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Abstract. This paper provides a weak convergence theorem for weighted empirical processes of a station-
ary sequence under a new weak dependence condition introduced by P. Doukhan and S. Louhichi.
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1. Introduction

Let (Un)n∈Z be a stationary sequence of random variables with common distribution
function F . Assume without loss of generality that F is a uniform law on [0,1]. Then
the empirical distribution function En of U1, . . . ,Un is defined by

En(x) = n−1
n∑

i=1

I (Ui � x), −∞ < x < ∞,

where I is the usual indicator function. Define the empirical process

αn(t) = n1/2(En(t) − t
)
, 0 < t < 1.

Let q be a positive weight function on (0,1). That is, infδ�t�1−δ q(t) > 0 for all
0 < δ < 1/2. And consider the following convergence result in the Skorohod space
D[0,1] when the sample size converges to infinity

1

q
αn →D 1

q
B∗. (1)

Where B∗ is the dependent analogue of a Brownian Bridge, that is B∗ denotes the
centered Gaussian process specified by B∗(0) = B∗(1) = 1 and

EB∗(x)B∗(y) =
∞∑

k=−∞
Cov

(
I (U0 � x)I (U|k| � y)

)
. (2)

Note that for independent sequences {Un} B∗ coincides with the standard Brownian
Bridge. For other important properties of B∗ we refer to Shao, Yu [5]. The following
theorem is the well known result from Chibisov (1964) and O’Reilly (1974).
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THEOREM 1.1. Let {Ui, i ∈ Z} be i.i.d. r.v’s. Assume that q is a positive and con-
tinuous weight function on (0,1), and is nondecreasing in a neighborhood of 0 and
non increasing in a neighborhood of 1. Then

I (q,λ) :=
∫ 1

0

1
t (1 − t)

exp
(

− λq2(t)

t (1 − t)

)
dt < ∞ (3)

for all λ > 0 if and only if (1) holds in D[0,1] with the Skorohod J1-topology.

Function q which satisfies (3) for all λ > 0 is called a Chibisov–O’Reilly weight
function. The critical function in this case is

√
t (1 − t), which doesn’t satisfy rela-

tion (3).
The case of dependent random variables is considered in the paper by Q.M. Shao,

H. Yu [5]. They proved the weighted Empirical CLT (1) for mixing and associated
processes. More general dependent processes, in the context of an empirical limit the-
orem, are provided in the paper by P. Doukhan and S. Louhichi [2].

This work provides the weighted Empirical CLT (1) when a sequence (Un)n∈Z is
weakly dependent. With the help of Rozenthal-type inequalities under weak depen-
dence it is shown that weighted ECLT holds for the weight functions having the fol-
lowing form

q(t) � C
(
t (1 − t)

)µ
(

log
1

t (1 − t)

)β
, t ∈ (0,1), (4)

where C > 0, β > 1�2, 0 < µ � 1�2 and µ depends on the form of weak depen-
dence.

2. Dependence

2.1. Weak Dependence

Let L∞
n be the set of real valued bounded measurable functions on the Euclidean space

Rn and let ‖.‖∞ be the norm on L∞
n . Consider a function h: Rn → R where Rn is

equipped with the l1-norm (i.e., ‖(z1, . . . , zn)‖1 = |z1| + · · · + |zn|) and define the
Lipschitz modulus Lip(h) = supx �=y

|h(x)−h(y)|
‖x−y‖1

. Let L = {h ∈ ⋃∞
i=1 L∞

i : ‖h‖∞� 1,

Lip(h) < ∞}.
DEFINITION 2.1 (P. Doukhan and S. Louhichi [2]). A sequence (Xn)n∈Z of random

variables is called (θ,L,ψ)-weakly dependent if there exists a sequence θ = (θr )r∈N

decreasing to zero at infinity and a real valued function ψ with arguments (h,k,u,v) ∈
L×L×N ×N such that for any u-tuple (i1, . . . , iu) and any v-tuple (j1, . . . , jv) with
i1 � . . . � iu < iu + r � j1 � . . . � jv one has∣∣Cov

(
h(Xi1 , . . . ,Xiu ), k(Xj1 , . . . ,Xjv

)
)∣∣ � ψ(h,k,u,v)θr ∀r ∈ N,

and the functions h and k are defined respectively on Ru and Rv.

Examples of interest include ψ(h,k,u,v) = c(u,v)µ(Lip(h),Lip(k)) for some
locally bounded functions µ and c. For example if we take µ(x,y) = c(x,y) = xy then
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we get a weak dependence condition typical for associated processes. An interesting
case is a so called s-weak dependence where function ψ(h,k,u,v) = v‖h‖∞Lip(k).

A wide class of weakly dependent sequences describes the following definition.

DEFINITION 2.2 Let (ξi)i∈Z be a sequence of i.i.d. real valued r.v’s and let a func-
tion H : RZ → R be measurable. A sequence (Xn)n∈Z of r.v. is called a Bernoulli shift
if it is defined by Xn = H(ξn−j , j ∈ Z). A sequence (Xn)n∈Z of r.v. is called causal
Bernoulli shift if Xn = H(ξn, ξn−1, . . . , ξ0, ξ−1, . . .), H : RN → R.

For any integer k > 0, denote δk = supi∈Z E|H(ξi−j , j ∈ Z) − H(ξi−j I|j |<k ,
j ∈ Z)|. The following lemma describes the dependence structure of Bernoulli shifts.

LEMMA 2.1 (P. Doukhan, S. Louhichi [2]). Mean zero Bernoulli shifts are
(θ,L,ψ)-weakly dependent with

ψ(h,k,u,v) = 4
(
u‖k‖∞Lip(h) + v‖h‖∞Lip(k)

)
, θr = δr/2.

Under causality, this holds with θr = δr and ψ(h,k,u,v) = 2vLip(k)‖h‖∞.

2.2. ECLT under dependence

The following theorem of Q.M. Shao, H. Yu ([5]) is essential for the proofs of this
paper.

THEOREM 2.2. Let {Un,n � 1} be a stationary sequence of uniform [0,1] random
variables. Assume that for all 0 � s, t � 1 and n � 1 we have the following conditions

a) E
∣∣αn(t) − αn(s)

∣∣p � C1
(|t − s|p1 + n−p2/2|t − s|r1

)
for some C1 > 0, p > 2, p1 > 1, 0 � r1 � 1 and p2 > 1 − r1,

b) E
∣∣αn(t) − αn(s)

∣∣2 � C2|t − s|r2

for some C2 > 0 and 0 < r2 � 1,

c) αn →D B∗.

Then (1) holds with q an arbitrary weight function satisfying (4) for some C > 0 and
β > 1/2 and

µ = min
(p1

p
,
r1 + p2

p + p2
,
r2

2

)
. (5)

Note that if a Chibisov–O’Reilly weight function has the following form

q(t) =
(
t (1 − t) log log

(
1�(t (1 − t))

))1/2
f (t)

then, necessarily, f (t) → ∞ as t → 0 or t → 1. Thus the weight function q from (4)
can be compared to a Chibisov–O’Reilly weight function by taking µ in (5) close to
1/2 or exactly 1/2.
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3. Weighted ECLT under weak dependence

Let’s assume that {Un,n � 1} is a stationary sequence of uniform [0,1] random vari-
ables satisfying the following condition

sup
f ∈�

∣∣∣∣Cov

( 2∏
i=1

f (Uti ),

4∏
i=3

f (Uti )

)∣∣∣∣ � θr, (6)

where � = {x → I (s < x � t), s, t ∈ [0,1] }, 0 � t1 � t2 � t3 � t4 and r = t3 − t2.
Note that if condition (6) is satisfied and θr = O(r− 5

2 −ν), ν > 0, then the sequence
of processes αn is tight in the Skorohod space D[0,1](see [1]).

The idea of this section is a use of (θ,L,ψ)-weak dependence together with the
condition (6). Indeed the first one implies the second under the assumption of concen-
tration of marginal distributions(in our case marginal distribution is uniform).

LEMMA 3.1. Let {Un,n � 1} be a stationary sequence such that (6) holds. Assume
that θr = O(r−a), a > 5/2 then for some constant C > 0

E
∣∣αn(t) − αn(s)

∣∣2 � C|t − s| a−1
a .

Proof. Define Yn = I (s < Un � t) − (t − s), Sn = ∑n
i=1 Yi . By lemma 3 in

P. Doukhan, S. Louhichi [2] it follows

E|Sn |2 � Cn

n∑
r=1

min
(
r−a, |t − s|) � Cn

( ∑
r�|t−s|− 1

a

r−a +
∑

r<|t−s|− 1
a

|t − s|
)

.

We can approximate the first sum by the integral
∫ n−1

|t−s|− 1
a

du

ua
� C|t − s| a−1

a .

the second sum also satisfies the bound � C|t − s| a−1
a .

THEOREM 3.1. Let {Un,n � 1} be a stationary sequence of uniform [0,1] random
variables. In addition assume that {Un,n � 1} is (θ,L,ψ1)-weakly dependent, with

θr = O(r−5−ν), ψ1(h,k,u,v) = (
Lip(h) ∨ Lip(k)

)
(u + v), ν > 0,

then (1) holds with an arbitrary weight function q satisfying (4) for some C > 0, β >

1/2 and µ = 1/2 − 1/(10 + 2ν).

Proof. Using Rosenthal type inequalities under weak dependence obtained by
P. Doukhan, S. Louhichi [2] it follows that for a = 5 + ν

E
∣∣αn(t) − αn(s)

∣∣4 � C

(( n−1∑
r=0

r−a ∧ |t − s|
)2 +

(1
n

n−1∑
r=0

(r + 1)2θr

))



Weighted empirical FCLT for weakly dependent processes 551

� C

(( ∑
r�|t−s|− 1

a

r−a
)2 +

( ∑
r<|t−s|− 1

a

|t − s|
)2 + n2−a

)

� C
(|t − s| 2(a−1)

a + n2−a
)
.

By Lemma 3.1 it follows that

E
∣∣αn(t) − αn(s)

∣∣2 � C|t − s| a−1
a .

Note that from [2] it follows αn →D B. Now it is possible to use Theorem 2.2

p1 = 2(a − 1)

a
, r1 = 0, p2 = 2(a − 2), r2 = a − 1

a
, p = 4.

Thus

µ = min
(p1

p
,
r1 + p2

p + p2
,
r2

2

)
= min

(a − 2

a
,
a − 1

2a

)
= a − 1

2a
= 1/2 − 1/(10 + 2ν).
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REZIUMĖ

M. Juodis. Empirinė centrinė ribinė teorema su svoriais silpnai priklausomiems procesams

Darbe ↪irodoma centrinė ribinė teorema empiriniams procesams silpnai priklausomiems dydžiams. Nagri-

nėjamas empirinis procesas normuotas standartinėmis svorio funkcijomis.


