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Abstract. In the paper, the stability and convergence of difference schemes approx-
imating semilinear parabolic equation with a nonlocal condition are considered. The
proof is based on the properties of M-matrices, not requiring the symmetry or diagonal
predominance of difference problem. The main presumption is that all the eigenvalues
of the corresponding difference problem with nonlocal conditions are positive.
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1 Introduction

Initiations in the research of parabolic equations with nonlocal conditions ap-
peared in papers [3, 19] more than half a century ago. New problems, formu-
lated in the papers mentioned, became as the object of investigations of many
authors later on.
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During the last decades many new papers have appeared, where solution
of parabolic equations with integral boundary conditions by the finite differ-
ence method was considered in various aspects, including the stability and
convergence of difference schemes. In paper [11], the estimation of error in the
maximum norm was obtained for the one-dimensional linear parabolic equation
with integral boundary conditions.The analogous result was provided in [12] for
the numerical solution of a semilinear problem with integral boundary condi-
tions. Various aspects of difference schemes, such as convergence, stability, al-
gorithms of realization, approximation of increased accuracy in one-dimensional
case were investigated in many articles (see, for example [8, 9, 22, 26] and the
references therein). The influence of complex coefficients on the stability of
difference schemes was investigated in [20,31].

In a two-dimensional case of parabolic equations with integral conditions,
the difference methods were applied in [4, 6, 21, 24, 29], and to the equations
with other type of nonlocal conditions – in [13,15].

We emphasize the fact that most of theoretical issues of difference schemes
were investigated in line with the sufficiently strong conditions introduced (it
is not clear whether they are necessary) for the various parameters or functions
in nonlocal conditions (see, for example [11,12,21]), or proving the stability or
convergence in unusual energetic norms (see [13,16]).

Another important aspect is that theoretical investigations in the numerical
analysis are strongly influenced by practical applications in heat conductions
[3], thermoelasticity [10], underground water flow [23], electrochemistry [5],
and so on. In [7, 14], some mathematical models with nonlocal conditions for
bioreactors are described.

In this paper, the stability and convergence of difference schemes for two-
dimensional nonlinear parabolic equations with an integral boundary condition
are proved using the properties of M-matrices and the structure of spectrum
of difference operators with nonlocal conditions.

In papers [28, 33, 38], the theory of M-matrices was used for the investiga-
tion of difference systems obtained from the elliptic equation with an integral
condition. In many cases, the matrix of the system of difference equations, ap-
proximating a differential equation with nonlocal conditions, is characterized
by the properties specific to M-matrices. These properties might be used to
obtain the conditions of convergence of iterative methods [28, 38]. In the pa-
per [18], the properties of M-matrices were applied to the investigation of the
stability of difference schemes in the energetic norm.

In the paper [33], using the properties of M-matrices, the error of the so-
lution of the difference problem for nonlinear elliptic equation with nonlocal
boundary condition was estimated. Two aspects of such a method of proof
have been noted. First, the main idea of error estimation is the construction of
majorant, similar as applying the maximum principle method. Second, in the
M-matrix method, the error estimate is proved declining the diagonal predom-
inance property of the matrix for the system of difference equations, which is
necessary for the maximum principle method. The results of the investigation
of the structure of the difference operator spectrum are used instead of the
diagonal predominance property.
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The stucture of the spectrum of difference operators with nonlocal condi-
tions was investigated in many papers (see [30, 35, 36] and also references in
review article [37]). In the papers [2, 16, 17, 27, 34], the stability of difference
schemes in the energetic norm according to the structure of the spectrum is
examined.

In this article the methodology of the estimation of the error of the solu-
tion as in [33] is applied to a new class of problems with nonlocal conditions,
namely, to nonlinear two-dimensional parabolic equations. The main result of
the present paper is that the stability and convergence of difference schemes for
a parabolic equation with an integral boundary condition in the uniform norm
has been proved using the structure of the spectrum of difference operator and
the theory of M-matrices. The statement on the convergence of the difference
scheme in the uniform norm was proven only in the case of nonlocal conditions
under which the matrix of the system of difference equations is diagonally dom-
inant (see, for example [11, 12, 21]). Using the methodology of M-matices the
requirement of diagonal dominance was abolished.

The paper is organized as follows. In Section 2, the differential and differ-
ence problems are stated. The difference problem for the error of the solution
is investigated in Section 3. The latter problem is expressed in the matrix form
as a two-layer difference scheme. In Section 4, some new formulations of the
well-known properties of M-matrices, adapted to the system of difference equa-
tions are obtained. Using these properties, the error estimation is presented
for the solution and the convergence of the difference scheme in the uniform
norm is proved in Section 5 . In Section 6, a short analysis of the stability of a
difference scheme is provided. Results of numerical experiments are delivered
in Section 7. Some final conclusions are presented in Section 8.

2 Statement of differential and difference problem

A semilinear two-dimensional parabolic equation

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
− f(x, y, t, u) + p(x, y, t) (2.1)

is considered in the rectangular domain D = {0 < x < 1, 0 < y < 1} and
t ∈ (0, T ]. The initial condition

u(x, y, 0) = ϕ(x, y), (x, y) ∈ D (2.2)

and boundary conditions

u(0, y, t) = γ

∫ 1

0

u(x, y, t)dx+ µ1(y, t), (2.3)

u(1, y, t) = µ2(y, t), u(x, 0, t) = µ3(x, t), u(x, 1, t) = µ4(x, t), (2.4)

where f , p, ϕ, µi, i = 1, 2, 3, 4 are given sufficiently smooth functions, are
formulated. Furthermore, the functions µ2, µ3 and µ4 satisfy compatibility
conditions at the points (1, 0) and (1, 1). In additional, boundary conditions
(2.3) and (2.4) must be satisfied for initial function ϕ(x, y).

The following hypotheses are assumed to be true:
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• Hypothesis H1. ∂f
∂u ≥ 0 for all the values (x, y) ∈ D and u(x, y, t);

• Hypothesis H2. γ is a given real number 0 ≤ γ < 2− ρ, ρ ∈ (0, 2].

A difference problem approximating differential problem (2.1)–(2.4) is writ-
ten. To this end the followin notation is introduced: h = 1

N , τ = T
N1

, where
N and N1 are positive integer numbers. Further, let xi = ih, yj = jh.
i, j = 0, 1, . . . , N ; tn = nτ , n = 0, 1, . . . , N1. A numerical approximation
Unij to the exact solution unij = u(xi, yj , t

n) of differential problem (2.1)–(2.4)
is considered.

The following notation is presented

∂2xU
n
ij =

Uni−1,j − 2Unij + Uni+1,j

h2
, ∂2yU

n
ij =

Uni,j−1 − 2Unij + Uni,j+1

h2
,

∂tU
n
ij =

Unij − U
n−1
ij

τ
, lj(U

n
ij) = h

(
Un0j + UnNj

2
+

N−1∑
i=1

Unij

)
.

A finite difference scheme is now defined

∂tU
n
ij=∂

2
xU

n
ij+∂

2
yU

n
ij−f(Unij) + pnij , i, j=1, 2, . . . , N − 1, n=1, . . . , N1, (2.5)

Un0j = γlj(U
n
ij) + (µ1)nj , j = 1, 2, . . . , N − 1; (2.6)

U0
ij = ϕij , i, j = 0, 1, . . . , N, (2.7)

UnNj = (µ2)2j , Uni0 = (µ3)ni , UniN = (µ4)ni , i, j = 1, 2, . . . , N − 1. (2.8)

Further in this article for shorter writing no restrictions are imposed on index
n in difference equations or conditions, assuming that n is any integer 1 ≤ n ≤
N1.

The solution Un−1
i,j at the all points (i, j) of the layer t = tn−1 is known.

Then system (2.5)–(2.8) for the unknowns Unij with fixed n can be interpreted
formally as difference analogue of some elliptic equation. The solution of such
system by the iterative methods was investigated in [28]. It follows from these
results that under hypotheses H1 and H2, the unique solution Unij of the system
of difference equations (2.5)–(2.8) exists.

Thus the following statement is obtained.

Lemma 1. If the hypotheses H1 and H2 are true, then unique solution of the
system of difference equations (2.5)–(2.8) exists.

Let the differential problem (2.1)–(2.4) possess the unique smooth enough
solution, i.e. the derivatives of the solution with respect to x and y up to the
fourth order and the first and second derivatives with respect to t are bounded.
Then the error of approximation is O(h2 + τ). So, the following difference
problem for the solution unij of the differential problem can be written:

∂tu
n
ij =∂2xu

n
ij + ∂2yu

n
ij − f(unij) + pnij +Rnij + rnij , i, j = 1, 2, . . . , N − 1, (2.9)

un0j =γlj(u
n
ij) + (µ1)nj +Rnj , j = 1, 2, . . . , N − 1, (2.10)

u0ij =ϕij , i, j = 0, 1, . . . , N, (2.11)

unNj =(µ2)2j , u
n
i0 = (µ3)ni , u

n
iN = (µ4)ni , i, j = 1, 2, . . . , N − 1. (2.12)
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Here, according to the presumption on the smoothness of solution of the dif-
ferential problem, the following estimations are true:∣∣Rnij∣∣ ≤ h2

6
M4,

∣∣rnij∣∣ ≤ τ

2
C2,

∣∣Rnj ∣∣ ≤ h2

12
M2, (2.13)

where

M4 = max

(∣∣∣∣∂4u∂x4

∣∣∣∣ , ∣∣∣∣∂4u∂y4

∣∣∣∣) , M2 = max

∣∣∣∣∂2u∂x2

∣∣∣∣ , C2 = max

∣∣∣∣∂2u∂t2
∣∣∣∣ .

3 Difference problem for the error

The error of the solution is noted znij = unij−Unij . From the problems (2.5)–(2.8)
and (2.9)–(2.12) the following system recieved:

∂tz
n
ij = ∂2xz

n
ij + ∂2yz

n
ij − dnijznij +Rnij + rnij , i, j = 1, 2, . . . , N − 1, (3.1)

zn0j = γlj(z
n
ij) +Rnj , j = 1, 2, . . . , N − 1, (3.2)

z0ij = 0, i, j = 0, 1, . . . , N, (3.3)

znNj = zni0 = zniN = 0, i, j = 1, 2, . . . , N − 1, (3.4)

where the following is denoted

dnij =
∂f(ũnij)

∂ũnij
, (3.5)

and ũnij is a certain intermediate value ũnij = unij + θUnij , |θ| ≤ 1.
To estimate the error znij , first of all this system is rearranged. In this

system, where n is a fixed number, there are N(N −1) equations and the same
number of unknowns. This system is reduced to two separate systems of lower
order.
With this aim zn0j is expressed from equation (3.2) for each j = 1, 2, . . . , N − 1:

zn0j = α

N−1∑
i=1

znij + βRnj , j = 1, 2, . . . , N − 1, (3.6)

where α = γh/(1− γh
2 ), β = 1/(1− γh

2 ). As h ≤ 1
2 and according to hypothesis

H2, 0 ≤ γ < 2, then

0 ≤ α ≤ 2γh < 2, 1 ≤ β ≤ 2. (3.7)

Putting expression (3.6) into equations (3.1), as i = 1 and introducing the new
notation, for each fixed n ≥ 1 is obtained:

L(zn1j) :=∂tz
n
1j −

1

h2

(
α

N−1∑
i=1

znij − 2zn1j + zn2j

)
− ∂ny zn1j + dn1jz

n
1j (3.8)

=Rn1j + rn1j + βRnj /h
2, j = 1, 2, . . . , N − 1,

L(znij) :=∂tz
n
ij − ∂2xznij − ∂2yznij + dnijz

n
ij = Rnij + rnij ,

i=2,3,...,N−1,
j=1,2,...,N−1. (3.9)

Math. Model. Anal., 25(2):167–183, 2020.
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For each fixed n ≥ 1 equations (3.1), (3.2) and (3.6), (3.8), (3.9) are equiva-
lent. But now the former system (3.1), (3.2) and (3.4) is reduced to the separate
systems:

– (N − 1)2 order system (3.8), (3.9), (3.4) with the unknowns znij in the
interior points of the grid area, i.e. as i, j = 1, 2, . . . , N − 1 and

– N − 1 order system (3.6) with the unknowns zn0j , i, j = 1, 2, . . . , N −
1; indeed, this system is the explicit formulas providing the opportunity to
calculate zn0j , when the solution of the first system znij , i, j = 1, 2, . . . , N − 1 is
known.

Now the system (3.1), (3.2), (3.4) for fixed n ≥ 1 is written in the matrix
form

Azn = Bzn−1 + rn, (3.10)

where A, B are matrices of order (N − 1)2, zn and rn are vectors of the
same order. To this end, as usual, the following order of components of vector
zn = {znij}, i, j = 1, 2, . . . , N−1 is used: first the auxiliary vectors of order N−1

are defined, znj =
(
zn1j , z

n
2j , . . . , z

n
N−1,j

)T
, j = 1, 2, . . . , N − 1, and afterwards

zn =
(
zn1 , z

n
2 , . . . , z

n
N−1

)T
.

Now the system (3.1), (3.2), (3.4) can be written in the following matrix
form (

τ−1I + Λ− C +D
)
zn = τ−1Izn−1 + rn.

Matrices I, Λ, C and D of order (N−1)2 included to this system are formed as
follow. I is the unique matrix. Λ is the matrix, corresponding to the difference
Laplace operator (with a minus sign) with zero Dirichlet conditions. C is the

matrix composed of the coefficients in the member h−2α
N−1∑
i=1

znij of equation

(3.8). D is the diagonal matrix with the elements dnij , prescribed by formula
(3.5). For details see [33]. Denote

A1 = τ−1I + Λ− C, A = A1 +D, B = τ−1I. (3.11)

Thus, the system of difference equations is written in the form of (3.10). An-
other form of this system is

(A1 +D)zn = Bzn−1 + rn. (3.12)

The solution of system (3.10) is estimated using the properties of M-matrices.

4 M-matrices and the system of difference equations

In this section, several properties of M-matrices are formulated and used them
for the investigation of system (3.10).

Definition 1. [1]. The square matrix A = {akl}, k, l = 1,m is called an
M-matrix if akl ≤ 0 as k 6= l and if there exists the inverse matrix A−1, all the
elements of which are nonnegative (A−1 ≥ 0).
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In the present paper, the following notation is used: A > 0 (A ≥ 0) if
akl > 0 (akl ≥ 0) for all k, l. Also A < B (A ≤ B), if akl < bkl (akl ≤ bkl) is
written. Analogous notation will also be used for the vectors.

The following three lemmas could be interpreted as the new statement of
certain properties of M-matrices, adapted to the systems of difference equations
approximating parabolic equations. As far as the authors are acquainted, these
properties of M-matrices were not formulated in this form so far.

Lemma 2. Let vn be the solution of the difference equation

Avn = Bvn−1 + fn, n ≥ 1. (4.1)

If A is an M-matrix, B ≥ 0, v0 ≥ 0 and fn ≥ 0 for all n ≥ 1, then vn ≥ 0 for
all n ≥ 1.

Proof. The statement of Lemma 2 follows by using the method of mathemat-
ical induction. We have v0 ≥ 0. Let vn−1 ≥ 0, then

vn = A−1Bvn−1 +A−1fn ≥ 0.

ut

Suppose there is the vector v with the coordinates vk, k = 1, 2, . . . ,m.
Vector with the coordinates |vk| is designated by |v|, i.e. |v| = {|vk|}.

Lemma 3. Let vn and wn be solutions of difference equation (4.1), and the
equation

Awn = Bwn−1 + gn, n ≥ 1 (4.2)

respectively. If A is an M-matrix, B ≥ 0, w0 ≥ 0, gn ≥ 0 as n ≥ 1 and,
additionally, |v0| ≤ w0, |fn| ≤ gn, n ≥ 1, then |vn| ≤ wn, n ≥ 1.

Proof. Just like in the proof of Lemma 2, where wn−1 ≥ 0, assume that
|vn−1| ≤ wn−1 . Then

|vn| =|A−1Bvn−1 +A−1fn| ≤ A−1B|vn−1|+A−1|fn|
≤A−1Bwn−1 +A−1gn = wn

is derived from (4.1) and (4.2). ut

Lemma 4. Let vn and wn be solutions of difference equations

(A+D)vn =Bvn−1 + fn, n ≥ 1,

Awn =Bwn−1 + gn, n ≥ 1,

respectively, where D = {dkk} is a diagonal matrix D ≥ 0. If A is an M-matrix,
B ≥ 0, w0 ≥ 0, gn ≥ 0, as n ≥ 1 and |v0| ≤ w0, |fn| ≤ gn, n ≥ 1 additionally,
then |vn| ≤ wn, n ≥ 1.

Math. Model. Anal., 25(2):167–183, 2020.
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Proof. When D ≥ 0 is a diagonal matrix and A is an M-matrix, then A+D
is also an M-matrix. Moreover

A−1 ≥ (A+D)−1 ≥ 0.

Similary as in the proofs of Lemmas 2 and 3, from |vn−1| ≤ wn−1 it follows

|vn| =|(A+D)−1Bvn−1 + (A+D)−1fn|
≤(A+D)−1B|vn−1|+ (A+D)−1|fn| ≤ A−1Bwn−1 +A−1gn = wn.

ut

5 Error estimation and convergence of the difference
scheme

With reference to the results of Section 4 , we estimate the solution of the
system of difference equations (3.1)–(3.4), i.e. the error znij = unij − Unij . In
Section 3, for each fixed n ≥ 1 this system was reduced to two systems: system
(3.2), (3.9), (3.4) and explicit formulas (3.6). The first system was presented in
matrix form (3.10), where matrices A and B were described by formulas (3.11),
and the vector r̃n was composed of the expressions of the right-hand sides of
equations (3.4), (3.9), i.e. r̃n = {r̃nij}:

r̃nij =

Rn1j + rn1j +
βRnj
h2

, i = 1,

Rnij + rnij , i = 2, 3, . . . , N − 1.

Lemma 5. If the hypotheses H1 and H2 are true, then matrix A of the system
of difference equations (3.10) is an M-matrix.

Proof. In the article [33] is proved, that the matrix Λ − C under conditions
H1 and H2 are M-matrices (see [33] Corollary 1). Since I ≥ 0 and D ≥ 0 are
diagonal matrices, it follows from the properties of M-matrices that matrices
A1 = τ−1I + Λ− C and A = τ−1I + Λ− C +D are M-matrices as well. ut

Theorem 1. If the hypotheses H1 and H2 are true and estimations (2.13) for
the error of approximation of differential problem (2.1)–(2.4) are valid, then
for the solution of the system of difference equations (3.1)–(3.4) the following
estimation is true:

|znij | ≤ C3h
2 + C4τ, i = 0, 1, . . . , N − 1; j = 1, 2, . . . , N − 1,

where constants C3 and C4 do not depend on h and τ .

Proof. First of all, it is estimated that the solution znij of this system, as
i, j = 1, 2, . . . , N − 1. In other words, in the beginning, the solution of system
(3.8), (3.9), (3.4) is estimated. Two separate cases: 0 ≤ γ ≤ 1 and 1 ≤ γ ≤ 2−ρ
are considered.



Difference Scheme for Parabolic Equation 175

An auxiliary function (majorant) is defined as:

w(x, y, t) = w1(x, t) + w2(x, y), (5.1)

Case 1: 0 ≤ γ ≤ 1. In this case,

w1(x, t) = 0.5C2(t+ 1)τ(2− x)2, (5.2)

w2(x, y) =
Mh2

24K

(
1−Kx2 −Ky2 − (1− 2K)x

)
. (5.3)

Here K = ρ/13, C2 is a constant described by inequalities (2.13), M =
max(M2,M4). We admit, that function w2(x, y) was defined in [33] as the
majorant of the problem in the case of elliptic equations. But in the case of
parabolic equation the majorant must depend on the variable t. For the func-
tion w(x, y, t) a system, analogous to system (3.1)–(3.4) choosing dnij = 0 is
written:

∂tw
n
ij =∂2xw

n
ij + ∂2yw

n
ij + gnij , i, j = 1, 2, . . . , N − 1, (5.4)

wn0j =γlj(w
n
ij) + gn0j , j = 1, 2, . . . , N − 1, (5.5)

w0
ij =g0ij , i, j = 0, 1, . . . , N, (5.6)

wnNj =gnNj , wni0 = gni0, wniN = gniN . (5.7)

In this system gnij , i, j = 1, 2, . . . , N−1 and gn0j , j = 1, 2, . . . , N−1 are unknown
values as yet. They are calculated or evaluated using expressions (5.2), (5.3).
By means of (5.1) the following are obtained

∂w

∂t
=
C2τ(2− x)

2
,

∂2w

∂t2
= 0,

∂2w

∂x2
=
∂2w

∂y2
= −Mh2

12
,

∂4w

∂x4
=
∂4w

∂y4
= 0.

Therefore,

∂tw
n
ij =

(
∂w

∂t

)n
ij

, ∂2xw
n
ij + ∂2yw

n
ij =

(
∂2w

∂x2
+
∂2w

∂y2

)n
ij

.

Thus,

gnij =
C2τ(2− x)

2
+
Mh2

6
≥ C2τ

2
+
Mh2

6
, i, j = 1, 2, . . . , N − 1. (5.8)

As it follows from (5.2), (5.3) that

w(x, y, t) ≥ w(1, 1, t) ≥ 0.5C0(t+ 1)τ ≥ 0.5C0τ ,

so
g0ij ≥ 0, gnNj ≥ 0, gni0 ≥ 0, gniN ≥ 0. (5.9)

Let us estimate gn0j . Since ∂2w
∂x2 < 0, then from the trapezoid formula the

following is achieved [33]

lj(w
n
ij) =

∫ 1

0

w(x, y, t)dx+
h2

12

∂2w

∂x2
<

∫ 1

0

w(x, y, t)dx.

Math. Model. Anal., 25(2):167–183, 2020.
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Thus gn0j = (g1)n0j + (g2)n0j , where

(g1)n0j =(w1)n0j − γlj
(
(w1)n0j

)
> w1(0, tn)− γw1(x, tn)dx

=C2(tn + 1)τ − 3

4
γC2(tn + 1)τ ≥ C2(tn + 1)τ

4
> 0; (5.10)

(g2)n0j =w2(0, yj)− γlj ((w2)0j) > Mh2/6.

The last estimation have been proved in [33]. Thus,

gn0j > Mh2/6. (5.11)

Case 2: 1 ≤ γ < 2 − ρ. In this case in the definition of the function
w(x, y, t) only w1(x, t) is modified:

w1(x, t) =
C(t+ 1)τ

2

(
γ

2− γ
− 2γ − 2

2− γ
x

)
.

In this case, (g1)n0j = 0 is obtained instead (5.10). The other three estimations
(5.8), (5.9), and (5.11) remain the same.

In both cases, for the function w(x, y, t) system (5.4)–(5.7) with the esti-
mations of right-hand sides (5.8), (5.9), and (5.11) is received.

Now system (5.4)–(5.7) for each fixed n ≥ 1, analogously to system (3.1)–
(3.4), is reduced to two separate systems (see (3.6), and (3.8), (3.9)):

wn0j = α

N−1∑
i=1

wnij + βgn0j , j = 1, 2, . . . , N − 1,

where α and β satisfy the conditions (3.7) and

L(wn1j) =gn1j +
βgn0j
h2

, j = 1, 2, . . . , N − 1, (5.12)

L(wnij) =gnij , i = 2, . . . , N − 1; j = 1, 2, . . . , N − 1. (5.13)

The system (5.12)–(5.13) with boundary conditions (5.7) in matrix form (3.10)
is written as it has been done earlier for system (3.8)–(3.9):

Awn = Bwn−1 + g̃n, (5.14)

A and B are the same matrices as in (3.11). Since wnij , differently from znij , is
not equal to zero, as n = 0 and i or j are equal to 1 or N − 1, the expression
g̃nij may not be coincident with gnij , but satisfies the condition

g̃nij = gnij +
θwnij
h2

, where θ =

{
1, as i = 1, N − 1 or j = 1, N − 1,

0, in other cases.

So

g̃nij ≥ gnij , i, j = 0, 1, . . . , N − 1.
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Taking into account formulas (5.8), (5.9) and (5.11), it is that

g̃nij =


g̃n1j ≥

C2τ

2
+
Mh2

6
+

β

h2
Mh2

6
,

g̃nij ≥
C2τ

2
+
Mh2

6
, i = 2, 3, . . . , N − 1.

(5.15)

According to Lemma 5, matrix A of the system of equations (3.10), (5.14) is
an M-matrix. From (3.12) and (5.15), with respect to (2.13), it follows that
|r̃n| ≤ g̃n. For initial and boundary conditions (3.3), (3.4), and (5.9) the
inequalities

|z0ij | ≤ w0
ij , |zniN | ≤ wniN , |zn0j | ≤ wn0j , |znNj | ≤ wnNj

are truthful as well.
Thus, for the systems of equations (3.10) and (5.14) all the presumptions

of Lemmas 3 and 4 are correct. Hence it is derived

|znij | ≤ wnij , i, j = 1, 2, . . . , N − 1, n = 1, . . . , N1.

In such way, from the expression of the function w(x, y, t) the following recieved

|znij | ≤
C2(T + 1)τ

2
+

13Mh2

24ρ
, i, j = 1, 2, . . . , N − 1, n = 1, . . . , N1. (5.16)

Now, according to formula (3.6), it is found

|zn0j | ≤ 2γh

N−1∑
i=1

|znij |+ 2|Rnj | ≤
4C2(T + 1)τ

2
+

52Mh2

24ρ
+

2Mh2

6
≤ C3h

2 +C4τ,

(5.17)
where C3 = 17Mh2/(6ρ), C4 = 2C2(T + 1). ut

From the estimations of error (5.16) and (5.17) it follows the convergence
of difference scheme (2.5)–(2.8) in the uniform norm ||z|| = max

(i,j,n)
|znij |.

6 The stability of a difference scheme

Estimation (5.17) of error could also be interpreted as statement on stability
of the difference scheme. Explaining more in detail, the definition of stability
is introduced. Since difference scheme (2.5)–(2.8) is nonlinear, the common
concept of stability can be used. Namely, two problems are considered. The
first problem is (2.5)–(2.8) with the data pnij , (µk)nj , k = 1, 2, (µl)

n
i , l = 3, 4

and ϕij . The solution of this problem is Unij . The second problem is taken with
the modified data p̃nij , (µ̃k)nj , (µ̃l)

n
i and ϕ̃ij . The solution of this problem is

denoted by Ũnij .

Definition 2. Difference scheme (2.5)–(2.8) is stable if for every real ε > 0
the value δ = δ(ε), not depending on h and τ , exists such that

|Unij − Ũnij | ≤ ε, i, j = 0, 1, . . . , N ; n = 1, 2, . . . , N1

if the data of both problems considered differs by not more than δ.
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Denote

z̃nij = Unij − Ũnij , δ0ij = ϕij − ϕ̃ij ,
δnkj = (µk)nj − (µ̃k)nj , k = 1, 2, δnil = (µl)

n
i − (µ̃l)

n
i , l = 3, 4.

For the unknowns z̃nij , the following system of difference equations (see (3.1)–
(3.4)) is written:

∂tz̃
n
ij =∂2xz̃

n
ij + ∂2y z̃

n
ij − dnij z̃nij + δnij , i, j = 1, 2, . . . , N − 1, (6.1)

z̃n0j =γlj(z̃
n
ij) + δn0j , j = 1, 2, . . . , N − 1, (6.2)

z̃0ij =δ0ij , i, j = 0, 1, . . . , N, (6.3)

z̃nNj =δnNj , z̃ni0 = δni0, z̃niN = δniN , i, j = 1, 2, . . . , N − 1, (6.4)

for which the the following estimation is valid:

|δnij | ≤ δ, i, j = 0, 1, . . . , N ; n ≥ 0. (6.5)

With this system we perform the same transformations as in Section 3 for
system (3.1)–(3.4). The obtained analogue of system (3.2) is written

Az̃n = Bz̃n + (r̃1)n,

where

(r̃1)nij =

{
δn1j + βδn0j/h

2,

δnij , i = 2, . . . , N − 1.

Now the analogue of Theorem 1 can be formulated.

Theorem 2. If the hypotheses H1 and H2 are true, then the system of differ-
ence equations (2.5)–(2.8) is stable in the sense of Definition 2.

Proof. According to Definition 2, it is necessary to prove that for each ε > 0
the value δ = δ(ε), not depending on h and τ , will arise, such that, for the
solution of system of difference equations (6.1)–(6.4), the estimate

|z̃nij | ≤ ε (6.6)

is correct if (6.5) is valid. This statement could be fully proved analogously as
Theorem 1. It is only enough to change the definition of the function w(x, y, t)
a little. Namely in the definition of the function w1(x, t) (formula (5.2)) the
constant δ can be used instead of C2τ

2 . In the definition of the function w2(x, y)

(formula (5.3)) can be used δ instead of constant Mh2

24 . Then analogously to
estimates (5.16) and (5.17), it is obtained

|z̃nij | ≤ (T + 1)δ + 13δ/ρ = (T + 1 + 13/ρ) δ, i, j = 1, 2, . . . , N − 1 (6.7)

and
|z̃n0j | ≤ (8T + 12 + 13/ρ) δ, j = 1, 2, . . . , N − 1. (6.8)

Thus if

δ ≤ C5ε, C5 = min {T + 1 + 13/ρ, 8T + 12 + 13/ρ} ,

then (6.6) is satisfied. ut
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7 Numerical results

In order to verify the theoretical results and demonstrate the order of conver-
gence of the approximate solution, some test problem where the exact solution
of differential problem is known is considered.

A differential equation is considered

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
− u3 + p(x, y, t)

in the domain D = {0 < x < 1, 0 < y < 1, 0 < t ≤ T} with integral condition
(2.3), boundary conditions (2.4) and initial condition (2.2). The functions
p(x, y, t), ϕ(x, y), µi(y, t), i = 1, 2, and νi(x, t), i = 3.4 are chosen that the
function

u(x, y, t) = eat sinπx sinπy + bx2 (7.1)

is the analytical solution of the problem under investigation. The test problem
has been solved with some different parameters γ, a, b, T , h and τ .

In order to evaluate the accuracy of the numerical method, the absolute or
relative error were used

Enh,τ =max
i,j

∣∣u(xi, yj , t
n)− Uni,j

∣∣ , εnh,τ = max
i,j

∣∣u(xi, yj , t
n)− Uni,j

∣∣
|u(xi, yj , tn)|

.

The theoretical results presented in the previous section do not depend
upon the numerical method that is used to solve system of nonlinear difference
equations (2.5)–(2.8) with fixed n.

This system can be solved using one of the iterative methods suitable for
problems with nonlocal conditions [28]. Here a Jacobi method was used.

The results of the numerical test for different h and τ are presented in
Table 1. It reveals that the absolute error Enh,τ decreases approximately as

O(h2 + τ). Now the role of additional term bx2 in (7.1) is explained. The

Table 1. The values of absolute error Enh,τ for different h and τ ; b = 1; T = 1.

h = 1
10

h = 1
20

h = 1
40

h = 1
80

τ = 1
40

τ = 1
160

τ = 1
640

τ = 1
2560

a = 0.5, γ = 2 0.0098 0.0025 6.1565 · 10−4 1.5459 · 10−4

a = 0.5, γ = 1 0.0098 0.0025 6.1500 · 10−4 1.5347 · 10−4

a = 0.5, γ = 0.5 0.0098 0.0025 6.1420 · 10−4 1.5329 · 10−4

a = 0.5, γ = 0 0.0098 0.0025 6.1376 · 10−4 1.5319 · 10−4

a = 1, γ = 1 0.0112 0.0028 7.0765 · 10−4 1.9918 · 10−4

constant M2 in (2.13) depends on b. But constant M4 in that formula does
not depend on b. Thus, it is feasible, varying b > 0, investigate the influence of
the approximation error of nonlocal condition (which is bounded by constant
M2) without changing approximation error of differential equation (which is
bounded by constant M4). The results are presented in Table 2.
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Table 2. The values of absolute error Enh,τ for diferent b; h = 1
40

, τ = 1
640

; T = 1.

b = 0 b = 5 b = 10 b = 15

a = 0.5, γ = 1 6.5273 · 10−4 5.4711 · 10−4 0.0011 0.0016
a = 0.5, γ = 2 6.1970 · 10−4 0.0015 0.0030 0.0044
a = 1, γ = 2 9.1335 · 10−4 0.0015 0.0029 0.0044
a = 2, γ = 2 0.0044 0.0034 0.0029 0.0043

In Table 3, the results of numerical experiment of influence of T on the error
of solution is presented. All constants M2, M4 and C2 from (2.13) depend on
eat for solution (7.1). It means that in the case a > 0 these constants as well as
the absolute error Enh,τ for fixed h and τ can grow rapidly, when t is growing.
In case a > 0 the relative error εnh,τ is used. The relative error with fixed h
and τ increase slowly with the growing t (see the estimate of constant C4 in
(5.17), which depends on T ). The numerical results confirm the stability of the
method.

Table 3. The values of errors Enh,τ and εnh,τ for diferent T ; h = 1
40

, τ = 1
640

.

T = 1 T = 3 T = 10

a = 1, γ = 1, b = 1 Enh,τ 7.4133 · 10−4 19.4167 56.2224

εnh,τ 0.0071 1.2292 2.6604

a = 1, γ = 2, b = 1 Enh,τ 7.0765 · 10−4 19.4165 56.1322

εnh,τ 0.0150 2.7013 5.6986

a = −1, γ = 1, b = 1 Enh,τ 4.3511 · 10−4 4.3511 · 10−4 4.3511 · 10−4

εnh,τ 0.0209 0.0687 0.2320

a = 0.2, γ = 1, b = 1 Enh,τ 5.1908 · 10−4 6.3246 · 10−4 0.0019

εnh,τ 0.0079 0.0079 0.0079

8 Conclusions

The results obtained in the paper extend the class of the differential problems
with nonlocal conditions when it is possible to prove the stability and conver-
gence of difference schemes in the uniform norm. In this case, there is no need
to require the matrix of the difference problem to be symmetrical or diagonally
dominant. In this paper, the conditions of the stability and convergence are re-
ceived using the main presumption that all the eigenvalues of the corresponding
difference problem with nonlocal conditions are positive. Thus, nonlocal condi-
tion (2.3) can be interpreted as one particular case of nonlocal conditions when
it is possible to prove the stability and convergence of the difference scheme
in the uniform norm. So, the methodology of M-matrices might be also used
in different cases of nonlocal conditions when all eigenvalues of the difference
problem are positive. Some of such cases are examined in review article [37].
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Furthermore, from the properties og M-matrices it follows that it would be
enough to require even more general conditions. Namely, that the condition
Reλ > 0 should be true for all the eigenvalues of the corresponding matrix.
In papers [30, 32, 34], several specified examples with other types of nonlocal
conditions are provided, when there exist complex eigenvalues, the real parts
of which are only positive. It might be possible to apply the methodology of
the present paper to these problems. The relevant majorant w(x, y, t) should
be constructed.

Regarding, that estimates (5.17), and (6.7), (6.8), obtained in the present
paper, depend on the constant ρ (see the hypothesis H2 in Section 2). It is not
clear whether this constant should be certainly included in the estimate. It is
only possible to state that the estimates depend on the choice of the majorant
w(x, y, t). In addition, the function w2(x, y) is very close to the majorant used
in the maximum principle to the stationary problems [25].
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[6] R. Čiegis, O. Suboč and A.Bugajev. Parallel algorithms for three-
dimensional parabolic and pseudoparabolic problems with different bound-
ary conditions. Nonlinear. Anal. Model. Control, 19(3):382–395, 2014.
https://doi.org/10.15388/NA.2014.3.5.
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182 R. Čiupaila, M. Sapagovas and K. Pupalaigė
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[15] F. Ivanauskas, T. Meškauskas and M. Sapagovas. Stability of difference schemes
for two-dimensional parabolic equations with nonlocal conditions. Appl. Math.
Comp., 215(7):2716–2732, 2009. https://doi.org/10.1016/j.amc.2009.09.012.
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