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Abstract

The reaction-diffusion and diffusion equations were applied for mod-
elling of some processes in biochemistry and electrochemistry. Modelling
of the amperometric biosensors based on carbon paste electrodes en-
crusted with a single nonhomogeneous microreactor is analyzed. The
mathematical model of the biosensor operation is based on nonstation-
ary reaction-diffusion equations containing a non-linear term given by
Michaelis-Menten function. Modelling of a simple redox-electrode reac-
tion, involving two soluble species, is also considered. The model of the



electrode behavior, taking into account the resist layer of the partially
blocked electrodes, was expressed as a system of differential equations of
the diffusion type with initial and boundary conditions. The mathemati-
cal model generalizing both processes: biochemical and electrochemical is
presented in this paper. The generalized problem was solved numerically.
The finite-difference technique was used for discretisation of the model.
Using the numerical solution of the generalized problem, the influence of
the size, shape and position of a microreactor as well as the thickness of
the resist layer on the current dynamics was investigated.

Keywords: modelling, diffusion, biosensors, partially-blocked elec-
trodes, microreactor.

1. Introduction

More than 200 million people worldwide, approximately half undiagnosed,
are estimated to suffer from diabetes [1, 2]. Between 0.6 and 0.7 million
new cases are diagnosed each year in the USA. About 0.8 million people
are insulin-depend in the USA. People with diabetes measure their blood
glucose levels by sticking a finger with a needle to obtain a blood drop that
is placed on a test strip and analyzed by a portable instrument. Repeating
this procedure several times a day becomes painful, leading many patients,
especially the elderly, to perform the procedure infrequently. Furthermore,
the accuracy of some blood glucose analyzers is poor. Glucose biosensors
appears to be promissing as blood glucose analyzers [3].

Recently, the amperometric biosensors based on carbon paste electrodes
(CPEs) encrusted with a single microreactor (MR) have been constructed
for the determination of glucose [4, 5]. The MRs were prepared from
CPC-silica carrier and were loaded with glucose oxidase (GO), mediator
and acceptor.

Starting from the publication by Clark and Lyons [6], biosensors be-
came one of the perspective lines of investigation in analytical devices. In
most cases the membrane biosensors were used in the investigation. Math-
ematical models of behavior of a membrane biosensor are rather widely
known [7]. In case of a membrane biosensor, the enzyme electrode has a
layer of enzyme immobilised onto the surface of the probe.

In [5] author explored an idea to separate the enzyme and the electron
transfer components in a microreactor, the silica particle, and use the well-
established carbon paste electrode.

One of the goals of this research is to propose a model allowing us an
effective digital simulation of biosensor operation as well as to investigate



the influence of the geometry of a microreactor on the operation of the
biosensor.

The mathematical model of the operation of biosensors is based on non-
stationary diffusion equations containing a non-linear term related to the
enzymatic reaction. In the simplest case, this term is given by Michaelis-
Menten equation [8, 9]:

dv du au
— _ 7 1.1
dt dt  b+u’ (1.1)

where a represents the maximal enzymatic rate, b the Michaelis constant, u
the substrate concentration, and v the reaction product concentration. Due
to the technology of the construction of MR, the number and geometrical
shape of the cells, which are filled with glucose oxidase, cannot be precisely
defined. The problems in the modelling arise because of possibility to solve
analytically such type of equations. In the digital modelling, the nonhomo-
geneous nature and size of MR, the complexity of the boundary conditions
and the overload of calculation are the main problems. Therefore, the
model was reduced by the homogenization process [10].

Modelling of a simple redox-electrode reaction, involving two soluble
species, is also considered in this paper. Microelectrodes and their en-
sembles (arrays) have been investigated recently from both theoretical and
experimental point of view. A comprehensive review of papers is given in
[11].

High diffusion current densities conditioned by radial flows, and low
values of ohmic potential drop are most prominent in the case of ultra-
microelectrodes, whose characteristic length is less than 20pm [11, 12].
Modern technologies make it possible to manufacture electrodes of very
small dimensions (down to 0.2 — 1um of order) [13], by using different
materials.

Because of the currents observed at single electrodes are not high (due
to a small area of their surface), the microelectrode ensembles with the
above properties are advised to be used for various purposes. The range of
application of such microelectrodes is very wide, covering viz. electroanal-
ysis and investigations of kinetics of electrochemical reactions [14, 15, 16],
usage in vivo of microsensors modified by enzymes [17], application of mi-
croprobes sensitive to various ions in scanning electrochemical microscopy
[18], monitoring of zone distribution in electrophoresis, improvement of
liquid chromatographic detectors [19], etc.



A hexagonal distribution of unit cells containing active/passive disc
electrodes has been analyzed in terms of semi-infinite diffusion in [16,
20, 21]. To simplify quantitative description, the cell was divided into
two coaxial spaces, with different regularities of mass transport. Such
approach made possible to apply the Laplace transform and to obtain
analytical expressions. Usually these expressions involved a parameter
v [20], which used to have a physical sense, but was in fact, a fitting
parameter. Experimental data obtained with linear potential sweep (LPS)
technique followed the theoretical regularities of the model [21]. Though
the employed model electrodes had the photoresist layer of the thickness of
1 — 2pm, in mathematical model the electrode surface was assumed to be
flat.

This approach was improved in [22, 23, 24] where the diffusion in
limited space (a concept of a pseudo Nerst diffusion layer) was taken into
account. In addition, the division of diffusion space into two parts was
made by means of a plane parallel to the electrode surface.

Semi-infinite diffusion image is generally used in theoretical works. Ac-
cording to this, the diffusion front may infinitely shift from the electrode
surface to the bulk of solution. However, if the measurement time is not
very short, it is indispensable to take into consideration the consequences
of natural convection as well (see, e.g., [25]).

The electrochemical process includes exchange of current and diffusion.
A model allowing us to simulate effectively the electrochemical behavior
of partially blocked electrodes under linear potential sweep conditions is
proposed in this paper. The model of the electrode behavior was expressed
as a system of partial differential equations of the diffusion type with initial
and boundary conditions. The proposed model involves the Nerst diffusion
layer as well as a resist layer of the inactive site of the electrode surface.
The diffusion space adjustment to the electrode surface is divided into equal
hexagonal prisms with regular hexagonal bases. For simplicity, a circle
whose area is equal to that hexagon is considered.

In the proposed model, the mass transport is regular in the entire diffu-
sion space. The influence of the thickness of the resist layer is investigated
is this paper. Specifically it is shown that the influence of 1um thickness
of the resist layer can be significant for relatively small active areas of the
partially blocked electrodes.

The mathematical model of the generalized process involving a reaction
(enzymatic process) in a microreactor, the charge transfer in active region
of an electrode, and the diffusion is presented in this paper. The generalized



problem was solved numerically. The finite-difference technique was used
for discretisation of the model. Since the size of MR as well as the size of
the resist layer is much less than the size of the diffusion space, the overload
of calculation is the main problem in the numerical modelling.

The influence of the size, shape and position of a microreactor as well as
the thickness of the resist layer on the current dynamics was investigated.
The dependence of the maximal current on the geometry of the diffusion
space was considered.

2. Mathematical Modelling

Let us describe a model of behavior of a biosensor based on the nonho-
mogeneous microreactor as well as a model of electrochemical behavior of
partially blocked electrodes under linear potential sweep.

2.1. A Model of Behavior of a Biosensor based on the nonhomogeneous
Microreactor

Let Q be the finite closed area of the container (buffer solution) which was
filled with some substrate, and Qg the area of MR (29 C Q). Let T' be the
whole surface of the container (2 = QUT), and I'; (T'; C I') only the base
of the container. I'y also denotes the surface of the electrode.

Since the microreactor was constructed from CPC-silica carrier (CPC)
and was loaded with glucose oxidase (GO), let the whole MR area g
consist of two areas: {lgc, the CPC-carrier, and g, the glucose oxidase
(QO = Qoc U Qog) (ﬁgure 2.1).

The operation of the biosensor includes heterogeneous enzymatic pro-
cess (reaction) and diffusion. The stimulus of the reaction is MR, but the
reaction performs only in the area Qyg of MR which was filled with glucose
oxidase. The mathematical model [26] consists of a system of the following
non-linear differential equations of reaction-diffusion type:

g—: = div (D grad u)— f(u), (2.1)
ov )

i div (D grad v)+ f(u), (2.2)
D|QOG = D|Q\Qo =d, D|ro =0, (2.3)
f|QOG = au/(b+u), f|ro = f|Q\QO =0, (24)
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Fig. 2.1: A principal structure of a nonhomogeneous microreactor was
constructed from CPC-silica carrier and was loaded with glucose oxidase.
The average size of a cell which is filled with glucose oxidase is much less
than the size of MR. The geometrical shapes of cells are not precisely
defined.

where u is the substrate concentration, v is the concentration of the reaction
product, d is the constant diffusion rate of the substrate and reaction
product, a is the maximal enzymatic rate, b is the Michaelis constant,
and ¢ is time. The initial conditions (¢ = 0) are

ulgy =0, ulgyg, = uo. vlg=0. 2.5)

When an electrode is polarised, the concentration of the reaction product at
the electrode surface is being reduced to zero. This is used in the boundary
conditions (¢ > 0) given by

onlr 7 on

ou 0 ov _
I\Ty

0, U|F1 = 0, (2.6)

where Ju/0On|r is a derivative of u with respect to the internal normal
direction to the surface I'.

Due to the technology of the construction of MR, the number of cells
which are filled with glucose oxidase is very large, so an average size of



a cell is much less than the size of MR. The number of the cells and the
geometrical shape of the cells cannot be precisely defined. For that reason,
it is hopeless to solve (2.1)-(2.6) analytically and even to design an effective
algorithm for the numerical calculations.

It was assumed that MR is a periodic medium, and the model (2.1)-
(2.6) was reduced by the homogenization process [10]. Let ¢ be the
ratio of the volume of the glucose oxidase which fills the MR cells to the
volume of entire MR (it is easy to calculate this ratio experimentally),
i.e., ¢ = volume(Qoa)/volume(y). By using the homogenization process,
the definition of the non-linear term related to the enzymatic reaction was
simplified and the model was reduced to

ou

Fri div (D grad @) —cf (u), (2.7)

ov L= _ _

5= div (D grad v)+cf(u), (2.8)

Dloq, =d,  Dla, =, (2.9)

fla = au/(b+7), flova, =0, (2.10)
where @ & u, T ~ v, and d is the average diffusion rate in the entire area of
MR (Qo).

The initial conditions and the boundary conditions are the same as
above ((2.5) and (2.6), respectively).

The value d of the diffusion rate in the area of MR () depends on
the diffusion rate d, the geometry of MR, and the ratio ¢ [10]. If dg,
is a diffusion rate in enzyme (GO), and d.p. is a diffusion rate in silica
carrier, then the average diffusion rate d in the entire media can be chosen
employing the following condition:

2dgodcpc < E < dgo + dcpc

2.11
dgo + depe 2 ( )

Because of (2.11) and assumption that dy, = d,depe = 0, the average
diffusion rate d must satisfy the condition

0<d<d/2. (2.12)

The biosensor current density ¢ at time ¢ is proportional to the concen-
tration gradient of the product of reaction near the surface of the electrode:



. —Ov
i), = nFDa— (2.13)
where n is a number of electrons, and F is Faraday constant.
The total biosensor current I(t) at time ¢ can be expressed by integrat-
ing of (2.13) over the entire surface of the electrode (the base of the buffer
solution):

- //F i(t)dT. (2.14)

The container was modelled as a right cylinder with circles of radius
R in bases and altitude of H. MR was modelled as a rotation figure.
Particularly, MR was modelled as a hemisphere of radius Ry. MR was
placed on the center of the base of the container (figure 2.1).

Due to symmetry, the model (2.7)-(2.10),(2.5),(2.6) may be written in
two cylindrical coordinates (r, z) with

={(r,z):0<r<R,0<z<H},
(r,z) 12 +2° < R,z > 0},
(r,0) : 0 <r < R}, (2.15)
(0,2) :0<z< H}U

(R,z):0< z< H}U

{(rnH):0<r<R}UT.

={
={
={
{

The definition of €y in (2.15) depends on a shape of MR. Several other
geometrical shapes of MR differing from the hemisphere were used in the
investigation of the biosensor behavior.

2.2. A Model of electrochemical Behavior of partially blocked
Electrodes

Consider a simple redox-electrode reaction:
O+ne+= R, (2.16)

involving only soluble species. The redox process includes a charge transfer
and diffusion. It was assumed that mass transport obeys a finite diffusion
regime within a Nerst layer from the electrode/electrolyte boundary. Be-
cause of the thickness of the Nerst layer may be different for species O and
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R, let us define two finite closed areas: Qo = Qo UTp and Qp = QrUTR
with the boundary I'o and I'g, respectively. Let us notice that either
Qo C Qr or Qp C Qp. Let I’g (Fg, respectively) be the upper surface
(Nerst layer boundary) of the space Qg (Qo, respectively) (I'y C Ig,
'y cro).

The surface of a solid electrode is generally composed of active (un-
covered) and inactive (covered) sites. Since, the charge transfer occurs in
the active region of the electrode only, let 'y be the active region of the
electrode (I'yet C g, Lot C To).

The mathematical model of the reaction (2.16) can be written as a
system of partial differential equations of the diffusion type:

0Cgr

—— = DpA 2.1
5 rRACRE, (2.17)

% — DoACo, (2.18)

where A is the Laplace operator, Cr and Cp are the concentrations of the
species R and O, respectively, Dr, Do are the diffusion coefficients, and ¢
is the time elapsed since the beginning of the electrolysis.

The initial conditions (¢ = 0) are

Crlg, = Cp: Colg, = Co, (2.19)
where CY% and C? are the initial concentration of the species in the con-

tainer.
The boundary conditions (¢ > 0) are

Crlry = Cg,  Colry = Cp, (2.20)
9Cr _ 9Co —0, (2.21)
On IT\(DaceUTR) On I\(PaceUT'Y)
0CRr 0Co .
FDp—— = -—-nFDp—— = 2.22
" R an I‘act " © an I‘act Z(t) ( )

with

. [ Cgr anF
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Fig. 2.2: A principal structure of (a) partially blocked electrode and (b)
the profile at z plane. Shaded areas indicate the resist layer. The figure
is not to scale.

where i is the current density, E(t) is the electrode potential, E,, is the
equilibrium potential of the reaction (2.16), « is the anodic transfer coef-
ficient, 7o is the standard rate constant, d/0n|r denotes a derivative with
respect to the internal normal direction to the surface I', F' is the Faraday
constant, R is the gas constant, and 7T is the absolute temperature.

The total current I(¢) can be expressed by integrating (2.23) over the
whole surface of the active region of the electrode:

I(t) = / /F i(£)dT ger, (2.24)

For a single cyclic potential sweep, the electrode potential-time function
can be written as

— <t<
E(t):{Eeq vt, 0<1t<t,

Eeq —2vt, +0t, t>t,, (2.25)

where v is the sweep rate and ¢, is the time of reversal of the linear potential-
time sweep [21].

The mathematical model (2.17)-(2.23) was applied for digital simulation
of real experiments. The principal structure of the surface of partially
blocked electrodes, used in the experiments, is shown in figure 2.2a, where
m circular active regions of radius a are arranged in a rigid hexagonal array.
Due to the symmetric distribution of the active sites, leaving out of account
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the resist layer, the diffusion space adjustment to the electrode surface may
be divided into m equal hexagonal prisms with regular hexagonal bases. For
simplicity, it is reasonable to consider a circle of radius b (figure 2.2b) whose
area is equal to that of the hexagon and to regard one of the cylinders as
a unit cell of the diffusion space [21]. Due to the symmetry of a cylinder,
we may consider only a quarter of the cylinder. Now, taking into account
the resist layer of thickness h (figure 2.2b), the mathematical model (2.17)-
(2.23) of the reaction (2.16) for partially blocked electrodes, shown in figure
2.2, may be written in cylindrical coordinates (r, z) with

:0<r<a,0<z<dpU

Lot ={(r,2) : 0 <r <a,z=0},

Y ={(r,2z) :0<r <b,z= 60},

N ={(r,2) : 0 <r <b,z= g},

Qo ={(r,2):0<r<a,0<2z<do}U (2.26)
{(r,z) ra<r<bh<z<do},
(r; 2)
(r; 2)

where §p and Jdpr is the thickness of the Nerst layer for species O and R,
respectively.

3. Generalized Problem

We generalized the model of a biosensor based on MR and the model of
partially blocked electrodes to a model having all the features of both initial
models. The reason of such generalization was an idea to develop a parame-
terized effective algorithm for numerical simulation of both initial processes.
The main aim of the generalization was to reuse existing program code more
efficiently, and increase the productivity of realization of similar models.
For that reason some parameters were introduced to the generalized model
without necessity in point of view of the models defined above. On the
other hand, generalization allows us to model some additional features of
the processes discussed above, e.g., to simulate electrochemical behavior of
partially blocked electrodes with nonhomogeneous active areas (the active
area consists of the more active area and the less active one).

The generalized model can be used to simulate behavior of the elec-
trochemical process when immobilized enzyme is fastened upon the flat
surface of an indicator electrode. A model of a flat biosensor where electro-
chemical reaction (2.16) coupled with an enzyme reaction, characterized by

13



Michaelis-Menten equation (1.1) can be found in [27]. So, the generalized
model can be treated as a model of a really possible process.

3.1. Definition of the Generalized Problem

Let G, = G4 UT, (@ = 1,2) be a finite closed area with the boundary
Ty, and Gy an area (may be empty) inside the area G,, i.e., Gy C Gy,
a=1,2. Let I'y; be a subset of the boundary I', lying at the plane z = 0,
e, Daet CTylz=0, a=1,2.

The generalized problem was defined as a boundary-value problem with
initial conditions. Consider a system of the following non-linear differential
equations of the reaction-diffusion type expressed in two cylindrical space
coordinates (r, z):

ou

o = LYUut L u—cf(u), (r,z) € Gy, (3.1)
31) ds ds
5= L7Pv+LyPv+cf(u), (r,z) € Ge, (3.2)

where operator L%u (8 =1,2) is defined as

10 ou
d [ — _
Liu = % <rd(r, z) (97’) , (3.3)
0 ou
d, _ 9 i
Lu = % <d(r, z) az) , (3.4)
¢ is a constant, and the function f(u) is defined as
au
0, (7‘, Z) S (G1 U GQ) \ Gp.

The initial conditions (¢ = 0) are
u(lra Z,O) = ’LL()(’I“, Z)7 (lra Z) € Ela (36)

v(r,2,0) = vo(r,2), (r,2) € Ga. (3.7
The boundary conditions (¢ € (0,7]) are

14



Ju

p11(r, 1) 5% +ia(r, huteis(r,t)v =0,  (r,z) € Laet, (3.8)
ov
o1 (T, t)$+<,022(r, tut@as(r,t)v =0, (r,2z) € Lo, (3.9)
ou
P11 (r, Z)%-H/)u(?“, z)u =1p13(r,2), (r,z) € T'\Laet, (3.10)
ov
o1 (7, Z)%Jﬂ/m(h z)v = o3(r,2), (r,2) € I'9\Laer, (3.11)
where 0/0n denotes a derivative with respect to the internal normal di-
rection to the surface, and ¢ag(r.t), 1aps(r,2) are functions, @ = 1,2
5=1,23

Let I(t) be a function defined as

27
I(t) = nF// do(r, z)@ rdrde, (3.12)
I‘a,ct az Fact
0

where F' is the Faraday constant, n is a coefficient (the number of electrons).
We solve the system of equations (3.1)-(3.11) with

G ={(r,z) : 0<r < A,0<2< 6, U
{(r,z) :A<r<R,B<z<d4} (3.13)
Lot ={(ry2) : 0<r <A z=0}T4t Cly,a=1,2.

3.2. Numerical Solution of the Generalized Problem

Closed mathematical solutions are not usually possible when analytically
solving the differential equations with complex diffusion space and bound-
ary conditions as well as the variable diffusion coefficient, therefore the
problem represented by (3.1)-(3.11) was solved numerically. The finite-
difference technique [28] was used for discretisation of the model. This
technique allows us to solve effectively the differential equations with rather
complex diffusion space and boundary conditions as well as the variable
diffusion coefficients. The similar equations of diffusion as (3.1)-(3.11) with
various boundary conditions have been investigated in [29, 30].

15



We introduced non-uniform grids in r and z directions, while an uniform
grid was used in the direction #:
Wh :{’Fi (S (O,R),’I“i =ri1+h,i=12,...,I,...,N — 1},
ro =0,ry = R,r; = A;
Wal :{Zj S (0,(5a),2j =2Zj1 +la]‘,j =12,...,J,...,M, — ].},

3.14
20=0,z2pm, = 04,270 =B,a=1,2; ( )
wr ={ty =kr,k=1,2,..., K}, 7K =T;
aa :((ah X aal) \ {(Tivzj)vi Z I:J S J}) U {(TI;ZJ)}:Q = 172
Let us assume the following:
wij = u(ry, zj,t), vij = 0(ri, 25,t), dai; = da(ri,25), (3.15)

i=0,1,....N, j=0,1,...,Ma, a=12;

Tix12 = (Pi +1ix1)/2, higiye = (hi + hiy1)/2,

la’j+1/2 = (lomj + la7j+1)/2’ (316)
dajit1/2,5 = (da,ij + dajiz1,5)/2,  daijr1/2 = (dayij + dagijx1) /2,
i=0,1,.... N—-1, 57=0,1,...,M,—-1, a=1,2.

The terms (3.3),(3.4) were approximated with the following difference
operators:

1 Wit i — Ui Wii — Ui 1 4

d, _ i+1,j ij ij i—1,j

Afu = i Ti+1/2di+1/2,j7 - Ti71/2di71/2,j A
Tiltiy1/2 i

hig1
(3.17)

1

a,j+1/2

doo
Ay u =

Ui, j4+1 — U4y Uij — Ui j—1
(di,j+1/27 —dij 1 p——"— |,a=12

loz,jJrl la,j
(3.18)
We relate the system of equations (3.1),(3.2) with the following differ-
ence scheme applying the variable direction method:

au(t+1/2)

(k+1/2) _ 4,(k)
# ) ,(’f‘i, Z]) € (:}1, (319)

— Aflu(k+1/2)+Agl’l’U,(k) —Yij

0.57 b+ ulk
(k+1/2) _ ,,(k) (k+1/2)
v VY ada, (k172 d2,2 (k) . 94U o e
0‘57_ — A12’U( / )+A22 ’U( )+’Yz] b + U(k+1/2) 9 (rla Z]) E UJQa
(3.20)
(k+1) _ , (k+1/2) (k+1)
u u dq, au ~
o5 = ADy(W+1/2) 4 g 1u(lc+1)—%‘jm, (ri,25) € W1,

(3.21)
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p(k+1) _ y(k+1/2)

0.57

au'k+1)

_ Ado, (k+1/2) d2,2, (k+1) P
= AP +A5% +’Yub+u(k+1/2

where

_f e, (ri,25) € Go,
YT 0, (rs,25) € (G UGh) \ Go.

The initial conditions (3.6),(3.7) were approximated by

— .0 s =
uij =y, (i, 2;) € Wi,

_ 0 . Ves
vij =, (ri,zj) € Da.

Let us assume the following;:

Pap,i = Paps (Ti7t)a (Ti: 0) € (511 N Fact) s

1/)Oéﬁai7j = ¢aﬁ(rivzjat)v (Tia Zj) € (aa N (F \ Fact)) ,
a=1,2, =1,2,3.

The boundary conditions (3.8),(3.9) were approximated by

Uil — Ui )
Prii— +p12,iU50+013,050 =0, 0<i < T,
11

Vi1 — Vi0 .
90217il7+<P22,iui70+9023,i7)i,0 =0, 0<Z¢<1,
21

The boundary conditions (3.10),(3.11) were approximated by

Ui, J41 — Ui J .
Y114, 0+ V125, 5%, = Y1349, I <i<N,
i

Vi J+1 — Vi,J )
Yo1,4, 0+, JV;, 7 = Y2355, I <i<N,
loyia

Ui, My—1 — Ui, M,y ;
Vi1 —————————+ V12, M Wi vy, = Y13, 0 <4 <N,

L,

Vi,My—1 — Vi, M, ;
Va1 i, M ———————FV22. i M Vi, My = V23405, 0 <3N,

lan,

Uy,; — Ug,j .
P10 I = +1P12,0,jU0,j = V13,05, 07 < My,

V1,j — Yo,j

1/121,0,]‘T+1/)22,0,j00,j =123,0,5, 0<J < Mo,

17

) 7(riazj) € (:\JQ,

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)



Ur-1,j —Ur,j

¢11,1,jT+¢12,1,ju1,j =315, 0<j <, (3.35)
Vr—1,5 — V1,5 .
1/121,1,]'%’*1/122,1,]'@14 =31y, 0<j5<J, (3.36)
UN—1,j — UN,; )
¢11,N,j#+¢12,N,jUN,j =13.Nj, J <5< My, (3.37)
UN—-1,5 — UN,j .
¢21,N,j$+¢22,N,jUN,j =pa3 Nj, J <j< M. (3.38)

Let us notice, that the implicit of (3.22) can be increased by replacing
the term au**t1) /(b + wF+1/2)) with au®*V /(b + w*F+D) if @i5(r,t) = 0,
V(r,t) € ([0, A] x (0,7]) in (3.8). This increase of implicit may be used in
modelling of biosensor based on microreactor.

The difference scheme (3.19) - (3.38) is implicit and linear. The equa-
tions (3.24),(3.25) allow us to calculate a solution of the problem on the
layer t = tg = 0. When a solution on a layer ¢ is calculated, a solution on
the next layer ¢t = £;,1 can be effectively calculated using these steps:

1. Calculate values of u(¥+1/2) solving systems of linear equations (3.19),
(3.33), (3.35), (3.37) for all j = My —1,...,J,...,1. Use a value of us11 s
calculated from wuyi; sy using (3.29) in solving the system for j = J.

2. Calculate values of v(#11/2) solving systems of linear equations (3.20),
(3.34), (3.36), (3.38) forall j = My —1,....J,...,1 using values of u(k+1/2)
which were calculated in step 1. Use a value of vr41,; calculated from
vr+41,7+1 using (3.30) in solving the system for j = J.

3. Calculate values of u**1) and v*t1) solving systems of linear equa-
tions (3.21), (3.27), (3.29), (3.31) and (3.22), (3.28), (3.30), (3.32) for all
i =1,..., I,...,N. Use a value of u;j_1 and v; j_; calculated from
ur—1,7—1 and vr_q y—1 using (3.35) and (3.36), respectively, in solving the
system for ¢ = I.

The values of u*+1) and v(**+1) (step 3) can not be calculated indepen-
dently from each other (like it was done in step 1 and 2) because of boundary
condition (3.27), which relates u%ﬂ) and v%ﬂ) for all 2 = 0,...,1. The

step 3 can be splited into two sequential steps: calculation of u**1) and

calculation of v**1) in a special case of @13(r,t) = 0, V(r,t) € ([0, 4] x
(0,77) in (3.8).
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The systems of linear equations, which are solved in the all three steps
above, can be solved effectively because of the tridiagonality of the matrices

of the systems.
Function I(¢), which was introduced in (3.12), can be approximated as

-1

Vit1/2,1 — Vit+1/2,0
Iy = 0.5nFZd2i+1/2’1/2( i/ L / )w(rfﬂ —r2) (3.39)
i=0

forall k =1,2,..., K (K was defined in (3.14)).

4. Simulation of the Biosensor Action

4.1. Numerical Simulation of the Behavior of the Biosensor

The numerical solution (3.19) - (3.38) of the generalized problem (3.1)-
(3.11) was used for digital simulation of behavior of the amperometric
biosensors based on the carbon paste electrodes encrusted with a single
nonhomogeneous microreactor.

The mathematical model (2.7)-(2.10), (2.5), (2.6), (2.14) of a biosensor
based on the nonhomogeneous MR can be expressed as a special case of
the model (3.1) - (3.11) assuming the following:

H,

A=R, R=R, B=0, G =Gy=2Q,
z)
z

Go={(r,2) : v+ 22 < R3,2z > 0},
Lot ={(r,2) : 0 <r <R,z =0},
uo(rz):{o’ (r,z) € Go,

’ UQ, (’)",Z)E(GlLJGQ)\G(],

(4.1)

(’l”, Z) € G(),
(r, Z) € (G1 U GQ) \ G(),
s 9012(711 t) =0, @13(7'7 t) =0,
=0

pi1(r,t) =1

P21 ('ra ) =0, (,022(’1“, =Y @23(717 t) =1,
’(/)11(’)", Z) = 1, ’(/)12(’)", Z) = 0, ’(/)13(’)", Z) = 0,
'(/)21(7‘, Z) = 1, '(/)22(7‘, Z) == 0, '(/)23(7‘, Z) =0.

Since T'y in (2.15) and T4y in (4.1) denotes the same area, the total
current I(t) can be expressed with (3.12) and calculated by using (3.39).
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Fig. 4.1: The dynamics of the current of the model biosensor [4, 5]. The
microreactor was modelled as hemiellipsoid of revolution. The average
diffusion rate d in MR was equal to d/k (see (2.9), (2.12) ), where k is
from the set {2;2.7;3;4}. The values of all other parameters are defined
in (4.2). The white circles show experimental data, and the solid lines
are numerical solutions.

4.2. Simulation of Real Experiment

Microreactor was modelled as a hemi-ellipsoid of revolution in simulation
of the behavior of amperometric biosensor based on carbon paste electrode
(CPE) encrusted with the microrector. MR was placed on the center of the
base of the buffer solution (container). Approximately, 60% of the volume
of MR was loaded with the glucose oxidase (GO), and the rest part of MR
was the CPC-silica carrier (CPC), i.e., the ratio ¢ = 0.6 in (2.7-2.8).

The solution (3.19) - (3.38) with (4.1) of the model was used to simulate
the behavior of the biosensor based on the nonhomogeneous MR with the
following values of the parameters:
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R=1cm, H =1lcm, Ry=0.042cm,

d=6.7x10"%m?/s, d=d/2.7,

a=4.4x10"°mol/cm3, b= 8.3 x 10~°mol/cm?, (4.2)
up =5 x 10 %mol/cm?, n =2,

Qo ={(r,2) : 72+ (2/0.43)? < R3,z > 0}.

The maximal rate of the enzymatic reaction (a) and apparent Michaelis
constant (b) was calculated following [31]. The result of calculations as well
as experimental data is depicted in figure 4.1. The value d/2.7 was chosen
as the homogenized diffusion rate d in the area of MR to have the best fit
between the experimental and numerical curves of the current.

4.3. Influence of the Size of a Microreactor

The dynamics of the biosensor current was considered in a parameterization
of the radius of MR, i.e. dependence on the size of a microreactor was
considered in the case where the value of the diffusion rate d and the values
of all other parameters are the same as defined above in (4.2). MR was
modelled as a hemisphere. The evolution of a current for the radius of MR
equal to 0.25Ry, 0.5Ry, Ry, 1.5Ry, 2.0Ry (here Ry is the same as in (4.2))
is presented in figure 4.2.

One can see that the values of the current (including the maximal
current) increase if the radius of a microreactor increases and this growth
is non-linear.

4.4. Influence of the Shape of a Microreactor

Several other geometrical shapes of MR differing from the hemisphere were
used to analyze a dependence of the operation of biosensor on the form of
MR.

Firstly, MR was modelled as a hemiellipsoid of revolution. In the
Cartesian coordinate system it is given by

2 2 2
x z
Y+

St <1, z>0, (4.3)

c2

where a and ¢ are semi-axes of the ellipsoid. The current was calculated
for several different values of a and ¢ keeping the volume of every ellipsoid
equal to the volume of a sphere of radius Ry in order to have the same
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Fig. 4.2: The dependence of the biosensor current on the size of a
microreactor solid. The microreactor was modelled as one half of a sphere
of radius r, where r is from the set { 0.25Rg; 0.5Rg; Ro; 1.5Rg; 2.0R, }
. Ry and the values of all other parameters are defined in (4.2).

volume of MR as that used in real experiments and in test calculations.
Thus, the volume of MR was kept constant, and only a geometrical form
was changed. The following cases were analyzed:

a) the semi-axis ¢ is equal to the one-fourth of the semi-axis a;
b) the semi-axis ¢ is equal to the one-half of the semi-axis a;
c¢) the semi-axis c is equal to the semi-axis a;

d) the semi-axis c is twice as long as the semi-axis a;

e) the semi-axis ¢ is four times the semi-axis a.

The results of calculation are presented in figure 4.3. The form of MR
appears to be important for the current and it is especially important at
the initial stage of the reaction. Here the current grows faster as the area of
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Fig. 4.3: The dynamics of the biosensor current in the case where
microreactor is a hemi-ellipsoid of revolution. a and c are, respectively,
the semi-axes of the ellipsoid in the z— and z— direction (in the Cartesian
coordinate system, see (4.3)). The volume of every ellipsoid is equal to
the volume of a sphere of radius Rp.

the base of MR increases. Later this importance decreases. The area of the
base of MR is important for the maximal current and the time moment of
the occurrence of the maximal current. The maximal value of the current
increases and the time moment of its occurrence decreases as the area of
the base increases even if the volume of MR remains unchanged.

A half of a torus was used as a second geometrical shape of MR. Let
r be the radius of a circle which draws the torus and R is the radius of
the leading circle of the torus, i.e., R is the distance between the z-axis
and the center of a circle which is rotated around the z-axis. The center
of the rotating circle is on the plane z = 0. Several different values of both
radiuses 7 and R were used to determine the dependence of the current on
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Fig. 4.4: The dynamics of the biosensor current in the case where the
microreactor is a half of a torus. r is the radius of the leading circle
rotated to get the torus and R is the radius of that rotation around z-
axis (in the Cartesian coordinate system). The center of the leading circle
is on the plane z = 0. The volume of every torus is equal to the volume
of a sphere of radius Ry (4.2).

this geometrical form of MR. The volume of every torus was equal to the
volume of a sphere of radius Ry (see (4.2)). Microreactors of the shape of
the upper part of a torus (z > 0) were used in calculation. In a special
case, where R = 0, MR is a half of a sphere. The dynamics of the current
in the case where MR was modelled as one half of a torus is depicted in
figure 4.4.

4.5. Influence of the Position of a Microreactor

In all the numerical experiments discussed above as well as in the physical
experiments, MR was placed on the base of a container. We investigated
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Fig. 4.5: The dynamics of the biosensor current in the case where the
microreactor is lifted up from the base of the container. MR is a sphere of
radius r. The volume of the sphere is equal to the volume of a hemisphere
of radius Ry (see (4.2)). h is the distance between the center of MR and
the base of a container.

the dynamics of the current when MR was lifted up. Since the current
arises only when some concentration of the reaction product is reached on
the base of the container, the current emerges with delay if MR is lifted up.
The time of delay depends on an altitude. The MR in the form of a sphere
was used in the analysis. The radius of MR to be lifted up was derived from
Ry (Ry is defined in (4.2)) to have the volume of MR the same as it was
in the test experiments, where MR was modelled as a hemisphere. Let h
be the altitude of MR, more precisely, h is the distance between the center
of MR and the base of a container. The results of numerical experiments
for several values of altitude h are shown in figure 4.5. It appears that the
altitude of MR is very important for the dynamics of the biosensor current.
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The delay increases and the current grows much slower if altitude increases.

5. Simulation of the electrochemical Behavior
of Electrodes

The numerical solution (3.19) - (3.38) of the generalized problem (3.1)-
(3.11) was used for digital simulation of electrochemical behavior of par-
tially blocked electrodes under linear potential sweep conditions.

The mathematical model (2.17)-(2.23), (2.26) of the electrochemical
behavior of partially blocked electrodes under linear potential sweep con-
ditions was expressed as a special case of the model (3.1) - (3.11) assuming
the following:

’LL:CR, ’U:CO,

01 =0g, d2=100,

A—a, R=b, B=h,
G1=Qr, G2=Q0, Go=0,

I'y=Tg, Ty=To, (5-1)
Loct ={(r,2) : 0 <r <a,z=0},
ug(r, z) = C%, vo(r, z) = C’g,
dy(r,z) = Dgr, das(r,z) = Do,
p11(r,t) = nFDg,
) 1 anF
patrt) = =i (e (< (B = EC)) ). 52
iy 1 (1 —a)nF
oiatrt) = o (g e (UG (B = B0) ).
wo1(r,t) = nF Do,
(1 (1 —a)nF
ontrt) = =i (g o (U2 (B~ E@) ) ). 5
. 1 anF
ontrt) = o (g e (=G (Ba = B0 )
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Yri(r2) = { o ; c rR \ (O UT o),

prg(r, 2) = { (1) E: 3 € T\ (T UTyer). o
Prs(r, 2) = { S’ %’ e o \ (T UTaur),

o (1, 2) = { ; E: 3 Eﬁf\ (TN UTuer),

w29 ={ & (7 EP\ U >
Yaa(r,2) = { 88’ s Eg\ (T U Tace).

The current of the unit cell I(#) (2.24) can be calculated by (3.12).
Then, the current of the unit cell was multiplied by the number of the unit
cells m to get the total current of the electrode. Since the area S of the

whole surface of the model electrodes was approximately 0.48cm?, and the
radius b of unit cell was 23.6um, then m was about 27430 (m = S/(7b?)).

5.1. Experimental

Several model electrodes were used in real experiments and numerical sim-
ulation of the behavior of the electrodes. Experimental results were pub-
lished in [32]. The electrodes varied in the blocking degree 0(8 = 1—a?/b?).
The geometrical data of model electrodes, used in the real experiments,
is presented in table 1. We had no possibility to measure precisely the
thickness h of resist layer. The measurement of the resist layer of the
model electrodes showed that the thickness was about 1um (h &~ 1um).

Table 1. Geometrical data of model electrodes
No. a (pm) b (um) 0
1 23.6 23.6 0
2 10.0 23.6 0.82
3 2.5 23.6 0.989

The solution (3.19) - (3.38) with (5.1)-(5.5) of the model (3.1) - (3.11)
was used to simulate the electrochemical behavior of the partially blocked
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electrodes under linear potential sweep conditions with following values of
the parameters:

CY% = C2 = 2.5 x 10" °mol/cm?,

Dr =48 x10"%m?/s, Do = 5.8 x 1075cm?/s,
n=1, a=05 T=293°K,

Eeq =470mV, E, = —100mV, FE =900mV,

(5.6)

where E, is the electrode potential at the reversal time t,, i.e., E, = E(t,)
in (2.25), E is the final electrode potential. The value of ¢, for the numerical
simulation of the electrode behavior, was calculated from (2.25) with the
value E, and a value of the sweep rate v. The electrode potential during
the experiments, was decreased (forward or cathodic sweep direction) from
E.q, to E,, then the electrode potential was increased (reverse or anodic
sweep direction) up to E. There were two sweep rates (v): 20mV /s and
100mV/s. In all the numerical experiments, values of iy in (2.23), (5.3),
(5.3) and dg,d0 in (2.26), (5.1) were chosen to have the best fit between
the experimental data and numerical solutions as values of the current. In
addition, the values of 7y were chosen among values between 0.01 and 0.1
(A/cm?) [20]. An empirical law of §r\/v & const and §o\/v ~ const,
which was found to be valid under linear potential sweep condition [33],
was used to determine values of 0, do.

The values (5.6) of the parameters were constant in numerical simula-
tion of the all experiments.

5.2. Simulation of the Behavior of the unblocked Electrode

Firstly, the model was used for numerical simulation of the unblocked
electrode (No. 1 in table 1). There are no inactive sites at all in this
extreme case of the blocking degree. So, a = b, h = 0 with § = 0. The
thickness o and dr of the Nerst diffusion layer was chosen as do = 240um,
dp = 420pm at v = 20 mV/s and dp = 110pum, ér = 190pm at v = 100
mV/s.

In numerical solution, accurate and stable results were achieved when
the radius a of the active site of the unit cell was divided into 50 increments,
and the minimum step in z direction was equal to min(dp,dg)/10% (0.24m
at v =20 mV /s and 0.11pm at v = 100 mV/s). The step in ¢ direction was
1072 s at v = 20 mV/s and 2 x 1073 s at v = 100 mV/s. Results of the
calculation are depicted in figure 5.1. As it is possible to notice, the good
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Fig. 5.1: The dynamics of the current for the unblocked electrode No.1
(table 1) at two sweep rates v: 100 mV/s (ip = 0.015A/cm®, 6o =
110pm, 6z = 190pm) and 20 mV/s (ip = 0.012A/cm’, do = 240um,
0r = 420pm). The white squares and circles show experimental data,
and the solid and dash lines are corresponding numerical solutions at v
= 100 mV/s and v = 20 mV /s, respectively.

agreement between the result of the calculation and experimental data is
obtained.

5.3. Simulation of the Behavior of the partially blocked Electrodes

Then the electrochemical behavior of several partially blocked electrodes
(No. 2 and 3 in table 1) was simulated. At first, we did not take into
account the resist layer, following the known assumption [20] that the
influence of the thickness of the resist layer of 1 — 2um would be negligible
because of the thickness is much smaller than the radius of the unit cell.
Results of calculations showed that calculated maximal currents were rather
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Fig. 5.2: The dynamics of the current for model electrode No.3 (table
1) at sweep rate v = 20 mV/s. h is the thickness of resist layer, where
h is from set {0,1,2,4} (um), do = 280pum, dp = 340pum and iy =
0.1A/ cm®. The white circles show experimental data, and the solid lines
are numerical ones.

greater (up to 40% than the experimental maximal currents. Therefore, the
resist layer was introduced into the mathematical model (2.17)-(2.23), i.e.,
into the definition of the diffusion space Qo and Qg (2.26) of the model
(2.17)-(2.23).

The thickness dp and dg of the Nerst diffusion layer in modelling of
electrodes No. 2 and 3 (see table 1), was chosen as dp = 280um, dp =
340um at potential sweep rate v of 20 mV /s and 6o = 125um, dp = 150um
at v = 100 mV /s. Accurate and stable results of numerical simulation were
achieved when the radius a of the active site of the unit cell was divided
into 200 increments, i.e., the minimum step was 0.05um for electrode No.2
and 0.0125um for electrode No.3, while the minimum step was 0.47um in
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Fig. 5.3: The dynamics of the current for model electrode No. 3 (table 1)
at sweep rate v = 100 mV/s. The thickness h of the resist layer is from
set {0,1,2,4} (pm). 6o = 125um, §p = 150pm and ig = 0.1A /cm?. The
white circles show experimental data, and he solid lines are numerical
ones.

the case of the unblocked electrode No.1. The minimum step in z direction
was used as min(dp,dx)/10* (0.028um at v = 20 mV/s and 0.0125um at
v = 100 mV/s). So, the minimum step of the discrete grid w; and w9
in both space directions (r,z) was of the order of magnitude lower than
the corresponding minimum step in numerical modelling of the unblocked
model electrode. It can be explained by the discontinuity of the boundary
condition (2.21)-(2.22) and relatively small thickness h of the resist layer (h
was from set {1,2,4}(pm)), i.e., h < min(dp,dr)). The step in ¢ direction
was the same as in modelling of the unblocked electrode. In numerical
modelling of an extreme case of h = 0, the minimum step in z direction
was the same as in case of unblocked electrode. Results of the calculations
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Fig. 5.4: The dynamics of the current for model electrode No. 2 (table
1) at sweep rate v = 20 mV/s. Values of dp, dr, and iy are the same
as in figure 5.2. The thickness h of the resist layer is from set {0,1,2,4}
(um). The white circles show experimental data, and the solid lines are
numerical ones.

are depicted in figures 5.2, 5.3, 5.4.

5.4. The Influence of the Thickness of the resist Layer

The influence of the thickness of the resist layer as seen in figures 5.2 and 5.3,
appears to be important for highly blocked electrode (6 = 0.989). The good
agreement between the calculated and experimental results is obtained at
resist layer thickness (h) of about 1ym. That value of the thickness compare
favorable with the values given by experimental measurement of the resist
layer of the model electrodes. Figures 5.2 and 5.3 show that the cathodic
(forward) and anodic (reverse) maximal currents are about 25 — 40% less
for the thickness h of the resist layer of 1ym in comparison with the case
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Fig. 5.5: The dependence of the normalized cathodic (k.) and anodic (k)
(see (5.7)) peak current on the blocking degree 6 at sweep rate v = 100
mV /s. Values of o and dg are the same as in figure 5.3, ig = 0.05A /cm?.
The white rectangles and circles show calculated values of k. and k,,
respectively. The solid lines are corresponding functions (5.8) fitted to
these values.

of h = 0. This property is valid for both sweep rates: 20 mV/s (figure 5.2)
and 100 mV/s (figure 5.3).

While comparing figure 5.2 with figure 5.4, one can see that the influence
of the resist layer on values of the current is less meaningful for an electrode
with the less blocking degree at the same sweep rate. In other words, the
effect of the resist layer is more enhanced with the increase of the blocking
degree.

The investigation of the influence of the resist layer on the behavior of
the partially blocked electrodes was generalized. Let Iy 4 be the cathodic
peak current and Iy , the anodic one for the model electrode with blocking
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Fig. 5.6: The dependence of the normalized cathodic (k.) and anodic (k)
(see (5.7)) peak current on the blocking degree 6 at sweep rate v = 20
mV /s. Values of o and &g are the same as in figure 5.2, ig = 0.05A /cm?.
The white rectangles and circles show calculated values of k. and k,,
respectively. The solid lines are corresponding functions (5.8) fitted to
these values.

degree of 6 and the resist layer thickness of & (um). Values of If , and Iy ,
were calculated for various values of the parameter (0 < 6 < 1) and two
values of h: 0 (no resist layer) and 1ym. Let k. be a dimensionless ratio
of the cathodic peak current I{ , to I§,, and k, a ratio of the anodic peak
current Iﬁa to I(‘)l,o’ ie., ’ ’

ke=Ig/loe, ka=1{4/15g (5.7)

Figure 5.5 shows the variation of the ratio k. and k, with blocking
degree. In this calculation, values of v = 100 mV/s, dp = 125um, dp =
150pm, and ip = 0.05A /cm? were employed.
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Curves drawn through all calculated values are functions:

(1-0)(p1/(p2—0)+p3/(pa—0)+ps), (5.8)

where p; = 0.611, po = 1.001, ps = 0.293, py = 1.02, ps = 0.106 for k. and
p1 = 0.597, po = 1.001, p3 = 0.316, ps = 1.04, p5 = 0.104 for k,.

A significant decrease in k. as well as k, with the increase in the blocking
degree can be seen in figure 5.5. Note the k. =~ k, = 1, i.e., IT ) = I, and
I?, ~ Ij, when blocking degree 6 becomes about 0 . Values of k'yc and
k:q notable decrease for higher values of the blocking degree (6 >~ 0.85).
So, the resist layer of thickness of 1um appears to be important for the
peak currents, and it is especially important for highly blocked electrodes.
Particularly, the sensitivity of the cathodic peak current and anodic one to
the thickness of the resist layer is very similar.

The similar variation of the ratio k. and k, with blocking degree was
also determined at the sweep rate v = 20 mV/s . This is depicted in
figure 5.6. In this calculation, values of §p = 280um, dp = 340pm, and
ig = 0.05A /cm? were employed. Curves drawn through all calculated values
are functions (5.8), where p; = 0.715, py = 1.001, p3 = 0.251, py = 1.02,
ps = 0.048 for k. and p; = 0.608, po = 1.001, p3 = 0.366, ps = 1.02,
ps = 0.042 for k,.

6. Conclusions

The homogenization process [10] can be successfully used to reduce the
mathematical model of the operation of a biosensor based on the non-
homogeneous microreactor. The homogenized problem can be effectively
solved by using finite-different technique.

The mathematical model (2.17)-(2.23) may be successfully used for
the simulation of electrochemical behavior of partially blocked as well as
unblocked electrodes. The mass transport may be assumed to be regular in
the entire diffusion space. In simulation of behavior of the partially blocked
electrodes, the resist layer of thickness of 1um should be taken into account
to obtain the good agreement between experimental and numerical results
for highly blocked electrodes (6 >= 0.85). The thickness of the resist layer
is a parameter of the model, which can be measured experimentally, in
contrast to the parameter y in [20], which had a physical sense but was, in
fact, a fitting parameter. The influence of the resist layer on the cathodic
and anodic peak current increases with the blocking degree.
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