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Abstract: A mathematical model of biosensors acting in a trigger mode has been 
developed. One type of the biosensors utilized a trigger enzymatic reaction followed by the 
cyclic enzymatic and electrochemical conversion of the product (CCE scheme). Other 
biosensors used the enzymatic trigger reaction followed by the electrochemical and 
enzymatic product cyclic conversion (CEC scheme). The models were based on diffusion 
equations containing a non-linear term related to Michaelis-Menten kinetics of the 
enzymatic reactions. The digital simulation was carried out using the finite difference 
technique. The influence of the substrate concentration, the maximal enzymatic rate as well 
as the membrane thickness on the biosensor response was investigated. The numerical 
experiments demonstrated a significant gain (up to dozens of times) in biosensor sensitivity 
when the biosensor response was under diffusion control. In the case of significant signal 
amplification, the response time with triggering was up to several times longer than that of 
the biosensor without triggering. 
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Introduction 

The chemical amplification in analysis was reviewed almost 25 years ago [1]. The sensitivity of 
biosensors can be increased by chemical amplification, too. The amplification in the biosensors 
response was achieved by the cyclic conversion of substrates [2-8]. The cyclic conversion of the 
substrate and the regeneration of the analyte are usually performed by using a membrane containing 
two enzymes. The calculations of the steady-state response of the enzyme electrodes with cyclic 
substrate conversion were performed under the first-order reaction conditions [2]. Dynamic response of 
these electrodes was analysed by solving diffusion equations and using Green’s function [9]. Further 
analysis of the dual enzyme biosensors response was performed by Schulmeister and others [4,10-12].  

The substrate cyclic conversion by conjugating the enzymatic reaction with chemical or 
electrochemical process was utilized in a single enzyme membrane [3,13-15]. Digital modelling of this 
type of biosensors was performed only recently [16]. 

If a biosensor contains an enzyme that starts analyte conversion followed by cyclic product 
conversion, the scheme of the biosensor action can be called a “triggering”. An example of this type of 
conversion is the amperometric detection of alkaline phosphatase based on hydroquinone recycling 
[17]. The substrate of the alkaline phosphatase, i.e. p-hydroxyphenyl phosphate, is hydrolysed by 
alkaline phosphatase to hydroquinone. The hydroquinone, instead of being detected directly, enters an 
amplification cycle where it is oxidized to quinone at the electrode surface and then reduced back to 
hydroquinone by glucose oxidase in the presence of glucose. The consumption-regeneration cycle of 
hydroquinone results in an amplification factor of about 8. Another example utilizing trigger scheme is 
the highly sensitive determination of β-galactosidase used as a label in a heterogeneous immunoassay 
[18]. As a substrate, p-aminophenyl- β-galactopyranoside was used. The produced p-aminophenol, 
which is an electrochemically active compound, can be detected directly [19]. To increase the 
sensitivity of the determination, p-aminophenol is entered into a bioelectrocatalytic amplification cycle 
by using glucose dehydrogenase (GDH). Both schemes presented include enzymatic trigger reactions 
together with electrochemical and enzymatic amplification steps. Therefore, by analogy with an 
electrochemical nomenclature, they may be abbreviated as acting by the CEC mechanism.  

The triggering of the consecutive substrate conversion can also be realized by enzymatic conversion 
of the substrate (trigger reaction) followed by the second enzymatic reaction and electrochemical 
conversion. This scheme can be abbreviated as CCE. The scheme may be realized, for example, by 
using peroxidase and glucose dehydrogenase. The peroxidase produces an oxidized product that is 
reduced by GDH, thus realizing the cyclic conversion of the product. The goal of this investigation is 
to propose a model allowing computer simulation of the biosensor response utilising both schemes. 
The model developed is based on non-stationary diffusion equations [20], containing a non-linear term 
related to the enzymatic reaction. The digital simulation of the biosensor response was carried out by 
using the implicit finite difference scheme [21-23]. The program developed was employed to 
investigate the influence of the substrate concentration, the maximal enzymatic rate as well as the 
membrane thickness on the biosensor response. 
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Mathematical Models 

A biosensor is considered as an enzyme electrode, containing a membrane with immobilised 
enzymes applied onto the surface of the electrochemical transducer. We assume the symmetrical 
geometry of the electrode and homogeneous distribution of immobilised enzymes in the enzyme 
membrane. 

Model of biosensors in CEC mode 

In the CEC scheme, the substrate (S) is enzymatically (E1) converted to the product (P1) followed 
by the electrochemical conversion of the product (P1) to another product (P2) that, in turn, is 
enzymatically (E2) converted back to P1: 

1
E PS 1→                 (1) 

21 PP →                 (2) 

1
E

2 PP 2→                (3) 

Coupling the enzyme-catalysed reactions (1), (3) and electrochemical reaction (2) with the one-
dimensional-in-space diffusion, described by Fick’s law, leads to the following equations 
(t > 0, 0 < x < d): 
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where x and t stand for space and time, respectively, S(x,t) and Pi(x,t) denote the concentration 
functions of the substrate S and product Pi, respectively, Vi is the maximal enzymatic rate, Ki is the 
Michaelis constant, d is the thickness of the enzyme membrane, DS and

iPD  are the diffusion 

coefficients, i = 1, 2.  
Let x = 0 represent the electrode surface and x = d the bulk solution/membrane interface. The 

operation of the biosensor starts when some substrate appears over the surface of the enzyme 
membrane. This is used with the initial conditions (t = 0): 

0)0,(,0,0)0,( SdSdxxS =<≤=            (7) 

2,1,0,0)0,(i =≤≤= idxxP              (8) 

where S0 is the concentration of substrate in the bulk solution. 
The electrode potential is chosen to keep the zero concentration of the product P1 at the electrode 

surface. The rate of the product P2 generation at the electrode is proportional to the rate of conversion 
of the product P1. When the substrate is well-stirred outside the membrane, the diffusion layer remains 
at a constant thickness (0 < x < d). Consequently, the concentration of the substrate as well as both 
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products over the enzyme surface (bulk solution/membrane interface) remains constant while the 
biosensor contacts the solution of substrate. This is used in the boundary conditions (t > 0) given by  
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The biosensor current depends upon the flux of the product P1 at the electrode surface, i.e. at the 
border x = 0. Consequently, the density iCEC(t) of the current at time t can be obtained explicitly from 
Faraday’s and Fick’s laws using the flux of the concentration P1 of the product P1 at the surface of the 
electrode 
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where ne is the number of electrons involved in a charge transfer at the electrode surface, and F is the 
Faraday constant, F = 96485 C/mol. 

We assume, that system (4)-(14) approaches a steady-state as t → ∞:  

)(lim CECCEC tiI
t ∞→

=                (15) 

where ICEC is the steady-state biosensor current. 

Model of biosensors in CCE mode 

In the CCE scheme, the substrate (S) is enzymatically (E1) transformed to the product (P1) followed 
by the enzymatic (E2) conversion of the product P1 to another product P2 that, in turns, is 
electrochemically converted back to P1:  

1
E PS 1 →                (16) 

2
E

1 PP 2→                (17) 

12 PP →                 (18) 

If the thickness of enzyme membrane is d, coupling of reactions (16)-(18) with the diffusion leads 
to the following equations (t > 0, 0 < x < d): 
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Here and below, all the symbols have the same meaning as in the model above. The initial conditions 
are described by (7), (8) exactly as in the case of CEC scheme.  

When the biosensor acts in the CCE mode, the electrode potential is chosen to keep zero 
concentration of the product P2 at the electrode surface. The rate of the product P1 generation at the 
electrode is proportional to the rate of conversion of the product P2. Consequently, the boundary 
conditions (9)-(12) are also applicable to the system (16)-(18). Only one of the boundary conditions 
(13) of the system acting in the CEC mode has to be replaced by the following condition: 

0),0(2 =tP                 (22)  

The density iCCE(t) of the biosensor current is proportional to the concentration gradient of the 
product P2 at the surface of the electrode: 
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When the system (19)-(21), (7)-(12), (22) approaches a steady-state, we obtain the steady-state 
current ICCE of the biosensor acting in CCE mode 

)(lim CCECCE tiI
t ∞→

=                (24) 

Model of biosensors in CE mode 

To compare the responses of trigger and normal biosensors, the action of the CE biosensor was 
analysed. In accordance to the CE scheme, the substrate (S) is enzymatically (E1) converted to the 
product (P1) followed by the electrochemical product (P1) conversion to another product (P2): 

1
E PS 1→                 (25) 

21 PP →                 (26) 

The mathematical model of a biosensor acting in CE mode can be derived from the model (4)-(13) 
of a biosensor acting in CEC mode by accepting an inactive enzyme E2, i.e. V2 = 0. If  iCE(t) is assumed 
to be the current of a biosensor acting in CE mode, it can be calculated by (14), while the steady-state 
current ICE by (15). This type of biosensors is widespread [24].  

The enzymatic amplification in a trigger mode 

To compare the amplified biosensor response with the response without amplification, we define 
the gain of the sensitivity as the ratio of the steady-state current of the trigger biosensor to the steady-
state current of a corresponding CE biosensor 
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where ICEC(V1, V2) and ICCE(V1, V2) are the steady-state currents of the trigger biosensors acting in CEC 
and CCE mode, respectively, at the maximal activity Vi of an enzyme Ei, i = 1, 2, ICE(V1) is the steady-
state current of the corresponding CE biosensor measured at the maximal enzymatic rate V1 of an 
enzyme E1, and ICE(V1) = ICEC(V1, 0). 

Digital Simulation 

Definite problems arise when solving analytically the non-linear partial differential equations with 
complex boundary conditions [20,21]. To obtain an approximate analytical solution, approximation 
and classification of each condition is needed. On the other hand, digital simulation can be applied 
almost in any case and usually neither simplification nor classification is necessary. Consequently, the 
mathematical models were solved numerically for both CEC and CCE systems. The system acting in 
CE model was treated as a particular case of the CEC system with V2 = 0.   

The finite difference technique [25] was applied to discretize the mathematical models. We 
introduced a uniform discrete grid in both x and t directions. Implicit linear finite difference schemes 
have been built as a result of the difference approximation of the models. The resulting systems of 
linear algebraic equations were solved efficiently because of the tridiagonality of the matrices of the 
systems [16,24]. 

An explicit scheme is easier to program, however, the implicit one is more efficient [21-23]. 
Although the processing speed of modern computers is high enough to ensure the practical use of 
explicit schemes, the use of the faster implicit scheme is well justified because of a large number of 
simulations which were carried out in the investigation discussed below.  

Due to the boundary conditions (9)-(13) and (22), a small step of the grid was required in x 
direction in order to have an accurate and stable result of computations [20,25]. Usually, an implicit 
computational scheme does not restrict time increment. However, the step size of the grid in time 
direction was restricted due to the non-linear reaction term in (4)-(6), (19)-(21), and boundary 
conditions. In order to be accurate, we employed a space step size of 10-3d. The steady-state time of 
membrane biosensors significantly depends on the thickness of the enzyme layer [24]. The steady-state 
time varies even in orders of magnitude. Because of this, we assume that the time step size τ is directly 
proportional to the membrane thickness d, τ = kd. To obtain an accurate biosensor current in the entire 
domain of simulation time t > 0, we employed k = 0.1 s/cm. However, for an accurate simulation of 
the steady-state current, only k = 10 s/cm was enough. The program was written in C language [26]. 

In digital simulation, the biosensor steady-state time was defined as the time when the absolute 
current slope value falls below a given small value normalised with the current value. In other words, 
the time needed to achieve a given dimensionless decay rate ε is used: 
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Consequently, the steady-state biosensor currents ICEC and ICCE were taken as the current at the 
biosensor response time TCCE and TCCE, respectively, ICEC ≈ iCEC(TCEC), ICCE ≈ iCCE(TCCE). In 
calculations, we used ε = 10-5. 

The mathematical models as well as the numerical solutions of the models were evaluated for 
different values of the maximal enzymatic rates V1 and V2, substrate concentration S0, and thickness d 
of the enzyme layer. The following values of the parameters were constant in the numerical simulation 
of all the experiments [15]: 
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Results and Discussion 

The compounds concentration in the enzyme membrane 

In Figs. 1 and 2, the profiles of substrate as well as product concentration in the enzyme layer are 
presented for biosensors acting in CEC and CCE modes. For calculations, the maximal enzymatic rate 
V1 = V2 = 100 nmol/(cm3s), substrate concentration S0 = 20 nmol/cm3 and membrane thickness d = 0.01 
cm were used. The profiles show the concentrations normalized to the Michaelis constant KM, 
assuming KM = K1 = K2 = 5S0, S0N = 0.2: 

M22NM1N1MNM0N0 ,,, KPPKPPKSSKSS ====          (31) 
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Figure 1. The profiles of the normalized concentrations of substrate (SN) and products (P1N, P2N) 
in the enzyme membrane of a CEC biosensor at the maximal enzymatic rate V1 = V2 = 100 

nmol/(cm3s), S0N = 0.2, d = 0.01 cm. The profiles show the concentrations at the steady-state 
time t = 123 s (1) and half time t = 12 s (2). 
 
The concentration profiles in Figs. 1, 2 are shown at the time when the steady-state as well as 50% 

of the steady-state response has been reached. Note that for both biosensors the concentration of the 
substrate at steady-state conditions is approximately the same. At the time when the half of the steady-
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state response is reached, no significant difference has been observed, too. This is true in the entire 
enzyme layer, x ∈ [0, d]. The substrate concentration is described by equations (4), (7), (9) and (10), 
which are valid in both modes of biosensor action. This explains the similarity of substrate 
concentration in both modes. 
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Figure 2. The profiles of the normalized concentrations in the enzyme membrane of a CCE 
biosensor at time t = 124 s (1) when the steady-state is reached and t = 12 s (2) at the half of it. 
Other parameters and notation are the same as in Fig. 1. 
 
The steady-state current is similar for both types of biosensors, ICEC ≈ iCEC(123) ≈ 6.23 µA/cm2, 

ICCE ≈ iCCE(124) ≈ 6.09 µA/cm2. The time of steady-state is also approximately the same in both these 
cases. At the steady-state conditions, i.e. tS ∂∂ = tP ∂∂ 1 = tP ∂∂ 2  = 0, because of the boundary 
conditions (9)-(12), the equality S(x, t) + P1(x, t) + P2(x, t) = S0 holds for all x ∈ [0, d] when t → ∞. 
This can be observed in both Figs. 1 and 2. 

The dependence of the steady-state current on the reactions rates 

The dependence of the steady-state current on the activity of both enzymes is shown in Figs. 3, 4 
for CEC and CCE modes. In calculations, V1 and V2 varied from 10-10 to 10-6 mol/(cm3s), the substrate 
concentration S0 was 20 nmol/cm3, S0N was 0.2 and membrane thickness d was 0.01 cm. One can see in 
Figs. 3 and 4 that ICEC(V1, V2) as well as ICCE(V1, V2) are monotonously increasing functions of both 
arguments: V1 and V2. 

In the case of CEC mode, an application of an active enzyme E2 (V2 > 0) stimulates an increase of 
the biosensor current. In the case of V2 = 0, the biosensor acting in CEC mode generates the current if 
only V1 > 0. However, in the case of CCE mode, the appearance of an active enzyme E2 (V2 > 0) is a 
critical factor for the biosensor current. ICCE = 0 if V2 = 0 even if the activity of an enzyme E1 is very 
high (V1 >> 0). Because of this, at low values of V2, the steady-state current ICCE increases very quickly 
with increase of V2. That effect is noted in Figs. 3 and 4 as the surface salience. The salience of the 
surface ICCE(V1, V2)  (Fig. 4) is more noticeable than the salience of the surface ICEC(V1, V2)  (Fig. 3). 
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Figure 3. The steady-state current versus the maximal enzymatic rates V1 and V2 of the biosensor 
acting in CEC mode, S0N = 0.2, d = 0.01 cm. 

 
Consequently, when V2 → 0 at any V1 > 0, in the CEC mode: ICCE(V1, V2) → 0, while in another 

mode (CEC) of triggering: ICEC(V1, V2) → ICEC(V1, 0) = ICE(V1). On the other hand, Figs. 3 and 4 show, 
that ICEC(V1, V2) ≈ ICCE(V1, V2) at a high maximal enzymatic rate V2. 
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Figure 4. The steady-state current versus V1 and V2 of the biosensor acting in CCE mode at the 
same conditions as in Fig. 3. 

The dependence of the amplification on the reactions rates 

To investigate the effect of the amplification, ICE(V1) has been calculated at the same conditions as 
above. Having ICEC(V1, V2), ICCE(V1, V2) and ICE(V1), we calculated the gains GCEC(V1, V2) and GCCE(V1, 
V2). Results of calculations are depicted in Figs. 5 and 6. One can see in both figures that the gain 
increases with increase of V2. The increase is especially notable at high values of V2. The variation of 
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V1 on the response gain is slight by only. The gain varies from 18.0 to 19.1 at V2 = 1 µmol/(cm3s) in 
both action modes: CEC and CCE.  

Comparing the gain in the CEC mode (Fig. 5) with the gain in the CCE mode (Fig. 6), one can 
notice a significant difference at low values of V2. The gain GCEC starts to increase from about unity, 
while GCCE at low values of V2 (V2 < ≈ 1 nmol/(cm3s)) is even less than unity. It means that in the case 
of low activity of enzyme E2, the steady-state current of a biosensor is acting in the CCE mode even 
less than the steady-state current of a biosensor acting in the CE mode at the same conditions.  
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Figure 5. The signal gain GCEC versus the maximal enzymatic rates V1 and V2 of the biosensor 
acting in the CEC mode at the conditions defined in Fig. 3. 
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Figure 6. The signal gain GCCE versus the maximal enzymatic rates V1 and V2 of the biosensor 
acting in the CCE mode at the conditions defined in Fig. 3. 
 
From the model of the CCE biosensor follows that P2(x, t) ≈ 0 when V2 → 0. Consequently, 

GCCE(V1, V2) → 0 when V2 → 0 at any V1 > 0, while in the CEC mode: GCEC(V1, V2) → 1 when V2 → 0. 
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On the other hand, Figs. 5 and 6 show, that GCEC(V1, V2) ≈ GCCE(V1, V2) at a high maximal enzymatic 
rate V2, e.g. at V2 = 1 µmol/(cm3s). 

The dependence of the amplification on the substrate concentration 

To investigate the dependence of the signal gain on the substrate concentration S0, the response of 
biosensors varying S0 from 10-10 to 10-4 mol/cm3 was simulated. Since the gain of trigger biosensors is 
significant only at a relatively high maximal enzymatic rate V2 of enzyme E2 (Figs. 5 and 6), we 
employed the following two values of V2: 10-6 and 10-7 mol/(cm3s). We chose also two different values 
of the maximal enzymatic rate V1 of enzyme E1: 10-6 and 10-8 mol/(cm3s). Since the influence of V1 on 
the signal gain is not so significant as that of V2, the chosen two values of V1 differ in two orders of 
magnitude while values of V2 differ only in one. The results of calculations at the enzyme membrane 
thickness d = 0.01 cm are depicted in Fig. 7.  
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Figure 7. The signal gains GCEC (1, 3, 5, 7) and GCCE (2, 4, 6, 8) vs. the substrate concentration 
S0N at the maximal enzymatic rates V1: 100 (1-4), 1 (5-8) and V2: 100 (1, 2, 5, 6), 10 (3, 4, 7, 8) 
nmol/(cm3s), d = 0.01 cm. 
 
As one can see in Fig. 7, the behaviour of the signal gain versus the substrate concentration is very 

similar for both modes of the biosensor action: CEC and CCE. Some noticeable difference between 
values of GCEC and GCCE is observed at high substrate concentrations only, S0N > 1. However, in a case 
of a higher value of V2, V2 = 10-6 mol/(cm3s), and a lower V1, V1 = 10-8 mol/(cm3s), no noticeable 
difference is observed between values of GCEC (curve 5 in Fig. 7) and GCCE (curve 6 in Fig. 7) in the 
entire domain of substrate concentration. A very similar effect can be noticed at the same value of V1, 
V1 = 10-6 mol/(cm3s), and a ten times higher value of V2, V2 = 10-7  mol/(cm3s), curves 7 and 8. 

Fig. 7 shows the significant importance of the maximal enzymatic rate V2 to both signal gains: GCEC 
and GCCE. Such an importance is especially perceptible at low and moderate concentrations of 
substrate, S0N < 1. At S0N < 0.1 and V2 = 1 µmol/(cm3s) due to the amplification, the steady-state 
current increases up to about 18 times (GCEC ≈ GCCE ≈ 18). However, at the same S0N and ten times 
lower value of V2, the gain is about three times less, GCEC ≈ GCCE ≈ 5.7. Consequently, at low substrate 
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concentrations, S0N < 0.1, and wide range of the maximal enzymatic rate V1, the tenfold reduce of V2 
reduces the signal gain about three times. This property is valid for both modes of triggering: CEC and 
CCE. 

When increasing the substrate concentration, the signal gain starts to decrease when S0N becomes 
greater than unity (Fig. 7), i.e. when S0 > K1 = K2. However, the decrease is perceptible in cases of a 
high enzymatic rate V1 only. At low activity of enzyme E1 when V1 = 1 nmol/(cm3s), the gain varies 
less than 30% for both values of V2: 10 and 100 nmol/(cm3s). Additional calculations showed, that at a 
less activity of enzyme E1 when V1 = 10-10 mol/(cm3s), the gain practically does not vary changing the 
substrate concentration in the domain. Because of a very stable amplification at a wide range of 
substrate concentration, the usage of biosensors acting in a trigger mode is especially reasonable at a 
relatively low maximal enzymatic activity (rate V1) of enzyme E1 and a high activity (rate V2) of 
enzyme E2. In the cases of relatively high maximal enzymatic activity V1 the signal amplification is 
stable only for low concentrations of the substrate. 

Additional calculations showed that the signal gain vanishes fast with the decrease of the enzymatic 
activity V2 of enzyme E2. For example, in the case of V2 = 1 nmol/(cm3s) the gain becomes less than 2 
even at a low substrate concentration, GCEC ≈ 1.91, GCCE ≈ 1.3 at S0N = 0.01. This effect is also 
observed in Figs. 5 and 6. Calculations approved the property that the tenfold reduce of V2 reduces the 
signal gain about three times is valid at a wide range, also of V2. 

A similar dependence of the signal gain on the substrate concentration was observed in the case of 
an amperometric enzyme electrode with immobilized laccase, in which a chemical amplification by 
cyclic substrate conversion takes place in a single enzyme membrane [15]. In the case of the biosensor 
with substrate cyclic conversion, the signal gain of 36 times was observed at the maximal enzymatic 
rate of 1 µmol/(cm3s) and the membrane thickness of 0.02 cm. For comparison of that gain with the 
gain achieved in the trigger mode, we calculate GCEC and GCCE for the enzyme membrane of thickness 
d = 0.02 cm. The result of the calculation showed the amplification, GCEC ≈ GCCE ≈ 34 at 
V1 = V2 = 1 µmol/cm3s, d = 0.02 cm, very similar to the amplification noticed in [15,16].  

The effect of the enzyme membrane thickness on the amplification 

The steady-state current of membrane biosensors significantly depends on the thickness of the 
enzyme layer [6,16,24,27]. The steady-state time varies even in orders of magnitude. To investigate 
the dependence of the signal gain on the membrane thickness d, the response of biosensors varying d 

from 0.0001 to 0.05 cm at different maximal enzymatic rate V1 of enzyme E1 and rate V2 of enzyme E2 
was simulated. 

Fig. 8 shows the signal gains GCEC and GCCE versus the membrane thickness d at the maximal 
enzymatic rate V1 = 1 µmol/(cm3s) and three values of the rate V2: 1, 10 and 100 nmol/(cm3s). 
Comparing the gain GCEC with GCCE, one can notice valuable differences in behaviour of the signal 
gains. In the case of a CEC biosensor action, no notable amplification is observed in cases of a thin 
enzyme membrane (d < 10-3 cm). A more distant increase of the thickness causes an increase of the 
gain GCEC. The thickness at which GCEC starts to increase, depends on the maximal enzymatic rate V2.  

The response of amperometric biosensors is known to be under mass-transport control if the 
diffusion modulus σ2 is greater than unity, otherwise the enzyme kinetics controls the response: 
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where Vmax is the maximal enzymatic rate and KM is the Michaelis constant. Since the diffusion 
coefficient DS and KM = K1 = K2 are constant in all our numerical experiments as defined in (30) and 
the behaviour of biosensors acting in a trigger mode is mainly determined by the enzymatic rate V2, 
(Figs. 5 and 6) the thickness dσ of the enzyme layer as a function of V2 at which σ2 = 1 has been 
introduced: 
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Figure 8. The signal gains GCEC (1-3) and GCCE (4-6) versus the membrane thickness d at three 
maximal enzymatic rates V2: 100 (1, 4), 10 (2, 5) and 1 (3, 6) nmol/(cm3s); V1 = 1 µmol/(cm3s),  
S0N = 0.2. 
 
Comparing the value dσ(10-6) ≈ 5.5×10-4 cm with the membrane thickness at which the gain GCEC 

starts to increase V2 = 10-6 mol/(cm3s), one can notice that the amplification becomes noticeable when 
the mass transport by diffusion starts to control the biosensor response. As one can see in Fig. 8, this 
effect is also valid for two other values of the maximal enzymatic rate V2: 10 and 100 nmol/(cm3s). 
However, this is valid in the case of the biosensor acting in the CEC mode only. In the case of CCE 
mode, the gain GCCE increases notably with increase of the thickness d in the entire domain. GCCE is 
approximately a linear increasing function of d. However, the real amplification takes place in cases of 
relatively thick membranes only, GCCE > 1 if only d > ≈2dσ. As it was noticed above (see Fig. 6), the 
steady-state current of the biosensor acting in the CCE mode may be even significantly less than the 
steady-state current of the corresponding biosensor acting in the CE mode at the same conditions. In a 
case of a relatively thick enzyme membrane, the gain GCCE equals approximately to GCEC, GCCE ≈ 
GCEC. 

Using a computer simulation, we calculated more precisely the thickness dG of the enzyme 
membrane at which GCCE = 1 for different enzymatic rates V2. Accepting V1 = 1 µmol/(cm3s) it was 
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found that dG ≈ 0.0009 at V2 = 100, dG ≈ 0.003 at V2 = 10, and dG ≈ 0.009 cm at V2 = 100 nmol/(cm3s). 
These values of the membrane thickness compare favourably with values of the thickness dmax at 
which the steady-state current as a function of the membrane thickness d gains the maximum [24]: 

max

MS
max 5055.1

1
V

KD
d =               (34) 

Consequently, for a low substrate concentration the thickness dG of the enzyme membrane at which 
GCEC = 1 can be precisely enough expressed as dG ≈ 1.5 dσ, where dσ was defined in (33). Additional 
calculations showed that this property is valid for wide ranges of both maximal enzymatic rates: V1 and 
V2, if only the normalized substrate concentration S0N is less than unity.  

The effect of the membrane thickness on the response time 

For comparing the time of a steady-state amplified biosensor response with the steady-state time of 
the response without amplification, we introduce a prolongation (L) of the response time as a ratio of 
the steady-state time of the trigger biosensor to the steady-state time of the corresponding CE 
biosensor: 
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where Tm(V1, V2) is the steady-state time of the triggering biosensor acting in mode m at the maximal 
activity Vi of the enzyme Ei, m = CEC, CCE, i = 1, 2, TCE(V1) is the steady-state time of the 
corresponding CE biosensor at the maximal enzymatic rate V1. Since the action of the CE biosensor 
can be simulated as an action of a CEC biosensor accepting V2 = 0, we assume TCE(V1) = TCEC(V1, 0). 

Fig. 9 shows the change of the response time versus the membrane thickness d at 
V1 = 1 µmol/(cm3s) and different values of V2. One can see in Fig. 9, in all the presented cases, the 
prolongation of the response time (LCEC as well as LCCE) is a non-monotonous function of the thickness 
d. A shoulder on curves is especially noticeable at high maximal enzymatic rates. A similar effect was 
noticed in the case of biosensors with substrate cyclic conversion [16] and during the oxidation of β-
nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes [28].  

In the cases of thin enzyme membranes (d < 0.001 cm), the prolongation of the response time is 
insignificant. However, increasing the membrane thickness, the response time prolongation increases 
up to 3.4 times in both modes: CEC and CCE. 

In the case of the CEC mode, the slight influence of the maximal enzymatic rate V2 on LCEC can be 
noticed in Fig. 9, while no notable influence of V2 on LCCE is observed in the case of CCE action mode. 
Additional calculations showed that the response time prolongation slightly depends on the substrate 
concentration S0 as well as the maximal activity V1 of the enzyme E1. 
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Figure 9. The increase of response time LCEC (1-3) and LCCE (4-6) versus the membrane thickness d. 
Parameters and notation are the same as in Fig. 8. 

 

Conclusions 

The mathematical model (4)-(13) of the biosensor action was used to investigate the dynamics of 
the response of biosensors utilizing a trigger enzymatic reaction followed by the electrochemical and 
enzymatic product cyclic conversion (CEC scheme (1)-(3)), while the model (19)-(21), (7)-(12), (22) 
was applied as a framework to investigate the behaviour of biosensors utilizing a trigger enzymatic 
reaction followed by the enzymatic and electrochemical  conversion of the product (CCE scheme (16)-
(18)). 

The steady-state current ICEC of a biosensor acting in the CEC mode and the steady state current 
ICCE of a biosensor acting in the CCE mode are monotonous by increasing functions of both maximal 
enzymatic rates: V1 and V2 of enzymes E1 and E2, respectively (Figs. 3 and 4). The corresponding gains 
in sensitivity, GCEC and GCCE, of trigger biosensors were determined mainly by the enzymatic rate V2 
(Figs. 5 and 6). The enzymatic activity V2 is a critical factor for the biosensor current in the case of 
CCE mode, ICCE → 0 as well as GCCE → 0 if V2 → 0. In the case of a CEC biosensor, the decrease of 
activity V2 causes the decrease in gain GCEC; however, GCEC stays greater than unity,  
GCEC → 1 if V2 → 0. 

Both signal gains, GCEC and GCCE, are most significant when the normalized concentration S0N of 
the substrate is less than unity (Fig. 7). However, a stable and noticeable amplification (up to dozens of 
times) at a wide range of substrate concentration is achieved in the case of a relatively low maximal 
enzymatic activity (rate V1) of enzyme E1 and high activity (rate V2) of enzyme E2. In the cases of 
relatively high maximal enzymatic activity V1, the signal amplification is stable only for low 
concentrations of the substrate. 

In both biosensors acting modes, an insignificant amplification of the signal is observed if the 
diffusion modulus σ2, calculated with the enzymatic rate V2, is less than unity, i.e. the kinetics of 
enzyme E2 controls the biosensor response. The gain GCCE becomes even significantly less than unity 
if σ2 << 1. For this type of biosensors, at a low substrate concentration, S0N < 1, the gain GCCE exceeds 
unity only when σ > ≈1.5. 
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In the cases where the significant amplification of the signal of a triggering biosensor is achieved, 
the response time is up to several times longer than the response time of the corresponding biosensor 
acting without triggering (Fig. 9).  

The models developed are permitted to build new trigger biosensors (in particular, by utilizing the 
CCE scheme). A highly sensitive hydrogen peroxide biosensor is under development and signal 
amplification has found the experimental confirmation.  
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