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Abstract—Challenges in air pollution control and 

environmental management continue to evolve, significantly 
impacting public health and ecosystems. This study estimates 
surface Nitrogen Dioxide (NO₂) concentrations in Lithuania 
using an integrated framework. It combines Sentinel-5 
Precursor satellite (5P) TROPOspheric Monitoring Instrument 
(TROPOMI) observations of total NO₂ Vertical Column 
Densities (VCDs) with various meteorological parameters, such 
as air temperature, wind speed, and direction. Data were 
collected across thirteen in situ monitoring stations throughout 
Lithuania, spanning from January 2020 to December 2023. The 
analysis involved two modelling approaches: Bagged Trees (BT) 
and Coarse Tree (CT) algorithms. The BT model outperformed 
the CT, achieving lower Root Mean Square Error (RMSE) 
values of 5.12 µg/m³ during validation and 4.90 µg/m³ during 
testing, compared to 5.73 µg/m³ and 5.58 µg/m³ for the CT model, 
respectively. The integration of VCDs data and predictive 
modeling provides valuable indicators for NO₂ concentration 
trends, stressing the necessity of continuous monitoring efforts, 
essential for effective air pollution management. 
 
Keywords—satellite monitoring, Nitrogen Dioxide (NO₂), air 

pollution control, environmental management, atmospheric 
monitoring, geospatial analysis, air quality assessment, 
predictive modelling 

I. INTRODUCTION 
Air pollution still threatens the environment by negatively 

impacting human health and ecosystems and contributing to 
climate change. Rapid industrial expansion and increased 
vehicular traffic have significantly disturbed Earth’s 
atmospheric balance. The disturbance has led to elevated 
concentrations of harmful gases such as NO₂, with 
approximately 31.8% of Lithuania’s total greenhouse gas 
emissions derived from the transport sector [1]. Highlighting 
the urgency of monitoring and mitigating NO₂ levels due to 
the serious risks to our health, including physical and 
physiological effects, as well as potential links to cancer and 
its role in smog, acid rain formation, and respiratory health 
problems [2]. Historically, the majority of NO₂ levels were 
measured using a network of monitoring stations located on 
the ground, which are generally limited in regional extent and 
tend to miss the air quality status in a regional context. 
Nevertheless, the advancement of technology on board 
satellites today facilitates air pollution measurements over 
large spatial areas and time frames. For example, the 
Copernicus Sentinel-5 Precursor (Sentinel-5P) has improved 
environmental geography by enabling atmospheric data 
collection and evaluation of pollution levels across large 
areas [3]. These satellite observations offer a robust dataset 
for applying sophisticated analytical techniques. While there 
is limited research regionally, the significance of this study 
lies in its integration of satellite-derived NO₂ Vertical 

Column Densities (VCDs) with ground-based meteorological 
variables such as temperature, wind speed, wind direction, 
wind gust, humidity, and cloud cover. Utilizing advanced 
predictive algorithms from January 2020 to December 2023 
across Lithuania, it assesses the effectiveness of the proposed 
method for using assembly algorithms BT and regression 
model CT for forecasting NO2. 

II. RELATED STUDY 
Vehicles and other combustion-based sources are the main 

sources of NO₂, which is released in the form of exhaust gases 
when nitrogen combines with oxygen in the combustion of 
fuels in automobiles, like vehicles, trucks, and buses. 
Factories, power plants, and other places that burn fossil fuel 
are a source of production of NO₂. Residents using natural 
gas, oil, coal, or wood for heating contribute, especially in 
cities. Naturally, fires release NO₂ and other nitrogen oxides; 
storms strike, causing temperatures intense enough to 
produce NO₂. Therefore, NOXs are also visible in quite 
substantial quantities in aviation during take-off and landing 
processes and even in ships and marine while using heavy 
fuels [4, 5]. On the other hand, it plays a critical role 
responsible for creating ground-level ozone [6], which 
destroys plants, especially in cities. Contaminated NO₂ also 
combines with existing water vapour to yield nitric acid, its 
primary contribution to the phenomenon of acid rain. As a 
result, soils and water bodies become acidic, affecting forests, 
aquatic systems, and biodiversity [7]. Atmospheric 
deposition of nitrogen compounds involves their transfer 
from the atmosphere to the Earth’s surface, which occurs 
through various forms like precipitation, dust, and gases [8]. 
In aquatic systems, when NO₂ gets deposited, it triggers cases 
of eutrophication, thus promoting the uncontrolled growth of 
algal blooms, which leads to oxygen supply depletion and 
threatens the aquatic ecosystem [9]. NO₂ does contribute 
further towards climate damage as it is not itself a greenhouse 
gas, but it does, however, help with the process of ozone 
growth. For agriculture, NO₂ absorption is also a side effect 
that alters the balance of nutrients in the soils, lowers their 
productivity, and affects the stability of ecosystems suffering 
from marked depletion of plant species that are sensitive to 
nitrogen [10]. The integration of Geographic Information 
Systems (GIS) with satellite technologies is one of the 
advances in the domain of air pollution monitoring. This 
development provided scientists, society and decision-
makers with the appropriate mechanisms for monitoring, 
evaluating, and even managing air pollution in such extensive 
areas. In contrast to ground-based monitoring stations, 
satellite-based GIS technologies allow a wide spatial extent, 
regular temporal resolution, and the ability to study pollutant 

International Journal of Environmental Science and Development, Vol. 16, No. 4, 2025

265doi: 10.18178/ijesd.2025.16.4.1533



  

levels over inaccessible or difficult-to-reach places. It has 
become quite a lot easier to record critical pollutants like NO₂ 
and other gases, the growing access to satellite images like 
those from NASA’s Earth Observation Systems Terra and 
Aqua satellites, the European Space Agency’s (ESA) 
Sentinel-5P, and the Copernicus Atmospheric Monitoring 
Service (CAMS). The satellites are equipped with devices 
such as the TROPOMI or the Ozone Monitoring Instrument 
(OMI), which allow the determination of atmospheric levels 
of pollutants by the absorption and scattering of solar 
radiation by the Earth’s atmosphere [11, 12]. While 
TROPOMI allows the high-resolution data collection of NO₂, 
CO, SO₂, and other gases [13]. This is particularly important 
for cities and areas where pollution changes. Such datasets 
are further integrated into GIS technologies that enable the 
creation of dynamic pollution spatial and temporal 
distribution maps for enhanced comprehension of local and 
regional air quality variations. Spatial interpolation by GIS 
analysis can estimate in-between pollutant concentrations 
even for regions where monitoring stations are absent [14, 15]. 
This becomes important in creating more thorough air quality 
maps, at least in places with limited monitoring stations. Also, 
it aims to reveal pollution sources and their transport 
pathways and assess exposure risk to the affected population. 
In the event of the COVID-19 pandemic. In the years of 
global lockdowns, the satellite data monitored noticeable 
drops in the NO₂ and Particulate Matter (PM) levels over the 
large cities, which demonstrated the dependence of air quality 
on human activities. Research conducted in Punjab, Pakistan, 
examined air quality during the before, during, and post-
lockdown phases, evaluating pollutant concentrations such as 
CO and PM2.5 to comprehend spatial disparities and related 
health hazards. This shows that the epidemic enhanced air 
quality, decreasing average CO levels to 0.09 mg/m3 post-
lockdown [16]. The GIS capabilities granted researchers the 
opportunity to link these with the alterations in transportation 
system performance, industrial sites’ work, and 
meteorological characteristics, thus having a better insight 
into the determinants of air pollution [17, 18]. Which 
advocates for a long-term sustainable policy approach that 
comprehensively integrates environmental, social, and 
economic factors [19]. highlight the urgent need for 
interventions due to escalating air pollution levels, which 
frequently exceed environmental standards, threatening 
public health and environmental quality [20]. 

The use of Machine Learning (ML) and its algorithms has 
increased significantly in recent years; many studies have 
been conducted for predictions of air pollutants, such as [21], 
which have enhanced the precision of air quality forecasts 
through the use of hybrid deep learning models. As such a 
study used hyperparameters for Long Short-Term Memory 
(LSTM), Bidirectional LSTM, and Encoder LSTM models 
with 500, 500, and 1000 epochs to predict PM2.5 and PM10 
levels 5 days ahead, showing superior performance of 
Encoder LSTM one day ahead over other methods in terms 
MAE, RMSE, and R2. proposed five extended features could 
improve model performance, reducing errors and simplifying 
the computational complexity of the models. Another study 
was carried out using NO₂ and O3 data from 530 and 293 
monitoring stations located across Italy. In order to generate 
high spatial resolution NO₂ and O3 daily concentration over 
the years 2013–2015, an integrated approach that integrated 

a Chemical Transport Model (CTM) with ML random forest 
algorithm, executed by the Flexible Air quality Regional 
Model (FARM) as a predictor when used with other spatial-
temporal data, such as population, land-use, surface 
greenness, and road networks. The ML improvements helped 
mitigate the underestimation of NO₂ concentration, 
demonstrating that in 2014, RMSE (µg/m³) for NO₂ and O3 
were 11.7 and 14.2, respectively [22]. In China [23], from 
May 2013 to April 2014, by using on year dataset of 
metrological variables and tropospheric NO₂ columns from 
the OMI to estimate NO₂ for ground level using a 
geographically and temporally weighted regression model 
was introduced to treat the spatiotemporal non-stationarities-
between-tropospheric-columnar-and ground level NO₂, the 
assessment of cross-validation over ordinary least squares, 
geographically weighted regression, temporally weighted 
regression, geographically and temporally weighted 
regression shows that geographically and temporally 
weighted regression best performance with R2 by 0.6. 

Four ML algorithms were used for East Asian air quality 
assessment: random forest, support vector machine, extreme 
gradient boosting, and light gradient boosting to estimate NO₂ 
and O3 concentration [24]. These algorithms have been 
compared with multiple linear regression using a variety of 
data, including TROPOMI, metrological, and land use 
variables, and they have been validated using three different 
cross-validation techniques: random cross-validation, spatial 
cross-validation, and temporal cross-validation. The model 
for NO₂ had R2 of 0.63 to 0.7 and an RMSE of 4.76 to 5.28, 
while the model for O3 had R2 of 0.65 to 0.78 and an RMSE 
of 13.96 to 11.11. The light gradient boosting random cross-
validation produced the best results. Across Europe, a study 
effectively utilizes a Satellite and ML-based Estimation of 
Surface air quality at a High-resolution model, combining 
satellite data and ML (XGBoost), to estimate daily surface 
NO₂ concentrations at a high spatial resolution of 1 km [25]. 
The study demonstrates good predictive accuracy, evidenced 
by a mean absolute error of 7.77 μg/m3 and a Spearman rank 
correlation of 0.66. This demonstrates the reliability of using 
TROPOMI data, even with a spatial resolution of 7.5 × 3.5 
km. Furthermore, it demonstrates the possibility of deriving 
higher-resolution spatial maps of surface NO₂ (such as 1 km) 
by synergistically utilizing the higher spatial resolution of 
representative proxy features such as Visible Infrared 
Imaging Radiometer Suite (VIIRS) night lights. 

III. MATERIALS AND METHODS 
The methodology of this study involved several structured 

steps to acquire, process, and analyze data for NO₂ 
concentrations and meteorological variables from various 
monitoring stations in Lithuania (see Fig. 1).  

 

 
Fig. 1. Flowchart of methodological workflow for air quality analysis 

(source: the authors). 
 

A. Data Acquisition and Preprocessing 
The NO₂ dataset utilized in this research covers the span of 
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2020 to 2023 and includes observations from the TROPOMI 
sensor on the Sentinel-5P satellite. These data were obtained 
from the Copernicus program using Google Earth Engine 
(GEE) API. Approximately 29,300 Earth observations were 
stored on Google’s cloud platform, as illustrated in Fig. 2. A 
third-degree polynomial was fitted across Lithuania to 
analyze changes in NO2 concentration over the dedicated 
years at 13 distributed monitoring stations. In total, this 
analysis utilized approximately 455,800 data observations 
from monitoring stations over the four-year timeframe. Table 
1 presents the statistics of these measurements after the 
cleaning phase. The data for monitoring station observations 
were obtained from the European Environment Agency (EEA) 
[26]. Also, meteorological data relevant to the cities were 
obtained from the Lithuanian Hydrometeorological Service. 

 
Table 1. Statistical of NO₂ concentrations (µg/m³) post-cleaning for 

monitoring stations 
Station Code mean median std min max Range 

LT00001 11.16 9.6 6.25 2.87 37.28 34.41 
LT00002 9.37 7.8 5.60 2.87 37.3 34.43 
LT00003 21.74 21.405 8.12 3.3 37.5 34.2 
LT00004 12.63 11.3 7.01 2.87 37.5 34.63 
LT00012 11.14 9.6 6.04 2.87 36.5 33.63 
LT00022 18.06 17.4 7.08 3.4 37.1 33.7 
LT00023 6.64 5.5 3.97 2.87 36.52 33.65 
LT00031 12.56 10.7 7.18 2.87 37.3 34.43 
LT00033 17.74 16.8 7.99 2.87 37.48 34.61 
LT00041 17.16 15.87 8.54 2.9 37.5 34.6 
LT00043 7.52 6.5 4.13 2.87 33.46 30.59 
LT00044 6.77 5.5 4.44 2.87 33.5 30.63 
LT00052 4.41 3.8 1.76 2.87 13.19 10.32 
 
The study includes a diverse range of meteorological 

information, including air temperature, feels-like temperature, 
wind speed, wind gust, wind direction, cloud cover, sea level 
pressure, relative humidity, and precipitation. Subjected to 
TROPOMI data for various monitoring station coordinates 
that have been extracted with respect to the nearest pixel 
throughout the dedicated analysis period. We modelled it 
using a third-degree polynomial curve to project trends and 
patterns over the whole period “Fig. 2”. 

 

 
Fig. 2. Observations of TROPOMI with respect to the location of each 

station and Representation of Third-Degree Polynomial Over Dedicated 
Period (source: the authors). 

 
The data cleaning process is applied to a data frame. 

Initially, rows were filtered out where either the ‘Validity’ or 
‘Verification’ fields didn’t meet. Next, by selecting non-
positive values for NO₂ monitoring station observations and 
VCDs were removed to ensure data quality. The sources of all 
datasets used are listed in Table 2. Following this, we 
implemented an interquartile range (IQR) filtering for VCDs 
and station observation values. This involved calculating the 
first and third quartiles (Q1 and Q3) and the IQR for these 
values and then excluding any values that fall more than 1.5 

times IQR below Q1 or above Q3 to mitigate the effect of 
outliers and refine the dataset for further analysis. 

B. Feature Selection 
The study focused on data from thirteen monitoring 

stations located across Lithuania. NO₂ concentrations were 
fetched for the period between January 1, 2020, and 
December 31, 2023. The TROPOMI sensor on the Sentinel-
5P satellite was accessed through the Copernicus program to 
gather the total VCDs. The deployment of the Sentinel-5P 
satellite is important for monitoring and forecasting ground-
level NO₂ concentrations [25]. 

 

 
Fig. 3. Concentrations NO₂: (a) Monitoring Station Mean Values and (b) 

TROPOMI Sentinel-5P Derived Observations Over Four Years (source: the 
authors). 

 
Fig. 3a shows the distribution of NO₂ concentrations across 

various monitoring stations plotted and outlined with the 
Lithuanian border. The colour scale ranges from lower 
concentrations to higher concentrations. Each dot represents 
a monitoring station, with the colour indicating the mean 
concentration recorded at that location overall for the total 
period, while Fig. 3b presents a similar distribution variance 
but highlights the data obtained from satellite observations. 
The purpose of these figures is to show the similarity and 
visually compare both data sets, focusing on the valuable use 
of satellite data for estimating surface NO₂ concentrations. 

 A custom Python script was employed to retrieve the NO₂ 
VCDs data for each of the monitoring stations through a 
point-based query. The extracted data was structured into a 
pandas data frame. The acquired satellite-derived VCDs and 
the levels of monitoring station NO₂ concentrations were 
employed to the nearest point and then merged with the other 
meteorological data regarding each city. The final dataset 
constituted retrieved values for NO₂ concentrations. The data 
was employed in time-series analyses aimed at understanding 
predictors, as well as machine-learning model formulation.  
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Table 2. Input variables used to estimate surface NO2 
Dataset Variable Type Data source 

Monitoring stations surface NO₂ concentrations Numeric EEA 
TROPOMI Total vertical column of NO₂ Numeric Sentinel-5p 

Metrological conditions air temperature, feels-like temperature, wind speed, wind gust, wind direction, 
cloud cover, sea level pressure, relative humidity, and precipitation Numeric Lithuanian 

Hydrometeorological 
Service Station Code  Numeric 

City Id  Numeric  
date time serial  Numeric  

 
A. Machine Learning 
Once the data has been preprocessed, the following 

procedures to prepare it for testing and training. In deep 
learning, experiments are conducted using various techniques 
to process data and create models. In this paper, we aim to 
utilize BT and CT algorithms as they are robust and capable 
of capturing complex nonlinear relationships within datasets. 
Specifically, ML techniques were employed to efficiently 
predict NO₂ concentrations. The BT Algorithm operates by 
employing an ensemble method in which multiple decision 
trees are created based on different parts of the dataset, and 
their outputs are averaged. BT is fairly effective in solving 
variance and overfitting problems [27, 28], which are 
common barriers in the process of analyzing the information 
that relates to the environmental aspects, explaining that the 
BT algorithm has its origins in the work represented in Eq. (1) 
[28]. The CT Algorithm employs large splits, which 
effectively reduce the complexity of decision trees. This 
method is useful in developing information that is more 
understanding about the data, although it is more appropriate 
for the first examination and investigation of a pattern within 
the data rather than predicting it narrowly [29]. 

푓(푥) = �
�

∑ 푇�(푥)�
���                         (1) 

where f(x) represents the averaged prediction from B decision 
trees, where Tb(x) is the prediction from the bth tree in the 
ensemble 

B. Accuracy Indicators 
Upon completion of training and model creation, 5-fold 

Cross-validation was employed to evaluate the model’s 
performance. A key metric for model evaluation is the mean 
squared error (MSE), which is determined for each fold, as 
illustrated in Eq. (2). The overall test MSE is calculated by 
averaging the individual MSE values computed across all 
folds, as shown in Eq. (3) [30, 31] This approach involves 
splitting the dataset into five sets. In each cycle, one set serves 
as the validation set, while the remaining four sets are used 
for training to ensure that each data point is used once for both 
training and validation, enhancing the model’s reliability.  

MSE = �
�

∑ (푦� − 푦��)��
���                       (2) 

where n is the number of observations in the fold, yᵢ is the 
actual value of the ith observation, and ŷᵢ is the predicted value 
by the model for the ith observation. 

Test MSE = �
�

∑ MSE�
�
���                       (3) 

where k represents the number of folds and the MSE of the ith 
fold. 

Mean absolute error (MAE) has been utilized in the fields 
of air quality management as well as atmospheric studies as 
it is a concept that allows for easy and strong comparison of 
model predictions against the observations as regarding Eq. 
(4). which is essential in determining how accurately the 
concentration of pollutants can be forecasted [32, 33]. 

MAE = �
�

∑ |푦� − 푦��|�
���                       (4) 

where n is the number of observations, yᵢ is the actual value 
of the ith observation, and ŷᵢ is the predicted value by the 
model for the ith observation. 

The effectiveness of the models may also be gauged by the 
residual plots, by the validation of Predicted vs. Actual plots, 
and by the comparative analysis of the BT and CT algorithms. 
Illustrations display how well the model forecasts correspond 
to the observed variables. During validation, the Predicted vs 
Actual plots visually evaluate the precision of the models. In 
Fig. 4, each algorithm applies to new data by providing 
scatter plots of predicted versus true values [34]. 

 

 

 
Fig. 4. Predicted vs. Actual Plot for Validation Phase – (a) BT and (b) CT 

Models (source: the authors). 
 

Out of the total data, 10% was set aside for testing purposes. 
The separate set facilitates the unbiased evaluation of the 
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model’s performance in practical cases that lie outside the 
training data in the testing phase cycle. The RMSE, MSE, and 
MAE [35] The evaluation of accuracy and effectiveness for 
the developed model. In the testing stage, the researcher 
assesses the presence of the systematic components in the 
prediction error by plotting the residuals against the predicted 
values. A fitted model displays residuals scattered randomly 
around the horizontal axis, indicating uniform variance. Fig. 
5 was used to identify model behaviour issues and determine 
whether residuals exhibit non-random patterns for BT and CT. 

 
Fig. 5. Residuals Plots for Testing Phase - (a) BT and (b) CT Models 

(source: the authors). 

IV. RESULT  
The BT model shows a validation RMSE of 5.12 µg/m³ and 

a test RMSE of 4.90 µg/m³, with MSE values of 26.18 
(µg/m³)² (validation) and 23.97 (µg/m³)² (test), and MAE 
values of 3.71 µg/m³ (validation) and 3.55 µg/m³ (test), 
indicating its effectiveness in handling the dataset using 30 
learners. In comparison, the CT model has a slightly lower 
accuracy with a validation RMSE of 5.73 µg/m³ and a test 
RMSE of 5.58 µg/m³, along with MSE values of 32.86 
(µg/m³)² (validation) and 31.14 (µg/m³)² (test) and MAE 
values of 4.20 µg/m³ (validation) and 4.15 µg/m³ (test) as 
referred Table 3. Despite its lower accuracy, the CT model 
has a faster prediction speed, and the outperformed BT 
emphasizes its potential to be used in further analysis. 

 
Table 3. Performances of models 

Model RMSE MSE MAE RMSE MSE MAE 
 Validation Test 
BT 5.12 26.18 3.71 4.90 23.97 3.55 
CT 5.73 32.86 4.20 5.58 31.14 4.15 

The use of satellite data had a positive impact on the 
accuracy of NO₂ concentration prediction at each monitoring 
location in Lithuania. The integration of TROPOMI data 
enhanced the examination of trends in the areas of interest. 
Between January 2020 and December 2023, for TROPOMI 
sensor data, VCDs peaked between June and August for the 
majority of stations, suggesting a decrease in air quality. The 
upward trend in NO₂ levels for the total period is displayed 
by the third-degree polynomial on the graph throughout the 
post-cleaning phase. The trend of increasing NO₂ 
concentrations in Lithuania is leading to a need for further 
research and action in the domain of air quality. 

V. DISCUSSION 
The results demonstrate that the BT ensemble model 

provides a better predictive performance than the single 
decision CT model. Across all error metrics RMSE, MSE, 
and MAE, the BT model achieved lower errors, underscoring 
the value of ensemble techniques in modelling NO₂. The 
finding aligns with the well-known advantage of ensemble 
learning by aggregating many decision trees, each trained on 
bootstrap samples. The model reduces variance and avoids 
overfitting noise. In practical terms, our BT model’s 
predictions of ground-level NO₂ were considerably more 
accurate and stable than the CT model’s, confirming that the 
integration of multiple learners yields a better predictor. 
Similar observations have been reported in other air quality 
studies [36, 37]. The integration of satellite-derived 
TROPOMI NO₂ column data with ground-based 
meteorological inputs led to improved prediction quality. The 
satellite Tropospheric VCDs of NO₂ from Sentinel-5P proved 
to be highly informative predictors when combined with local 
meteorological variables (e.g. temperature, wind, etc.), 
allowing the BT model to learn spatiotemporal patterns that a 
ground-only model might miss. Our findings are in line with 
other research that fuses remote sensing with in-situ data. For 
instance, [37] combined Sentinel-5P NO₂ observations with 
ground meteorological measurements to estimate surface 
NO₂ and found that advanced machine learning methods 
dramatically lowered prediction error (achieving RMSE ~2.9 
µg/m³) compared to models using satellite data alone. 

Temporal patterns in Lithuania revealed a peak during the 
summer months. Typically, urban NO₂ concentrations peak 
in winter due to increased heating emissions and weaker 
atmospheric dispersion and dip in summer. However, the data 
of VCDs showed higher NO₂ in summertime, which we 
attribute to increased photochemical activity and transport-
related emissions in the warm season. Strong sunlight and 
higher temperatures in summer catalyze photochemical 
reactions that produce ozone and other oxidants; under 
certain conditions, these reactions can also elevate NO₂ levels 
through the photo-stationary equilibrium between NO, NO₂, 
and O₃. Empirical studies in Europe have noted that summer 
NO₂ episodes often coincide with ozone pollution events 
during hot, stagnant weather when ample sunlight drives 
photochemical NOₓ oxidation [37]. 

VI. CONCLUSION 
The research combined various data sources, including 

TROPOMI sensor data from the Sentinel-5P satellite, to 
examine NO₂ concentrations at thirteen monitoring stations 
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in Lithuania from 2020 to 2023. Meteorological parameters 
were also incorporated. The results of the modelling 
techniques, BT and CT algorithms, demonstrated an approach 
to predicting NO₂ levels. Within the validation and testing 
phases, the BT model exhibited superior accuracy compared 
to the CT model, achieving RMSE, MSE, and MAE values of 
4.9, 23.97, and 3.55, respectively. This highlights the 
effectiveness of ensemble methods in addressing 
environmental data challenges. Statistical analysis indicated 
an increase in NO₂ VCDs throughout the study period, 
suggesting a pressing need for continuous monitoring and 
intervention strategies to mitigate air pollution. The 
utilization of TROPOMI satellite data proved valuable in 
enhancing the predictive capability of the ground-based 
monitoring system, underscoring the importance of 
leveraging satellite technology in atmospheric research. 

VII. RECOMMENDATION 
While this study focused on NO₂, the approach of satellite-

driven ML modelling can be extended to other pollutants and 
can benefit from emerging machine-learning techniques. 
Sentinel-5P’s payload TROPOMI measures several 
atmospheric constituents, including ozone, sulfur dioxide 
(SO₂), carbon monoxide (CO), formaldehyde, and aerosol 
optical depth. There is an opportunity to expand the 
methodology to these pollutants. For example, ground-level 
ozone could be predicted by blending Sentinel-5P ozone 
column data with meteorological factors, temperature, 
sunlight, and VOC indicators in an ensemble model. One 
challenge is that ozone formation is highly non-linear, but 
ML models, especially ensemble models, can potentially 
capture such chemistry-climate interactions. Another 
extension is towards particulate matter PM₂.5 and PM₁₀. 
Although Sentinel-5P does not measure PM directly, it 
provides aerosol indices and precursors like NO₂ and SO₂, 
which contribute to secondary aerosol formation. Combining 
these with other satellite data and meteorology in an ML 
framework could allow the estimation of surface PM levels.  

LIMITATION 
Overall, the primary disadvantage of the research is the 

insufficient verification for some monitoring station 
observations, which resulted in several data points having to 
be discarded. Furthermore, the absence of metrological 
parameters data for some cities led to their being dropped 
from the analysis. Although the methodology approach’s 
potential in NO₂ predictions has been successful, there is still 
room for improvement by adding more indicators. As such, 
further refinements can include the traffic counts, pollution 
caused by industries and pollution crossing borders to 
improve the estimation accuracy. 

CONFLICT OF INTEREST 
The authors declare no conflict of interest. 

AUTHOR CONTRIBUTIONS 
The first author’s responsibilities included data collection 

and analysis, leading to the creation of the initial draft. The 
second author, however, took the lead in defining the research 
scope and guiding the paper to its final completion. 

REFERENCES 
[1] Greenhouse gas emissions from transport are falling too slowly State 

control of the Republic of Lithuania. (Sep. 20, 2024). [Online]. 
Available: 
https://www.valstybeskontrole.lt/EN/Post/17837/greenhouse-gas-
emissions-from-transport-are-falling-too-slowly 

[2] I. Manisalidis, E. Stavropoulou, A. Stavropoulos, and E. Bezirtzoglou, 
“Environmental and health impacts of air pollution: A review,” 
Frontiers Media S.A, Feb. 20, 2020. doi: 10.3389/fpubh.2020.00014 

[3] ESA - Sentinel-5P brings air pollution into focus. (Sep. 03, 2024). 
[Online]. Available: 
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Se
ntinel-5P/Sentinel-5P_brings_air_pollution_into_focus 

[4] B. Kuang et al., “Chemical characterization, formation mechanisms 
and source apportionment of PM2.5 in north Zhejiang Province: The 
importance of secondary formation and vehicle emission,” Science of 
The Total Environment, vol. 851, p. 158206, Dec. 2022. doi: 
10.1016/J.SCITOTENV.2022.158206 

[5] A. Fayyazbakhsh et al., “Engine emissions with air pollutants and 
greenhouse gases and their control technologies,” J Clean Prod, vol. 
376, p. 134260, Nov. 2022. doi: 10.1016/J.JCLEPRO.2022.134260. 

[6] Ground-level Ozone Basics | US EPA. (Accessed: Oct. 20, 2024). 
[Online]. Available: https://www.epa.gov/ground-level-ozone-
pollution/ground-level-ozone-basics 

[7] C. Jia et al., “Pollution characteristics and potential sources of nitrous 
acid (HONO) in early autumn 2018 of Beijing,” Science of the Total 
Environment, vol. 735, Sep. 2020. doi: 
10.1016/j.scitotenv.2020.139317 

[8] C. H. Zhang et al., “Atmospheric nitrogen deposition and its responses 
to anthropogenic emissions in a global hotspot region,” Atmos Res, vol. 
248, Jan. 2021. doi: 10.1016/j.atmosres.2020.105137 

[9] Z. Yu, X. Sun, L. Yan, S. Yu, Y. Li, and H. Jin, “Analysis of the water 
quality status and its historical evolution trend in the mainstream and 
major tributaries of the yellow river basin,” Water (Switzerland), vol. 
16, no. 17, Sep. 2024. doi: 10.3390/w16172413 

[10] J. Weber, J. Keeble, N. L. Abraham, D. J. Beerling, and M. V. Martin, 
“Global agricultural N2O emission reduction strategies deliver climate 
benefits with minimal impact on stratospheric O3 recovery,” NPJ Clim 
Atmos Sci, vol. 7, no. 1, Dec. 2024. doi: 10.1038/S41612-024-00678-2 

[11] D. Stratoulias, N. Nuthammachot, R. Dejchanchaiwong, P. Tekasakul, 
and G. R. Carmichael, “Recent developments in satellite remote 
sensing for air pollution surveillance in support of sustainable 
development goals,” Remote Sens (Basel), vol. 16, no. 16, Aug. 2024. 
doi: 10.3390/rs16162932 

[12] M. Vîrghileanu, I. Săvulescu, B. A. Mihai, C. Nistor, and R. Dobre, 
“Nitrogen dioxide (NO2) pollution monitoring with sentinel-5p satellite 
imagery over europe during the coronavirus pandemic outbreak,” 
Remote Sens (Basel), vol. 12, no. 21, pp. 1–29, Nov. 2020. doi: 
10.3390/rs12213575 

[13] J. Van Geffen et al., “S5P TROPOMI NO2 slant column retrieval: 
Method, stability, uncertainties and comparisons with OMI,” Atmos 
Meas Tech, vol. 13, no. 3, pp. 1315–1335, Mar. 2020. doi: 
10.5194/AMT-13-1315-2020 

[14] Y. Bezyk, I. Sówka, M. Górka, and J. Blachowski, “Gis-based 
approach to spatio-temporal interpolation of atmospheric co2 
concentrations in limited monitoring dataset,” Atmosphere (Basel), vol. 
12, no. 3, Mar. 2021. doi: 10.3390/atmos12030384 

[15] L. Matejicek, “Spatial modelling of air pollution in urban areas with 
GIS: A case study on integrated database development,” Advances in 
Geosciences, vol. 4, pp. 63–68, 2005. 

[16] M. Nasar-u-Minallah, N. Parveen, Bushra, and M. Jabbar, “Assessing 
air quality dynamics in Punjab, Pakistan: Pre, during, and post COVID-
19 lockdown and evaluating strategies for mitigating,” GeoJournal, vol. 
89, no. 4, Aug. 2024. doi: 10.1007/s10708-024-11132-4 

[17] NASA Helps Map Impact of COVID-19 Lockdowns on Harmful Air 
Pollution - NASA. (Oct. 23, 2024). [Online]. Available: 
https://www.nasa.gov/missions/aqua/nasa-helps-map-impact-of-
covid-19-lockdowns-on-harmful-air-pollution/ 

[18] M. J. Cooper et al., “Global fine-scale changes in ambient NO2 during 
COVID-19 lockdowns,” Nature, vol. 601, 2022. doi: 10.1038/s41586-
021-04229-0 

[19] M. Nasar-U-Minallah, M. Zainab, and M. Jabbar, “Exploring 
mitigation strategies for smog crisis in Lahore: A review for 
environmental health, and policy implications,” Environ Monit Assess, 
vol. 196, no. 12, p. 1269, Nov. 2024. doi: 10.1007/s10661-024-13336-
0 

[20] M. Nasar-u-Minallah, M. Jabbar, S. Zia, and N. Perveen, “Assessing 
and anticipating environmental challenges in Lahore, Pakistan: Future 
implications of air pollution on sustainable development and 

International Journal of Environmental Science and Development, Vol. 16, No. 4, 2025

270



  

environmental governance,” Environ Monit Assess, vol. 196, no. 9, Sep. 
2024. doi: 10.1007/s10661-024-12925-3. 

[21] T. P. T. Quynh, T. N. Viet, H. D. Thi, and K. H. Manh, “Enhancing air 
quality prediction accuracy using hybrid deep learning,” International 
Journal of Environmental Science and Development, vol. 14, no. 2, pp. 
155–159, Apr. 2023. doi: 10.18178/ijesd.2023.14.2.1428. 

[22] C. Silibello et al., “Spatial-temporal prediction of ambient nitrogen 
dioxide and ozone levels over Italy using a Random Forest model for 
population exposure assessment,” Air Quality Atmosphere & Health. 
doi: 10.1007/s11869-021-00981-4/Published. 

[23] K. Qin et al., “Estimating ground level NO2 concentrations over 
central-eastern China using a satellite-based geographically and 
temporally weighted regression model,” Remote Sens (Basel), vol. 9, 
no. 9, Sep. 2017. doi: 10.3390/rs9090950. 

[24] Y. Kang et al., “Estimation of surface-level NO2 and O3 concentrations 
using TROPOMI data and machine learning over East Asia,” 
Environmental Pollution, vol. 288, Nov. 2021. doi: 
10.1016/j.envpol.2021.117711. 

[25] [S. Shetty, P. Schneider, K. Stebel, P. David Hamer, A. Kylling, and T. 
Koren Berntsen, “Estimating surface NO2 concentrations over Europe 
using Sentinel-5P TROPOMI observations and machine learning,” 
Remote Sens Environ, vol. 312, Oct. 2024. doi: 
10.1016/j.rse.2024.114321. 

[26] European Environment Agency’s home page. (Mar. 10, 2024). 
[Online]. Available: https://www.eea.europa.eu/en 

[27] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classifier 
ensembles and their relationship with the ensemble accuracy,” Mach 
Learn, vol. 51, no. 2, pp. 181–207, May 2003. doi: 
10.1023/A:1022859003006/METRICS. 

[28] [L. Breiman, “Bagging predictors,” Mach Learn, vol. 24, no. 2, pp. 
123–140, 1996. doi: 10.1007/BF00058655/METRICS. 

[29] L. A. Breslow and D. W. Aha, “Simplifying decision trees: A survey,” 
Knowl Eng Rev, vol. 12, no. 01, pp. 1–40, 1997. doi: 
10.1017/S0269888997000015. 

[30] S. Bates, T. Hastie, and R. Tibshirani, “Cross-validation: what does it 
estimate and how well does it do it?” Journal of the American 
Statistical Association, 2022. 

[31] Stanford CS Theory. (Sep. 10, 2024). [Online]. Available: 
https://theory.stanford.edu/main/index.shtml 

[32] L. Lin et al., “Estimating PM2.5 concentrations using the machine 
learning RF-XGBoost Model in Guanzhong urban agglomeration, 
China,” Remote Sens (Basel), vol. 14, no. 20, Oct. 2022. doi: 
10.3390/rs14205239. 

[33] L. Chen, B. Han, X. Wang, J. Zhao, W. Yang, and Z. Yang, “Machine 
learning methods in weather and climate applications: A survey,” 
Applied Sciences, Oct. 30, 2023. doi: 
10.20944/preprints202309.1764.v2. 

[34] A. T. Tredennick, G. Hooker, S. P. Ellner, and P. B. Adler, “A practical 
guide to selecting models for exploration, inference, and prediction in 
ecology,” Ecology, 2021. doi: 10.1002/ecy.3336. 

[35] X. Wen, M. Jaxa-Rozen, and E. Trutnevyte, “Accuracy indicators for 
evaluating the retrospective performance of energy system models,” 
Appl Energy, vol. 325, p. 119906, Nov. 2022. doi: 
10.1016/J.APENERGY.2022.119906. 

[36] D. Triana and S. Osowski, “Bagging and boosting techniques in 
prediction of particulate matters,” Bulletin of the Polish Academy of 
Sciences Technical Sciences, vol. 68, no. 5, 2020. doi: 
10.24425/bpasts.2020.134659. 

[37] J. R. Cedeno Jimenez, A. de J. Pugliese Viloria, and M. A. Brovelli, 
“Estimating daily NO2 ground level concentrations using sentinel-5P 
and ground sensor meteorological measurements,” ISPRS Int J Geoinf, 
vol. 12, no. 3, Mar. 2023. doi: 10.3390/ijgi12030107. 

 
 
Copyright © 2025 by the authors. This is an open-access article distributed 
under the Creative Commons Attribution License which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original 
work is properly cited (CC BY 4.0). 
 

 
 

International Journal of Environmental Science and Development, Vol. 16, No. 4, 2025

271


	IJESD-V16N4-1533



