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Abstract. A technique for the evaluation of geometrical synchronization between data signals 
based on optimal attractor reconstruction is demonstrated and validated using coupled chaotic 
logistic maps. The measure is then applied to estimate the degree of synchronization between 
human heart rate variability and Earth’s local geomagnetic activity. 
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1. Introduction 

Evaluation of synchronization between data signals is a broadly discussed concept among 
researchers since it can be applied in the analysis of a wide range of phenomena. Several examples 
include analysis of biomedical signals in health sciences and biological systems, investigation of 
coupled circuits or laser systems in electronics and optics [1-3]. 

In [4, 5] we proposed a technique capable of estimating the degree of geometrical 
synchronization via near-optimal chaotic attractor embedding. In this paper, the measure is 
demonstrated and validated using the example of two coupled chaotic logistic maps. The 
technique is then applied to assess the impact of Earth’s local magnetic field on individual’s 
biomedical parameters. 

2. Estimation of geometrical synchronization between two time series 

Geometrical similarity between two time series can be estimated via the algorithms developed 
and validated in [4, 5]. A brief overview of those algorithms is presented below. The feasibility of 
the discussed approach is demonstrated by considering two logistic maps with diffusive coupling: 𝑥ାଵ = 𝑎𝑥(1 − 𝑥)(1 − 𝜀) + 𝜀𝑦,𝑦ାଵ = 𝑏𝑦(1 − 𝑦)(1 − 𝜀) + 𝜀𝑥, (1)

where 𝑎 = 𝑏 = 4 (such parameter values result in chaotic behavior); 0   𝜀  1 is the coupling 
parameter (low values of 𝜀 result in low synchronization between maps and vice versa). Initial 
conditions are set to 𝑥 = 0.3 and 𝑦 = 0.6.  

Two resulting trajectories 𝑥 = (𝑥ଵ, … , 𝑥ே), 𝑦 = (𝑦ଵ, … , 𝑦ே) of size 𝑁 =  6000 are sampled 
using Eq. (1) after transient processes die down. Fig. 1(a) illustrates the evolution of 𝑥 and 𝑦 and 
the difference 𝑥 − 𝑦 when two logistic maps are uncoupled (𝜀 = 0). Fig. 1(b) depicts 𝑥, 𝑦, and 𝑥 − 𝑦 when 𝜀 = 0.13 and Fig. 1(c) corresponds to 𝜀 = 0.16. It can be seen that the similarity 
between trajectories 𝑥  and 𝑦  increases as the coupling parameter 𝜀  increases; however, the 
difference 𝑥 − 𝑦 remains chaotic even at 𝜀 = 0.16 (see Fig. 1).  
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Fig. 1. The trajectories of coupled logistic maps (see Eq. (1)) for different values of the coupling  
parameter 𝜀. Parts a), b) and c) illustrate 𝑥, 𝑦 and 𝑥 − 𝑦 at 𝜀 = 0, 𝜀 = 0.13 and 𝜀 = 0.16 respectively 

In order to evaluate geometrical synchronization between 𝑥 and 𝑦, both data signals are split 
into 𝑚 = 20 equal-sized segments of size 𝑛 = 300. The resulting segments 𝑥(௦), 𝑦(௦), 𝑖 = 1, … , 𝑚 
are then mapped onto integers 𝜏∗௫, 𝜏∗௬, 𝑖 = 1, … , 𝑚 denoted as optimal time lags using the steps 
below: 

1) Let 𝑧 = (𝑧ଵ, … , 𝑧) be a data signal of size 𝑛 (corresponding to one of the segments) (see 
Fig. 2(a)). 

2) Embed data signal 𝑧 into a 2D delay coordinate space using parameter 𝜏 ∈ {1, … , 𝑛 − 1} as 
follows: 𝑧 → (𝑧, 𝑧ାఛ),     𝑖 = 1, … , 𝑛 − 𝜏. (2)

The obtained set of the embedded points is called an attractor (see Fig. 2(b)).  
3) Compute the area of reconstructed attractor using the following formula for each  𝜏 = 1, … ,200: 

𝑆ఛ = 1√2(𝑛 − 𝜏)  ට𝑧ଶ + 𝑧ାఛଶ .ିఛୀଵ  (3)

4) Determine the optimal time lag 𝜏∗ resulting in the largest area of the attractor (see Fig. 2(c)): 𝜏∗ = arg maxଵஸఛஸଶ 𝑆ఛ .  (4)



A TECHNIQUE FOR ESTIMATING GEOMETRICAL SYNCHRONIZATION OF BIOMEDICAL SIGNALS.  
INGA TIMOFEJEVA, ROLLIN MCCRATY, MIKE ATKINSON, ALFONSAS VAINORAS, MINVYDAS RAGULSKIS 

86 VIBROENGINEERING PROCEDIA. SEPTEMBER 2019, VOLUME 26  

It was shown in [4, 5] that the optimal time lag 𝜏∗ can be used as a scalar feature representing 
the geometrical properties of the analyzed data signal.  

 
a) 

 
b) 

 
c) 

Fig. 2. Part a) depicts one segment of data signal 𝑥 displayed in Fig. 1(b). Parts b) and c) illustrate the 
corresponding reconstructed attractors at 𝜏 = 4 and 𝜏∗ = 63 (optimal time lag), respectively 

Geometrical synchronization between data signals 𝑥 and 𝑦 is then estimated as the Pearson 
correlation coefficient between optimal time lag vectors 𝜏 ∗௫ and 𝜏 ∗௬. Optimal time lags for 𝑥 and 𝑦 are represented in Fig. 3 for three values of coupling parameter 𝜀 . It can be seen that the 
correlation between sequences of optimal time lags is 𝜌 = 0.1759, 𝜌 = 0.5714 and 𝜌 = –0.9934 
at 𝜀 = 0, 𝜀 = 0.13 and 𝜀 = 0.16 respectively. Obtained results show that described geometrical 
synchronization estimation algorithm based on the optimal attractor embedding is able to detect 
the similarity between two chaotic data signals in an effective and efficient way. 

 
a) 

 
b) 
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Fig. 3. Optimal time lag vectors 𝜏 ∗௫ (solid line) and 𝜏 ∗௬ (dashed line) corresponding  
to 𝜀 = 0, 𝜀 = 0.13 and 𝜀 = 0.16 (parts a), b), c) respectively) 

3. Estimation of synchronization between human heart rate variability and Earth’s local 
magnetic field 

3.1. Overview of the data 

In order to assess the impact of magnetic field on human’s biomedical parameters the 
following experiment was conducted: 

1) RR interval data was gathered from a group of 20 Lithuanian students that continuously 
wore heart rate monitors for a period of 11 days (2015.02.28 - 2015.03.10). Consequently, a total 
of 20 RR interval data series (𝑋(), 𝑖 = 1, … ,20) were collected from all 20 individuals. 
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2) During the same eleven-day period of time the intensity of local magnetic field was 
measured using the magnetometer located in Lithuania. Spectral power of the local magnetic 

field (𝑀 ) was then computed using obtained intensity values by summing the spectrogram 
(evaluated for one-second intervals) over the physically relevant frequency range [0.2; 3.5] Hz [4]. 

3.2. Application of the synchronization estimation algorithm 

The geometrical synchronization measure presented in the previous section was applied to the 
experiment data to estimate the degree of synchronization between RR interval time series and the 
spectral power of local magnetic field. Note, that parameter 𝑛 , denoting the length of data 
segments for the attractor embedding was selected to correspond to 5 minutes of data since it is 
the standard time span for the analysis of human heart rate variability (HRV). Fig. 4 displays mean 
synchronization values between all participants’ HRV and magnetic field power computed for 
each day of the experiment. Obtained synchronization values can be further analyzed with regards 
to magnetic field activity at a given date in order to investigate the impact of the geomagnetic field 
on human heart activity.  

 
Fig. 4. Mean synchronization between RR data series and magnetic  

field power for each day of the experiment 

4. Conclusions 

A technique for the estimation of geometrical synchronization between two data series using 
optimal attractor embedding is validated in this paper via the example of two coupled chaotic 
logistic maps. Presented technique is then applied to the real data in order to evaluate the degree 
of synchronization between human HRV and Earth’s geomagnetic activity. 
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