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Abstract. A mathematical model of amperometric biosensors has been
developed to simulate the biosensor response in stirred as well as non stirred
solution. The model involves three regions: the enzyme layer where enzyme
reaction as well as mass transport by diffusion takes place, a diffusion lim-
iting region where only the diffusion takes place, and a convective region,
where the analyte concentration is maintained constant. Using computer
simulation the influence of the thickness of the enzyme layer as well the
diffusion one on the biosensor response was investigated. The computer
simulation was carried out using the finite difference technique.
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1 Introduction

Biosensors are analogue devices that are based on the direct coupling of an
immobilised biologically active compound with a signal transducer and an
electronic amplifier [1]-[4]. The biosensors yield a signal, which is propor-
tional to the concentration of measured analyte or a group of analytes. The
biosensors are classified according to the nature of the physical transducer.
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Amperometric biosensors measure the current on an indicator electrode due
to direct oxidation of the products of the biochemical reaction [5]. ln case
of the amperometric biosensors the potential at the electrode is held constant
while the current flow is measured. The amperometric biosensors are reliable,
relatively cheap and highly acceptable for environment, clinical and industrial

purposes [6].

The modern concept of biosensors has been evolved in publication of Clark
and Lyons [1]. From the publication the amperometric membrane biosensors
became one of the popular and perspective trends of biochemistry. The under-
standing of the kinetic regularities of biosensors is of crucial importance for
their design. Mathematical models can explain such regularities. The general
features of amperometric response was analysed in the publications of Mell
and Maloy [7, 8]. Some later reports were also devoted to the modelling and

investigation of the amperometric biosensor response [9]-[14].

The goal of this investigation is to make a model allowing an effective
computer simulation of amperometric biosensor response in a stirred as well as
non stirred analyte. The developed model is based on non-stationary diffusion
equations [15], containing a non-linear term related to Michaelis-Menten lki-
netic of the enzymatic reaction. The model involves three regions: the enzyme
layer where enzyme reaction as well as mass transport by diffusion takes place,
a diffusion limiting region where only a mass transport by diffusion takes
place, and a convective region, where the analyte concentration is maintained
constant. The intensity of stirring is expressed by the thickness of the diffusion
limiting layer. The thickness of the diffusion layer is inversely proportional
to the intensity of stirring. The more intensive stirring relates to the thinner
diffusion layer. The digital simulation of the biosensor response was carried

out using the semi-implicit finite difference scheme [16, 17].

The developed software was employed to investigate the influence of the
thickness of the enzyme layer as well as the diffusion on the biosensor re-
sponse. The maximal biosensor response as well as the time of the maximal
response were investigated as functions of the dimensionless ratio of the thick-

ness of entire diffusion domain to the thickness of the enzyme layer.
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2 Mathematical Model
During an enzyme-catalysed reaction
sE P (1)

the substrate S is converted to product P. The rate of the appearance of the
product depends on the concentration of the substrate.

In the simplest case, when the diffusion of substrate as well as product
molecules is neglected and steady-state conditions are assumed for the enzyme
reaction, the mathematical model of enzyme kinetics is given by Michaelis-
Menten equation

p= B Vraad (2)

dt dt K+ S8 )

where v = () is the rate of the enzymatic reaction, Vy,,; is the maximal
enzymatic rate attainable with that amount of enzyme, when the enzyme is
fully saturated with substrate, K s is the Michaelis constant, S is the substrate
concentration, P is concentration of the reaction product, and £ is time. V05
corresponds to relative activity of substrate [2]. However, the mass transpornt
by diffusion is a first-order reaction with respect to substrate concentration
[71-[10].

We consider a membrane amperometric biosensor which can be treated as
an enzyme electrode, having a layer of enzyme immobilised onto the surface
of the probe. If the bulk solution is well-stirred and in powerful motion,
then the diffusion layer remains at a constant thickness. The concentration of
substrate as well as product over the enzyme surface (bulk solution/membrane
interface) remains constant while the biosensor keeps in touch with the sub-
strate. However, if the bulk solution is not stirred, then the concentration of the
substrate as well as product over the enzyme surface depends on the diffusion
of the species in bulk solution. Because of this the model consists of three
regions: the enzyme layer where enzyme reaction as well as mass transporit by
diffusion takes place, a diffusion limiting region where only mass transport by
diffusion takes place, and a convective region, where the analyte concentration

is maintained constant.
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To formulate the corresponding mathematical model we assume the sym-
metrical geometry of the electrode and uniform distribution of the immobilised
enzyme in the enzyme membrane. This allows to formulate the model in one
spatial dimension. The dynamics of the considered biosensor system can be
described by the reaction-diffusion system

88%295522:;—;;“18;&: O<e<l,0<t<T, (3)
8£e=DPe§mie+;:‘iS§e, 0<zr<l,0<t<T, ()
%:D&%, I<z<L,0<t<T, (5)
%:Dﬂ,%, I<z<L,0<t<T, (6)

where Se, Sy (Pe, Py) are the concentration of the substrate (reaction product)
in the enzyme and in the bulk solution, respectively, { is thickness of the
enzyme layer, L is the boundary (consequently, L — { is the thickness) of the
diffusion layer, T is full time of biosensor operation to be analysed, Dge (Dpe)
is the diffusion coefficient of substrate (reaction product) in the enzyme layer
and Dgy, (Dpyg) is diffusion coefficient in the bulk solation.

The operation of biosensor starts when some substrate appears over the

surface of the enzyme layer. This is used in the initial conditions (f = Q)

Se(x,0) =0, FPe(x,0)=0, 0<z<l, (N
Se(f'ao) = S0s Pe(‘fe 0) =0, (3)
Sb(x:» 0) = S{h 'Pb(:‘c? 0) =0, Ifz<L, 9

where Sy is the concentration of substrate in the bulk solution.
The boundary conditions (0 < £ < T are

3Se
e - 10
dx =10 0? ( )
Sp(L,t) = So, (11)
0S| _ . 05
Se% z=l - 5k dx ..":=.€1 (12)
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Se(la t) = Sb(ga t)a (13)

Pe(oi't) :Pb(Let) =0, (14
OR.| _, P

DPE% &=l - TP dz :.':=£1 (15)

P.(L,1) = By(l,1) = 0. (16)

Consequently, concentration § of the substrate S and concentration P of the

reaction product P can be defined for the entire domain 0 € x < L as follows:

’ Sp(@,t), I<z<L,t20, '
’ Pyz,t), 1<z <L, t>0 .

Let us notice, that because of conditions {(13) and (16) both functions: S and
P are continuous in entire domain: § < x < L.

The diffusion layer { < & < I may be treated as a Nernst diffusion layer,
which is widely used in modelling of the electrochemical reactions [18]. Ac-
cording to Nernst approach, a layer of thickness dy = L — I (the Nernst
diffusion layer) remains stagnant. Away from it the solution is in motion and
uniform in concentration. The thickness of the layer remains unchanged with
time. The thickness of the Nemst diffusion layer is inversely proportional to
the intensity of stirring. No exact analytical expression is available for stirred
solutions. @&y can be estimated experimentally by measuring the electrode
response at given bulk concentration. Furthermore, & depends on the type of
stirring. The more intensive stirring is, the thinner the Nernst diffusion layer
is.

In case of extremely intensive stirred bulk solution the Nernst diffusion
layer may be neglected, i.e., I = [. In such a case, assuming I = , equations
(5), (6), (9), (12) and (15) may be removed from the model (3)-(16) while four
boundary conditions: (11), (13), (14) and (16) reduced to two only: S,(I,%) =
Sg, Pe(0,t) = P.(I,#) = 0. The reduced model is identical to the model
presented in [14]. The model (3)—(16) generalises the earlier model [14] of the
amperometric biosensors, operating in batch analysis.



R. Baronas, F. Ivanauskas, I. Kulys

The current is measured as a response of a biosensor in a physical exper-
iment. The current depends upon the flux of reaction product at the electrode
surface, i.e., at border & = (). Consequently, a density { of the current at time
t is proportional to the concentration gradient of the product at the surface of
the electrode as described by Faraday’s law

aP,
I(f‘) = ﬂ'eF-DPea g0’ (19)

where n, is a number of electrons involved in a charge transfer at the electrode
surface, and F is Faraday constant, F =2 9.65 x 10* C/mol. Having a numerical
solution of the problem (3)-{16), the density I(t) of the biosensor current ¢an
be calculated easily.

3 Solution of the Problem

The problem (3)-(16) was solved numerically using the finite difference tech-
nique [15, 16]. To find a numerical solution of the problem in the domain
[0, L] x [0,T] we introduced an uniform discrete grid wp, X w7, where
wp ={xi: @3 =1h, 1 =0,...,Ny,....N; ANy =1, RN =L}, (20)
wr={tj:t; =47, =0,...,M; 7M =T} '

We assume the following

Si = S(mi,ty), Pl(®inty), I = 1(t;), i = 0,00 N3 j= 0,00, M. 21)

T

A semi-implicit linear finite difference scheme has been built as a result
of the difference approximation. Assuming (17) and (18) the initial conditions

(7)-(9) we approximated as follows

$9=0, i=0,...,N—1,
Y =8, i=MNy,...,N, (22)
PP=0, i=0,...,N.

2

Differential equations (3), (<) were approximated by the scheme

; i j+1 j+1 j+1 j
SIT -8l S T S VisST
T Se h2 KM N S:. )

(23)
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1 . i1 1 i1 1
ﬁ?‘+ . _ Dp PIT — 2P + P B Vmaxsf"__ (24
T € h2 Ky + Sf+11 )
i=1L....M—1 7=1...,M
Differential equations (5), (6) were approximated by the scheme
j+1 j 7+1 j+1 i+1
s -8 :DSbSHl — 25 +55 (25)
T h2 ’ =
j+1 j j+1 _ o pj+l J+1
At T Mt L Rt o6
T Pb B2 s L=
i=N+1,...,N, j=1,.... M.
The boundary conditions (10)—(16) were approximated as follows:
Sgr = Si? Sf\T = So, (27)
Dse(S, — Sy —1) = Dso(Sh, 41 — Sy)5 '
Pi=0, Pi=0,
Dpe(Pr, — Ply_1) = Dy (PR 11 — PRy )s (28)

i=1,..., M.
Equations (22) allow to calculate a solution of the problem on the layer
t = i3 = 0. When a solution on a layer #; has been calculated, a solution on

the next layer £ = £; + 1 can be calculated in two steps:

1) calculate values of SEH, i = 0,...,N , solving the system of linear
equations (23), (25) and (27);

2} calculate values of PEH, i =0,...,N, solving the system of linear equa-
tions (24), (26) and (28) using values of Sg"’l, which have been calculated

in step 1.

The systems of linear algebraic equations can be solved efficiently in both
steps above because of the tridiagonality of the matrices of the systems.

Having numerical solution of the problem, the density of biosensor current
at time £ = ¢; is calculated by

I(t;) =nF Dp,(P{ —B)/h, §=0,...,M. (29)
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4 Results and Discussion

The mathematical model (3)(16) as well as the numerical solution of the
model was evaluated for different values of the maximal enzymatic rate ¥,
as well as substrate concentration Sy. The following values of the parameters
were constant in the numerical simulation of all the experiments:

Dge = Dpe = 3.0 x 10~%cm? /s,
Dgy =2Dge, Dpy=2Dpe, (30)
Ky = 1.0x 107 "mol/cm®, n, = 2.

Figure | shows the profile of substrate as well as product concentrations

......... T
20m108 | . o
£L=i 4
—————— AL=}
1Gdp8 | ~aL=1N
—PRI=1% -
- o -, ;
£ Ty
= W
2 tmtod / '
. 7 -:!".
. o 3
o o
510 - -~ [
s A
o cl
# T Vo=l =8
FiT 1 S L L i e W I,
0,000 0.005 0010 05 0.020 0025 0030
X, om

Fig. 1. Profile of substrate and product concentrations at steady-state and
thickness ! = 0.02 cm of enzyme layer when solution is well stired (L= 1)
and weak stimed (L =1.51), Vipge = 10~ 7mol/cm3s, Sp =2 x 10~3mol /cm®

at thickness I = 0.02 cm of enzyme layer in both regimes of stirring: well
and weak. Here we assume I = { for well stirred regime of analysis, while
L = 1.5 for weak one. The profile shows the concentration at time T = 130 s
in well stirred regime and T' = 195 s in weak one when the maximal biosensor
response is reached. The maximal biosensor response was achieved faster in
well stirring regime in comparison to the weak one. The computer simulation
was carried out at the maximal enzymatic rate V,,,,, = 10~7 mol/cm®s and the
substrate concentration S = 2 x 10~% mol/cm®. As it is possible to notice

in Fig. 1, the gradient of the reaction product at electrode surface (x = 0) is

10




Computer Simulation of Amperometric Biosensors Response

higher when bulk solution was well stirred. 1t means that in well stirring regime
of analysis the maximal current is higher than in weak one. These preliminary
properties were reviewed in wide range of thickness of the enzyme layer at
different maximal enzymatic rates.

The thickness of the enzyme layer of the biosensor can usually be mea-
sured precisely enough. However, the thickness of the diffusion one (Nernst
layer) can not, especially when the bulk solution is in weak motion. Because
of this we calculate the biosensor response at different thickness of the Nernst
layer to investigate the influence of the intensity of the solution stirring on the
biosensor response.

The maximal biosensor current and the time of the maximal current are
the main characteristics of the biosensor response. As it was mentioned above,
the model (3)-(16) expresses biosensor action in batch analysis [14], when a
biosensor remains immersed in the bulk solution of infinite volume and during
long time. 1n a case of the batch analysis the maximal biosensor current I, 18
the steady-state current ;. In the computer simulation, the biosensor response
was checked every 0. 1s if the steady-state current reached. The calculation was
terminated when the relative difference of two values of the current is less than
1075%.

Since the steady-state time is very sensitive to the accuracy of calculation
of the maximal current, we investigate the evolution of half of steady-state time
[15]. The resultant relative output signal I'*(£) of an amperometric biosensor

can be expressed as follows:
1%(8) = (Taax — 1(9) /Ty Tna = T = Jim 109, G
o0

where I(t) is the output current density at time ¢ as defined in (19), I, is the
density of the steady-state as well as the maximal current. The half T} 5 of the
steady-state time is the time when the reaction-diffusion process reaches the
medium, i.e., I*(Tys) = 0.5.

Multiple computer simulation of the biosensor response at different values
of the thickness of the enzyme layer as well as the diffusion layer showed that
I, and Ty 5 depends mainly on the relative thickness of the pure diffusion
layer. Because of this we investigate the dependence of the maximal biosensor

response and the time of the maximal response on the dimensionless ratio k of

11
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the thickmess L of the entire layer of analysis to the thickness { of the enzyme
layer, k = L/I.

The maximal biosensor current is very sensitive to the thickness of the
enzyme layer. The maximal current varies even in orders of magnitude. Be-
cause of this we normalise the maximal biosensor current to evaluate the effect
of relative thickness ¥ = L/ on the maximal response. Let I(I,L,%) be
the output current density at time £, as defined in (19), at given thickness {
of the enzyme layer and thickness L of the entire domain. We express the
normalised maximal biosensor current {p,,q, as the maximal current of the
biosensor divided by the maximal current in well {extremely) stirred solution

INmaa:(lrk) = IOO(E?L)/IDO (‘!: E): k= Lﬂ > 1,

. (32)
Ing(t, L) = lim I(1,L,%),

where Io(I, L) is the density of the steady-state cutrent. The normalised
maximal biosensor current fy;,,,, is a function of the thickness [ of enzyme
layer and the dimension less ratio % of the thickness L of the entire domain to
I. According to the definition (32), Iy, . (I,1) = 1 for all values of { > 0.
Assuming Tp5(I, L) as the halftime of the maximal biosensor response at
given thickness [ of the enzyme layer and thickness L of the entire domain, we

introduce normalised halftime Ty g5 as follows
Tnos(l k) =Tos(, L)/ Tos (1), k=L/I> L (33)

The influence of the dimensionless ratio 5 = L /I on the maximal biosensor
current has been investigated at two values of the maximal enzymatic rate
Vinaz: 1077 and 10~8 mol/cm® s and two values of the substrate concentration
Sp: 2 x 1078 and 2 x 10~ mol/cm®. Results of calculation are depicted in
Figs. 2-7. Since the behaviour of the biosensor response at Viaz > Har
is practically the same as in the case of V45 = Kjpr [14], we employed no
values of Vpuap less than Kpr. The maximal biosensor response is usually
linear proportional to substrate concentration Sy at values of the concentration
significantly less than K [3, 14]. On the other hand, the maximal biosensor
response is independent from the substrate concentration Sg when Sg > K.
Because of this we employed only that two values of the substrate concentra-

tion.

12
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Fig. 2. The normalised maximal biosensor current f arp,q, versus ratio k=L /1
at different values of ] (cm), Vyqz =107 molicm®s, Sy =2x 10~ ¥ mol/cm®
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Fig. 3. The normalised maximal biosensor current { anq, versus ratio k=L /]
at different values of § (cm), Vipae = 10"3 molicm®s, Sy =2 x 10~% molfcm?®

Figure 2 shows the dependence of the normalised maximal biosensor cur-
rent I ¥mag ON the ratio & at Vyey = 10~7 while Fig. 3 shows one at Ve =
10~% mol/cm®s and S5 = 2 x 10~% mol/cm®. 1n Fig. 4, Iypqq versus k is
presented at V.., = 1077 mol/cm®s and Sy = 2 x 10~% molicm®. As it is
possible to notice in these figures, the shape of the normalised current Ipax
(as well as the non-normalised one f;,;) is very sensitive to the thickness {
of the enzyme layer. Inpq; 1S monotonous decreasing function of the ratio
# for relatively thick biosensors (! >~ 0.01 cm). In such cases the maximal
biosensor response decreases significantly for & <=2 2.5 only. More distant
increase of the thickness of the Nernst diffusion layer unchanges the maximal
biosensor response. Because of this, if the enzyme layer of a biosensor is rather

thick, then it is enough to restrict the domain of analysis to . = 2.5{ in the

13
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Fig. 4. The normalised maximal biosensor current f arp,q. versus ratio k=L /}
at different values of ] (cm), Vyqz =107 molicm®s, Sy =2x 10~ 7 mol/cm?®
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Fig. 5. The normalised halftime Ty 4.5 of the maximal biosensor response
versus ratio k = L/ at different values of { (cm), Vi, = 1077 mol/cm?s,
So = 2 x 10~% mol/cm®

model (3)-{16) to simulate biosensor action accurately in non stirred solution.
This is valid for both values of the maximal enzymatic rate V,,,,: 10”7 and
10~% mol/cm®s as well as both substrate concentrations: 2 x 10~% and 2 x
10~7 mol/cm®. The conception of the “thick enzyme layer” depends on Viay
and Sp. However, according to Figs. 2— this dependence is slight.

In case of thin (! <= 0.001) enzyme layer, Iy, 1S @ monotonous in-
creasing function of the ratio k. 1f the enzyme layer is especially thin (e.g.,
{ = 0.0001 cm), the increase of the maximal current is notable even at & = 5.
1t means, that in the case of very thin enzyme layers, even slight stirring can
have an effect on the maximal response.

Figures 24 show that the intensity of stirring can change the maximal

14
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Fig. 6. The normalised halftime Ty 5 of the maximal biosensor response
versus ratio k = L /1 at different values of I (cm), Vg, = 1078 moliem?®s,
So = 2 x 10~% mol/cm®

biosensor current up to about 2 times. However, in some cases the maximal
biosensor current varies slightly only. 1t appears when { is about 0.002 cm at
Vinaz = 10~7 mol/cm®s, and [ is about 0.005 cm at V5, = 10~# mol/icm?®s,
The biosensor response is known to be under mass transport control if
the enzymatic reaction in enzyme layer is faster than the transport process.
The concentration of substrate reaches zero inside the enzyme layer at close

2

proximity to & = I when the dimensionless parameter ¢“ is much greater than

unity, where

2 _ Vﬂfn,(:i...":IE2

o= .
DSeKM

(34

This parameter essentially compares the rate of enzyme reaction (Vpaq /K 31)
with the diffusion through the enzyme layer (i%/Dg,). If 62 < 1, enzyme
kinetics predominate. The response is under diffusion control if 62 > 1. Since
Dge, and K s are constant in all our numerical experiments as defined in (30),
we express the thickness {; of the enzyme layer through V., at 0 = 1 as
follows:

Dg K [3x10-1%  [0.001 =107 2dl
Ve Vines 0.005648, Vier =107° 5 -

8

Comparing these values of { = [y with the values discussed above, we

notice that behaviour of the normalised maximal biosensor current {ymex

15
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favourably depends on that either the enzyme kinetics or the diffusion predom-
inates. Figures 24 show, that in a case when the enzyme kinetics distinctly
predominates ({ <€ I1), {ymaqz IS a8 monotonous increasing function of the ratio
k. Inmag 1S @ monotonous decreasing function of % if the biosensor response
is distinctly under diffusion control ({ >3 Iy). However, Ipp,,5 is under the

small influence also of the substrate concentration Sp.

The dependence of the normalised halftime Ty g5 of the maximal biosen-
sor response on the dimensionless ratio K = L/I is presented in Figs. 5-7.
Comparing Fig. 5 with Fig. 6 we see the influence of the maximal enzymatic
rate Vy,,; on the behaviour of Ty g5 versus k, while comparing Fig. 5 with
Fig. 7 we can estimate the influence of the substrate concentration Sy on the
behaviour of ;5 versus k. Since the halftime T} ;5 does not reach even 0.1 s
when the thickness { of the enzyme layer is very thin, results are depicted for
{ > 0.001 cm only.

Figures 5-7 show very similar shape of Ty g5 versus & for biosensors,
having relatively thick enzyme layer: { > 0.002 cm at Ve = 1077 and
{ > 0.005 cm at Viyey = 10~ mol/em®s. 1f biosensors are distinctly under
diffusion control (! >»> I;), then the halftime Tj 5 of maximal response in-
creases with increase of & up & &~ 1.5, further the halftime T} 5 decreases up
to & =2 2.5, so that in well stirred solution T4 5 is approximately the same as in
non-stirred one.
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207 —a—[-0005 g™

18] —v—I-0m oot
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Fig. 7. The normalised halftime Ty 5 of the maximal biosensor response
versus ratio k = L/ at different values of I (cm), Vipee = 10~7 molicm®s,
So = 2 x 1077 molicm®

As it is possible to notice in Figs. 5-7, if the enzyme kinetics distinctly

16
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predominates ({ <€ l1) in biosensors action, then variation of halftime T4 5
is much more significant than in the case when the diffusion controls the
biosensor action. T 5 can be even more than 3 times greater when biosensor
operates in non-stirred solution than in well stirred one. Figures 5-7 show also
that the normalised halftime T g 5 increases with increase of J.

5 Conclusions

The mathematical model (3)-(16) of operation of an amperometric biosensor
can be used to investigate regularities of the biosensor response in stirred and
non stirred analytes.

The maximal biosensor current is a monotonous decreasing function of
dimensionless ratio § of the thickness of entire diffusion domain to the thick-
ness of the enzyme layer if the biosensor response is distinctly under diffusion
control. 1n the case when the enzyme kinetics distinctly predominates the
maximal biosensor current increases with increase of the ratio %, i.e., with
increase of the thickness of the pure diffusion layer. The intensity of stirring
can change the maximal biosensor current up to about 2 times.

A non-monotonous evolution of the halftime of the maximal biosensor
current versus the ratio k is observed when the biosensor response is distinctly
under diffusion control. 1f the enzyme kinetics distinctly predominates in the
biosensor operation, then the increase of the halftime up to 3 times is observed
in numerical experiments while increasing the thiclmess of the pure diffusion
layer (ratio k), i.e., decreasing intensity of stirring.

If the enzyme layer of a biosensor is rather thick, i.e., the biosensor re-
sponse is distinctly under diffusion control, then it is enough to restrict the
entire domain of analysis to I = 2.5 in model (3)-(16) to simulate biosensor
action accurately in weak stirred as well as non stirred solution.
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