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On the uniform distribution of endomorphisms of s-
dimensional torus, II

Birutė KRYŽIENĖ (VGTU), Gintautas MISEVIČIUS (VU)
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Let � = �s (s � 2) be s-dimensional torus, i.e., the set of points

x = (x1, . . . , xs), 0 � xi < 1, i = 1, . . . , s.

An endomorphism of torus T : � → � is defined by

T x = xW (mod 1), x ∈ �,

where W is a nonsingular matrix with integer elements.
We continue our work [1] on the investigation of the conditions on the initial point

x and the matrix W for the sequence xW,xW 2, . . . ,xWk, . . . be uniformly distributed
on torus �. Therefore all the notations are the same as in [1]. Here we remind some of
them:

ξ = ξ(t) = (
ϕ1(t), . . . ,ϕs (t)

)
, a � t � b, (1)

is a parametric curve on �s , functions ϕi(t) have bounded derivatives of order s − 1,
W(t) is the Wronskian of these functions, W(t) �= 0 for t ∈ [a,b], the characteristic
polynomial of the matrix W satisfies certain conditions on its roots.

D. Moskvin [2] proved that the sequence

ξW, ξW 2, . . . , ξWk, . . . (2)

is uniformly distributed on torus �s for almost all t ∈ [a,b] in the sense of the
Lebesgue measure µ.

In [1] the condition ∣∣ϕ′′
i (t)

∣∣ � κ > 0, i = 1, . . . , s (3)

was used instead of |W(t)| �= 0, and a restricted condition was imposed on the roots
θ1, . . . , θs of the characteristic polynomial of the matrix W .

In this paper the condition (3) is replaced by another one.
The following theorem is proved.

THEOREM. Let W be nonsingular matrix with integer elements, θ1, θ2, . . . , θs be its
eigenvalues, |θ1| > |θ2| > · · · > |θs |, wi = (wi1, . . . ,wis ) be the corresponding eigen-
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vectors, and g(t) = w1ξ(t),

κ2 = (
ϕ′′

1 (t)
)2 + · · · + (

ϕ′′
s (t)

)2
> 0, t ∈ [a,b].

If for each t0 ∈ [a,b] such that g(t0) = 0, there exists k, 1 < k � s, g(k)(t0) �= 0, then
the sequence (2) is uniformly distributed on �s for almost all t ∈ [a,b] in the sense of
the Lebesgue measure.

Consider the linear combination

g(t) = w11ϕ1(t) + w12ϕ2(t) + · · · + w1sϕs (t).

The following auxilary result for this function is true.

LEMMA. If g(t0) = 0, t0 ∈ [a,b], and g(k)(t0) �= 0 for some k, 1 < k � s, then there
exist two sufficiently small constants λ, λ∗ such that∣∣g(t)

∣∣ � λ|t − t0|s−1 for |t − t0| � λ∗.

Proof of Lemma. According to the Taylor formula in the neighbourhood of t = t0,

g(t) =
s−1∑
k=1

g(k)(t0)

k! (t − t0)
k + g(s)(t∗)

s! (t − t0)
s , t∗ ∈ [a,b]. (4)

Let g′(t0) �= 0. Then

g(t) = (t − t0)
(
g′(t0) + (t − t0)B1(t)

)
with a function B1(t) bounded for t ∈ [a,b], maxt |B1(t)| = B1. Therefore the inequal-
ity

∣∣g(t)
∣∣ � |g′(t0)|

2B1
|t − t0|

is true in the interval |t − t0| � |g′(t0)|
2B1

, and the statement of Lemma is true.
Now let g′(t0) = 0, but g′′(t0) �= 0. In the same manner we obtain from (4) that

g(t) = (t − t0)
2(g′′(t0) + (t − t0)B2(t)

)
with a function B2(t) bounded for t ∈ [a,b], maxt |B2(t)| = B2, and the inequality

∣∣g(t)
∣∣ � |g′′(t0)|

2B2
|t − t0|2

is true in the interval |t − t0| � |g′′(t0)|
2B2

.

After a final number of similar steps, since g(k)(t0) �= 0 for some k, we get the proof
of Lemma.

So, every zero of the function g(t) is isolated and the number of zeroes is finite.
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Proof of Theorem. The eigenvectors wi , i = 1, . . . , s, corresponding to different
eigenvalues form the complete basis in the space Rs . So, any vector can be written as
follows:

ξWm =
s∑

i=1

(
s∑

j=1

wijϕj (t)

)
θm
i wi =

s∑
i=1

Li(t)θ
m
i wi . (5)

The function L1(t) as well as L′
1(t) have finite number of isolated zeroes. Let these

zeroes be ti , i = 1,2, . . . , r . According to Lemma∣∣L1(t)
∣∣ � λi |t − ti |s−1, i = 1, . . . , r.

For a sufficiently small δ, δ > 0, we take nonintersecting intervals of length 2δ:

�i = (ti − δ, ti + δ), i = 1, . . . , r.

For every t , t /∈ ⋃
�i , i.e., t ∈ [a,b] \ (

⋃
�i) = A, analogously to [2] the inequality∣∣L1(t)

∣∣ � dδs−1, d = min
i

λi (6)

can be proved.
The set A is a union of intervals, and let [a1, b1] be one of them. Consider the

integral

Im =
∫ b1

a1

g
(
ξ(t)Wm

)
dt, g(x) ∈ Eα

s (c),

where Eα
s (c) is the Korobov class of functions [3]. We obtain from (5) and (6) that

ξWm = L1(t)θ
m
1 w1 + L2(t)θ

m
2 w2 + · · ·

= (
L1(t)θ

m
1 w11 + L2(t)θ

m
2 w21 + · · · ,

L1(t)θ
m
1 w12 + L2(t)θ

m
2 w22 + · · · , . . . )

= (
L1(t)w11

(
θm

1 + O
(
δ−sθm

2

))
,L1(t)w12

(
θm

1 + O
(
δ−sθm

2

))
, . . .

)
= (

w11L1(t),w12L2(t), . . .
)(

θm
1 + O

(
δ−sθm

2

))
(7)

Let t = t0 be such that L′
1(t0) = 0. Then the integral Im can be divided into three

parts and each of them is evaluated separately:

Im =
(∫ t0−δ

a1

+
∫ t0+δ

t0−δ

+
∫ b1

t0+δ

)
g
(
ξ(t)Wm

)
dt = Im1 + Im2 + Im3.

It is evident that the middle term Im2 = O(δ). Both Im1 and Im3 have the same estima-
tion. Let us take Im1:

Im1 =
∫ b2

a2

g
(
ξ(t)Wm

)
dt, where a2 = a1, b2 = t0 − δ.
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According to (7) we can write:

Im1 =
∫ b2

a2

g
(
w11θ

m
1 L1(t)

(
1 + O

(
δ−s	

))
, . . .

)
dt, where 	 =

∣∣∣∣θ2

θ1

∣∣∣∣m.

After the change of variables u = θm
1 L1(t) we obtain

Im1 = 1
θm

1

∫ D′
m

Dm

g
(
w11u

(
1 + O

(
	δ−s

))
, . . .

)

(u)du,

with Dm = θm
1 L1(a2), D′

m = θm
1 L1(b2), 
(u) = d

du
L−1

1 ( u
θm

1
).

Suppose Dm and D′
m are integers. Otherwise the estimation of Im1 differs only in

O(θm
1 δs−1). Thus by the Abel transformation and analogously to [4] we get

Im1 = 1

θm
1

D′
m−1∑

k=Dm

∫ k+1

k

g(. . .)
(u)du = 1

θm
1

D′
m−1∑

k=Dm

∫ 1

0
g(. . .)
(u + k)du

= 1

θm
1

∫ 1

0

D′
m−1∑

k=Dm

(

(u + k) − 
(u + k + 1)

) k∑
l=Dm

g(. . .)du

= 1

θm
1

∫ 1

0

D′
m−1∑

k=Dm

(

(u + k) − 
(u + k + 1)

)
(k − Dm + 1)

×
{∫

�s

g(x)dx + O
(

1
k − Dm + 1

+ (k − Dm + 1)
(
	δ−s

)α−1
1+ε

)}

with

α = 1 + 2(1 + ε) ln |θ1|
ln |θ1| − ln |θ2| , ε > 0.

From (6) we get the estimate∣∣
(u + k) − 
(u + k + 1)
∣∣ = O

(
θ−m

1 δ−3s
)

and then we have the equality

Im1 = (b2 − a2)

∫
�s

g(x)dx + O
(

δ + 1

θm
1 δ3s

+ θm
1

δ3s

(∣∣∣∣θm
2

θm
1

∣∣∣∣1

δ

)α−1
1+ε

)
.

The remaining part of the proof of Theorem is the same as in [4] (see also [1]).
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REZIUMĖ

B. Kryžienė, G. Misevičius. s-mačio toro endomorfizm ↪u tolygus pasiskirstymas, II

Darbe apibendrinama D. Moskvino teorema apie s-mačio toro �s endomorfizm ↪u (mod 1) tolyg ↪u pa-
siskistym ↪a. Vietoje apribojimo – funkcij ↪u ϕ1(t), . . . , ϕs(t) vronskijanas W(t) �= 0, t ∈ [a, b], naudojama

kita s ↪alyga (ϕ′′
1 (t))2 + . . .+ (ϕ′′

s (t))2 > 0, t ∈ [a, b].


