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REVIEW

Anthocyanins: From plant pigments to health benefits at mitochondrial level
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ABSTRACT
Anthocyanins are water-soluble pigments providing certain color for various plant parts, especially
in edible berries. Earlier these compounds were only known as natural food colorants, the stability
of which depended on pH, light, storage temperature and chemical structure. However, due to
the increase of the in vitro, in vivo experimental data, as well as of the epidemiological studies,
today anthocyanins and their metabolites are also regarded as potential pharmaceutical com-
pounds providing various beneficial health effects on either human or animal cardiovascular
system, brain, liver, pancreas and kidney. Many of these effects are shown to be related to the
free-radical scavenging and antioxidant properties of anthocyanins, or to their ability to modulate
the intracellular antioxidant systems. However, it is generally overlooked that instead of acting
exclusively as antioxidants certain anthocyanins affect the activity of mitochondria that are the
main source of energy in cells. Therefore, the aim of the present review is to summarize the major
knowledge about the chemistry and regulation of biosynthesis of anthocyanins in plants, to over-
view the facts on bioavailability, and to discuss the most recent experimental findings related to
the beneficial health effects emphasizing mitochondria.
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Introduction

Anthocyanins are water-soluble pigments that provide blue,
purple and red color for various parts of plants, especially in
fruits and blooms, and are also involved in plant adaptability
to environmental factors. They belong to a large subgroup
of polyphenols, known as flavonoids. Chemically, anthocya-
nins are glycosides whose aglycones are polyhydroxy or pol-
ymethoxy derivatives of 2-phenylbenzopyrylium salts
(Figure 1). Over the last few years these natural compounds
have attracted increasing attention due to their potential
health benefits. It has been proposed that the consumption
of dietary plants and fruits or products rich in anthocyanins
can provide potent protective effects on either human or
animal brain, liver and kidney, and, moreover, can be of
value for the prevention of cardiovascular diseases, obesity
control or cancer therapy (Kelly et al. 2017; de Pascual-
Teresa 2014; Li et al. 2016; Cassidy 2018; Raj et al. 2017;
Smeriglio et al. 2016; Dias et al. 2017; McNamara et al.
2018; Pounis et al. 2018; Giampieri et al. 2018; Blando et al.
2018). Many of these therapeutic effects have been attributed
to the radical scavenging and antioxidant activities of antho-
cyanins. However, recent evidence has suggested that these
compounds can also exert an intracellular antioxidant action
through the modulation of cellular antioxidant defense sys-
tems (Sandoval-Acu~na, Ferreira, and Speisky 2014). In

addition to the mentioned antioxidant mechanisms of
action, there is an increasing interest in the potential of cer-
tain anthocyanins and their metabolites to sustain the struc-
tural integrity and functional activity of mitochondria that
are the main source of energy in cells (Sandoval-Acu~na,
Ferreira, and Speisky 2014; Teixeira et al. 2018a; Liobikas
et al. 2016). Moreover, mitochondria are also regarded as
the convergence center of multiple extra- and intracellular
signaling pathways leading to cell death or survival. Thus,
the development of mitochondria-targeted polyphenolic-
based compounds intended to prevent mitochondrial
damage and sustain their functions could be regarded as a
promising pharmacological strategy. Therefore, the present
review will summarize the principal knowledge about the
chemistry, biosynthesis and bioavailability of anthocyanins,
and discuss the most recent experimental findings related to
the health benefits emphasizing mitochondria.

Natural sources of anthocyanins

Anthocyanins occur in all plant tissues, however, an exten-
sive amount of anthocyanins is produced in fruits and vege-
tables. Typical consumption of anthocyanins is 9mg/day on
average in the United States, and the main sources of antho-
cyanins include berries (39%), wine (18%), banana (12%),
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vegetables (9%), fruits (9%) and other food sources (Kim,
Vance, and Chun 2016). In Europe the usual consumption
of anthocyanins is higher corresponding to 19mg/day, and
even constituting 28mg/day in some countries
(Vogiatzoglou et al. 2015), whereas the main sources of
anthocyanins are similar: berries (43%), wine (22%), pome
fruits (19%) and other food sources. The largest proportion
of anthocyanins in human diet comes from berries of
Vaccinium, Ribes, Prunus, Sambucus, which contain a par-
ticularly high amount of anthocyanins (Table 1).

However, the amount of anthocyanins in berries varies
from 10mg/100 g fresh weight (FW) in wild strawberry to
772.4mg/100 g FW in bilberry (Table 1). Thus, the amount
and composition of anthocyanins may vary depending on
the cultivar or the ripening stage, and the synthesis in ber-
ries may be affected by temperature, UV-B or light wave-
length (Wang et al. 2016; Mattila et al. 2016; Bendokas et al.
2017; Jaakola et al. 2017; Pervaiz et al. 2017; Silva et al.
2017; Stanys et al. 2019).

Modulation of anthocyanin synthesis in plants

Anthocyanins are produced in a specific branch of the fla-
vonoid pathway, and their synthesis, which is regulated at

different levels, starts from phenylalanine conversion to cin-
namic acid (Figure 2) which through a series of reactions
catalyzed by cinnamate 4-hydroxylase (C4H) and 4-cou-
maroyl CoA ligase (4CL) is transformed into the main
anthocyanin precursor 4-coumaroyl CoA. Then, a molecule
of 4-coumaroyl CoA and three molecules of malonyl CoA
are condensed into chalcones by chalcone synthase (CHS).
Subsequently, a cascade of enzymatic reactions results in the
production of principal anthocyanins (Rahim, Busatto, and
Trainotti 2014; Rahim et al. 2018; Zhang et al. 2014).

The expression of anthocyanin-specific genes is regulated
by the conserved MYB-bHLH-WD40 (MBW) complex of
transcription factors, the regulatory proteins that modulate
the expression of specific groups of genes. MBW complex is
composed of the transcription factors characterized by the
R2R3-type MYB domain (MYB), basic helix-loop-helix
(bHLH), and WD40-Repeat protein (WD40) subunits.
However, in different plant species the composition of this
complex varies. Various MBW complexes differentially regu-
lating the synthesis of anthocyanins in different plant tissues
are assembled when cytosolic, constant member of the com-
plex WD40 protein associates with different members of
MYB and bHLH families. MYB is the main family of the
transcription factors that are implicated in inhibition or

Figure 1. Chemical structure of anthocyanidin 3-O-glycosides. Dp, delphinidin; Cy, cyanidin; Pg, pelargonidin; Mv, malvidin; Pn, peonidin; Pt, petunidin; Saccharide,
glucose, rutinose (rhamnosyl glucose), arabinose, galactose, sambubiose (xylosyl glucose) or xylose.
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activation of gene transcription in plant kingdom (He et al.
2018; Henry-Kirk et al. 2018; James et al. 2017; Liu et al.
2017; Sun et al. 2018). It is worth mentioning that proteins
of MYB family are the most plentiful and the most variable
members of the MBW complex participating in the regula-
tion of secondary metabolism, signal transduction, develop-
ment, and other pathways (Starkevi�c et al. 2015).
Regulation of anthocyanin biosynthesis genes is different in
monocotyledonous and dicotyledonous plants. Thus, MBW
complex regulates anthocyanin biosynthesis genes as one
unit in monocotyledons. In dicotyledons, for example A.
thaliana, early biosynthesis genes can be activated only by
MYB transcription factors, and late biosynthesis genes are
activated by MBW complex (Rahim et al. 2018) (see
Figure 2).

Anthocyanin synthesis and accumulation are also con-
trolled by epigenetic changes in plants, by regulation of gene
expression, and by post-translational modifications of pro-
teins modulating the transcription factor activity (Maier
et al. 2013; Guerra et al. 2015; Wang et al. 2015;
Zhang et al. 2016; Zhou et al. 2017; Gao et al. 2018; Nabavi
et al. 2018).

Bioavailability for human health

The unique pharmacokinetics of anthocyanins

Upon ingestion of anthocyanin-rich food or pure molecules,
a few minutes later anthocyanins appear in plasma in tiny
amounts (<100–200 nM) (Pojer et al. 2013; Celli, Ghanem,
and Brooks 2017). This absorption pattern distinguishes
anthocyanins from other flavonoids, which later appear in
plasma as glucuronides or sulfate esters. Indeed, anthocya-
nins are not substrates of either cytosolic b-glycosidase
(Berrin et al. 2002) or membrane-bound lactase-phlorizin
hydrolase (N�emeth et al. 2003), the essential enzymatic step
prior to second-phase metabolism.

Anthocyanins are structurally complex hydrophilic mole-
cules (see Figure 1). Hence, they cannot passively diffuse
across biological membranes at a rate observed in vivo (Kell
2015). Rather, one or more membrane transporters
expressed on the digestive epithelium must be in place to
control their net flux across the digestive epithelium towards
the blood, as to be discussed later on. In addition, a quick

appearance of anthocyanins in blood may result from their
gastric absorption (Passamonti 2019).

The “fitness” of anthocyanins for the stomach is mani-
fested at all levels of the stomach. In the acidic gastric juice,
they occur as flavylium cations, i.e., the most stable species.
The negatively charged mucus layer favors charge interac-
tions with flavylium cations and their electrostatic guidance
towards the epithelial surface (Passamonti 2019). The latter
is made by a single layer of cells resting on a highly vascu-
larized submucosa. Some cell types (i.e., surface mucous cells
and acid-secreting parietal cells) express bilitranslocase, the
anthocyanin-specific membrane transporter (Zuperl et al.
2011), and a limited number of other membrane transport-
ers. The process of absorption continues in the intestine
(Williamson, Kay, and Crozier 2018).

The time of maximal plasma concentrations has been cal-
culated in the range of 0.5–2 hours (Tmax) by applying a
physiologically-based, multi-compartmental pharmacokinetic
(PBMK) model to data from manifold experiments (Celli,
Ghanem, and Brooks 2017). The same pattern was again
observed with pure Cy3glc administered orally to human
volunteers and followed by its 13C labeling (de Ferrars et al.
2014). After Tmax, anthocyanins disappear from plasma as
fast as they appear. Noteworthy, catabolites of parent antho-
cyanins such as protocatechuic acid and vanillic acid were
detected as early as the parent compounds (Mueller et al.
2017; de Ferrars et al. 2014), which suggests that peak
plasma concentrations (Cmax) might be underestimated as a
consequence of delayed timing of blood sampling. Indeed,
when pure Cy3glc was intravenously administered in the rat
(Fornasaro et al. 2016), so to bypass the gastro-intestinal
absorption step, it disappeared very rapidly: in 15 s after the
injection its plasma concentration was only 52% of the
injected dose, and a number of methylated metabolites were
co-detected, indicating a rapid distribution into other organs
and simultaneous efflux as second-phase metabolites. The
pharmacokinetic parameters enabled to estimate that 0.2%
of Cy3glc was present in plasma, while 99.8% was distrib-
uted beyond plasma. Thus, under these conditions it is
probably impossible to accurately estimate the bioavailability
in vivo, because the parent compound and/or its catabolites
may be sequestered in tissues (Fang 2014; Lila et al. 2016).
A recent human study showed that retention of anthocya-
nins prior to a “wash-out” period influenced both their

Table 1. Individual amount of anthocyanins (mg 100 g�1 of fresh weight [FW]) in berries.

Source Maximum anthocyanin amount mg/100 g FW Dominant anthocyanins Reference

Bilberry 772.4 Dp3gal, Dp3glc, Dp3ara, Mv3glc, Cy3gal, Cy3glc, Cy3ara (Veberic et al. 2015)
Blackberry 130.2 Cy3glc, Cy3rut, Cy3xyl (Ivanovic et al. 2014)
Blackcurrant 478.6 Dp3rut, Cy3rut, Dp3glc, Cy3glc (�Sik�snianas et al. 2013)
Chokeberry 401.5 Cy3gal, Cy3glc, Cy3ara, Cy3xyl (Veberic et al. 2015)
Elderberry 580.0 Cy3sam, Cy3glc (Mikulic-Petkovsek et al. 2014)
Golden currant 615.5 Cy3rut, Cy3glc, Pn3rut (�Sik�snianas et al. 2013)
Gooseberry 379.2 Cy3rut, Cy3glc, Dp3glc, Dp3rut (�Sik�snianas et al. 2013)
Redcurrant 66.7 Cy3glc, Cy3rut, Cy3sam (�Sik�snianas et al. 2013)
Sour cherry 147.0 Cy3rut (Bendokas et al. 2017)
Sweet cherry 244.0 Cy3rut, Pn3rut (Blackhall et al. 2018)
Wild strawberry 10.0 Pg3glc, Cy3glc (Rugienius et al. 2016)

Cy, cyanidin; Dp, delphinidin; Mv, malvidin; Pg, pelargonidin; Pn, peonidin; ara, arabinoside; gal, galactoside; glc, glucoside; rut, rutinoside; sam, sambubioside;
xyl, xyloside.
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Figure 2. Scheme of anthocyanin biosynthesis via phenylpropanoid pathway. Amino acid phenylalanine is converted into the main anthocyanin precursor 4-cou-
maroyl CoA by phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H) and 4-coumaroyl CoA ligase (4CL) catalyzed reactions. Then three molecules of
malonyl CoA and a molecule of 4-coumaroyl CoA are condensed into naringenin chalcone by chalcone synthase (CHS). Subsequently, the series of reactions result-
ing in certain anthocyanidins are catalyzed by chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3-hydroxylase (F30H), flavonoid 3050-hydroxylase
(F3050H), dihydroflavonol 4-reductase (DFR), and leucoanthocyanidin dioxygenase (LDOX) also known as anthocyanidin synthase (ANS). Finally, pelargonidin
(Pe3glc), cyanidin (Cy3glc) and delphinidin 3-O-glucosides (Dp3glc) are produced by UDP-flavonoid glucosyl transferase (UFGT), whereas peonidin (Pn3glc), petuni-
din (Pt3glc) and malvidin 3-O-glucosides (Mv3glc) are produced by methyltransferase (MT) from their appropriate precursors. The regulation of anthocyanin biosyn-
thesis is performed by a so called MBW complex, a complex of transcription factors: MYB (R2R3-MYB), bHLH (basic helix-loop-helix) and WD40 repeats. All those
genes itemized above are regulated by the whole MBW complex in monocotyledons. However, in dicotyledons, the early biosynthesis genes like CHS, CHI and F3H
are regulated solely by MYB, whereas the late genes (F30H, DFR, LDOX (ANS) and UFGT) are regulated by MBW complex (detailed in Rahim et al. 2018).
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absorption and elimination, thus contributing to individual
variability of bioavailability parameters (Kalt et al. 2017).

An extensive target tissue of anthocyanins is the vascular
endothelium, where they are transported by bilitranslocase
(Maestro et al. 2010; Ziberna et al. 2012, 2013a, 2013b), and
can activate endothelial nitric oxide synthase signaling as
well as reduce oxidative stress (Cutler, Petersen, and
Anandh Babu 2017). As a result, anthocyanins act as vasodi-
lating agents (Fairlie-Jones et al. 2017). However, they can
also be transported into cardiomyocytes and protect them
against oxidative stress (Liobikas et al. 2016; Petroni
et al. 2017).

Perhaps the most striking demonstration of the capacity
of anthocyanins to distribute in tissues and organs is their
detection in the brain of living animals that received antho-
cyanins via diverse routes of administration (Passamonti
et al. 2005; Chen et al. 2015; Kalt et al. 2008; Janle et al.
2010; Fornasaro et al. 2016). Both the blood–brain barrier
and neurons are selectively permeable to these molecules
which attenuate oxidative stress, modulate cell signaling and
ultimately counter neurodegeneration (Pacheco et al. 2018;
Ali et al. 2018; Khan et al. 2019).

The urinary elimination of anthocyanins is also extremely
rapid. In humans, orally administered Cy3glc appeared in
the urine, together with a number of metabolites and catab-
olites, as early as in blood, i.e., 30min after ingestion (de
Ferrars et al. 2014). In rats, Cy3glc and other methylated
metabolites were co-detected already 15–20 s after an intra-
venous injection (Vanzo et al. 2011; Fornasaro et al. 2016).
Indeed, very quickly Cy3glc was already found in the kidney
with different degrees of conversion to Pn3glc and other
methylated species (Vanzo et al. 2011; Fornasaro et al.
2016). Anthocyanins are also excreted in the bile (Talavera
et al. 2003; Vanzo et al. 2011), and may establish entero-
hepatic circulation (Hashimoto, Han, and Fukushima 2017).
Both in the urine and in the bile the concentration of
Cy3glc and Pn3glc are 30–90 times higher than in the renal
and hepatic parenchyma which shows that anthocyanins are
transported against their concentration gradient by the pri-
mary active transporters (Vanzo et al. 2011).

Membrane transporters as molecular factors of
anthocyanin bioavailability

The activity of specific membrane transporters is a require-
ment for the diffusion of anthocyanins across biological
membranes and cellular barriers. Indeed, these molecules
are stereo-chemically complex, with an absolutely hydro-
philic moiety, i.e., the glycosyl adduct. Even for lipophilic or
amphipathic molecules biological membranes constitute
more a trap than a pathway towards new compartments
(Kell 2015). So far, research on anthocyanin-specific trans-
porters has been very limited. Bilitranslocase was the first
described anthocyanin-specific transport mechanism. Drug
screening enabled to build up a QSAR model that was based
on the property of the transporter to establish a network of
hydrogen bonds with transport substrates in the planar con-
figuration afforded by the quinoidal tautomer (Zuperl et al.

2011). The role of the bilitranslocase-mediated membrane
transport of anthocyanins has been demonstrated in vascular
endothelial cells (Maestro et al. 2010), in isolated porcine
coronary artery rings (Ziberna et al. 2013b), and in isolated
rat hearts (Ziberna et al. 2013a). As mentioned above, bili-
translocase is expressed in stomach epithelium, and on the
brush border of small intestine as well (Passamonti
et al. 2009).

Other studies tested the effect of anthocyanins on glucose
uptake in Caco-2 cells, and outlined the inhibition under
different conditions that allowed to speculate that GLUT2
may be involved in the intestinal absorption of anthocyanins
(Faria et al. 2009). It has been shown that Cy3glc was taken
up by both sodium-dependent (SGLT1) and sodium-inde-
pendent (GLUT2) glucose transporters in Caco-2 cells (Zou
et al. 2014), however, the results were in disagreement with
the previous ones obtained with jejunum patches mounted
on Ussing chamber (Walton et al. 2006). Hence, a different
uptake system in the intestine was claimed (Walton et al.
2006). Nevertheless, in both models (Caco-2 cells and
jejunum patches) uptake rates were slow and did not match
the observed in vivo pharmacokinetic features (de Ferrars
et al. 2014), which revealed a super-fast absorption of
Cy3glc. The role of glucose transporters was put in doubt by
the demonstration that anthocyanins acted as noncompeti-
tive glucose uptake inhibitors (Manzano and Williamson
2010; Kottra and Daniel 2007), which means they were not
engaged in the active site of glucose transporters. Altogether,
anthocyanins rather seem to act as both inhibitors and regu-
lators of intestinal glucose absorption (Alzaid et al. 2013)
and post-prandial glycemia (Dreiseitel et al. 2009).

Regarding primary active transporters expressed on the
luminal side of the intestinal cells, a study demonstrated
that several anthocyanins and anthocyanidins interacted
with Breast Cancer Resistance Protein ABCG2, which sug-
gests that they may be transported from the cells back to
the lumen, and thus their bioavailability is limited
(Dreiseitel et al. 2009).

Metabolites and catabolites of anthocyanins

Anthocyanins are rapidly metabolized by methylation of the
B ring, arguably in all tissues where they can be transported
and where the enzyme catechol O-methyltransferase
(COMT) is expressed; the methyl group donor S-adenosyl
methionine must also be available. Methylation of Cy3glc to
Pn3glc (and other congeners) was detected in excretory
organs, liver and kidney only after 15 s following an intra-
venous injection (Fornasaro et al. 2016). These methylation
products were simultaneously found in blood, which sug-
gests that they were transported from tissues back to the cir-
culation by a high-performing membrane transporter
(presumably bilitranslocase (Vanzo et al. 2008)). It is note-
worthy that within 1min the cellular uptake of Cy3glc,
methylation to Pn3glc and efflux back to the medium was
displayed in vascular endothelial cells, too (Ziberna et al.
2012). Glucurono- and sulfo-conjugates of Cy3glc were also
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found in blood some time later after the administration
(Williamson, Kay, and Crozier 2018).

When pure Cy3glc was administered to humans (de
Ferrars et al. 2014), glucuronides (and no sulfates) of Cy
and methyl-Cy were detected only in urine. In serum, next
to the parent compound, two catabolites (“degradants”)
were identified, i.e., protocatechuic acid and pholorogluci-
naldehyde. The first gave rise to 13 derivatives, with vanillic
acid and hippuric acid being the main ones.
Pholoroglucinaldehyde produced a single catabolite, i.e.,
ferulic acid. Other nine catabolites were detected in the
urine and feces, but not in the serum. The fact that Cy3glc
constituted only 2% of the sum of its catabolites detected in
the serum embodies the most significant outcome of this
study, i.e., anthocyanin concentration values in serum and
urine provide an incomplete picture of anthocyanin oral
bioavailability (Kay et al. 2017). Even more, vanillic acid and
hippuric acid were identified in the serum at their maximal
concentration after 30min following the ingestion of the
parent compound, when the latter was not yet or no longer
detectable (de Ferrars et al. 2014). Indeed, it is speculated
that anthocyanins undergo ring fission and conversion to
phenolic fragments in the small intestine, either in its lumen
or epithelium (Kay et al. 2017). Moreover, Cy3glc reappears
in the circulation only when the metabolizing capacity of
the target tissues is saturated or exhausted (de Ferrars et al.
2014). Noteworthy, an estimation of anthocyanin bioavail-
ability and distribution within various organs can be derived
only from studies on experimental animals. A recent system-
atic review (Sandoval-Ramirez et al. 2018) has noted the
kidneys, liver and lungs as the organs with the highest cap-
acity to accumulate these pigments (up to 0.1 mmol/g of
tissue), whereas the heart and the brain can retain some
nmol/g of tissue. However, the experimental data suggest (as
it is presented below) that the level of anthocyanins together
with their metabolites reached at various subcellular com-
partments, e.g., in the vicinity of or even within mitochon-
dria, might be sufficient to modulate the activity of
intracellular targets.

Targeting mitochondria

Neuroprotective activity at mitochondrial level

Epidemiological evidence suggests that diets containing
fruits rich in anthocyanins and proanthocyanidins may
reduce the risk of neurodegenerative diseases and cognitive
decline (Gao et al. 2012; Krikorian et al. 2010). As men-
tioned above, anthocyanins have been detected in the brain
tissue, which indicate that they are able to cross the blood-
brain barrier (Fornasaro et al. 2016). Scientific literature
highlights various mechanisms by which anthocyanins may
exert neuroprotective effects, including pro-survival signaling
pathway activation, suppression of microglial activation and
neuroinflammatory processes (Zhang et al. 2019). The focus
of this sub-chapter is on the less investigated field, i.e., the
interactions of anthocyanins with mitochondria, and how
such effects may be beneficial for neuronal survival in vari-
ous pathological states.

In general, the effects of anthocyanins on mitochondria
can be ascribed to their antioxidant properties, and this is
often considered to be the main biological effect of these
compounds. Oxidative and nitrosative stress, particularly
when it is long-lasting, has been implicated in the pathogen-
esis of various neurodegenerative diseases. An excessive gen-
eration of reactive oxygen (ROS) or nitrogen species (RNS)
that is not counteracted by cellular antioxidant defense sys-
tem creates oxidative or nitrosative stress. Brain tissue is
especially sensitive to ROS and RNS due to its high oxygen
demand and relatively low antioxidant defense capacity,
which becomes even more depleted with aging (Ataie, Ataie,
and Shadifar 2016; Kelly, Vyas, and Weber 2017). It is worth
to note that aging is considered one of the main risk factors
for most of the neurodegenerative diseases. Chemical struc-
ture of anthocyanins (aromatic rings with one or several
hydroxyl groups) allows them to accept unpaired electrons
from ROS or RNS. Thus, anthocyanins are considered to be
involved in the detoxification of ROS/RNS that come from
mitochondria as one of the important sources of ROS gener-
ation (Brown and Borutaite 2012). Moreover, polyphenols
with the structure similar to anthocyanins were evidenced to
accumulate in mitochondria (Fiorani et al. 2010; Schroeder
et al. 2009) suggesting that anthocyanins might also be suit-
able for the removal of toxic mitochondrial ROS/RNS.
Several studies have reported that anthocyanins or anthocya-
nin-rich extracts may prevent neuronal death by scavenging
mitochondrial ROS. At the cellular level, Cy3glc was shown
to be able to prevent glutamate-induced neuronal death by
inhibiting glutamate-induced Ca2þ overload, ROS generation
and mitochondrial depolarization (Yang et al. 2015). Similar
prevention of mitochondrial depolarization in primary cor-
tical neurons exposed to oxygen and glucose deprivation
was reported for mulberry Cy3glc (Bhuiyan et al. 2011) and
black soybean Cy3glc (Bhuiyan et al. 2012). Another study
on excitotoxic neuronal death induced by kainic acid (a
non-degradable analog of glutamate and an agonist of
AMPA/kainate receptors) demonstrated that anthocyanins
extracted from black soybeans prevented Ca2þ overload,
mitochondrial depolarization and ROS generation as well as
neuronal death (Ullah, Park, and Kim 2014). At the animal
level, orally consumed Cy3glc, that was isolated and purified
from cherries, revealed a neuroprotective effect in the cere-
bral artery occlusion model of ischemia in mice, as it
reduced brain superoxide levels, infarct size, and improved
neurological functions (Min et al. 2011). In addition, Cy3glc
was found to be almost equally protective when applied
before or after ischemic insult. These findings suggest the
potential anthocyanin use in clinical therapeutic stroke
interventions.

Besides the direct scavenging of ROS, anthocyanins have
been shown to act as mild uncouplers of the oxidative phos-
phorylation system (Skemiene et al. 2013) causing a mild
mitochondrial depolarization which may prevent ROS gen-
eration by mitochondria, as ROS production depends on the
mitochondrial membrane potential. In this respect, Dp3glc
was found to be the most effective uncoupler in the micro-
molar range of concentrations, although other compounds
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like Cy and Cy3rut (but not Cy3glc or Pg3glc) at concentra-
tions higher than 50 lM also increased the non-phosphory-
lating (Leak) respiration which is an indicator of uncoupling
(Skemiene et al. 2013; Liobikas et al. 2016). Whether such
mechanism of anthocyanin action is valid in neuronal cells
promoting their survival has not yet been experimen-
tally confirmed.

It is worth to note that anthocyanins and other flavo-
noids in the in vitro studies exert protective effects in the
range of relatively low (1–20mM) concentrations, which do
not correlate with their free radical scavenging capacities
(Skemiene et al. 2013; Nichols et al. 2015; Lagoa, Samhan-
Arias, and Gutierrez-Merino 2017). This observation
indicates that these compounds may have a more specific
mechanism than mere general antioxidant actions in cells.
There is also a possibility that the modulation of certain sig-
naling pathways of cell death and pro-survival regulation
that may involve mitochondria. In isolated cortical neurons
from adult mouse brain Cy3glc has been shown to protect
mitochondria specifically against apoptosis inducing factor
(AIF) release but not against cytochrome c release (Min
et al. 2011). Anthocyanins and anthocyanin-rich fruit
extracts have been shown to exert neuroprotective effects in
Parkinson’s disease (Strathearn et al. 2014) and beta amyl-
oid-induced toxicity in Alzheimer’s disease models (Brewer
et al. 2010; Fuentealba et al. 2011) at least partially by mech-
anisms involving interactions with mitochondria. A study by
Strathearn et al. (2014) used rotenone-treated midbrain cell
cultures as a model of Parkinson’s disease. Rotenone sup-
pressed the activity of complex I of the mitochondrial oxida-
tive phosphorylation system, the dysfunction of which is
thought to be involved in Parkinson’s disease pathogenesis.
It was indicated that certain anthocyanins (Mv, Cy and Dp
glycosides) and anthocyanin-rich fruit extracts were more
effective in preventing rotenone-induced neuronal death
than extracts enriched with other polyphenolic compounds
(Strathearn et al. 2014). The protective effect of anthocya-
nins was found to be related to the amelioration of rote-
none-induced mitochondrial dysfunction, which might be
due to the displacement of rotenone from its binding site on
mitochondrial complex I and the prevention of ROS pro-
duction (Strathearn et al. 2014; Lagoa et al. 2011). However,
there may be other explanations for the protective effect of
anthocyanins. For example, Cy3glc and Dp3glc have been
shown to serve as electron acceptors from complex I stimu-
lating NADH oxidation by NADH dehydrogenase
(Skemiene, Liobikas, and Borutaite 2015). With regard to
this mechanism of action anthocyanins may overcome the
rotenone-induced inhibition of complex I and support oxi-
dative phosphorylation in mitochondria. Therefore, antho-
cyanins acting as substrates for complex I and transferring
electrons to cytochrome c in the mitochondrial electron
transfer system may provide neuroprotective effects not only
in Parkinson’s disease, but also in the brain affected by
ischemic stroke where the inhibition of mitochondrial com-
plex I is one of the earliest pathological events (Borutaite,
Toleikis, and Brown 2013).

Cardioprotective effects

A number of prospective cohort studies have shown the
association between habitual anthocyanin intakes and car-
diovascular disease (CD). Coronary heart disease and myo-
cardial infarction were examined in five studies, the four of
which revealed that increased habitual intakes of anthocya-
nins were significantly related to the reduction of CD by
12–32% (Cassidy et al. 2013; McCullough et al. 2012; Mink
et al. 2007). There is also evidence suggesting that daily fruit
intake decreases systolic blood pressure, blood glucose levels,
and decreases incident major coronary events by 34%, while
cardiovascular mortality is respectively decreased by 40%
(Du et al. 2016). In addition, human feeding studies have
shown beneficial effects of anthocyanin-rich foods on blood
flow and flow-mediated vasodilation (Hooper et al. 2008).
However, there are no data available about the distribution
of anthocyanins in human organs.

Thus, anthocyanins were reported to maintain cardio-
protective effects, and one of the main mechanisms is to
scavenge ROS, although the exact protective mechanism of
anthocyanins against oxidative stress remains elusive
(Ziberna et al. 2012). Some evidence has been presented that
ROS production is associated with the impairment of mito-
chondrial respiratory chain and inhibition of electron trans-
port through complexes I and II. Fang and colleagues have
indicated that Cy3glc restored the activity of mitochondrial
complex I and II and significantly attenuated ROS produc-
tion induced by endotoxin LPS in mice (Li et al. 2018). This
observation was further supported by experiments on pri-
mary cardiomyocytes when Cy reduced the LPS-induced
mitochondrial ROS production (Li et al. 2018). Similar
effects of anthocyanins on mitochondrial complex activities
were revealed in our previous studies (Skemiene, Liobikas,
and Borutaite 2015). On the other hand, important protect-
ive effects of certain anthocyanins have been observed in
heart ischemia-induced mitochondria-mediated cell death
pathway, where the release of cytochrome c (an important
element of the electron transport chain) into cytosol is con-
sidered to be the central pathological event (Skemiene et al.
2013; Skemiene, Liobikas, and Borutaite 2015). In cytosol
cytochrome c can trigger the activation of caspases in apop-
tosome (Acehan et al. 2002). However, the redox state of
cytochrome c is an important factor in the regulation of cas-
pase activation in apoptosome, as it was determined that a
reduced form is much less potent than the oxidized form of
cytochrome c (Brown and Borutaite 2008). Anthocyanins, as
redox-active compounds, are able to reduce cytochrome c,
though they differ in their reducing capacity: the highest
cytochrome c reducing activity was observed with Dp3glc,
Cy3glc and Cy, whereas Mv3glc, Pn3glc and Pg3glc were
found to be weak reductants (Skemiene et al. 2013; Lagoa,
Samhan-Arias, and Gutierrez-Merino 2017). Cy was found
to be a more potent reductant of cytochrome c than ascor-
bate at the same concentration (Lagoa, Samhan-Arias, and
Gutierrez-Merino 2017). Interestingly, anthocyanins with the
highest cytochrome c-reducing capacity were revealed to be
the best protectors against ischemia-induced apoptosis and
necrosis in a perfused heart, though none of the investigated
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anthocyanins was able to inhibit the loss of cytochrome c
from mitochondria (Skemiene et al. 2013; Skemiene,
Liobikas, and Borutaite 2015) suggesting that the reduction
of cytosolic cytochrome c by Cy and Dp glucosides might
prevent caspase activation and ischemia-induced cell death
in the myocardium.

Recent study by Lagoa et al. (2017) has proposed another
mechanism of protection against mitochondria-mediated cell
death by flavonoids, including anthocyanins. Researchers
found that Cy and certain flavonols with high cytochrome c
reducing capacity at low micromolar concentrations were
able to inhibit the pro-apoptotic cardiolipin-induced perox-
idase activity of cytochrome c. Cy was indicated to be the
most potent inhibitor of cytochrome c peroxidase activity.
As reported by the researchers, pharmacological regulation
of cardiolipin-induced peroxidase activity of cytochrome c
might become an attractive mechanism for the new mito-
chondria-targeted anti-apoptotic drugs useful in cardiac
pathologies (Lagoa, Samhan-Arias, and Gutierrez-Merino
2017). And anthocyanins are among them.

Health benefits at mitochondrial level in liver, kidney
and pancreas

Besides the neuro- and cardioprotective activities anthocya-
nins have been shown to be beneficial on liver, kidney and
pancreas as well (Dias et al. 2017; Mafra et al. 2018).
However, scientific studies on the effects of anthocyanins at
the level of mitochondria are rather fragmented and scarce.
Nevertheless, it could already be proposed that anthocyanins
protect mitochondria against oxidative stress acting as ROS
scavengers, and, consequently, preserving mitochondrial
functions and protecting cells from apoptosis. For instance,
it was demonstrated that blueberry anthocyanin-rich extract
(with Cy3glc as the main component) protected mice liver
mitochondria against acrylamide-induced mitochondrial oxi-
dative stress in vivo by inhibiting the formation of ROS
(Zhao et al. 2015). Moreover, the administration of extract
resulted in a reduced mitochondrial membrane lipid peroxi-
dation, protected against mitochondrial swelling and dimin-
ished the release of cytochrome c, recovered the activities of
mitochondrial electron transport chain, and thus sustained
mitochondrial membrane potential. At the cellular level the
hepatoprotective effects of Cy3glc on primary mouse hepato-
cytes against high glucose-induced apoptosis were associated
with the preservation of mitochondrial membrane potential,
reduced generation of ROS, inactivation of caspase-3 and -9,
and down-regulation of the pro-apoptotic Bax protein (Jiang
et al. 2014). In addition, another study on the effects of diet-
ary anthocyanins from strawberries against doxorubicin-
induced toxicity in rats (Diamanti et al. 2014) outlined both
a significant improvement in liver antioxidant enzyme activ-
ities and mitochondrial capacity, and a significant reduction
of mitochondrial ROS level. It is worth mentioning that
beneficial effects of anthocyanins on mitochondrial functions
have been recently identified in human hepatocyte HuH7
and HepG2 cell lines as well (Mogalli et al. 2018; de Sales
et al. 2018).

It was also demonstrated that anthocyanins and antho-
cyanidins may positively affect mitochondrial functions in
kidney. Bankoglu et al. (2018) revealed that a 3-deoxyantho-
cyanin tricetinidin and Dp restored the depolarization of the
mitochondrial membrane and stimulated the expression of
the antioxidant enzyme heme oxygenase-1, and the increase
of the intracellular glutathione level in NRK epithelial rat
kidney cells affected by antimycin A and insulin.
Anthocyanidin Dp was also found to suppress the high glu-
cose-induced mitochondrial superoxide generation in mouse
mesangial CRL-1927 cell culture (Song et al. 2016).
Furthermore, it has been recently reported that Cy3glc sus-
tained the mitochondrial membrane potential, decreased the
intracellular level of ROS and, consequently, protected
human HK-2 cells from high glucose induced apoptosis
(Wei et al. 2018).

Besides, Cy3glc has reduced the H2O2-induced cell death
in mouse MIN6N pancreatic b-cells (Lee et al. 2015). This
anthocyanin affected the level of intrinsic apoptotic path-
way-associated proteins: it decreased the level of activated
caspase 3, sustained Bcl-2 family proteins at the control
level, and induced a dose-dependent inhibition of the release
of cytochrome c from pancreatic mitochondria. Noteworthy,
the authors of the present review would like to highlight
that to the best of their knowledge the study performed by
colleagues (Cesna et al. 2015) was the first to reveal that
treatment with Cy3glc decreased the proliferation rate of
ethanol-activated human pancreatic stellate cells, decreased
cell oxygen consumption rate and reduced ATP synthesis to
the control levels. Thus, the results provided new insights
for the usage of Cy3glc in the prevention of pancreatic
fibrosis. However, further studies are needed to clarify the
anthocyanin action mechanism.

Mitochondria-targeted anthocyanin-based molecules as
potential therapeutics

Mitochondria play the key role in the regulation of cellular
bioenergetics and metabolic homeostasis, therefore mito-
chondrial dysfunction contributes to the rise or development
of a range of pathologies and diseases (Pagano et al. 2014;
Srivastava 2017). Consequently, there is a considerable inter-
est in targeting small molecules to mitochondria in order to
ameliorate the mitochondrial dysfunction. Mitochondria are
known to be the source of ROS, as well, they are susceptible
to oxidative damage. Therefore, the biggest attention has
been focused on the development of mitochondria-targeted
antioxidants (Finichiu et al. 2015; Pezzini, Mattoli, and
Ciofani 2017; Feniouk and Skulachev 2017). In addition,
some of the mitochondria-targeted compounds are either
phytochemicals as plastoquinone conjugates (SkQs)
(Zakharova et al. 2017), or are based on natural (poly)phe-
nols, like MitoApocynin, caffeic acid, curcumin and quer-
cetin (Apostolova and Victor 2015; Teixeira et al. 2017;
Teixeira et al. 2018a). Since anthocyanins together with
other polyphenols also constitute important dietary compo-
nents with a potential beneficial effect on mitochondrial
functions, the development of mitochondria-targeted
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anthocyanin-based antioxidants might be considered as a
further challenging task. It has been well documented that
the antioxidant activity and chemical stability of anthocya-
nins are related to the number and position of hydroxyl and
methoxyl groups in the flavylium B ring, and to the extent
of modifications of a sugar moiety (Zhao et al. 2014;
Ereminas et al. 2017; Blando et al. 2018). Hence, the most
redox active Dp3glc and Dp3rut were found to be the least
chemically stable among the tested anthocyanins (Ereminas
et al. 2017). Therefore, the increase in stability and preserva-
tion of antioxidant activity of certain anthocyanins might be
achieved through the formation of complexes between
anthocyanins and selected biodegradable nanocarriers
(Klimaviciute et al. 2015; Navikaite et al. 2016). The use of
methylated anthocyanins or their metabolites, e.g., Mv3glc
and syringic acid that bear sufficient hydrophobicity to cross
the cell membrane and reach mitochondria would constitute
another option (Skates et al. 2018). Moreover, the synthesis
of several mitochondrially targeted derivatives of protocate-
chuic and gallic acids, which are the major metabolites of
Cy and Dp anthocyanins, respectively, has recently been
reported (Parihar et al. 2014; Teixeira et al. 2017). These
new molecules were found to present a higher lipophilicity
than the parent compounds, and similar antioxidant proper-
ties. Interestingly, AntiOxBEN3, another mitochondria-tar-
geted derivative of gallic acid besides its prominent
antioxidant activity, inhibited the opening of calcium ion-
dependent mitochondrial permeability transition pore
(mPTP) (Teixeira et al. 2018b). Thus, more mitochondria-
targeted polyphenol- or anthocyanin-based multifunctional
molecules are likely to be designed and tested in the near-
est future.

Concluding remarks and future perspectives

Within the last several years anthocyanins, the water-soluble
pigments produced in a specific branch of the flavonoid
pathway in plants, have become an object of increasing
attention due to their potential health benefits. Many of
these effects on brain, heart, liver, kidney or pancreas are
attributed to the free-radical scavenging and antioxidant
properties of anthocyanins. However, constantly growing
experimental data indicate that anthocyanins may have
more specific mechanisms than just general antioxidant
actions in cells. Thus, they can act as uncouplers of the oxi-
dative phosphorylation system causing a mild mitochondrial
depolarization which may prevent ROS generation by mito-
chondria. Moreover, certain anthocyanins can maintain the
activity of electron transport chain, and, consequently, sus-
tain the mitochondrial membrane potential and support
ATP production. Anthocyanins, as redox-active molecules,
can also be regarded as anti-apoptotic agents preventing
mitochondrial apoptotic pathway via their effects on cyto-
chrome c. In addition, the low concentrations of anthocya-
nins and their metabolites found in serum and tissues
appear to be sufficient for these compounds to affect intra-
cellular targets. Thus, all this information aims at encourag-
ing more detailed studies on the application of various

anthocyanins and their metabolites to the clinical interven-
tion or prevention of pathological conditions or diseases
related to mitochondrial dysfunctions (e.g., ischemic insult,
myocardium infarction, neurodegenerative diseases) or to
the bypass surgery to prevent ischemia/reperfusion-induced
cell death and to support mitochondrial functions. Search
for new delivery platforms like encapsulation and complex
formation between anthocyanins and nanocarriers in order
to increase the stability and bioavailability of anthocyanins
in humans are to be stimulated as well (Tan et al. 2018;
Mueller et al. 2018; Navikaite et al. 2016; Celli and Brooks
2019). Introduction of chemical modifications to anthocya-
nins that can facilitate their way to the final intracellular tar-
gets might also contribute to the desirable health-promoting
effects (Teixeira et al. 2018a). The production of food rich
in anthocyanins plays a central role in this strategy, since
the enhanced food is the source of anthocyanin-rich extracts
for pharmaceutical use or food fortification. To conclude,
ample directions and opportunities exist for future research.
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