifiers and deep models, achieving a classification accuracy of up to 96.4% in
distinguishing between pollen-bearing and non-pollen bearing honeybees.

Building upon the dataset introduced in the paper above, subsequent studies investi-
gated alternative architectures and training strategies to further improve pollen detection
performance. Berkaya et al. [27] leveraged the same dataset within a broader study on
beehive monitoring, incorporating pollen detection as a secondary task. The authors of the
study proposed multiple deep learning models using transfer learning with pre-trained net-
works such as AlexNet, DenseNet-201, ResNet-101, GoogLeNet, ResNet-18, VGG-16, and
VGG-19. Among these, GoogLeNet with transfer learning achieved the highest accuracy of
99.07%. More recently, Nhung et al. [28] proposed a novel CNN architecture specifically
optimized for pollen detection. Their model features a simplified CNN structure with
four convolutional layers, five max-pooling layers, and fully connected dense layers with
a Sigmoid activation function. To enhance training efficiency, the authors applied data
augmentation techniques such as rescaling, rotation, flipping and other. The experimental
results demonstrated that the proposed model outperformed state-of-the-art architectures,
including VGG-16, VGG-19, and ResNet-50, achieving a classification accuracy of 100%.

Yoo et al. [29] introduced BeeNet, a deep learning model designed for enhanced
feature representation and classification in honeybee monitoring, with a particular focus
on bee species identification and fine-grained health monitoring tasks such as pollen and
varroa mite detection. The BeeNet architecture consists of two primary components: a
feature extraction block leveraging a modified ResNet-50 network and a transformer-
based classification block with a fully connected layer. The model follows a hierarchical
classification pipeline, first determining whether an object is a bee, then identifying the bee
species, and finally assessing health indicators, such as the presence of pollen or varroa
mites. BeeNet achieved 99.18% accuracy in pollen detection, surpassing state-of-the-art
models such as ResNet, EfficientNet, and Vision Transformer variants, demonstrating its
effectiveness in fine-grained bee health monitoring.

In their study, Nguyen et al. [19] used YOLOv5 and Faster R-CNN models to en-
hance the detection of pollen-bearing honeybees from video data. The authors collected
a VnPollenBee dataset, consisting of 2051 high-resolution images, each annotated with
bounding boxes defining individual bees. These datasets reflects real-world complexities,
including a significant class imbalance where pollen-bearing bees are underrepresented.
To mitigate this issue, the authors integrated focal loss and overlap sampler techniques
into both models. The experimental results demonstrated that the YOLOv5 model with
focal loss achieved an F1 score of 93%, while the Faster R-CNN model optimized with the
overlap sampler reached an F1 score of 95%, with a precision of 99% and a recall of 93%,
highlighting its robustness in detecting pollen-bearing bees under challenging conditions.
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Ngo et al. [18] presented a video-based pollen detection system that continuously
monitors honeybee activity at the entrance of a beehive using an off-the-shelf camera.
Their system integrates a lightweight, real-time object detection-based classification model,
YOLOv3-tiny, to detect, track, classify, and count honeybees as they enter and exit the hive.
The authors also collected a dataset from real-time video streams, producing 3000 training
images and 500 test images. Model performance was evaluated using precision, recall, and
F1-score, with an F1 score of 94% achieved for pollen detection.

A study by Babic et al. [14] developed a non-invasive, video-based system imple-
mented on a Raspberry Pi model 2 with an RGB camera, capturing video at 1280 × 720
resolution at 30 frames per second. Their approach relied on background subtraction using
the Mixture of Gaussians (MOG) algorithm for moving object segmentation, followed
by a nearest-mean classifier (NMC) for distinguishing between pollen-bearing and non-
pollen-bearing honeybees. The classification was performed using two key handcrafted
features: color variance and eccentricity. The system demonstrated an accuracy of 88.7% in
identifying pollen-bearing honeybees.

In the paper [16], the authors proposed a two-stage approach involving image seg-
mentation and classification for pollen detection. The segmentation process used two
methods based on color descriptors: thresholding on the b component of the LAB color
space and k-means clustering. Segmented regions were further refined with morphologi-
cal post-processing to exclude non-relevant areas. For classification, the authors utilized
Scale-Invariant Feature Transform (SIFT) descriptors, which were encoded using the Vector
of Locally Aggregated Descriptors (VLAD) and classified via Support Vector Machines
(SVMs). Their segmentation method achieved an Intersection over Union (IoU) score of
79.71%, while classification yielded an Area Under the Curve (AUC) of 91.5%, indicating
strong performance in distinguishing pollen-bearing honeybees.

While the majority of research in pollen detection focuses on classifying entire hon-
eybees as either pollen-bearing or non-pollen-bearing based on visual cues, some studies
have taken a more fine-grained approach by directly detecting and analyzing pollen sacs.
In order to reduce the reliance on manual inspections of the hive, Yang and Collins [17]
proposed a deep learning-based model for the detection of pollen sacs on honeybees in
monitoring videos. Their approach used Faster R-CNN with a VGG-16 backbone to detect
pollen sacs on individual bee images extracted from video frames. The dataset, consisting
of 2400 high-resolution images, was recorded at 1920 × 1080 resolution and 50 frames per
second. For the purpose of analysis, individual bee images were cropped to sizes between
100 × 100 and 200 × 200 pixels. The model achieved a detection accuracy of 96% and a
measurement error of 7%, significantly outperforming a baseline image processing method,
which had a 33% error rate.

Although pollen detection models have achieved high classification accuracies in
controlled experiments, several challenges persist under real-world conditions. Small
pollen sacs often occupy very few pixels relative to the worker bee body, making them
difficult to detect, especially in cluttered or dynamic backgrounds [17,19]. Variations
in lighting, motion blur, occlusions from other worker bees, and different pollen colors
further complicate detection tasks [18,28]. These factors contribute to decreased detection
robustness when systems are deployed in natural field environments.

2.2. Invasive Insect Detection

The presence of invasive insect species near beehives poses a significant threat to
honeybee colonies, affecting foraging behavior, colony stability, and overall hive health.
Detecting these invasive species is crucial for early intervention and hive protection. Despite
extensive research conducted on the detection of invasive insects; in general [32], research
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specifically focusing on the detection of invasive insects at beehive entrances remains
limited. The majority of existing studies address insect recognition in broader contexts,
such as agricultural settings or laboratory-controlled environments [33–36]. However, only
a few studies have been conducted under real-world conditions at hive entrances, where
lighting variations, occlusions, and insect flight dynamics introduce additional challenges.

In their study, Hu et al. [30] proposed DY-RetinaNet, an improved object detection
model designed to identify Chinese bees, wasps, and cockroaches at beehive nest gates
under natural conditions. The authors enhanced the RetinaNet model by incorporating a
bidirectional feature pyramid network (BiFPN) to improve multi-scale feature fusion and
replacing the smooth L1 loss function with the complete intersection over union (CIOU)
loss to enhance small-target localization. Additionally, a dynamic head framework was
introduced to refine detection performance through multi-attention mechanisms. The
authors also collected a dataset that contains 6000 images of Chinese bees, 2000 images
of wasps, and 2000 images of cockroaches. It was expanded to 16,000 images using data
augmentation techniques while maintaining a 2:1:1 ratio among the species. The DY-
RetinaNet model with a ResNet-101-BiFPN backbone achieved a mean average precision
(mAP) of 97.38%, marking a 6.77% improvement over the original RetinaNet.

Nasir et al. [24] introduced a multi-modal and multi-evidence recognition frame-
work for detecting invasive insects near beehives under unconstrained flying conditions.
The framework combines infrared (IR) imagery and 3D trajectory analysis, leveraging a
dataset of 456,287 IR images and 14,565 3D trajectories, collected with a depth camera at
760 × 1240 resolution and 30 fps over 31 field expeditions. In order to enhance the accuracy
of detection, an artificial white background was used during the data collection process.
This approach aimed to minimize visual distractions and improve insect visibility. In
addition, the authors analyzed insect movement behavior, assessing trajectory lengths and
time spent near the beehive to differentiate between species. Various deep learning models
such as SqueezeNet, ResNet, InceptionV3, MobileNetV2, GoogLeNet, ResNet50, Xception,
EfficientNetB0 were evaluated for image classification, while machine learning models
(SVM, k-NN, decision trees, and ensemble classifiers) were tested for trajectory-based
classification. The recognition framework achieved a classification accuracy of 97.1% in
distinguishing between Vespa velutina , Vespa orientalis, and Apis mellifera.

While promising results have been achieved, detecting invasive insects at the en-
trance of the hive still remains complicated under natural conditions. Factors such as
high-speed flight dynamics, frequent occlusions, visual similarity between species, and
varying background textures can degrade detection performance [24,30]. Furthermore, a
considerable number of datasets depend on artificial backgrounds or constrained environ-
ments to mitigate these issues, limiting the generalizability of trained models to realistic
apiary scenarios.

2.3. Invasive Insect and Pollen Detection

The effective detection of pollen presence on bees offers valuable insights into colony
foraging behavior and nutritional health. Concurrently, the identification of invasive
insects at hive entrances is essential for safeguarding colonies against potential threats.
However, jointly tackling both problems poses unique challenges such as varied object
scales, class imbalance, and the necessity for multi-task learning architectures. Due to these
complexities, most research in honeybee monitoring has focused on either pollen detection
or invasive insect detection individually. To the best of our knowledge, only one study by
Marstaller et al. [31] has attempted to address both tasks simultaneously.

This study proposed a real-time health monitoring system for honeybee hives by com-
bining edge computing and deep learning techniques. Their system integrates a pipeline
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consisting of video capture hardware, on-device inference for bee tracking and localization,
cloud-based data management, and deep convolutional neural networks for multi-task
learning. The core of their approach is DeepBees, a multi-task deep convolutional neural
network (MultiNet) that extracts shared features through MobileNet-V2 and performs
task-specific processing for genus identification, pollen detection, pose estimation, and
bee classification. The genus module classifies insects into four categories: bees, wasps,
bumblebees, and hornets, using global average pooling and softmax activation function for
classification. The pollen module applies a Single-Shot MultiBox Detector (SSD) to detect
and localize pollen on bees, thereby facilitating a spatial analysis of hive nutrition diversity.
The classification module categorizes bees into four groups: worker bees with pollen,
worker bees without pollen, drones, and dead bees. In contrast to the pollen module, which
focuses on individual pollen objects, the classification module evaluates colony composi-
tion and health indicators at a more extensive level. The DeepBees system demonstrated
high accuracy in classification tasks, achieving 82.4% accuracy for the bee classification
module and 76.19% for genus identification, while pollen detection performance was more
challenging, reaching only 40.14% accuracy. The study also highlighted challenges such as
class imbalances, noisy annotations, and the need for dataset expansion to improve system
robustness. This reflects the broader difficulties of jointly detecting invasive insects and
pollen, where handling objects of vastly different scales, managing class imbalance, and
optimizing for multiple tasks within a single system remain significant challenges.

2.4. Summary of Findings

Given the computational demands of multi-class insect and pollen detection, selecting
an appropriate hardware platform is crucial for ensuring both efficiency and real-time per-
formance in field applications. Most studies on insect or pollen detection at hive entrances
have been implemented on workstations with dedicated GPUs [16,17,19,29,30], leveraging
their high computational power for deep learning-based detection models. Fewer studies
have explored workstations with dedicated CPU configurations [15,24,27] or cloud-based
platforms such as Google Colab [28], which offer accessibility but are often constrained
by computational limitations or dependency on internet connectivity. Although work-
stations equipped with GPUs offer substantial computational capacity, their feasibility in
real-time field applications can be constrained by factors such as size, power consump-
tion, and the need for additional infrastructure. In recent years, Jetson-based platforms,
such as Jetson TX2 and Jetson Nano, have been successfully deployed for insect detection
and monitoring tasks [18,22,33], demonstrating their ability to run deep learning mod-
els directly on edge devices without relying on external computing resources. Similarly,
Raspberry Pi-based systems have been investigated for bee monitoring and varroa mite
detection [14,37–39], emphasizing their cost-effectiveness and low energy requirements.
Compared to GPU-accelerated workstations, Jetson devices provide significant advantages
due to their portability, small size, reduced power consumption, and optimized infer-
ence, making them ideal for continuous and autonomous monitoring of insect activity in
field environments.

Several important inferences can be drawn from the latest advancements in insect
and pollen detection at hive entrances. First, CNN-based approaches, including Faster
R-CNN, ResNet, VGG-16, VGG-19, GoogLeNet, YOLO, MobileNet-V2, and shallow CNN
architectures, have been the most widely utilized in most studies due to their strong
feature extraction and object detection capabilities. The majority of researchers have
also adopted a single detection model to identify either pollen or insect classes, whereas
DeepBees stands out as the only framework implementing a modular detection strategy,
integrating MobileNet-V2 for feature extraction alongside an SSD-based pollen detection
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module. Second, a notable research gap remains in developing a unified framework for
multi-class detection of both insects and pollen, as most existing studies focus on either
pollen or insect detection, with few exploring both tasks simultaneously. Third, while
workstations with integrated GPUs remain dominant in deep learning applications, a
growing shift toward embedded AI solutions has emerged. Jetson and Raspberry Pi-based
implementations offer significant advantages in terms of portability, energy efficiency, and
real-time field deployment, making them increasingly viable alternatives for autonomous
hive monitoring systems.

Despite notable progress, detecting pollen and invasive insects at hive entrances under
real-world conditions still remains difficult. Challenges such as variations in illumina-
tion, frequent occlusions, background complexity, small object sizes, high-speed insect
movements, and class imbalance significantly affect detection robustness. Although some
studies have used dataset augmentation or controlled setups to mitigate these factors, fully
generalizable solutions suitable for natural environments are still limited.

This study addresses several of these challenges by developing a detection system
based on a diverse, naturally collected dataset acquired under varying environmental
conditions without artificial constraints. It focuses on improving small object detectability,
enabling simultaneous multi-class detection, ensuring robust performance under complex
backgrounds, and achieving efficient deployment on embedded platforms for continuous,
autonomous monitoring in realistic field scenarios.

3. Materials and Methods
The colony’s strength in influencing hive entrance activity and, consequently, object

detection performance, while the primary aim of this study was to evaluate detection
models under varying visual and environmental conditions, we recognize that the number
of foraging bees correlates with overall colony health and size. Although detailed biological
assessments of colony strength and health (e.g., number of brood frames, presence of
queen, and disease status) were not within the scope of this computer vision-focused study,
we observed and recorded hive activity during data collection. The average number of
worker bees visible at the hive entrance per frame ranged from 0 to 20. This variability
reflects typical daily fluctuations and differences across colonies. Despite this variation, our
models demonstrated stable performance across activity levels, suggesting generalizability.
However, future work could benefit from integrating explicit colony strength metrics to
analyze correlations between hive vitality and detection reliability more precisely.

3.1. Dataset

A dataset was created from videos of hive landing boards recorded at a local apiary in
the Vilnius district during the 2018–2023 beekeeping seasons. A stationary camera, mounted
30 cm above beehive landing boards, captured footage at a resolution of 1920 × 1080 pixels.
Videos were recorded on both sunny and cloudy days, with each hive represented by 2 to
40 min of MP4 footage. Frames were then extracted from this raw footage for annotation.
The dataset consists of high-resolution images collected from 15 different beehives (corre-
sponding to 15 colonies), capturing diverse environmental conditions and insect activity
(Figure 1). It is carefully annotated for the detection of four key classes: worker bees, pollen
grains, drones, and wasps. The LabelImg tool (https://github.com/tzutalin/labelImg)
was used to annotate objects for the detection task. The dataset consists of 11,008 frames,
with 116,853 instances of worker bees, 14,062 instances of pollen grains, 1320 instances
of drones, and 1405 instances of wasps (Figure 2). These datasets are publicly available
for download [26] and serves as a valuable resource for developing and evaluating insect
detection models at hive entrances.

https://github.com/tzutalin/labelImg
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Figure 1. Samples of annotated images from the publicly provided dataset for worker bee, pollen
grain, drone, and wasp detection.

The dataset captures a wide variety of real-world conditions to ensure the robustness
and generalizability of the detection models. The images feature blurred and overlapped
objects, representing natural movement and occlusions (Figure 3). They also depict different
object scales, capturing insects at varying distances and perspectives. Additionally, diverse
backgrounds, including ramp surfaces, grass, and hive walls, contribute to a realistic and
challenging detection environment. Furthermore, the dataset includes varied lighting
conditions, ranging from sunny to overcast scenarios, which improves the adaptability of
models to changing illumination.

To address specific detection challenges, we provide two distinct label sets. The first
set merges pollen with bees, introducing a modified class structure: worker bee, pollen-
bee, drone, and wasp. The second set annotates pollen grains as separate small objects,
maintaining four classes: worker bee, pollen, drone, and wasp. The choice between these
variants depends on the application. The pollen-bee class improves detection accuracy for
pollen grains compared to treating them as separate small objects. However, for tracking
applications, assigning all worker bees to one class while keeping pollen separate is more
beneficial. Preliminary investigations indicate that tracking algorithms frequently lose
track of worker bees classified as pollen-bees, particularly when pollen grains are faintly
visible. Assigning pollen as a distinct class enhances tracking stability and ensures accurate
long-term monitoring of worker bee activity at hive entrances.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 2. Samples of annotated pollen-carrying bees (a–e), drones (f–j), and wasps (k–o).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 3. Partially occluded insects (a–e), blurred due to an unfocused camera or rapid
movement (f–o).

The distribution of the four classes (worker bee, pollen, drone, and wasp) at the
hive entrance exhibits a significant predominance of the “worker bee” class, with nearly
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120,000 detected instances, followed by the “pollen” class with a substantially lower count
(Figure 4a). The “drone” and “wasp” classes are minimally represented, indicating their
rare occurrence in the dataset. The spatial distribution of detected objects within the frames
shows a concentrated cluster in the upper-middle region (Figure 4b), corresponding to
the hive entrances, where worker bees and pollen carriers are primarily located. The size
distribution of bounding boxes, analyzed through width and height parameters, reveals a
primary density at small dimensions, with most detections occurring within a narrow range.
The clustering of worker bee and pollen instances in the lower width-height spectrum, as
marked in the density plot (Figure 4c), suggests a consistent object size for these classes,
while outliers represent variations in detection scales.

(a) (b) (c)

Figure 4. Class distribution in the annotated dataset for worker bee, pollen, drone, and wasp detection
(a), concentration of objects in the frames (b), width and height of the bounding boxes normalized to
the resolution (c).

To address the significant class imbalance, where common classes like worker bees
vastly outnumber rarer ones such as pollen, drones, and wasps, we employed several
strategies during model training. First, we experimented with two labeling schemes: one
merging pollen with worker bees into a combined class, and another treating pollen as
a separate object. The latter, while more challenging, offered clearer supervision for the
model in distinguishing small pollen grains. We used weighted loss functions that assigned
higher penalties to underrepresented classes, particularly pollen and drone instances, to
mitigate bias during gradient updates. Additionally, we optimized the model architecture
specifically for small object detection by removing deep neck layers designed for large-
scale objects and increasing feature map resolution early in the backbone. These changes
preserved finer details essential for identifying pollen grains. We also reduced kernel sizes
and pruned the network to balance inference time with improved sensitivity. As shown in
our results, these modifications led to notable gains in pollen detection accuracy, especially
in the ablated YOLOv8 models.

3.2. Network Architecture Ablation

In this work, we investigate the time per inference and precision of the RTDETR—
real-time detection transformer, YOLO12, YOLO11, YOLOv8-World-v2, YOLOv8, and also
modifications of YOLOv8. First, the default pretrained models were fine tuned on our
dataset. Next, we applied ablation to YOLOv8 models to enhance the detection of small
objects, with a particular focus on improving pollen grain detection.
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Figure 5 presents the structure of YOLOv8 and the applied modifications. To adapt the
YOLOv8 model for detecting worker bees, pollen, drones, and wasps at the hive entrance,
we introduced several structural modifications aimed at improving detection accuracy
while maintaining efficiency. Since all target objects were small, we removed the last three
layers in the neck and the final detection layer in the head responsible for large object
detection. In the backbone, we eliminated the first convolutional layer to increase the
resolution of feature maps passed to subsequent layers, which helps in preserving fine-
grained details crucial for small object detection. Additionally, the number of kernels in
each convolutional layer within the backbone was reduced by a factor of four to optimize
computational efficiency. Furthermore, all four C2f layers in the backbone were removed to
simplify the model architecture. Each modification was systematically evaluated by training
and analyzing the model using precision vs. latency curves, ensuring an optimal balance
between detection performance and computational cost. The modifications introduced to
the YOLOv8 are marked in Figure 5 as follows:

• Mod-1 is the number of kernels in the backbone being reduced by a factor of four, and
the first convolutional layer was eliminated (pink).

• Mod-2 includes mod-1, with the removal of all four C2f layers in the backbone (orange).
• Mod-3 includes mod-1, with the removal of the last three layers in the neck and the

final detection layer (green).
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Figure 5. The architecture and modifications of the YOLOv8 model for worker bee, pollen, drone,
and wasp detection at the hive entrance. The arrows indicate the flow direction of feature maps
within the YOLO architecture.



Agriculture 2025, 15, 1019 13 of 24

3.3. Evaluation Metrics

The models were trained on the proposed dataset for four-class object detection and
evaluated using mean average precision (mAP) metrics. The mAP measures how well the
model detects objects and is based on the Intersection over Union (IoU) score between the
predicted bounding boxes and the ground truth boxes. For mAP50, a detection is considered
correct if the IoU between the predicted and ground truth box is at least 0.5, meaning that
the boxes overlap by 50% or more.

The average precision (AP) at IoU = 0.5 is computed as the area under the Precision-
Recall (P-R) curve:

AP50 =
∫ 1

0
P(R) dR, (1)

where P(R) is the precision as a function of recall. The mAP50 is obtained by averaging the
AP50 across all object classes:

mAP50 =
1
N

N

∑
i=1

APi
50, (2)

where N = 4 is the number of object classes, and APi
50 is the AP for class i at IoU = 0.5.

The precision metric evaluates the model’s ability to correctly identify only the rele-
vant objects. It represents the proportion of correctly predicted positive instances and is
defined as follows:

P =
TP

TP + FP
=

TP
all detections

, (3)

where TP denotes true positives, and FP represents false positives.
Recall measures the model’s ability to detect all relevant instances of ground truth

bounding boxes. It quantifies the percentage of true positives among all actual ground
truth instances and is given as follows:

R =
TP

TP + FN
=

TP
all ground truths

, (4)

where FN represents false negatives. A detection is considered a true positive if the IoU
exceeds 0.5.

4. Results
The experiments were performed on GeForce RTX 4080 Super GPU with 16 GB of

VRAM. The packages and libraries of Ultralytics-8.3.80, Python-3.12.9, torch-2.5.1, and
CUDA 12.6 were used to train detection models. TensorRT 8.6.2 was used to convert the
PyTorch model to a TensorRT-optimized engine for deployment on the Jetson AGX Orin.
All the investigated models were trained on the input resolution 1024 × 576 px. The dataset
was split into 80% for training and 20% for validation/testing. All models were trained and
tested on the same dataset split. For augmentation, image translation was set to ±0.1 of the
image width, scaling was set to a gain of ±0.5, and the left-right image flip probability was
set to 0.5. The mosaic augmentation was disabled for the final 10 epochs. The AdamW [40]
optimizer, with a momentum of 0.9 and a learning rate of 0.001, was used for weight decay
regularization. The maximal number of epoch was set to 1000 with enabled checkpoints
save period equal to 10 epochs. The patience was set to 100, meaning that if there is no
improvement for 100 consecutive epochs, training will stop early to prevent unnecessary
computation and overfitting. The batch size was set experimentally in the range of 2–12,
depending on model complexity, aiming to maximize the utilization of available VRAM
and accelerate the reduction of total loss. During the experimentation, the models reached
minimal loss on the investigated dataset within 300 to 500 epochs. The total loss function
used for detection model training is as follows:
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TotalLoss = λbox · BoxLoss + λcls · ClsLoss + λd f l · d f lLoss, (5)

where lambdas (λ) are loss gains that balance the contribution of each loss component to the
total loss: the box loss gain–λbox = 7.5, classification loss gain–λcls = 0.5, and distribution
focal loss gain–λd f l = 1.5.

4.1. Investigation of Precision vs. Inference Time

The precision vs. inference time analysis on the RTX4080 GPU, as presented in Figure 6,
evaluates the trade-off between detection accuracy and computational efficiency across
different YOLO-based models for recognizing four object classes: worker bee, pollen-
bee, drone, and wasp. The inclusion of pollen as a separate class further refines the
detection task, distinguishing between worker bee, pollen, drone, and wasp. The figure
demonstrates that the pink (mod-1), orange (mod-2), and green (mod-3) curves correspond
to our modified YOLOv8 models, which were optimized through network architecture
ablation. These modifications yield competitive performance, with improvements in
mAP50 while maintaining efficient inference times. In reference to the YOLOv8 models
(cyan), the ablations enhance mAP50 in all three proposed modifications, except for the
nano-size mod-2. However, the inference time is improved only for the nano and small
models. The mAP50 of the modified YOLOv8 small models was increased by at least
2% while simultaneously reducing the inference time. Notably, the YOLOv8 pollen-bee
models (blue and gray) maintain a strong balance between precision and speed, while
RTDETR (yellow) exhibits significantly slower inference and lowest precision. The red
curve, representing YOLO11, achieves the highest precision on medium, large, and extra-
large models. However, all YOLOv8 models outperform the corresponding YOLO11
models in inference time, particularly the nano, small, and medium-sized models, with an
improvement of up to 1.5–2 ms/image. While YOLO12 demonstrates competitive precision,
its slower inference time compared to YOLOv8 and YOLO11 suggests a potential trade-off
between accuracy and speed. This performance gap raises questions about the model’s
efficiency for real-time applications where faster processing is crucial.

Figure 6. Precision vs. inference time on RTX4080 Super 16 GB. The “pollen” abbreviates that the
models were trained on pollen as a separate class of objects, the “pollen-bee” depicts the merged class.
The labels n (nano), s (small), m (medium), l (large), and x (extra large) represent the model sizes.

Table 2 presents the performance of the fine-tuned detection models on an RTX 4080,
based on the validation set with a confidence threshold of 0.5. Precision and speed results
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are provided for four extra-large models, where the highest precision was achieved with the
first set of labels (worker bee, pollen-bee, drone, wasp). Additionally, results for YOLOv8
small models, both with and without ablation, are shown, demonstrating a significant
increase in both precision and speed when using the second set of labels (worker bee,
pollen, drone, and wasp). The results show that among the extra-large models, YOLO11-x,
YOLOv8-x, and YOLO-World-v2-x achieve the highest mAP50 of 97.6–97.9%, with YOLO11-
x and YOLOv8-x having near-identical precision. However, YOLO-World-v2-x maintains
competitive accuracy while significantly increasing inference time to 19.4 ms, making it less
efficient than the YOLO extra-large models. RTDETR-x, despite having the lowest mAP50
(91.2%), shows the slowest inference time at 31.6 ms, indicating a suboptimal balance
between speed and precision. YOLO12x achieves a mAP50 score of 97.5% with 59.1 million
parameters, but its inference time of 22.4 ms is notably slower compared to YOLOv8-x
and YOLO11-x, which reach similar precision levels with faster processing speeds. This
suggests that while YOLO12x offers high accuracy, its computational efficiency may be a
limiting factor for real-time applications.

Table 2. Models performance with combined and separate pollen labels. Deployed on RTX 4080.

Model Params, M mAP50, % True Positives, % Inference
Worker Bee Pollen-Bee Drone Wasp Time, ms

RTDETR-x 67.3 91.2 68 50 88 85 31.6
YOLO-World-v2-x 72.9 97.6 97 87 94 99 19.4
YOLO12-x 59.1 97.5 97 86 96 99 22.4
YOLO11-x 56.9 97.9 97 89 97 99 16
YOLOv8-x 61.6 97.6 97 89 95 99 15.3
YOLOv8 s 9.8 96.9 96 84 93 96 6.8

Worker bee Pollen Drone Wasp

YOLOv8 s 9.8 94.1 98 59 93 97 6.7
YOLOv8 s (mod-1) 4.7 96.6 97 64 90 97 6.5
YOLOv8 s (mod-2) 4.5 96.3 97 72 88 97 4.8
YOLOv8 s (mod-3) 1.9 96.5 98 71 90 97 5.8

For smaller models, YOLOv8 s achieves a strong mAP50 of 96.9% with an inference
time of 6.8 ms. Furthermore, modifications of YOLOv8 s after network architecture ablation
(mod-1, mod-2, and mod-3) show a substantial reduction in model size and inference
time, with mod-2 achieving the fastest inference at 4.8 ms. Notably, the modified versions
demonstrate improvements in pollen detection accuracy, with mod-2 and mod-3 achieving
higher precision on the pollen class (72% and 71%, respectively) compared to the original
YOLOv8 s (59%). However, mod-1 slightly reduces pollen detection accuracy but maintains
strong overall performance. The findings suggest that for real-time applications, mod-
3 is the most efficient choice, offering the fastest inference with minimal compromise
in precision.

The confusion matrices in Figure 7 illustrate the performance of YOLOv8 s models
under different annotation approaches for detecting worker bees, pollen-carrying bees
(or pollen), drones, and wasps. In matrix (a), where pollen-carrying bees are merged
into a single pollen-bee class, the model achieves high accuracy for worker bees (96%)
and drones (93%), but shows notable confusion between worker bees and pollen-bees,
with 15% of pollen-bees misclassified as worker bees. This highlights the challenge of
distinguishing pollen-bearing bees from regular worker bees due to their morphological
similarity. This merging simplifies annotation but sacrifices granularity, as it conflates
two distinct classes, leading to reduced specificity in identifying pollen-bearing bees. The
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wasp detection is robust with minimal confusion (96%). Matrix (b) separates pollen from
worker bees as distinct classes, revealing greater confusion in pollen detection. Only 59%
of pollen instances are correctly classified, with significant misclassification as background
(41%). Drones and wasps maintain high accuracy (93% and 97%, respectively). Matrix (c)
represents a modified YOLOv8 s approach (mod-3) that improves pollen detection accuracy
to 71%, reducing misclassification as background to 29%. This adjustment enhances the
model’s ability to distinguish between these classes. However, drone accuracy decreases
slightly to 90%, suggesting a trade-off in performance across classes. Wasp detection
remains consistent at 97%, while this trade-off enhances pollen detection, these findings
align with the study’s premise that treating pollen as an independent category benefits
long-term tracking applications, as merging it with worker bees increases classification
accuracy but may lead to tracking inconsistencies when pollen visibility is low.

(a) (b) (c)

Figure 7. Confusion matrices comparing detection performance using two different annotation
approaches: merging pollen with worker bees into a single pollen-bee class using YOLOv8 s (a),
treating pollen as a separate class using YOLOv8 s (b), treating pollen as a separate class using
YOLOv8 s (mod-3) (c).

The last row in the confusion matrices of Figure 7 represents the distribution of
false positives across all classes. Since the rows are normalized, each row sums up to 1,
regardless of the actual number of false positives or true positives for that particular
class. The background row specifically indicates the fraction of false positives attributed to
each class when the model incorrectly detects an object in areas where no object exists or
generates multiple predictions for the same object.

4.2. Deployment on Jetson AGX Orin Platform

Figure 8 presents a comparative analysis of the YOLOv8 and YOLO11 detection mod-
els in terms of mAP50 versus inference latency across different hardware configurations.
The RTX 4080 GPU, represented by red (YOLO11) and blue (YOLOv8) curves, demonstrates
superior performance in terms of accuracy and efficiency, achieving the highest mAP50
values with significantly lower inference times compared to the Jetson AGX Orin imple-
mentations. The AGX Orin models exhibit a trade-off between precision and latency, where
lower precision format (FP32 and FP16) improves the inference speed but slightly reduces
the accuracy in the case of YOLO11s. The YOLO11 model generally outperforms YOLOv8
in mAP50 across medium, large, and extra-large configurations (m, l, x); however, YOLOv8
demonstrates better precision and inference time, particularly in the smaller models (n, s).
The INT8 quantization significantly improves the inference speed, particularly for large (l)
and extra-large (x) models, but this comes at the cost of a 6-12% drop in precision compared
to higher-precision formats such as FP16 and FP32.
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Figure 8. Comparison of YOLOv8 and YOLO11 performance across RTX 4080 and Jetson AGX Orin.
The labels n (nano), s (small), m (medium), l (large), and x (extra large) represent the model sizes.
The blue and red curves correspond the same PyTorch reference models in Figure 6.

The confusion matrices in Figure 9 illustrate the impact of quantization on detection
accuracy. Compared to the confusion matrix in Figure 7a, where the mAP50 is 96.9% using
the PyTorch implementation, Figure 9a presents the class confusion for the same model
converted to TensorRT FP16, achieving a mAP50 of 97.1%, with a 0.2% performance gain
from conversion to the TensorRT engine format. The quantization to 16-bit floating-point
has a minimal effect on the distribution of true positives (TP). The TP rates for pollen-bees
and drones remain unchanged, while those for worker bees and wasps increase by 1%.

(a) (b)

Figure 9. Impact of TensorRT quantization on YOLOv8 s detection accuracy: FP16 (a) vs. INT8
(b) confusion matrices.

In contrast, TensorRT INT8 quantization (Figure 9b) has a more pronounced impact
on detection accuracy. The TP rate decreases by 4% for worker bees, 10% for wasps, 18%
for drones, and 34% for pollen-bees. A notable shift in misclassifications is observed, as
worker bees and wasps are increasingly misclassified as background, while pollen-bees
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and drones are frequently misclassified as worker bees. This effect suggests that smaller
features intrinsic to pollen-bees and drones are more susceptible to quantization errors
compared to larger objects. The loss of fine-grained details in INT8 precision reduces the
model’s ability to distinguish between worker bees, pollen-bees, and drones, leading to a
higher rate of incorrect classifications.

Table 3 presents the maximum frames per second (FPS) achieved by YOLOv8 and
YOLO11 models across different implementations and precision formats on the Jetson AGX
Orin platform. The FPS values are computed based on the time taken by the model to
process a single image. Table 3 also takes into account the time for data preprocessing
and postprocessing, which are not included in Figure 8 but significantly impact overall
performance. For PyTorch implementations, preprocessing and postprocessing add ap-
proximately 13 ms to the computation time, while FP32, FP16, and INT8 formats require
16 ms for these operations. The table highlights that YOLOv8 consistently outperforms
YOLO11 in terms of FPS across nano and small model sizes (n, s). For instance, under
FP32 precision, YOLO11 achieves up to 27 FPS for the small model size (s), compared
to YOLOv8’s maximum of 29 FPS. However, YOLO11 maintains equal or higher FPS for
larger model sizes (m, l and x), indicating its suitability for faster real-time applications.
For instance, under FP32 precision, YOLO11 achieves up to 20 FPS for the large model
size (l), compared to YOLOv8’s maximum of 17 FPS. The INT8 format generally provides
the highest FPS due to reduced computational complexity, followed by the FP16 and FP32
formats.

Table 3. Maximum frames per second achieved by YOLOv8 and YOLO11 models on Jetson AGX
Orin with 1920 × 1080 px image resolution and 1024 × 576 px model input resolution.

Model
Maximum Frames per Second, on Jetson AGX Orin Preprocess Postprocess

YOLOv8 YOLO11 Time, ms Time, ms
n s m l x n s m l x

PyTorch 28 23 19 15 12 25 23 19 18 12 10 3
FP32 29 24 21 17 13 27 24 21 20 14 12 4
FP16 33 29 24 23 21 32 28 26 23 21 12 4
INT8 35 32 26 24 23 33 31 26 24 23 12 4

4.3. Visualizations

The detection results presented in Figure 10 demonstrate the ability of the trained
YOLO models (YOLOv8-x and YOLO11-x) to accurately identify and classify four key insect
types at the hive entrance: worker bees, pollen, drones, and wasps. The detected objects are
highlighted with distinct bounding boxes: worker bees in blue, pollen in cyan, drones in
white, and wasps in aquamarine, enabling a clear visual differentiation of these categories.
Figures 10a–d illustrate successful detections of worker bees and pollen-bearing bees under
varying environmental conditions. The models effectively recognize pollen-carrying bees
by detecting the presence of pollen sacs on their hind legs. However, the small size of
pollen, as shown in Figure 10c, poses a detection challenge, particularly in cases where
lighting conditions or occlusions obscure the pollen sacs, while YOLOv8-x and YOLO11-x
perform well in distinguishing pollen from the background, slight misclassifications occur
when pollen visibility is low or when it closely blends with the worker bee is body. The
improved detection of pollen in these frames confirms that treating pollen as a separate
class, rather than merging it with worker bees, allows for more precise identification and
tracking of worker bees.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. Cont.
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(i) (j)

(k) (l)

Figure 10. Detected worker bees (blue), pollen (cyan), drones (white) and wasps (aquamarine) on the
entrance to the beehive. Detected worker bees and pollens (a–d), wasps (e–i), and drones (i–l).

Figure 10e–i focuses on wasp detection, an essential task for monitoring hive security.
The detected wasps, marked in aquamarine, exhibit clear distinctions from honeybees in
terms of body shape and size. Figure 10e,g captures a wasp in flight on the grass near the
hive entrance, indicating the effectiveness of the models in detecting moving objects. The
detection results also highlight the importance of robust classification in preventing false
positives, ensuring that wasps are not misclassified as worker bees, which is crucial for
beekeepers aiming to assess potential threats. Figures 10i–l depict drone detections, where
the models successfully identify drones distinct from worker bees. Drones, marked in white,
are typically larger than worker bees, which aids in their classification. Figure 10k highlights
an instance where a drone is detected alongside multiple worker bees, demonstrating the
model’s capacity to differentiate between similar insect classes. However, Figure 10j reveals
a case where the bounding box slightly overlaps with an adjacent worker bee, illustrating
the challenge of detecting drones in high-density scenarios. The accurate identification
of drones is crucial for tracking colony reproductive health, as their presence or absence
provides insights into hive dynamics.

5. Discussion
The effectiveness of object tracking relies heavily on the stability and accuracy of

detections across frames. The confusion matrices in Figure 7 reveal key differences between
treating pollen as a separate class versus merging it with worker bees into a “pollen-bee”
category, both of which significantly influence tracking performance. When pollen is
treated as an independent class, detection accuracy is lower (71% based on YOLOv8s
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mod-3 implementation), with a substantial portion misclassified as background (29%). This
inconsistency in detection can lead to frequent tracking failures, as the bounding box may
be intermittently lost or switched to background, disrupting object continuity. Additionally,
class ambiguity between pollen and background increases the likelihood of misdetections,
causing the tracker to lose reference points, particularly in cases of occlusion or motion
blur[17]. According to the confusion matrices in Figure 7a,c, the detection of worker bees is
increased by 2%, therefore the tracking will be more stable for worker bees. The pollen is
not misclassified as worker bees. Worker bees should be tracked, and pollen only detected.

On the other hand, merging pollen with worker bees into a single “pollen-bee” cate-
gory improves detection accuracy (84%), reducing false negatives and stabilizing tracking
performance. However, this approach introduces new challenges, while the detection of
pollen-bearing bees is enhanced, class confusion between worker bees and pollen-bees
may lead to frequent category switches, especially when worker bees are carrying varying
amounts of pollen. This can result in tracker drift, where the model inconsistently reassigns
labels between “bee” and “pollen-bee”, affecting long-term tracking stability[18].

Ultimately, the choice of classification scheme should align with the tracking objective.
If the goal is to maintain precise long-term monitoring of individual worker bees, treating
pollen as a separate class ensures stability, even at the cost of reduced detection accuracy for
pollen. Conversely, if short-term detection accuracy is prioritized over continuous tracking,
the pollen-bee category provides a more robust detection framework at the expense of
occasional tracker inconsistencies. Future improvements could involve integrating motion-
based tracking models or refining object detection algorithms to minimize class switching
and bounding box instability.

The Jetson AGX Orin platform provides a promising application in apiary monitoring,
enabling real-time detection of worker bees, pollen-carrying bees, drones, and wasps at
hive entrances. The achieved speeds, as presented in Table 3, demonstrate the capability of
YOLO11 and YOLOv8 models to process video data efficiently. YOLO11 achieves up to
32 FPS under FP16 precision for the smallest model size (n), while YOLOv8 reaches 33 FPS
under similar conditions. These speeds are sufficient for continuous monitoring of hive
activity without disrupting worker bee behavior. However, further optimization is possible
by matching the resolution of input images (1920 × 1080 px) with the model’s input resolu-
tion (1024 × 576 px). Such alignment would reduce preprocessing time, which currently
adds 10 ms for PyTorch models and 12 ms for FP32, FP16, and INT8 implementations. By
minimizing preprocessing overhead, the overall FPS could be increased, enhancing the
system’s responsiveness.

When choosing between model sizes and precision formats, it is essential to consider
the specific requirements of the application [18,33]. If high detection precision is a priority,
for example, to distinguish pollen-carrying bees from regular bees or detect rare occurrences
such as drones or wasps, then the larger “x” models should be used despite their lower
speed. Conversely, if speed is critical for real-time monitoring across multiple hives or
high-traffic entrances, smaller models such as “nano” or “small” provide faster processing
while maintaining adequate accuracy. This flexibility allows beekeepers to customize the
system to their unique needs, ensuring effective hive surveillance and early threat detection.

Misclassifications in our detection pipeline, particularly involving small objects such
as pollen grains, primarily arise due to their small-scale, occlusion, and visual similarity
to background textures. Small object detection remains a well-known challenge in deep
learning models, as these objects often occupy fewer pixels, leading to weaker feature
representation in convolutional layers [17,41,42]. In our experiments, pollen grains were
frequently misclassified as background or occasionally as parts of the worker bee’s body.
This problem becomes even worse in cluttered scenes or when the pollen load is faint
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in color. Moreover, the presence of motion blur, overlapping insects, and varying poses
reduces detection consistency [43]. Despite architectural modifications that enhanced
small object sensitivity (e.g., pruning high-level layers and increasing feature resolution),
the trade-off between precision and computational efficiency remained. These findings
highlight a structural limitation of standard detection models, especially when applied to
small, low-contrast, or partially visible targets in complex environments.

Environmental variability, such as changing light intensity, shadows, reflections, and
weather-related artifacts (e.g., raindrops or fog), significantly affects model robustness [44,45].
Although our dataset included images from both sunny and overcast days to ensure general-
izability, certain lighting conditions, particularly strong backlight or harsh shadows near the
hive entrance, degraded detection performance. In such cases, object contours were either
overexposed or merged into the background, leading to increased false negatives. Addition-
ally, changes in background surfaces due to moisture, pollen accumulation, or dirt introduced
further inconsistencies, while real-time augmentation strategies help mitigate some of these
issues during training, extreme or rare lighting configurations are inherently underrepre-
sented. Therefore, models may benefit from incorporating dynamic exposure adjustment,
domain adaptation techniques, or adaptive thresholding to better handle such variations in
deployment scenarios.

6. Conclusions
This study evaluated deep learning-based insect detection models for monitoring

bee activity and potential threats at hive entrances. The experiments compared various
YOLO-based architectures in terms of precision and inference speed across different hard-
ware platforms, including an RTX 4080 Super GPU and an embedded Jetson AGX Orin.
The results highlight the trade-offs between model size, detection accuracy, and inference
efficiency, demonstrating that YOLOv8 modifications improve detection accuracy, par-
ticularly for distinguishing pollen from worker bees. The choice of whether to classify
pollen separately or merge it with worker bees influences both precision and tracking
stability. Additionally, hardware optimizations such as adjusting input resolution can
further enhance real-time performance. The findings provide a foundation for future work
in automated hive monitoring, including motion-based tracking and real-time behavioral
analysis to support beekeepers in colony management.

Future research should explore multimodal approaches to improve detection robust-
ness and behavior interpretation. Integrating sensor data such as temperature, humidity,
and acoustic signals with visual inputs could enrich the context for object classification and
behavioral analysis. For example, correlating increased wasp activity with temperature
spikes or specific audio patterns could improve predictive modeling. Additionally, lever-
aging infrared imagery or polarized light sensors may help in low-light or shadow-heavy
environments, complementing RGB-based vision systems. These modalities can be fused at
either the data or decision level, enabling the system to maintain high accuracy even when
visual data are compromised. Developing such multimodal architectures, particularly those
optimized for edge inference, could substantially enhance real-time monitoring capabilities
in diverse apiary conditions.
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