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INTRODUCTION 

Relevance of the topic:  

Controlling nonlinear fluid dynamical systems is a key challenge in engineering, impacting fields like 

aerospace, automotive, and renewable energy. In these areas, fluid flow regulation can significantly affect 

efficiency and operational costs. For example, vortex shedding, where rotating air vortices form behind 

objects, increases drag and reduces stability, which is particularly problematic for vehicles and aircrafts, 

leading to higher fuel consumption and hundreds of millions of dollars in costs each year [1,2,3]. Beyond 

transportation, fluid dynamics influences manufacturing and energy production. Unsteady fluid flows 

can disrupt industrial processes. In microfluidic systems, such as lab-on-a-chip devices, controlling fluid 

flow is vital for precise chemical reactions and biomedical applications [4]. 

Problem:  

Vortex shedding behind automobiles moving through fluid systems results in increased drag force that 

acts opposite to the movement of the vehicle. The leads to significant energy loss and increased fuel 

costs. 

Research Object:  

The fluidic pinball system, a nonlinear flow control setup consisting of three cylinders used to study wake 

dynamics and active flow control strategies. 

Aim:  

This project leverages genetic programming (GP) based machine learning control (MLC) to design and 

generate nonlinear control laws to stabilize the actuated velocity field for the fluidic pinball system 

without resorting to linearization or mathematical approximations. 

Tasks:  

1. Drag Reduction: Reduce the drag force by minimizing the drag coefficient using genetic 

programming (GP) and compare the results to those of a traditional linear control model. 

2. Model-Free Control Development: Apply genetic programming directly to the nonlinear fluidic 

pinball system to evolve control laws without requiring an explicit mathematical model. 

3. Nonlinear Feedback Adaptation: Demonstrate that GP can generate effective controllers 

without linearizing the system, by adapting directly to feedback from its nonlinear dynamics. 

Research Methods:  

The study uses GP as the primary method to evolve control laws for the fluidic pinball system. 

Simulations of the system’s nonlinear dynamics are performed to evaluate control-law performance. The 

GP process includes exploration, evaluation, selection, and genetic modification, iteratively improving 

controllers based on real-time system feedback. 
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1. LITERATURE REVIEW 

This literature review explores the development and application of GP for MLC in fluid systems. 

It begins by examining early approaches to controlling nonlinear systems and later introduces the 

previous use of GP on simple mechanical systems. 

 

 1.1 Background and Previous Work 

1.1.1 Drag Force and Fuel Consumption 

Drag force is an external force exerted by a fluid stream on any object moving through a fluid. In 

fluid dynamics, this drag is amplified by the vortex shedding and wake turbulence behind an automobile. 

A study by Lawrence Livermore National Laboratory suggests that improving automobile wake 

dynamics could reduce fuel consumption by 12%, equating to over $10 billion in fuel savings per year 

[5]. In their study, Ghasemi and Yousefi et al. explore fuel consumption of ground-vehicles under 

different conditions [6]. Figure 1.1 highlights their critical and major findings in the difference in fuel 

consumption caused by different automobiles with varying properties in daily automobile transportation. 

As displayed by the figure and data, a minor decrease in the drag coefficient 𝐶𝑑 from 𝟎. 𝟑𝟐 to 𝟎. 𝟐𝟗 

(along with a slight frontal reference area 𝐴 change) can mean a staggering 𝟎. 𝟐𝟖𝑳/𝟏𝟎𝟎𝑲𝒎 difference 

between model 1 and 2. One can imagine how this difference is amplified with millions of 𝑲𝒎 driven 

daily by people across the globe. 
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Fig. 1.1. Fuel consumption in automobiles with reference area 𝑨 and drag coefficient 𝑪𝑫 [6] 

 

In calculable parameters, the main cause behind vortex shedding and an increased drag force is 

due to insufficient tools and control methods to stabilize the actuated velocity field 𝒖𝒃 relative to the 

steady velocity field 𝒖𝒔, which greatly increases fuel consumption. Equations 1.1 and 1.2 further explain 

the relationship between drag and the actuated velocity field in fluid dynamics [7]: 

 

𝑭𝒅 =
𝟏

𝟐
𝑪𝒅𝝆𝑨𝒖𝟐 (1.1) 

 

where  𝑭𝒅 is the drag force, 𝑪𝒅 is the drag coefficient, 𝝆 is the fluid density, 𝑨 is the reference area of 

the object perpendicular to fluid flow, and 𝒖 is the flow velocity. When specifically considering the drag 

coefficient 𝑪𝒅 [8]:  

𝑪𝒅 = 𝑪𝟎 + 𝒌‖𝒖𝒃 − 𝒖𝒔‖𝟐 (1.2) 

 

𝑪𝟎 is the base drag coefficient when the velocity fields are perfectly aligned (𝒖𝒃 = 𝒖𝒔), and 𝒌 is a 

proportional constant that links the deviation between the two velocity fields. Through this relationship, 

we can surmise that when 𝒖𝒃 closely matches 𝒖𝒔, the drag coefficient 𝑪𝒅 is reduced, thereby decreasing 

the applied drag force 𝑭𝒅. Since this is a direct relationship between the two parameters, a significant 

portion of the losses in transportation systems are due to unstable wake dynamics.  

The challenge is that traditional control methods struggle to account for the highly nonlinear 

nature of these flows. Without an effective control strategy, industries will continue facing escalating 

operational costs, fuel waste, and performance limitations due to poorly regulated wake dynamics. 

 

1.1.2 Linear Controllers in Fluid Systems 

Nonlinear dynamical systems, including fluidic systems, present unique challenges due to their 

unpredictability, chaotic transitions, and sensitivity to initial conditions. These characteristics complicate 

traditional control approaches, which often involve linearizing the system equations to simplify the 

design of linear controllers. 

Smith et al. [9] investigated linear controllers for managing wake interactions in a canonical 

cylinder arrangement. While these controllers performed adequately for small perturbations, they 

struggled with larger disturbances and unsteady wake patterns. The study concluded that linear control 
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laws are inherently limited in addressing highly nonlinear behaviors, highlighting the need for more 

adaptive solutions. 

With the presented significant control challenge, control methods that rely on linearization or 

simplified models, such as linear quadratic regulators (LQR), struggle to capture the true nonlinear 

dynamics of these systems [10]. To further elaborate on this statement, we must first highlight the 

difference between the linear control law design process vs. the GP-based process. The structure diagram 

in figure 1.2 demonstrates the difference in the controller-design process of both methods. 

 

 

Fig. 1.2. Structure diagram highlighting process difference between GP and linear control 

methods 

 

As demonstrated in figure 1.2, the main challenge with using linear control methods to find 

control solutions for nonlinear, dynamical systems lies in two separate steps of the process: 

mathematical modeling and linearization.  

 

• Complexity of mathematical modeling: This is an important step in the many control 

law design processes, which includes deriving the equations of motions and developing 

the state-space model and system transfer function. The modeling stage can prove quite 

difficult when dealing with dynamical systems that comprise many degrees of freedom. 

 

• Inaccuracies introduced during linearization: The next stage after the modeling 

process is the linearization of the system dynamics. Linear control laws, such as 
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proportional-integral-derivative (PID) controllers, linear quadratic regulators (LQR), and 

state vector control (also known as K-vector control), can only be practically applied to a 

linearized model of the system dynamics. However, almost all real-world physical 

systems have nonlinear parameter relationships, and linearizing/simplifying such 

dynamics leads to inaccuracies. One can even argue that linear control methods provide 

control solutions to a “derived similarity” of the dynamical system, and do not represent 

or duplicate the nonlinear system response. 

 

This results in ineffective or suboptimal control strategies. Data-driven approaches such as machine 

learning control (MLC) and neural networks offer a promising solution, directly optimizing control laws 

based on observed behaviors. However, existing methods are insufficient to manage the full complexity 

of nonlinear fluid systems. The fluidic pinball system serves as a benchmark for studying systems with 

such complicated dynamics, but traditional techniques often fail to exploit its nonlinear characteristics, 

underscoring the need for more effective approaches. 

 

1.1.3 Genetic Programming in Mechanical Systems 

GP has demonstrated remarkable promise in solving control problems for simple mechanical 

systems, establishing a foundation for tackling more complex domains. 

 

Case Study 1: Double Pendulum 

The double pendulum is an example of a chaotic system, characterized by sensitive dependence 

on initial conditions and highly nonlinear dynamics. Benchmark studies by White, Smith and Jones et al. 

utilized GP to develop control strategies for stabilizing the pendulum in its inverted position [11,12]. 

This method was uniquely named the Improved Genetic Algorithm (IGA). IGA included encoding 

potential control laws as tree-based structures, and iteratively optimized the control parameters based on 

a fitness cost function that minimized deviation from the target inverted pendulum position. The fitness 

used in the study is characterized by cost 𝑬(𝒁): 

 

 

𝒎𝒊𝒏(𝑬(𝒁)), 𝑬(𝒁) = ∑ ∑ (𝜽𝒊(𝒋) − �̂�𝒊(𝒋))
𝟐𝒏

𝒋=𝟏

𝟐

𝒊=𝟏
 (1.3) 
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where 𝜽𝒊(𝒋)  is simulated zero-input response data and �̂�𝒊(𝒋) is the real-time zero-input response data of 

the 𝒊th rod at moment 𝒋. Therefore, the effectiveness of the control law is characterized by a small 

cost 𝑬(𝒁), ideally close to zero [11]. 

In addition, the study observed the difference between the IGA and a linear method of control like 

the LQR. When considering an LQR controller, it is designed for linear systems or in most cases 

linearized versions of nonlinear systems, such as the double inverted pendulum. It assumes the system 

dynamics can be represented by a linear state-space model [13]: 

 

�̇�(𝒕) = 𝑨𝒙(𝒕) + 𝑩𝒖(𝒕) (1.4) 

 

where 𝒙(𝒕) is the state vector, 𝒖(𝒕) is the control input (which in this inverted pendulum system 

corresponds to motor voltage 𝑽), and 𝑨 and 𝑩 are the linearized system matrices that correspond to 

system dynamics [12]. On the other hand, the IGA is applied directly to the nonlinear dynamics of the 

pendulum: 

 

�̇�(𝒕) = 𝒇(𝒙(𝒕), 𝒖(𝒕)) (1.5) 

 

where 𝒇(𝒙(𝒕), 𝒖(𝒕)) is the nonlinear function describing the accurate system dynamics. 

 

Key Results: 

• The IGA-evolved control law stabilized the double pendulum in over 85% of test cases, even 

under varying initial conditions. Even though the algorithm ran for 500 generations, the fitness 

of the optimized control law converged in an impressive 20-generation span, as shown in figure 

1.3. 
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Fig. 1.3. Convergence of control law fitness over 500 generations on the double pendulum system 

[13] 

 

• Compared to linear control methods, such as the LQR, the IGA achieved a 30% improvement in 

angle control of the outer pendulum arm, measured by the angle error difference in radians 

displayed in figure 1.4. 

 

 

Fig. 1.4. Recorded angular error between the adapted IGA algorithm and LQR [13] 

 

• Computational complexity was significantly reduced, as the IGA approach eliminated the need 

for explicitly modeling of the system’s equations of motion as compared to its LQR alternative. 

 

Case Study 2: Cart-Pole System 

The cart-pole system, often referred to as an inverted pendulum on a moving base, is another 

well-known benchmark for testing control strategies. In a recent study, GP was employed to evolve 

control laws capable of stabilizing the pole while maintaining the cart’s position within predefined 

bounds [14]. However, the most important observed outcome from this study was not the robustness of 

Generation (G) Fitness  𝑬(𝒁) 

1 90.802 

20 4.0011 

40 3.4501 

60 1.1053 

80 1.0658 

100 1.0658 

200 1.0057 

300 0.9271 

400 0.8629 

500 0.8515 
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the control law’s performance when maintaining the inverted pendulum angle 𝜽, but in the movement 

pattern necessary for initially inverting the pendulum to its starting position. 

 

Key Results: 

• After running over 400 generations worth of individuals, the evolved control law’s robustness 

and performance were displayed in the optimal path for the initial pendulum swerve to the 

inverted initial position. This path is displayed in figure 1.5. 

 

 

Fig. 1.5. Initial swerve path discovered by GP to launch pendulum to initial position [14] 

 

1.1.4 Foundations of Genetic Programming 

 GP is a type of evolutionary algorithm that is inspired by the process of natural evolution and 

genetics in living organisms. The origins of GP can be traced back to the early 1990s, when John Koza 

formalized the method as an extension of genetic algorithms to evolve actual computer programs, not 

just fixed-length strings [15]. Since then, GP has been applied across many fields, including symbolic 

regression, automated design of complex geometries, and even control systems. Just as biological 

evolution creates adapted life forms over generations (like Darwin’s theory of natural selection and 

survival of the fittest), GP searches for better and better solutions to a given problem by mimicking this 

process [16]. In GP, a population of possible solutions, usually represented as programs or equations, 

evolves over time. Each solution is evaluated based on how well it performs a task, like how organisms 

are judged by their fitness to survive in their environment [17]. The best-performing individuals are 

selected to "reproduce" and pass on their traits to the next generation. 
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This reproduction involves several genetic operations. Replication is the simplest, where a 

solution is directly copied into the next generation without any changes. Crossover is more interesting: 

it works like genetic recombination in biology, where parts of two parent solutions are combined to form 

one or more children. This allows useful parts of different solutions to be mixed in hopes of creating an 

even better one [18]. Mutation introduces random changes into a solution, like random genetic mutations 

in DNA. These mutations are usually small and help introduce new traits that may be useful later or allow 

the population to escape from local optima [19]. Crossover and mutation principles are shown in figure 

1.6. Over many generations, GP gradually refines its population, keeping the best traits and discarding 

the less useful ones. 

 

 

Fig. 1.6. Mutation and crossover in GP [18] 

 

This way of searching for solutions does not require predefined models or structures. It builds 

them from scratch based on performance. This makes GP a powerful method for finding control laws for 

complex nonlinear systems, such as those in fluid dynamics, where traditional methods might struggle. 

A detailed explanation of how these operations is applied in this work to solve this specific research 

problem is provided in section 2.2. 
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 1.2 Literature Summary 

As shown in section 1.1.3, GP demonstrated a substantial advantage in the two study cases of the 

double inverted pendulum and the cart pendulum systems. Not only did GP achieve a 30% improvement 

in angle control over the LQR control algorithm for the double pendulum system, but it also demonstrated 

an impressive initial swerve path for inverting the pendulum to an upright position. Furthermore, GP did 

so without any explicit system modeling or compromising the system equations by introducing 

linearization. These two study cases show only a fragment of GP’s usability in nonlinear dynamics. 

Thousands of different nonlinear problems in current existing systems cause either system inefficiencies 

or inconveniences to users. GP is a steppingstone to resolving such problems.  

However, the previous study cases with the inverted pendulums are frankly simple systems, with 

each comprising two or three degrees of freedom and in principle have less complicated system dynamics 

than many of the real-world dynamic systems. Despite the improved performance introduced with GP, 

the previously applied linear control solutions are perfectly capable. In addition, the simplicity of the 

nonlinear pendulum equations allowed GP to test thousands of control laws over the span of 500 

generations. Unless a supercomputer is utilized, this will be difficult to achieve with GP. Therefore, it is 

also important to find methods to boost GP’s performance when running for just a few generations on 

more complex fluid systems. This research aims to tackle that issue by applying GP to more complex 

systems where linear control methods do not perform as well. 

 

1.3 Research Goals 

This project aims to leverage the strengths of GP to address the challenges posed by drag force 

acting on nonlinear fluid systems. The fluidic pinball serves as a representative testbed for exploring 

these challenges. The visual representation of the problem is displayed in figure 1.7. Figure 1.7 shows 

the ideal steady-state velocity field of the fluidic pinball system as well as the real, chaotic vorticity of 

the system. 
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Fig. 1.7. Steady-state vs. chaotic vorticity of the fluidic pinball system 

 

The reduction in drag force and reduction of energy lost is the result of closely matching the real 

actuated velocity field to the steady velocity field, which is directly reflected in the vorticity diagram. As 

observed in the chaotic vorticity diagram, high pressure forms upstream due to flow stagnation, and low 

pressure develops downstream due to flow separation and vortex shedding. This pressure imbalance 
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creates a net force opposing the flow direction, contributing to an increased drag coefficient and drag 

force. The research must minimize the drag coefficient and drag force with the following objectives: 

 

1. Develop control laws using GP to stabilize the chaotic and nonlinear dynamics of the fluidic 

pinball to reduce the drag force acting on the system. 

2. Demonstrate the advantages of GP in eliminating the need for explicit system modeling and 

addressing the complexities of real-world fluid systems. 

 

By achieving these goals, the project seeks to advance the field of nonlinear control, specifically, 

contributing to drag reduction and flow stability.  
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2. METHODS 

This section of the paper thoroughly discusses the tools used and how the research is conducted. It 

is divided into three subsections to highlight discuss the GP toolkit used for this research, the properties 

of GP and its method of operation, and later introduces how GP is used on the fluidic pinball.  

 

2.1 OpenMLC-Matlab-2 Toolbox 

The OpenMLC-Matlab-2 toolbox plays a central role in this project. It enables the application of 

GP to evolve control strategies directly from experimental or simulation data. Unlike traditional machine 

learning methods, which often require extensive datasets and computational resources, OpenMLC-

Matlab-2 operates efficiently by leveraging evolutionary optimization principles. 

Duriez et al. [20] demonstrated the toolbox's efficacy in optimizing control strategies for a 

turbulent wake behind a cylinder. Additionally, the toolbox has been applied to economic modeling and 

weather forecasting, further validating its versatility in addressing nonlinear problems across domains 

[21-23]. 

 

2.2 GP-Based Machine Learning of the Automatic Control Problem 

The main architecture adapted when using MLC in dynamical systems is shown in figure 2.1. 

This model represents the MLC framework using GP [24,25]. It consists of three interconnected 

components: 

1. Dynamics: represents the system or process to be controlled. It takes an input 𝒘, which includes 

disturbances or reference signals, and outputs the system's state or behavior 𝒂. 

2. Controller: This block generates control signals 𝒃 based on the system's state measure by sensor 

vector 𝒔. It uses offline learning through GP to evolve and optimize control law design. GP 

iteratively improves controller performance by selecting and breeding the most effective 

individuals. 

3. Cost Function: This evaluates the system's performance 𝑱 based on the output 𝒛 and potentially 

other criteria. The feedback from the cost function guides the offline learning process to evolve 

control laws that minimize or optimize the performance index. 
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Fig. 2.1. Architecture of MLC in dynamical systems 

 

The adapted GP process consists of several key stages: Exploration, Evaluation, Selection, 

Genetic Modification, and Convergence. This algorithm is shown in figure 2.2. 
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Fig. 2.2. GP Algorithm 

 

2.2.1 Control Law Framework 

The primary goal of this study is to develop an optimal control law for the fluidic pinball system. 

The control law should be efficient, easy to interpret, and capable of achieving the desired system 

behavior with minimal complexity. To achieve this, the system dynamics are described in state-space 

form, which provides a mathematical framework for controlling the system. 

 As represented by the function diagram in figure 2.1, the system is defined by two essential 

equations:  

 

State Equation 

�̇� = 𝑭(𝒂, 𝒃) (2.1) 

 

where: 

• 𝒂 ∈ 𝑹𝒏 represents the state vector, which describes the current condition of the system. 

• �̇� is the time derivative of the state vector, indicating how the system evolves over time. 
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• 𝒃 ∈ 𝑹𝒏 is the actuation vector, which represents the control inputs applied to the system. 

• 𝑭 is a nonlinear function that defines the system's dynamics, capturing how the state and 

control inputs influence the system's behavior. 

 

Measurement Equation 

𝒔 = 𝑯(𝒂) (2.2) 

where: 

• 𝒔 ∈ 𝑹𝒏 is the sensor vector, which provides measurements of the system's state. 

• 𝑯 is the measurement function, which maps the state vector 𝒂 to the sensor outputs 𝒔. 

 

Control Law 

As for the control law, the actuation signal 𝒃 is determined by a nonlinear control law 𝑲, which 

depends on both time 𝒕 and the sensor measurements 𝒔. This relationship is expressed as: 

 

𝒃 = 𝑲(𝒕, 𝒔) (2.3) 

 

The control law 𝑲 is designed to generate the appropriate actuation signals based on the current state of 

the system, as measured by the sensors. By allowing explicit time dependence in the control law, the 

framework can accommodate control strategies that combine sensor feedback with periodic or harmonic 

forcing, which can be particularly useful for systems with oscillatory or chaotic behavior. This is 

especially the case in the fluidic pinball system characteristics [26]. 

 

Optimization Objective 

The goal is to find the optimal control law 𝑲∗(𝒕, 𝒔) that minimizes a predefined cost function 𝑱. 

The cost function quantifies the performance of the control law, typically measuring how well the system 

achieves its desired behavior. The optimization problem can be formally written as [27]: 

 

𝑲∗(𝒕, 𝒔) = 𝒂𝒓𝒈𝒎𝒊𝒏
𝑲(𝒕,𝒔)∈𝓚

𝑱 [𝑲(𝒕, 𝒔)]   (2.4) 

  

where: 

• 𝑲 represents the space of all possible control laws. 

• 𝒔 is the space of sensor signals. 
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The optimal control law 𝑲∗(𝒕, 𝒔) is the one that minimizes the cost function 𝑱 while satisfying the system 

dynamics described by 𝑭 and the initial condition 𝒂𝟎. 

 

2.2.2 Exploration Stage 

The Exploration Stage serves as the starting point of the GP process and aims to ensure diversity 

in the population of control functions. In this phase, an initial generation of control functions, denoted as 

𝑵𝒊, is randomly generated. This randomness is key to exploring a wide variety of potential solutions in 

the search space. By starting with a broad array of candidates, the algorithm avoids premature 

convergence to suboptimal solutions and enables a more comprehensive search for control laws [28]. 

The randomness inherent in this stage lays the foundation for future refinement, as it gives the algorithm 

a diverse set of starting points from which to evolve the control law. 

 

2.2.3 Evaluation Stage 

Once the initial population is generated, the Evaluation Stage comes into play. During this stage, 

each individual in the current generation, referred to as 𝑵𝒈𝒄, is evaluated for its performance when 

applied to the dynamical system. The performance of these candidates is quantified using a cost function, 

𝑱, which measures how well each control law manages the system's dynamics [29]. The cost function 

reflects the difference between the desired and actual system behavior, penalizing deviations from 

optimal performance. This stage is crucial for identifying the most promising candidates and provides 

the necessary feedback to guide the evolutionary process. 

 

2.2.4 Selection Stage 

Following the evaluation of the individuals, the Selection Stage identifies the most-fit individuals 

based on their performance in the Evaluation Stage. The ranking of individuals is determined by their 

fitness, with the top performers being selected for further processing. This process mimics natural 

selection, where the best-adapted individuals are chosen to propagate their traits into the next generation. 

Selection ensures that only the strongest solutions move forward, narrowing down the pool of candidates 

and increasing the likelihood of generating a more effective control law over successive generations. 

 

2.2.5 Genetic Modification Stage 

In the Genetic Modification Stage, the selected individuals undergo genetic operations to create 

offspring for the next generation. The key operations in this stage are replication, crossover, and mutation, 

denoted by 𝑷𝒓, 𝑷𝒄,  and 𝑷𝒎, respectively. Replication is perhaps the simplest and includes completely 



30 

 

moving a fit control law to the next generation as a replica. Crossover involves combining the traits of 

two parent solutions to produce offspring with mixed characteristics, promoting diversity and the 

possibility of discovering novel solutions.  

Mutation, on the other hand, introduces small random changes to an individual’s control function, 

helping to maintain diversity in the population and prevent the algorithm from getting stuck in local 

optima. Together, these operations drive the evolution of the population, generating new control 

functions that inherit beneficial traits from their predecessors while introducing new variations to explore 

[30,31]. 

 The evaluation, selection, and genetic modification stages are all part of the control law evolution 

cycle. The cycle is the iterative process in which the stages of Exploration, Evaluation, Selection, and 

Genetic Modification are repeated. After each cycle, the population is refined based on performance, 

progressively converging toward better control solutions. The cycle continues for a predefined number 

of generations, denoted as 𝑵𝒈𝒑. This iterative approach allows the algorithm to gradually improve the 

control law by continuously adapting and evolving the population based on feedback from the dynamical 

system. The Control Law Evolution Cycle ensures that the search process is dynamic and progressive, 

homing in on the optimal solution over time. 

 

2.2.6 Convergence Stage 

The Convergence stage marks the end of the GP process. At this point, the iterative evolution has 

reached a stage where further modifications no longer yield significant improvements, or the specified 

number of generations, 𝑵𝒈𝒑, has been reached. The final control law, 𝑲∗(𝒕, 𝒔), is selected based on its 

superior performance in the Evaluation Stage. This control law represents the most effective solution 

discovered through the GP process and can manage the nonlinear dynamics of the system. The 

Convergence stage signifies the culmination of the search for an optimal control function, with the final 

control law providing the best balance of performance and robustness. 

This entire process, through its cyclic and iterative nature, ensures the development of a control 

strategy that can effectively navigate the complexities of nonlinear systems. 

 

2.3 The Fluidic Pinball System 

The fluidic pinball system is a well-established benchmark problem in fluid dynamics, 

characterized by its three rotating cylinders arranged in an equilateral triangle [32]. Each cylinder has a 

diameter 𝑫, and the side length of the triangle is 𝟏. 𝟓𝑫. The system is designed to mimic the chaotic and 
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nonlinear behavior of real-world fluid flows, making it an ideal testbed for exploring control strategies 

in fluid dynamics [33]. 

 

2.3.1 System Configuration and Flow Dynamics 

The fluid in the system is assumed to be Newtonian, incompressible, and viscous, with a two-

dimensional, uniform, and steady incoming flow. The rotation of the cylinders serves as the primary 

actuation mechanism, allowing for the manipulation of the flow field.  

The actuation signal 𝒃 ∈ 𝑹𝟑 represents the angular velocities of the front, bottom, and top 

cylinders, respectively. Therefore, actuation signal 𝒃 will always be comprised of 𝒃 = [𝒃𝟏, 𝒃𝟐, 𝒃𝟑]. A 

positive angular velocity rotates a cylinder counterclockwise, while a negative value rotates it clockwise. 

The no-slip condition on the cylinder boundaries ensures that the flow is redirected based on the 

actuation. 

To monitor the system's response, nine velocity probes are positioned downstream of the 

cylinders. The sensor data is enriched by incorporating time delays for each sensor signal, providing a 

more comprehensive representation of the flow dynamics. Equation 2.5 represents the sensor time delays: 

𝑻𝟎 = 𝟏 represents the natural shedding period, and the index 𝒊 ranges from 𝟏 𝒕𝒐 𝟗. When referencing 

any of the 𝒏𝒔 = 𝟑𝟔, it is mentioned as 𝒔𝒊𝒔
. Therefore, 𝑖𝑠 ranges from 𝟏 𝒕𝒐 𝒏𝒔 : 

 

𝑠𝑖(𝑡)        𝑠𝑖+9 (𝑡 −
𝑇0

4
)        𝑠𝑖+18 (𝑡 −

𝑇0

2
)        𝑠𝑖+27 (𝑡 −

3𝑇0

4
) (2.5) 

 

The Reynolds number for the flow is set to, 

𝑹𝒆 =
𝑼∞

𝒗
= 𝟏𝟎𝟎 

(2.6) 

  

where ν denotes the kinematic viscosity. The full system configuration is shown in figure 2.3. All 

dimensions in the figure and system are denoted in decimeters. 
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Fig. 2.3. Fluidic pinball computational flow domain Ω with sensor and cylinder configurations 

 

2.3.2 Numerical Simulation Setup 

The numerical simulation of the fluidic pinball system is performed using a two-dimensional grid 

with 𝟒, 𝟐𝟐𝟓 triangular elements and 𝟖, 𝟔𝟑𝟑 nodes. A time step of 𝒅𝒕 = 𝟎. 𝟏 time unit is used, equivalent 

to 𝟏/𝟏𝟎 of the natural shedding period. The flow is solved using Direct Numerical Simulation (DNS), 

and time integration is carried out using the Newton-Raphson method. 

The simulation begins with a symmetric steady solution, and the solver is run without actuation 

for 400 convective time units to allow the transient state to dissipate. Actuation is then applied during 

the time interval 𝒕 ∈ [𝒕𝟎, 𝒕𝒇], where 𝒕𝟎 = 𝟒𝟎𝟎𝒔 and 𝒕𝒇 = 𝟖𝟎𝟎𝒔. The actuation signal is bound to the 

range 𝒃 ∈ [−𝟓, 𝟓] to simulate the saturation output of real industrial actuators [34]. 

 

2.3.3 Control Objectives and Cost Function 

The primary control objective is to stabilize the unstable steady wake flow while minimizing 

actuation energy. This is done by adjusting the rotational speeds of the three cylinders. These cylinder 

rotations serve as the control input to the dynamic system, also identified as the actuation signal 𝒃 ∈ 𝑹𝟑. 

Utilizing the sensor vector 𝒔 in equation 2.2, The actuation signal actively modifies the wake dynamics 

to reduce flow unsteadiness. Without control, the wake is characterized by periodic vortex shedding, 

leading to an unstable and highly dynamic flow field. By appropriately tuning the cylinder rotation 
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speeds, we aim to suppress these instabilities and drive the flow toward a steady-state condition. Figure 

2.1 presents a functional diagram that visually represents this continuous process. 

The drive towards a steady-state solution is guided by the cost function 𝐽. The cost function is 

defined as the sum of two components: 𝑱𝒔, which represents the state cost, and 𝑱𝒂, which quantifies the 

actuation power. Specifically: 

 

𝑱 = 𝑱𝒔 + 𝜸𝑱𝒂 (2.7) 

 

where 𝜸 = 𝟏. The state cost 𝑱𝒔 measures the deviation of the actuated velocity field 𝒖𝒃 from the steady 

velocity field 𝒖𝒔, using the 𝑳𝟐 norm over the computational domain 𝜴. In simple terms, the control 

objective is to adjust the cylinder rotations so that the actuated velocity field 𝒖𝒃  closely matches the 

steady velocity field 𝒖𝒔, minimizing deviations while keeping actuation energy efficient. A high 𝑱𝒔 

indicates an unstable flow with significant deviations from the desired steady state. The actuation cost 𝑱𝒂

 is the time-averaged power required to rotate the cylinders, providing a measure of the energy efficiency 

of the control strategy. 

 

𝑱𝒔 =
𝟏

𝒕𝒇 − 𝒕𝟎
∫ ‖𝒖𝒃 − 𝒖𝒔‖𝜴

𝟐 𝒅𝒕
𝒕𝒇

𝒕𝟎

 

 

(2.8) 

𝑱𝒂 =
−𝟏

𝒕𝒇 − 𝒕𝟎
∫ ∑ ∯ 𝒃𝒊𝒃

𝑭𝒊𝒃

𝜽 𝒅𝒔𝒅𝒕

𝒏𝒃

𝒊𝒃=𝟏

𝒕𝒇

𝒕𝟎

 (2.9) 

 

In equations 2.8 and 2.9, The notation ‖∗‖𝜴 represents the 𝑳𝟐 norm computed over the flow domain 𝜴. 

Additionally, 𝑭𝒊𝒃

𝜽  corresponds to the azimuthal component of the fluid forces acting locally on the 

cylinder. 

 

2.3.4 GP Configuration and Mathematical Function Library 

The control strategy of GP builds a library of candidate functions, which serve as the fundamental 

building blocks for constructing control laws. These functions include zeroth-order polynomials 

(constants), first-order polynomials (linear terms), sine functions, and hyperbolic tangent functions 

applied to each sensor variable. The selection of these functions is deliberate, as they provide a mix of 
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simple and nonlinear transformations that allow the individual to capture both basic and complex 

relationships between sensor inputs and actuation outputs. 

This library forms the basis for generating control functions that determine the actuation strategy. 

By combining different candidate functions, the control system can represent a wide range of possible 

control laws, from simple proportional responses to more intricate nonlinear mappings. The diversity of 

functions ensures that the system has sufficient flexibility to adapt to the fluidic pinball dynamics while 

maintaining robustness in various flow conditions. The parameters governing the use of these functions 

are carefully tuned to balance expressiveness and stability, ensuring that the resulting control laws 

effectively regulate the wake while keeping actuation energy efficient.  

The list of candidate functions is portrayed in table 2.1. As for the configuration of GP and the 

governing parameters for the run. Two different configurations were used, which are displayed in table 

2.2. The difference between the two is that the number of generations increases from 8 to 11 generations 

in the second configuration. 

 

Table 2.1 Suitable GP candidate functions for the fluidic pinball 

Candidate Functions 

Polynomial * 

Trigonometric 
𝒔𝒊𝒏(∗) 

𝒄𝒐𝒔(∗) 

Hyperbolic 𝒕𝒂𝒏𝒉(∗) 

Rational 
∗

∗
 

Logarithm 𝒍𝒐𝒈(∗) 

Exponential 𝒆∗ 

“*” denotes sensor variables 𝒔𝟏 … 𝒔𝟑𝟔 or polynomial combinations of these sensor variables such 

as 𝒔𝟐𝒔𝟒𝒔𝟓 
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Table 2.2 GP governing parameters for the fluidic pinball 

GP Parameter Configuration Number Symbol Value 

Number of individuals per 

generation 
1 & 2 𝑵𝒊 50 

Total number of generations 
1 

𝑵𝒈𝒑 
8 

2 11 

Tournament size 1 & 2 𝑵𝒕 7 

Probability of replication 1 & 2 𝑷𝒓 0.1 

Probability of mutation 1 & 2 𝑷𝒎 0.45 

Probability of crossover 1 & 2 𝑷𝒄 0.45 
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3. RESULTS 

This section of the study includes analyzing the initial results after running the offline learning 

GP algorithm on the fluidic pinball. For clear reference to individual control laws in the results section 

of the paper, the following format will be used to describe a GP generated control law individual: 

 

𝑲
𝒊𝒓𝒖𝒏

𝒊𝒈𝒆𝒏,𝒊𝒓𝒏𝒌  

 
(3.1) 

where 𝒊𝒈𝒆𝒏 is the generation number, 𝒊𝒓𝒏𝒌 is the ranking of the individual in the generation (1 corresponds 

to highest ranking), and 𝒊𝒓𝒖𝒏 is the GP run number, as multiple runs will be discussed as more GP runs 

are performed. 

 

3.1 Analysis of GP Runs 

3.1.1 Summary of All Runs 

Using the fixed configurations presented in table 2.2, three identical runs were performed where 

GP ran for a full 8 generation span, analyzing over 400 individuals in each run. After that, the second 

configuration was used to do a single run with an extended 11 generation span. Table 3.1 shows the 

results of the best individual after the final generation along with its complexity and cost.  

 

Table 3.1 Best individual from each GP run 

Run Best Individual Complexity 𝒄  Cost 𝑱 Configuration 

1 𝑲𝟏
𝟖,𝟏 = [−𝟎. 𝟎𝟗𝟓𝒔𝒊𝒏 (

−𝟑. 𝟒𝟔𝟒

𝒕𝒂𝒏𝒉(𝒕𝒂𝒏𝒉 (𝒔𝒊𝒏(𝒔𝟖) + 𝟑. 𝟐𝟗𝟗))
) , 𝒔𝒊𝒏(𝒔𝟏𝟕 − 𝟏. 𝟎𝟖𝟔), 𝟎. 𝟒𝟏𝟓𝟖]

𝑻

 39 0.2537 

1 
2 𝑲𝟐

𝟖,𝟏 = [−𝟎. 𝟏𝟏𝟐𝟑, −𝟎. 𝟏𝟎𝟐𝟒, −𝟎. 𝟎𝟓𝟏𝟗(𝒔𝟐𝟔+𝒔𝟏𝟎)]𝑻 34 50 

3 𝑲𝟑
𝟖,𝟏 = [𝟎. 𝟎𝟒𝟔𝟎, 𝒔𝒊𝒏(𝒔𝟏𝟕 − 𝟏. 𝟎𝟖𝟓), 𝟎. 𝟒𝟏𝟓𝟖]𝑻 9 16 

4 𝑲𝟒
𝟏𝟏,𝟏 = [𝟎. 𝟎𝟒𝟔𝟎, 𝒔𝒊𝒏 (

𝒔𝟏𝟏 − 𝟎. 𝟒𝟑𝟎𝟕

−𝟏𝟎. 𝟓𝟑𝟓
) ,

𝒆𝒕𝒂𝒏𝒉(𝒔𝟏𝟔−𝟒.𝟑𝟒𝟗)

𝟒. 𝟓𝟓𝟓
]

𝑻

 41 0.2215 2 

 

An immediate observation to be made is that individuals 𝑲𝟐
𝟖,𝟏

 and 𝑲𝟑
𝟖,𝟏

 failed to converge to a 

desired cost over the eight-generation-span. Due to GP running on a personal home computer, the number 

of individuals per generation was limited. This constraint affected the ability to achieve a more optimized 
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control law. Perhaps letting these runs continue for several more generations might have resulted in a 

desired convergence to the cost 𝑱. However, they should not be considered in the upcoming discussion 

concerning controller efficiency as they did not provide the desired outcome. Therefore, the upcoming 

evaluation of control laws in the next section will only consider individuals 𝑲𝟏
𝟖,𝟏

 and 𝑲𝟒
𝟏𝟏,𝟏

, which proved 

a successful convergence. Even though they used different configurations (with the main difference just 

being the number of generations run), they both resulted in unique, effective control laws. The next 

subsection of the report focuses on a detailed analysis of GP runs number 1 and 4 and the effectiveness 

of the control laws on the fluidic pinball system. 

 

3.1.2 Analysis of Run 1 

The first GP run evolved control laws based on the training data and candidate functions presented 

in table 3.1. The top, evolved control law after the eighth generation of run 1 was: 

 

𝑲𝟏
𝟖,𝟏 = [−𝟎. 𝟎𝟗𝟓𝒔𝒊𝒏 (

−𝟑. 𝟒𝟔𝟒

𝒕𝒂𝒏𝒉(𝒕𝒂𝒏𝒉 (𝒔𝒊𝒏(𝒔𝟖) + 𝟑. 𝟐𝟗𝟗))
) , 𝒔𝒊𝒏(𝒔𝟏𝟕 − 𝟏. 𝟎𝟖𝟔), 𝟎. 𝟒𝟏𝟓𝟖]

𝑻

 (3.2) 

 

The first observation to be made about the control law is the diversity in the input actuation 

signals. The first actuation signal is a very complex one that would almost never be deducted from an 

approximate mathematical model of the system while the second is simpler and the third was deemed by 

GP to be most efficient at the demonstrated linear term. 

A detailed examination of the evolutionary process leading to the control law presented in 

Equation 3.2 reveals several noteworthy observations. As shown in Figure 3.1, the progressive 

convergence demonstrates significant potential in developing an effective control law for the fluidic 

pinball system. 

One of the important discussions to be made is the relationship between cost and complexity of a 

control law during the control law evolution cycle. An analysis of the complexity graph yields thought-

provoking insights. While the cost function 𝑱 showed significant improvement, with a reduction of 

approximately half compared to the unforced dynamical system, the complexity 𝒄 of the top individual 

increased substantially between generations 5 and 6. Despite this increase, convergence did not stabilize 

further, suggesting that additional complexity did not necessarily lead to better performance. In the final 

generations, the control law complexity exhibited only a minor reduction, indicating that the evolved 

control laws remained structurally intricate even as cost minimization plateaued. This trend highlights 

the relationship between increasing complexity and diminishing returns in terms of cost reduction. 
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Fig. 3.1. GP run 1 top individual cost and complexity 

 

The rise in control law complexity without useful returns in the convergence of the cost raises an 

important question: should the complexity of the control law be considered during the selection stage of 

genetic programming? If an individual exhibits lower complexity while achieving the same cost, it may 

be advantageous to prioritize it in the tournament ranking. This would not only lead to faster computation 

by the controller on the real-time system dynamics, but would also make the control law more 

interpretable for control engineers. 

Further observation can be made by comparing the top individuals of generations 7 and 8. The 

top individual from generation 7 was, if observed carefully, an exact replica of the top individual from 

generation 8: 

 

𝑲𝟏
𝟕,𝟏 = [−𝟎. 𝟎𝟗𝟓𝒔𝒊𝒏 (

−𝟑. 𝟒𝟔𝟒

𝒕𝒂𝒏𝒉(𝒕𝒂𝒏𝒉 (𝒔𝒊𝒏(𝒔𝟖) + 𝟑. 𝟐𝟗𝟗))
) , 𝒔𝒊𝒏(𝒔𝟏𝟕 − 𝟏. 𝟎𝟖𝟔), 𝟎. 𝟒𝟏𝟓𝟖]

𝑻

 (3.3) 

 

The result makes sense, since replication is one of the GP genetic modification settings we set in 

the parameters section. However, not only did GP perfectly replicate the top individual in generation 7, 

but it also failed to produce a more efficient individual in generation 8 through tuning, or further 

crossover and mutation. This led to the same individual taking the top spot again at the end selection 

stage of generation 8. Perhaps given more generations to run, the top control law would evolve further, 

but it raises the concern that GP sometimes gets stuck in a form of premature convergence when 

converging towards 𝑲∗(𝒕, 𝒔). 
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3.1.3 Analysis of Run 4 

 In a major difference to run 1 and configuration 1, GP run 4 used configuration 2 from table 2.2 

and ran for a total of 11 generations. This change allows us to observe GP’s behavior on a more detailed 

level as the generations progress and GP is allowed to use more genetic modifications in the genetic 

modification stage. Unfortunately, the limited computational resources only allowed one run with this 

configuration, but it achieved a better convergence as compared to run 1, which ran for only 8 

generations. The top individual after the 11th generation is shown in equation 3.4: 

 

𝑲𝟒
𝟏𝟏,𝟏 = [𝟎. 𝟎𝟒𝟔𝟎, 𝒔𝒊𝒏 (

𝒔𝟏𝟏 − 𝟎. 𝟒𝟑𝟎𝟕

−𝟏𝟎. 𝟓𝟑𝟓
) ,

𝒆𝒕𝒂𝒏𝒉(𝒔𝟏𝟔−𝟒.𝟑𝟒𝟗)

𝟒. 𝟓𝟓𝟓
]

𝑻

 (3.4) 

 

 The first observation to make is the individuality and uniqueness between the top individual in 

run 4 vs. that of run 1, shown in equation 3.2. While 𝑲𝟏
𝟖,𝟏

 focused on sensor measurement values 𝒔𝟖 and 

𝒔𝟏𝟕, 𝑲𝟒
𝟏𝟏,𝟏

 generated nonlinear functions focused on 𝒔𝟏𝟏 and 𝒔𝟏𝟔. However, considering the number of 

nonlinear functions used (displayed in the candidate function table 2.1), the sensor vector in equation 2.5, 

and the possible mathematical computational combinations between them, the possibilities become too 

complex to make an analysis on such control law parameters. This is precisely the advantage of GP. It is 

used as effectively as possible to make a detailed analysis of the search space and tries out the different 

combinations to form a more efficient control law with every evolution step.  

 Next comes the convergence and complexity of the generated control laws over the course of GP 

run 4, which are shown in figure 3.2. 
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Fig. 3.2. GP run 4 top individual cost and complexity 

 

As shown in figure 3.2, GP showed a somehow steady convergence rate over the 11 generations. 

However, it exhibited a strange behavior in the convergence between generation 7 and 8. If only by a 

little bit, the cost made a slight increase between top individual 𝑲𝟒
𝟕,𝟏

 and 𝑲𝟒
𝟖,𝟏

. This can only mean that 

the genetic modification stage of GP failed to replicate the top fit individual, and used crossover and 

mutation to develop a new individual with lower complexity yet a slightly worsened cost. Considering 

this research and its purpose, such behavior should be completely avoided and forbidden as the target of 

the top individual is to reduce the cost to almost 0 as the generations progress. Perhaps as part of the 

future work, it can be observed whether trading off some of the cost in return for a reduced complexity 

might result in a more efficient controller for high frequency nonlinear dynamical systems. 

 

3.2 Fitness and Performance Analysis of GP vs. Optimal Linear Control Laws 

This subsection of the results focuses on comparing the different properties that make up the fitness 

of a control law between different control laws generated through different methods. 

 

3.2.1 Cost and Complexity 

 To put the obtained GP results into perspective and determine whether the control laws introduced 

performance improvements to the system’s response, we must compare them to other control laws 

specifically designed for the fluidic pinball system with similar input parameters. In their study, Guy and 

Yiqing et al. demonstrated the stabilization of the fluidic pinball by designing an LQR for the fluidic 

pinball [35]. After performing fine tuning and comparing its performance to other linear control methods, 

their final optimal control law was: 

 

𝑲𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒕𝒊𝒎𝒂𝒍

= [𝟏. 𝟏𝟏𝟐𝟎𝟕, −𝟎. 𝟐𝟎𝟎𝟐𝟓, −𝟎. 𝟏𝟓𝟓𝟖𝟖]𝑻 (3.5) 

 

 A fair comparison between the control laws can only be made if they were tested under exactly 

replicated inputs and conditions. Therefore, the linear control inputs were tested on the identical fluidic 

pinball system used for the GP runs, and resulted in an expected reduced complexity of 𝟑 (due to only 

linear terms for the control law 𝑲) and an impressive cost of 𝑱 = 𝟎. 𝟐𝟔𝟕𝟎. A cost 𝑱 vs. complexity 𝒄 

comparison between 𝑲𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒕𝒊𝒎𝒂𝒍

, 𝑲𝟏
𝟖,𝟏

 and 𝑲𝟒
𝟏𝟏,𝟏

 is shown in figure 3.3. 
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Fig. 3.3. Cost vs. Complexity comparison between best GP and linear control laws 

 

 According to figure 3.3, an ideal control law will assume the bottom-left spot in the graph, 

indicating a minimal cost 𝑱 and mathematical complexity 𝒄. As expected from the linear control law, it 

has the lowest complexity compared to the GP individuals, and as expected from the GP generated control 

laws, they display better convergence that the optimal linear control law. GP individuals are specifically 

designed to control the non-simplified, nonlinear model of the system. It also seems like a general rule 

that the complexity of the top GP individual increases as the generations progress. The more mutation 

and crossover procedures are performed on top individuals at the end of each generation, the more 

mathematically complex the nonlinear functions become. However, a successful trade-off is possible. 

Figure 3.3 shows an impressive convergence in cost over a minor increase in complexity between 𝑲𝟏
𝟖,𝟏

 

and 𝑲𝟒
𝟏𝟏,𝟏

 in only an additional 3 generation span. 

 

3.2.2 System Response 

 Before analyzing the drag coefficient and the energy consumption difference between the 

application of the three different control laws, this subsection first examines the flow field response of 

the system under each control law. The flow response is directly tied to the drag-reduction performance 
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of each control strategy. As discussed in Section 1.3, the closer the actuated velocity field resembles the 

symmetric steady-state solution shown in Figure 1.5, the lower the resulting drag force on the cylinders. 

Section 2.3.1 defines the time interval during which the control laws begin to apply actuation to the 

system, namely 𝒕 ∈ [𝒕𝟎, 𝒕𝒇], where 𝒕𝟎 = 𝟒𝟎𝟎𝒔 and 𝒕𝒇 = 𝟖𝟎𝟎𝒔 This delay allows the flow to evolve well 

into a fully developed unsteady regime, characterized by chaotic vortex shedding, before control is 

initiated. Starting with the application of the first GP control law 𝑲𝟏
𝟖,𝟏

, the system response is shown in 

figure 3.4. The figures illustrate the critical period immediately following the onset of actuation, with 

snapshots taken every 2 seconds. 
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Fig. 3.4. System response under 𝑲𝟏
𝟖,𝟏
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 Starting from around time point 𝒕𝟎 + 𝟔𝒔 in figure 3.4, it is evident from the flow field that 𝑲𝟏
𝟖,𝟏

 

struggles to suppress vortex shedding. Vortical structures continue to be shed throughout the interval up 

to 𝒕𝟎 + 𝟏𝟖𝒔. Even though the convergence of this control law reached a minimal cost value of 𝑱 =

𝟎. 𝟐𝟓𝟑𝟕, it seems this convergence was a result of a low actuation cost 𝑱𝒂, not a state cost 𝑱𝒔, since total 

cost is a function of both: 𝑱 = 𝑱𝒔 + 𝜸𝑱𝒂. This is quite an interesting relationship, as there are limitless 

possibilities to design a relationship between the two cost values, and perhaps giving the actuation cost 

𝑱𝒂 a lower weight in the equation than state cost 𝑱𝒔 by assigning a lower value than 𝜸 = 𝟏, could shift 

the optimization toward better flow stabilization at the expense of increased actuation effort. However, 

this relationship between power consumed by the system vs. power lost from the system will be explained 

later in the energy analysis section of the results. 

 Next comes the application of the GP control law 𝑲𝟒
𝟏𝟏,𝟏

, for which the system response is shown 

in figure 3.5. 
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Fig. 3.5. System response under 𝑲𝟒
𝟏𝟏,𝟏
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 As we immediately notice from an early time-point like 𝒕𝟎 + 𝟒𝒔 when comparing figures 3.5 and 

3.4,  𝑲𝟒
𝟏𝟏,𝟏

 does a much better job at mimicking a steady state velocity field as compared to 𝑲𝟏
𝟖,𝟏

. Firstly, 

under 𝑲𝟒
𝟏𝟏,𝟏

, both the clockwise and the counterclockwise fluid vortices (represented in red and blue, 

respectively) form further downstream of the cylinders when compared to the system under 𝑲𝟏
𝟖,𝟏

. When 

vortex shedding occurs closer to the cylinder surfaces, the associated pressure asymmetries contribute to 

increased drag. Thus, the downstream displacement of vortices indicates improved drag reduction. This 

improved system response is only natural given that GP run 4 ran for more generations to converge to 

𝑲𝟒
𝟏𝟏,𝟏

 as compared to run 1. However, it is quite interesting what only a few additional generations can 

improve in terms of the response of the system. 

 Finally, figure 3.6 shows the system response under the 𝑲𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒕𝒊𝒎𝒂𝒍

 to discuss the differences 

between GP control laws vs. an optimal linear control law. 
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Fig. 3.6. System response under 𝑲𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒕𝒊𝒎𝒂𝒍
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 As expected from a control law designed by an expert specifically for this fluid dynamic system, 

𝑲𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒕𝒊𝒎𝒂𝒍

 quickly reaches a great system response as soon as 𝒕𝟎 + 𝟏𝟔𝒔 and 𝒕𝟎 + 𝟏𝟖𝒔. By these time-

points, the controller effectively suppresses the formation of clockwise vortices in the wake and confines 

the remaining counterclockwise structures to regions well downstream of the cylinders. This will be 

further reflected when analyzing the drag coefficient 𝑪𝒅 reduction and energy analysis of the system with 

these different control laws in further subsections of the paper. However, it is immediately clear from the 

system response in figures 3.4, 3.5, and 3.6 that 𝑲𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒕𝒊𝒎𝒂𝒍

 and 𝑲𝟒
𝟏𝟏,𝟏

 will outperform 𝑲𝟏
𝟖,𝟏

 when it comes 

to wake stabilization, regardless of the actuation input each controller required for this system response. 

 

 

3.2.3 Actuation Power 

 Recalling equation 2.7, it is important to point out that cost 𝑱 already hast the component 𝑱𝒂 in its 

computation, entailing that a reduced cost shown in figure 3.3 not only closely matches the actuated 

velocity field 𝒖𝒃 to the steady velocity field 𝒖𝒔, but also does so at a reduced actuation power. However, 

this section will mainly be concerned with power consumption by the system in terms of actuation power 

𝑷𝒂 and power loss due to drag power 𝑷𝒅. By analyzing the energy we introduce into the system in terms 

of actuation power and the energy lost to drag power, a relationship can be made between the parameters 

with the introduction of each control law to the system, and the total energy lost can be calculated. 

 Starting with actuation, the total actuation power 𝑷𝒂 in the form of control input vector signal 𝒃 

is: 

 

𝑷𝒂 = ∑ 𝒗𝒊𝑻𝒊

𝟑

𝒊=𝟏

 (3.6) 

 

where: 

• 𝒊 is the cylinder number for a total of 3 inputs for the 3 cylinders. 

• 𝒗𝒊 is the angular velocity for each cylinder 𝒊. 

• 𝑻𝒊 is the torque for each cylinder 𝒊. 

Using equation 3.6 for each time step, the actuation power over time for control laws 𝑲𝟏
𝟖,𝟏

, 𝑲𝟒
𝟏𝟏,𝟏

, and 

𝑲𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒕𝒊𝒎𝒂𝒍

 is displayed in figure 3.7. 
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Fig. 3.7. Actuation power of GP and linear control laws 

 

Using equation 3.4 to translate this power into total energy 𝑬 consumed by the system:  
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𝑬 = ∫ 𝑷𝒂(𝒕)𝒅𝒕 (3.7) 

 

Table 3.2 summarizes the results of each control law translated from figure 3.7 into mean actuated power 

and total actuation energy consumed through a summation over time. 

 

Table 3.2 Actuation power and actuation energy consumption 

Control Law Mean Actuation Power (W) Total Actuation Energy (J) 

𝑲𝟏
𝟖,𝟏

 𝟎. 𝟎𝟖 𝟐𝟓. 𝟖 

𝑲𝟒
𝟏𝟏,𝟏

 𝟏. 𝟑 ∗ 𝟏𝟎−𝟑 𝟓. 𝟓𝟑 

𝑲𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒕𝒊𝒎𝒂𝒍

 𝟎. 𝟐𝟏 𝟖𝟎. 𝟗 

 

Comparing the input power introduced with each control law: 𝑲𝟏
𝟖,𝟏

 and, 𝑲𝟒
𝟏𝟏,𝟏

 have a staggering, 

mean power and total energy consumed as compared to 𝑲𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒕𝒊𝒎𝒂𝒍

, which has the highest energy 

consumption out of all 3 control laws. 

In accordance with the optimization of control laws in relation to the actuation input power, GP did 

a great job at saving energy, but this can only be deemed noteworthy if it is also translated into a reduction 

of drag power in the next section. However, what is also noteworthy is the vast energy optimization that 

𝑲𝟒
𝟏𝟏,𝟏

 achieved over 𝑲𝟏
𝟖,𝟏

 by simply running a few extra generations for optimization. Perhaps the 

learning curve of GP is not a linear one, and more astounding results are achieved through more 

generations evaluated than the number of individuals per generation. This gives GP the ability to run 

more genetic modification procedures such as mutation and crossover, and results in even more robust 

control laws. 

 

3.2.4 Drag Power 

Next comes the consideration of drag power and the energy lost to drag, which is the focus and 

main problem introduced in the introduction of this research. Consuming lower actuation energy means 

nothing if not translated into a reduction in energy lost to drag as well.  

Specifically for the fluidic pinball system, drag calculation can be done in a simpler manner than 

the computation done in equation I.1. For the 2-dimensional fluidic pinball system, the drag force 𝑭𝒅 can 

first be calculated through: 
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𝑭𝒅 = ∑(𝑭𝒑,𝒊 + 𝑭𝒗,𝒊)

𝟑

𝒊=𝟏

 (3.8) 

  

Where: 

• 𝑭𝒑,𝒊 is the pressure force contribution on the surface of cylinder 𝒊. 

• 𝑭𝒗,𝒊 is the viscous force contribution on the surface of cylinder 𝒊. 

Therefore, the drag power 𝑷𝒅 can be calculated for every time instance as the product of drag force 𝑭𝒅 

and the flow velocity component 𝑼𝒙 in the drag force direction: 

 

𝑷𝒅 = 𝑼𝒙 ∗ 𝑭𝒅 (3.9) 

 

Using this equation, the drag power acting on the fluidic pinball system can be calculated over time, and 

is displayed in figure 3.8. 
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Fig. 3.8. Drag power acting on the system with GP and linear control laws 

 

Using equation 3.7 once more, the total energy lost to drag force can be calculated, and the results 

of figure 3.8 are summarized in table 3.3. 

 

Table 3.3 Drag power and energy lost to drag 

Control Law Mean Drag Power (W) Total Energy Lost to Drag (J) 

𝑲𝟏
𝟖,𝟏

 𝟐. 𝟐𝟏 881.7 

𝑲𝟒
𝟏𝟏,𝟏

 𝟏. 𝟗𝟏 𝟕𝟔𝟕. 𝟏 

𝑲𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒕𝒊𝒎𝒂𝒍

 𝟏. 𝟖𝟗 𝟕𝟓𝟕. 𝟖 

 

 Table 3.3 raises a lot of important points. After 𝑲𝟒
𝟏𝟏,𝟏

 proved much better at power saving 

actuation over 𝑲𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒕𝒊𝒎𝒂𝒍

, it was expected that the energy lost to drag for control law 𝑲𝟒
𝟏𝟏,𝟏

 would be quite 

large compared to 𝑲𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒕𝒊𝒎𝒂𝒍

. However, not only does 𝑲𝟒
𝟏𝟏,𝟏

 use significantly lower actuation power to 

control the actuated velocity field, but it also even resulted in an almost similar drag reduction of only 

𝟕𝟔𝟕. 𝟏 𝑱 of energy lost. 

 

3.2.5 Drag Coefficient 

 Recalling the target of this research in terms of drag force reduction, the goal is to reduce the drag 

force acting on the system by reducing the drag coefficient 𝑪𝒅 to a minimum over time. Recalling 

equation 1.1 in the introduction that relates the drag force to the drag coefficient, and equation 3.9 that 

converts the drag force to power, we can calculate the drag coefficient for the system over time. In 
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addition to cost 𝑱𝒔 used in equation 2.8, the proof of reduction in the drag coefficient will prove the closer 

matching of the actuated velocity field to the steady state solution, as shown in equation I.2. Integrating 

equation 3.9 into equation I.1, we can calculate the coefficient as: 

 

𝑪𝒅 =
𝟐𝑷𝒅

𝝆𝑨𝑼𝒙
𝟑
 (3.10) 

 

Assuming the fluid used in the simulation is air, we can assume a fluid density 𝝆 = 𝟏. 𝟐𝟐𝟓 
𝒌𝒈

𝒎𝟑. 

Additionally, looking back at figure 2.3 showing the dimensions and domain of the fluidic pinball system 

used, the surface Area 𝑨 can be calculated. In 2D simulations, we usually consider the flow per unit depth 

for area calculation, instead of the entire wetted area. For the circular cylinders, the projected frontal area 

is simply the diameter 𝑫 times a unit depth of 1. With a diameter in decimeters of 𝑫 = 𝟏 𝒅𝒎 the surface 

area for all 3 cylinders can be calculated as: 

 

𝑨 = 𝟑 ∗ (𝑫 ∗ 𝟏) = 𝟎. 𝟑 𝒎𝟐 (3.11) 

 

Using the calculated drag power 𝑷𝒅 and velocity component 𝑼𝒙, the mean drag coefficient from the 

application of the 3 different control laws of 𝑲𝟏
𝟖,𝟏

, 𝑲𝟒
𝟏𝟏,𝟏

, and 𝑲𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒕𝒊𝒎𝒂𝒍

. The calculated coefficient is 

shown is shown in table 3.4 and is graphed against the actuation power induced by each control law in 

figure 3.9. 

 

Table 3.4 Mean drag coefficient with different control laws 

Control Law Mean Drag Coefficient 𝑪𝒅 

𝑲𝟏
𝟖,𝟏

 𝟎. 𝟏𝟖𝟖 

𝑲𝟒
𝟏𝟏,𝟏

 𝟎. 𝟏𝟔𝟑 

𝑲𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒕𝒊𝒎𝒂𝒍

 𝟎. 𝟏𝟔𝟏 
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Fig. 3.9. Mean drag coefficient vs. mean actuation power comparison between best GP and linear 

control laws 

 

Table 3.4 clearly shows the linear control law 𝑲𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒕𝒊𝒎𝒂𝒍

 achieved the best/minimum drag 

coefficient. However, figure 3.6 provides us with more insight and shows this was achieved at a much 

higher control power. The expended actuation energy is a critical part of this research. Since the aim is 

to reduce the overall energy wasted due to drag, requiring much energy to do so will only lead to the 

same wasted resources. On the other hand, 𝑲𝟒
𝟏𝟏,𝟏

, achieved an almost similar drag coefficient, but did so 

at a much lower power. This will be further reflected and explained in the total energy analysis in the 

next section of the paper. 

 

3.2.6 Energy Analysis 

Finally, the total energy consumption calculations are compared to the unforced system (with no 

control) to show the energy saved by the introduction of each control law. Table 3.5 summarizes the 

results from this research through the use of GP and compares these results with the unforced system as 

well as the linear control law 𝑲𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒕𝒊𝒎𝒂𝒍

. In addition, the total power consumed can be expressed as the 

sum of the actuation power 𝑷𝒂 drag power 𝑷𝒅, and can be integrated over time to find the total energy 

lost in the system for each control law. 
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𝑷𝒕𝒐𝒕𝒂𝒍 = 𝑷𝒂 ∗ 𝑷𝒅 (3.12) 

 

Table 3.5 Summary of energy consumption and energy loss with different control laws 

Control Law Actuation Energy (J) Energy Lost to Drag (J) Total Energy Lost (J) 

Unforced System (No Control) 𝟎 𝟏𝟏𝟎𝟗. 𝟕 𝟏𝟏𝟎𝟗. 𝟕 

𝑲𝟏
𝟖,𝟏

 𝟐𝟓. 𝟖 881.7 𝟗𝟎𝟕. 𝟓 

𝑲𝟒
𝟏𝟏,𝟏

 𝟓. 𝟓𝟑 𝟕𝟔𝟕. 𝟏 𝟕𝟕𝟐. 𝟔𝟑 

𝑲𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒕𝒊𝒎𝒂𝒍

 𝟖𝟎. 𝟗 𝟕𝟓𝟕. 𝟖 𝟖𝟑𝟕. 𝟗 

 

 To summarize the results in table 3.5, control laws 𝑲𝟏
𝟖,𝟏

 and 𝑲𝟒
𝟏𝟏,𝟏

 followed GP’s idea of an ideal 

control law, which we expressed to GP in our cost function 𝑱 in equation 2.7 as the balance between the 

steady actuated velocity field and the minimization of actuation power: 𝑱 = 𝑱𝒔 + 𝜸𝑱𝒂. GP control laws 

showed great promise in reducing the total actuation energy as compared to the optimal linear control 

law 𝑲𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒕𝒊𝒎𝒂𝒍

. However, 𝑲𝟏
𝟖,𝟏

 did not properly minimize the energy lost to drag as compared to the energy 

lost to the unforced system and how it was minimized by 𝑲𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒕𝒊𝒎𝒂𝒍

. The original goal of the research was 

to prove GP’s superior performance to linear control methods in minimizing drag, which 𝑲𝟏
𝟖,𝟏

 failed to 

do. On the other hand, 𝑲𝟒
𝟏𝟏,𝟏

 displayed this superiority splendidly. It minimized the actuation energy by 

almost 𝟗𝟑% as compared to the linear law 𝑲𝑳𝒊𝒏𝒆𝒂𝒓
𝑶𝒑𝒕𝒊𝒎𝒂𝒍

, while maintaining almost the same level of energy 

lost. This difference is amplified even more when looking at the total energy lost in each system, with 

𝑲𝟒
𝟏𝟏,𝟏

 taking the top spot with minimal energy consumed over the minimized 400 second experiment 

window. Such is the advantage of implementing GP in such nonlinear dynamical systems, and more 

improvements can be made and are discussed in the next section of the paper. 

 

3.3 Future Work 

After finalizing the obtained results, this subsection of the paper focuses on the elements of the 

research that should be considered for future analysis as part of improving GP for the control of nonlinear 

dynamical systems. The following subtopics have proven their relevance to obtaining better results as 

part of future studies. 
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• Number of Individuals vs Number of Generations: As observed between the 

performance of 𝑲𝟏
𝟖,𝟏

 and 𝑲𝟒
𝟏𝟏,𝟏

, a slightly increased number of additional generations can 

result in a drastic difference in energy saved. The convergence of GP control laws is not 

defined by a fixed method. It is very difficult to determine how many generations must 

pass before a successful convergence is reached. However, there is also the number of 

individuals per generation, and having more individuals in a single generation can widen 

the search space before GP starts with the genetic modification stage. There must exist a 

middle ground between balancing between these two parameters. 

• Cost vs. Complexity: the relationship between cost and complexity was discussed in 

detail as part of the results analysing the generated control laws. Complexity is an issue 

when using GP because individuals become overly complex as generations progress. 

Finding a method to balance between these two important parameters can help GP obtain 

even more impressive results. 

• Candidate Function Selection: The candidate functions shown in table 2.1 are an 

important aspect for each GP run but were not given much attention or modified 

throughout this research. In fact, GP runs 2 and 3 mainly failed to converge due to the 

unsuitable candidate functions that were used to construct control laws for the first 

generation. Perhaps more detailed research performed regarding candidate function 

selection can boost the energy gap even further. 

• Comparison with Other Nonlinear Control Methods: In this research, the generated 

GP control laws were compared to an optimal linear control law that was developed 

specifically for this system. Nonetheless, it would be interesting to compare these results 

with other nonlinear control methods such as neural networks and find the advantages of 

each approach. 

• Optimization of Different System Output: As previously mentioned the cost function 

used by GP can be manipulated to converge to whichever system output parameter 

desired. This research focused on the actuated velocity field as well as actuation power. 

However, it would be interesting to attempt to tweak the cost function in favour of one of 

the two outputs or even converge to other outputs such as the fluctuation energy or lift 

fluctuation reduction. 

• Different Dynamical Systems: Finally, perhaps the final step of improving GP is to 

expand its usefulness to beyond the fluidic pinball and apply it to even more complex 

dynamical systems. The aerospace industry seems like a perfect candidate with overly 
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complex models that are difficult to linearize and model. However, this step can only be 

made once we have a better understanding of all the previously mentioned points and 

relationships. 
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CONCLUSION 

Reiterating the project tasks discussed in the introduction: 

 

1. Drag Reduction: The primary task and objective of reducing drag force through the 

minimization of drag coefficient 𝑪𝒅 was successfully achieved using GP. The evolved controllers 

demonstrated comparable or improved performance in reducing 𝑪𝒅 relative to traditional linear 

control methods. This was achieved with lower actuation power, highlighting GP’s efficiency in 

handling nonlinear systems like the fluidic pinball. These findings are supported by the data in 

Figure 3.9 and Table 3.5. 

2. Model-Free Control Development: GP eliminated the need for explicit system modeling by 

directly using feedback from the real-time dynamics of the fluidic pinball system. Controllers 

were evolved entirely through the GP evaluation cycle without any prior knowledge of the 

system’s governing equations, proving the feasibility and efficiency of this model-free approach. 

3. Nonlinear Feedback Adaptation: The GP-based controllers were developed without relying on 

linearized approximations, allowing them to adapt directly to the nonlinear wake behavior of the 

system. This enabled more accurate control of vortex shedding and contributed to drag reduction. 

The method's success suggests and iterates the high potential for scaling GP-based control to 

industrial applications. 
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