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Abstract

Objective: This study was performed to investigate the correlation among decreased regional

cerebral oxygen saturation (rSO2), blood levels of brain injury biomarkers, and postoperative

cognitive disorder (POCD) after cardiac surgery with cardiopulmonary bypass (CPB).

Methods: This prospective observational study included 59 patients undergoing coronary artery

bypass graft surgery with CPB. All patients underwent neuropsychological tests (Mini Mental

State Evaluation, Rey Auditory Verbal Learning Test, digit span test, digit symbol substitution test,

and Schulte table) the day before and 10 days after the surgery. The blood levels of two brain

injury biomarkers, neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP), were

measured before and 1 day after the surgery.

Results: The rSO2 decreased during surgery in 21 (35%) patients. POCD was detected in

22 (37%) patients. After the surgery, no significant changes in the GFAP blood level occurred

in any patients. No significant correlations were found among the decreased rSO2, increased NSE

blood level, and rate of POCD.

Conclusion: These results suggest that a decrease in rSO2 during cardiac surgery is not nec-

essarily related to the development of POCD or an increased blood level of the brain injury

biomarker NSE.
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Introduction

Postoperative cognitive disorder (POCD) is
a common complication after cardiac sur-
gery with cardiopulmonary bypass (CPB).
It occurs in 30% to 80% of patients
during the first postoperative week, and it
can persist up to several months postoper-
atively in 50% of patients.1,2 The differen-
ces in the rate of POCD among different
studies may be associated with the lack of
standardized diagnostic methods for
POCD. Various authors use different tests
that evaluate different cognitive functions.
The diagnostics used for POCD are not
routine in most cardiac surgery centers.
Cognitive dysfunction is detected in
patients without a history of cardiac sur-
gery as well as in intensive care unit (ICU)
patients (25%) and in the nonsurgical pop-
ulation of the same age (3%). However, the
rate of POCD after cardiac surgery is
much higher.1

The etiology of POCD remains unclear
and is considered to be a polyetiological
complication. Reported predisposing fac-
tors are older age, concomitant diseases
such as diabetes mellitus, pre-existing
neurological diseases, and injuries. The
operative factors considered to influence
POCD are micro- and macro-embolization
(atherosclerotic plaques, air emboli, and
thrombi), hypotension, hypoperfusion, and
systemic inflammatory reactions. Routinely
used monitoring techniques such as pulse
oximetry and arterial blood pressure
measurement only indirectly indicate tissue
and brain perfusion and oxygenation.

Monitoring of the regional cerebral

oxygen saturation (rSO2) allows for more

accurate evaluation of the oxygen balance

(delivery and consumption) in the

brain tissue.
This study was performed to evaluate the

correlation among a decrease in the rSO2

from baseline, the blood levels of brain

injury biomarkers, and the development of

POCD after cardiac surgery with CPB.

Material and methods

This prospective observational clinical

study was conducted at the Clinic of

Cardiothoracic and Vascular Surgery in

the Hospital of the Lithuanian University

of Health Sciences Kauno Klinikos. The

study was approved by the Kaunas

Regional Bioethics Committee (permission

No. BE-2-49). All patients provided written

agreement to participate by signing an

informed consent form.
Patients undergoing elective coronary

artery bypass grafting (CABG) surgery

without pre-existing neurological disease

and/or lesions were enrolled in the study.

We excluded patients who underwent com-

bined surgery (CABGþ valve surgery);

underwent emergency or redo surgery;

were suffering from alcohol abuse; had

existing cognitive dysfunction; had a histo-

ry of psychoneurological disease and/or dis-

orders; were taking medications affecting

the central nervous system (CNS); had

hearing, vision, or any other disorders

that could affect the possibility of

2 Journal of International Medical Research 0(0)



physically performing the test; and who
were unable to speak Lithuanian.

Perioperative period

Midazolam or diazepam was prescribed for
premedication. All patients received standard
general anesthesia: 1–2 lg/kg of fentanyl,
0.05 mg/kg of midazolam, 1.0–2.5 mg/kg
of propofol, and 0.08–0.1 mg/kg of pipe-
curonium for induction and 3 mg/kg/h
of fentanyl, 1–4 mg/h of midazolam, and
1.5%–2.0% MAC of sevoflurane for main-
tenance. Standard monitoring of vital
functions was performed: continuous
electrocardiography, heart rate, invasive
arterial blood pressure, pulse oximetry,
esophageal temperature, and end-tidal
carbon dioxide in the exhaled gas mixture.

Operating technique and CPB

All patients underwent median sternotomy.
The aorta was cross-clamped, and antero-
grade cold crystalloid cardioplegia was
applied for myocardial protection. The
CPB perfusion pump was primed with
1.5 L of crystalloid solution containing
10,000 units of heparin. A roller-pump
with a membrane oxygenator (Dideco
D703; Dideco S.p.A., Mirandola, Italy)
and a venous reservoir were used. The non-
pulsatile pump flow rate was maintained
between 2.4 and 2.6 L/min/m2. During
CABG, proximal anastomoses were con-
structed after removal of the aortic cross-
clamp using a side-bite clamp. Certain
aspects of patient management, such as
the target mean arterial pressure and the
rate of patient rewarming, were determined
by standard practice and not dictated by the
study protocol.

ICU

The patients received standard postopera-
tive care and monitoring in the ICU and
on the postoperative ward.

Evaluation of cognitive function

Cognitive function was evaluated on the eve

of surgery and 7 to 10 days after surgery,

before discharge from the hospital. The fol-

lowing tests were performed: Mini Mental

State Evaluation; Rey Auditory Verbal

Learning Test; number sequence matching

task (Trail-Making Test, Parts A and B);

two subtests of the Wechsler Adult

Intelligence Scale (i.e., the digit span test

and digit symbol substitution test) that

were adapted to the Lithuanian language

according to the Wechsler method by

Go�stautas, Dembinskas, and Pilkauskien _e
in 1979; and the Schulte table for attention

and concentration.
Relative changes between the preopera-

tive and postoperative test scores were cal-

culated and expressed as Z scores. The

change in a Z score relative to its associated

error was used to estimate deterioration of

mental abilities and to detect POCD.

POCD was diagnosed when the sum of all

Z scores was >2 or at least two Z scores for

separate tests were >2.3,4

Blood tests of brain injury biomarkers

Blood samples were collected for measure-

ment of glial fibrillary acidic protein

(GFAP) and neuron-specific enolase

(NSE) before surgery, immediately before

anesthetic induction (baseline level), and

24 hours after surgery (in the ICU).

The levels of biomarkers were measured

by standard sandwich enzyme-linked

immunosorbent assay in accordance with

the manufacturer’s instructions

(BioVendor, Brno, Czech Republic). The

absorbance was measured using a Stat-

Fax 4200 microplate reader (Awareness

Technology, Palm City, FL, USA) at a

430-nm wavelength. Each plasma sample

was double-blind, resulting in an average

concentration.
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Cerebral oximetry

An INVOSTM oximeter (Somanetics, Troy,
MI, USA) was used to monitor rSO2.
A decrease in the rSO2 of �20% from base-
line or an rSO2 of �45% was defined as
desaturation. The baseline rSO2 value was
established after patient arrival to the oper-
ating room at a 21% fraction of inspired
oxygen (ambient air).

Statistical analyses

All statistical analyses were performed with
IBM SPSS Statistics, version 20.0 (IBM
Corp., Armonk, NY, USA). Quantitative
variables are described as mean and stan-
dard deviation. The Kolmogorov–Smirnov
test revealed that the variables did not meet
the criteria for a normal distribution; there-
fore, nonparametric methods were used for
further analysis. The Mann–Whitney U test
was used to compare quantitative variables.
The Pearson chi-squared test (v2) was used
to determine qualitative variables.
Spearman’s correlation coefficient was cal-
culated to determine the relationship
between POCD and a decreased rSO2 and
between POCD and changes in the blood
levels of brain injury biomarkers. The data
were considered statistically significant
at p< 0.05.

Results

In total, 65 patients were initially enrolled
in the study. Six patients were excluded
after the surgery because they refused to
perform the postoperative cognitive func-
tion tests and decided to withdraw from
the study. Therefore, the data of 59 patients
were analyzed (Figure 1).

POCD was detected in 22 (37%)
patients. During the surgery, a decrease in
rSO2 was detected in 21 (35%) patients. The
shortest episode of decreased rSO2 lasted
0.2 minutes, and the longest lasted 168
minutes. The disturbances of rSO2 were

effectively corrected, and the average total
time of a decreased rSO2 was 13.8 minutes.
In two patients, no measures were effective,
and the decreased rSO2 lasted for 66 and
168 minutes, respectively. Neither of these
patients developed POCD. The patients
were divided into two groups according to
the disturbances of rSO2: patients in Group
I had no episodes of decreased rSO2

(�20%) (n¼ 38), and patients in Group II
had episodes of decreased rSO2 (�20%)
(n¼ 21). The two groups showed no differ-
ences in demographics (age, sex,) (Table 1)
or clinical data (concomitant diseases,
left ventricular ejection fraction, American
Society of Anesthesiologists class)
(Table 2). The rate of POCD did not
differ between the groups.

No changes in the blood level of GFAP
were observed in any patients after the sur-
gery compared with baseline. The blood
level of NSE increased in 29 (49%) patients
after the surgery compared with baseline.
There was no correlation between the
increase in the NSE blood level
and POCD. These data are presented in
Table 2. The blood level of NSE did not
differ significantly between patients with
and without POCD (Figure 2).

Discussion

Episodes of decreased rSO2 are detected
during both cardiac and noncardiac sur-
gery. A decreased rSO2 may be caused by
ventilation or oxygenation disorders,
changes in hemodynamics, changes in the
hemoglobin concentration, or even the
patient’s position during surgery (e.g.,
anti-Trendelenburg position in shoulder
joint surgery or laparoscopic surgery).5

The rate of desaturation during the surgery
is independent of the patient’s preoperative
condition, but the baseline rSO2 is lower in
patients with diabetes, arterial hyperten-
sion, or an elevated cholesterol level.6

In the present study, the incidence of
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a decreased rSO2 was similar to that
reported by other authors (35%).7,8 The
incidence of POCD was similar between
patients with a decreased rSO2 (Group II)
and without (Group I). In all patients, the
decreased rSO2 was corrected by the usual
algorithm, and the average total desatura-
tion time was 2.6 minutes. In two patients

(9.5%), the methods used to correct the
desaturation were not effective, and it
lasted 66 and 168 minutes, respectively.
In most patients, however, the duration of
decreased rSO2 was short (because it was
corrected), which may have led to the lack
of significant differences in POCD between
the two groups. In a randomized

The day before the surgery: 
neurocognitive tests  

The day of the surgery: 
baseline blood levels of NSE, GFAP 

CABG surgery: 
 rSO2 monitoring 

24 h after the surgery 
blood levels of NSE and GFAP 

7–10 days after the surgery 
neurocognitive tests  

6 patients decided to cancel 
their participation 

Patient inclusion: 
65 pts undergoing elective CABG 
no psychoneurological disorders 
agreement to participate 
signing informed consent form 

Analysis of the data of 59 pts  

Figure 1. Flow chart of the study protocol. CABG, coronary artery bypass grafting; NSE, neuron-specific
enolase; GFAP, glial fibrillary acidic protein; rSO2, regional cerebral oxygen saturation.
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Table 2. Intraoperative patient data.

Characteristic

All patients

(n¼ 59)

Group I

(n¼ 38)

Group II

(n¼ 21)

p value

(Groups I and II)

Averaged duration of cardiopulmonary

bypass, min

87� 20 86� 17 88� 25 0.7

Averaged aortic cross-clamping duration, min 44� 14 42� 11 47� 17 0.2

Hb, g/L 99.8� 12 100� 13 97� 10 0.3

Hct, % 29.9� 3.7 30� 4 29� 3 0.5

Data in the table are presented as mean� standard deviation. Hb, hemoglobin; Hct, hematocrit; Group I, patients who had

no decrease in regional cerebral oxygen saturation; Group II, patients who had a �20% decrease in regional cerebral

oxygen saturation.

Table 1. Demographic data of the study population.

Characteristic

All patients

(n¼ 59)

Group I

(n¼ 38)

Group II

(n¼ 21)

p value

(Groups I and II)

Mean age, years 67.1� 8.7 67.7� 8.3 64.9� 8.6 0.2

Sex, male/female 35/24 (59/41) 25/13 (66/34) 10/11 (48/52) 0.2

Class ASA III patients 50 (85) 32 (84) 18 (86) 0.6

Class ASA IV patients 9 (15) 6 (16) 3 (14) 0.6

Diabetes mellitus 15 (25) 11 (29) 4 (19) 0.3

Hb 135� 16 135� 14 134� 18 0.7

Hct 40.5� 4.2 40� 4 40� 5 0.6

Data in the table are presented as mean� standard deviation, n, or n (%). Hb, hemoglobin; Hct, hematocrit; ASA,

American Society of Anesthesiologists; Group I, patients who had no decrease in regional cerebral oxygen saturation;

Group II, patients who had a �20% decrease in regional cerebral oxygen saturation.

Figure 2. Association between rSO2 and increase in NSE. rSO2, regional cerebral oxygen saturation; NSE,
neuron-specific enolase.
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multicenter study including 201 patients,
Deschamps et al.7 showed that correction
of rSO2 impairment reduced the rate of
repetitive impairment during the surgery
and the rate of desaturation in the ICU
after surgery. Our study also suggests that
desaturation during the surgery is not
the only cause of POCD and that early
correction of rSO2 disorders allows for
improvement in the postoperative neuro-
logical outcome.

Cognitive decline is often detected in the
early postoperative period and shows sub-
stantial recovery within 1 to 3 months.2

Deschamps et al.7 found that desaturation
may also be detected postoperatively in the
ICU. These episodes of rSO2 may influence
the development of POCD. In this study,
we focused on early POCD. However, our
study was limited by the absence of rSO2

monitoring after the surgery in the ICU.7

GFAP is found in astrocytes, which are
basic neuroglial cells. We found no postop-
erative increases in the GFAP blood level in
any patient. The concentration of GFAP
increases in patients with brain damage
(intracranial hemorrhage, traumatic brain
injury) and is correlated with the area of
injury, clinical severity, and functional out-
come.9 Previously reported data show the
use of GFAP to differentiate ischemic
injury and intracranial hemorrhage.10,11

In the present study, we found no changes
in the blood levels of GFAP after the sur-
gery compared with baseline. Additionally,
although some studies have shown high
sensitivity and specificity of GFAP in
brain damage, other data show that an
increase in the GFAP level depends on the
nature of the damage; an increase in GFAP
is more typical of a “mass” effect induced
by hemorrhage. Rapid pressure-induced
death of brain cells occurs over time.
In patients with diffuse brain damage, the
growth rate of GFAP is delayed.12

NSE is found in neurons, neuroectoderm
cells, and erythrocytes. The serum NSE

level is a diagnostic and prognostic measure
that is correlated with the extent of brain
damage. The normal NSE concentration
in the healthy population ranges from 2 to
20 lg/L.12 It becomes elevated in patients
with malignant neuroendocrine tumors,
small cell lung carcinoma, neuroblastoma,
ischemic and/or hemorrhagic stroke,
meningoencephalitis, or CNS trauma. In
adult perioperative patients with no
known CNS lesions, an increase in NSE
may be explained by subclinical damage to
brain cells undergoing reversible changes
(diffuse microembolism and increased
blood–brain barrier permeability).13 NSE
measurement can be used to effectively pre-
dict neurological outcomes after cardiac
arrest and in patients with ischemic
stroke.12 However, its use in cardiac surgery
is controversial. A correlation of NSE with
POCD was observed in some studies,12,14–16

but not in others.9,12,17 The NSE concentra-
tion in the cerebrospinal fluid after aortic
aneurysm repair surgery was increased
regardless of the presence or absence of
neurological symptoms.12

In the present study, an increase in the
blood level of the brain cell injury biomark-
er NSE was found in 29 (49%) patients.
This increase was observed at the same
rate in both patients who did and did not
have episodes of decreased rSO2 during the
surgery. The increase in NSE was not cor-
related with cognitive impairment after the
surgery. NSE is also found in platelets and
erythrocytes.9 During CPB, hemolysis is
inevitable to a lesser or greater degree
because of the interaction of blood cells
with artificial surfaces. This could explain
the increase in NSE after cardiac surgery
with CPB. Although studies of NSE in
patients with ischemic and hemorrhagic
stroke indicate a correlation between an
increased NSE concentration and the
extent of the brain damage (stroke area),
studies of trauma patients have shown
that the NSE blood level increases

Kumpaitiene et al. 7



regardless of the presence of traumatic

brain injury.9

Conversely, glial cells (astrocytes) are less

susceptible to ischemia and the neurons

themselves are more susceptible to ischemia,

which could explain why the NSE concen-

tration changed and there was no increase in

the GFAP concentration.18 Mondello

et al.19 investigated brain biomarkers after

brain injury and found that neuronal

damage was more pronounced in diffuse

brain damage and that glial cells were

more vulnerable in cases of mass lesions.
Our study indicates that desaturation

during surgery is a fairly frequent disorder.

The study had an observational design, and

the anesthesiologists took measures to cor-

rect cerebral desaturation in accordance

with a routinely used protocol in our

clinic. The results prove the effectiveness

of such a protocol because we found no

increase in the blood levels of brain injury

markers or correlation with POCD.

Conclusion

Our data suggest that short-term episodes

of decreased rSO2 during surgery are not

correlated with either the incidence of cog-

nitive impairment after the surgery or the

blood levels of brain injury biomarkers.
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