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Abstract. We present results of the numerical investigation of the dgenous
Dirichlet and Neumann problems to an age-sex-structuredlption dynamics
deterministic model taking into account random mating, dls pregnancy,
and spatial diffusion. We prove the existence of separablatisns to the
non-dispersing population model and, by using the numleggperiment,
corroborate their local stability.
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1 Introduction

To describe dynamics of the one-sex age-structured population with cowvith
spatial diffusion the Sharpe-Lotka-McKendrick-von-Foérster motlpof its Gur-
tin-MacCamy [2] generalization is usually used. The survey of the nunierica
methods of solving of these models is given in [3]. In paper [4] a model of
the two-sex age-structured population was proposed taking into acspatial
diffusion and Cauchy problem was examined. It takes into accounbranaating

of sexes and females’ pregnancy. The model involves pairs that exisefiod of
mating only and uses the mating function of the simplified harmonic mean type.
In the present paper we use a more general harmonic mean-type matitigriun
(see equations (3)). To decrease the dimension of the problem in the wympu
simulation we consider the case where all vital rates do not depend on time. We
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also assume thag is independent of age of male and consider the homogeneous
one-dimensional Dirichlet and Neumann problems.

The paper is organized as follows. In Section 3 we formulate the problem. In
Section 4 we prove the existence of separable solutions to the non-iligperp-
ulation model. Results of the numerical investigation are presented in Section 5.
Section 6 concludes the paper.

2 Notation

x = (z1,22,...,xy,) € Q C R™ the position inR"™;

71, T9, T3: the age of male, female, and embryo;

o1 = (111,712),0 < 711 < T12 < 00: the male sexual activity age-interval;
09(73) = (T21 + 73, T22 + 73),0 < T91 < Ta2 < 0

02(0): the female gestation age-interval;

o2(T): the female delivery age-interval;

T': the gestation period;

ui(t, 71, x): the density of males aged at timet¢ at the position;

ua(t, 72, x): the density of single (unfertilized) females agedat timet¢ at the
positionz;

us(t, 7,72, 73,): the density of fertilized females aged at timet at the posi-
tion  who were fertilized by males aged (at the mating moment) and whose
embryos are aget} at the same time

vi(t, 7, x): the death rate of individuals:(= 1 for males,k = 2 for single
females) aged;, at timet at the positionz;

v3(t, 71, 72,73, 2): the death rate of fertilized females agegdat timet¢ at the
locationz who were fertilized by males aged at the mating moment and whose
embryos are aged; at the same timeg

hi(7x): the preference functions;

p(t, 71, 12, x)dt: the fertilization probability;

Q1 = (0,00), Q2 = (0,00)\{721, 701 + T, 722, 722 + T'};
Qs = 01 X Q3;
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Qé = {(72,73) Ty € 09(T3), T3 € (O,T)};

B = 1,0, + la,l5(x) > 0,1; + 12 > 0;0, : the outward normal derivative aif?;
bi(t, 71, 72, z): the birth moduli £ = 1 for males . = 2 for females);

[ug|r=-]: @ jump discontinuity of; at ther = 791, 701 + T, 722, 722 + T’

k. the diffusion coefficient;

ul (11, ), ud(2, ), ud (11, 72, 73, 2): the initial distributions.

3 The model

We consider the initial-boundary value problem with the homogeneous Robin
condition on the boundar§. We assume that the pair formation can be described
by a harmonic mean-type function. The model consists of the equations, fof,
andus,

Ouy /Ot + Ouy /0T = —1qur + kK1Auy, t>0, 71 € Q1, x € Q,

ul‘t 0 — ul:

U |7y = 0—/d7'1 / 51U3| 7dT2, @

(%ul ’39 = 0

8U2/8t+8&2/87’2
:—I/QUQ—XI—I—X +/€2AU2, t>0, 70 € Q2 x €,

u2|t 0—’LL2, u2’7’2 T —

U2|rp— 0—/d7'1 / boug|ry=1d72,

(Buz)|an = 0,
0, T2 ¢ 02(0),
X = /u3|.,.3:0d7'1, T € 0'2(0)a

o1

O7 T2 ¢02(T)’
Xy = /ugITS:Tdﬁ, 2 € 02(T);

o1

(2)
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'GU3/07§+8U3/87‘2+8U3/87‘3
:—V3’LL3+I€3A’LL3, t >0, (7'1,7'2,’7'3) GQg, T €,
ugli—o = uf,

U3l ry=0 ZPU1U2/(/h1U1dT{ + / h2u2d7§)7

g1 02(0)

()

(Bus)|aa = 0.

Here A is the Laplace operator iR™. All given functionsuvy, s, 13, by, bo,

hi, ha,l1, I, ud,u9,ud, and p and the unknown ones;, us, andusz must be
positive supported otherwise they have no biological significance. ¥assthat
T11, T2, To1, To2, @ndT' are positive given constants and formulate the following
compatibility conditions:

0 0
Upy| 7. =0 :/dn / Uy
a1 UQ(T)

(7] =P|tou[1)ug/(/h1\tou(fdﬂ+ / h2\t:0U3dT£>v

a1 o2(0)

dro, k=1,2;
T3=T

[U(Q)“@:T] =0,
Bul|s0—0,5 = 1,2,3.

4 Separable solutions to the non-dispersing population maad

In this section, by using the method used in [5], we examine separable sslution
to non-dispersing population dynamics model.

Let all vital ratesv, v, v3, by, b2, andp and initial distributionsu{, «9, and
u3 do not depend om. Then the non-dispersing population model can be derived
from model (1)—(3) by letting:1, 2, andxs be zero and dropping conditions on
0f2. Assume, in addition, that;, v», 13, b1, b2, andp do not depend onand seek
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solutions to the non-dispersing population model in the form

(w1 (t,71) = ajv1 (1) exp {)\(t - 7'1)}, v1(0) =1,
us(t, 72) = azvy(m2) exp {A(t — )}, v1(0) =1,
U3(t,71,72,73)

ai1ag
= 5 v1(T1)v9 (T2 — T3)v3(T1, T3, T3) EXP {)\(t -7 — 7'2)}7

v3(71,72,0) = p(71, 72), (4)
Y= CL1/hl(Tl)’Ul(Tl)eXp{—)\Tl}dTl

o1

+a / ha(72)0) (m2) exp{— Ay}
02(0)

where function&;l,vg,vg and the constants and \ are to be determined. Set
ys = as/7,s = 1,2. Substituting functions (4) into the model of non-dispersing
population we get the following equations:

87'11}1 = —iv, 1)1(0) = 1,
OTvy = 13 — 0, \ 72 & 72(0),
Ao, A, y1)vy, T2 € 02(0) (5)
0, Ty & O'Q(T),”U%(O) =1,
+ A A
B(7—27 A yl)UZ (7—2 - T)’ T € UQ(T)7 [02 |7'2:T] =0,
0193 + 0T3V3 = —V303,  V3|m=0 = D,
= 1/q3 (), (6)
y2 = 1/a3 (1), 7
r(A) =1 (8)
where
ql)‘(yl) Z/d’i'l/ bQ(Tl, Tg)vl(Tl)vg‘(TQ—T)Ug(Tl, T2, T) exp {—)\(Tl+72)}d727
o1 UQ(T)
qz)‘(yl) —/d’i‘l/ bl(’i‘l, 7'2)’[)1(7’1)’1)5‘(7‘2—71)1)3(7'1, T2, T) exXp {—)\(T1+T2)}d72,
o1 O’Q(T)
rie) = [ Tn(ron(m) exp{-An}dn + s [ ha(r)d(r) exp{-Am)dr
g1 0‘2(0)
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and

A(ro, N\ y1) = yl/p(ThTz)vl(Tl)eXp{—/\ﬁ}dﬁ,

o1
B(12, A\, p1) = yl/vl(Tl)U3(7—177'2aT) exp{—A71 }dry.
o1
From equations (5) by formal integration it follows that
T1

v1(71) Zexp{ —/Vl(ﬁ)dﬁ},

v3(11, 72, 73) = p(T1, T2 — T3)eXp{ - /V3(T17§+T2 — 7375)655}7
0

T2

v3(T2) = Vo (T2) 1= eXp{ - /Vz(&)d§}7 T < To1,

and 0

T2

05 (T2) = va(72) 1= exp{ - /V2(€)d€ - /28321) (p(ﬁ,ﬁ)/hl(ﬁ))dé’},

0 T21
Ty 2 Toi,

Since, by (8)y1 f hl(T1>’U1(7'1)eXp{—)\7'1}dT1 < 1.

Therefore

0 <1/q)(y1) < 1/a(d) Yy =0 (©)
where

0<qi(N) = /dT1 / ba (11, T2)v1(T1)v2x (T2 — T)v3 (71, T2, T)

g1 O'Q(T)
x exp{—A(11 + 12) }dme < q{‘(yl).

Now, by estimate (9),
(11 = 1/a3 (1)) |0 <0 and (y1 — 1/Qi\(yl))|y1:1/ql(,\) > 0.
Hence, (6) has at least one rag{\) € (0,1/¢1())). Itis easy to see thag ())

andy2(\) = 1/¢3(y1()\)) are continuous in\. Substitutingys()\),s = 1,2 into
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(8) we get a characteristic equation for It remains to prove that it has at least
one real root\. Setting
C(11) = sup (v3(7'1, T2, T)b1 (11, 2) /ho(T2 — T)),

T2

D(Tl) = i‘[I_lgf (1)3(7‘1,7‘2,T)b1(7’1,TQ)/hQ(TQ — T)),
E(Tg) = 17I_11f (’U3(7'1,TQ,T)bQ(Tl,TQ)/hl(Tl))
we have

r(A) > %lel) / hQ(Tg)Ué\(Tg)exp{—)\Tg}dTg

o2(0

> / hQ(Tg)U%(Tg)eXp{—)\TQ}dTQ

02(0)
X 1//1)1(7'1)0(71)exp{ — A +T)}dn

X 1// ho(ro — T)vy (1o — T) exp{ = A(r2 — T) }dry
o2(T)
=ri(A) = 1//1)1(T1)C(T1)6Xp{—)\(7'1 +T)}dn

o1

and similarly

r(A) <ra(A) ::1/ / Vox (T2 — T)E(72) exp{—A12 }dmo
o2(T)

+ 1//1}1(7'1)D(7'1) exp{—\(11 + T') }dm.
o1
Sinceri(\) < r(A) < ro(A),r1(N),r2(A) — 0asA — —oo, andry(A),
ro(A) — oo @asA — oo, (8) has at least one real robt We note that the positive
parametety is not determined. As a result we formulate the following proposition.

Theorem 1. Let constants T', 711 < 712, To1 < To22, functions vy, vo, v3, p, by, and
b2 be positive and inf h; > 0,7 = 1, 2. Assume that functions vy, 15, v3, p, by and
by do not depend on ¢ and vy, v, € C%(0,00),b1,by € CO(F1 x 72(T)), hy €
CO(El)JLQ S CO(EQ(O)),]) S 00’1(51 x 72(0)),v3 € 00’1’0(63). Then the
non-dispersing population model has at |east one one-parameter class of positive
solutions of type (4).

371



S. Repsys, V. Skakauskas

5 Numerical results

We consider the case where all vital rates are stacionary and excludard p
do not depend om;. This enables us to determimg(¢, 72, 73) = [ usdm and

o1

decrease the dimension of problem.
By usingus from (1)—(3) we get the system

'8u1/8t+8u1/8ﬁ = —nuy + Kk1Auy, t>0, 71 €Qq, z €1,
ul‘t:() = u(l)v
e L (10)

0'2(T)
(Bui)|aa = 0;

(us /Ot + Ous /0T
= —wouy — X; + Xy + KolAug, t>0, 7€ Q2 x €1,

’U,Q‘t:() - uga [UQITQZT:I - 07

Ug|ry=0 = / boTis |, _pda,

o2(T)
11
(Buz)|an = 0, (D
X, = 27 Ty & 02(0),
u3‘T3:07 T € 02(0)7
\ U3|ry=1, T2 € 02(T);

(Ous /Ot + Ous/Ory + Ous /073

= —vgu3 + k3Aus, t >0, (11,72,73) € Q3, € Q,
Us|=0 = U3,
Us|ry=0 = fpu1d7’1u2/</h1U1dT{ + / hQUQdTé),

o1

(12)

o1 o2 (0)

(Bu3)|an = 0.

In what follows we analyze the case whéte= (0; 1) and use the following
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initial functions:

up (ks ) = f(2)Uk(Th, 1), Up(7h, @) = (i + oip2) exp(—aga i),
k=12,

p(71,72) = p1(71)p2(T2),

(k) = pr1 + (Pk2 — Pr1) (T — k1) /(Th2 — 701), K =1,2,
u3(72, 73, 2) = f(2)q(73)Us(r2 — 73,2),¢(73) = 1 + (¢(T) — 1)73/T,
J p(r)Us (11, z)dmy

)fUl(Tl,:E)dTl—{— [ Ua(ry, x)dry’
o1

Us(1o, x) = pa(12)Us(T0, x

0’2(0)
bk(Tg,{L‘) = {({L‘)ﬂk Sina (W(TQ — T21 — T)/(TQQ — 7'21)),
Ur(0,2) = / b (1o, 2)Us(10 — T, x)dm2q(T), k=1,2, (13)
o2(T)

Vi(Tk) = | me — Teo|™* + pr2,  k=1,2,

v3(12,73) = p31(73) |72 — T20|*? + p32(73).

From conditions (13) it follows that

ag(z) oz PBo
a1y asa(r) B (14)
and
929 ( /(7'1 + 0512) exp(—allﬁ)dﬁ
a;);l(l) % / (7‘2 —+ 0522) eXp(—OQlTQ)dTQ)
70 (15)
= q(T)B2£(x) / sinaﬂw(m + o) exp(—aa172)p2(T2)dTe
o (T22 — T21)

X /pl(ﬁ)(ﬁ + aq2) exp(—aq171)dTy.

o1

Let 31, B2, 11, 012, g, ao1, (1), o, a1, g, §(x), P11, P12, P21, P22, P11, H12,
121, fo2, 131, ps2 be free. From (15) we determiney(z). Then from (14) we
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find ap3 () and use the following restrictions:

0f/0x|z=0.1 = 0 for the homogenous Neumann problem

and
flz=0;1 = 0 for the homogenous Dirichlet problem

and the functions:

E(x)=1 Vxe|0;1] or &(x)=

0, € (0.51],
(0,5 —z), x € [0;0.5]

for the Dirichlet problem ang(z) =1 Vz € [0; 1] for the Neumann problem.

In what followsai2(x) = a2 +2(1 — z), € [0; 1] wherea; is a constant.

Now we describe numerical schemes for both Neumann and Dirichlet prob-
lems. We use the Douglas and Milner [6] method which they applied to the Gurtin
MacCamy [2] model. To do this we write both models on the characteristic lines
and then discretize them by using the same step for time and ages. As a esult w
get two corresponding discrete nonlinear systems at each time level. Todete
ug from these nonlinear systems we apply the Zeidel and the Crank-Nicolson
schemes [7] and at each time level use the following procedure:

determineu; exceptui |1,

determineus exceptus|,—o,

determineus for o < 101 andme > 790 + T,

determineusy for 7o € (721, 722 + 1) by the Zeidel method,

determineu |-, =1, , U3 |rs=0-

Results of the numerical calculations are displayed in Figs. 1-12 for the fol-
lowing values of constants:

hi =hs =1, a11 =0.1,a12 = 4, a13 = 2, a91 = 0.1,

q(T) = 0.85, B2 = 0.80,

11 =4, 112 =9,

p11 = 0.95, p12 = 0.99, poo = 0.99,

a=1.5, a; =1.5, ag = 1.5,

(16)

p11 = po1 = pz1 = 0.0001, p12 = poo = pz2 = 0.01.
The other constants and functions are given in Table 1.
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Table 1. Constants and functions used in all calculations

FIgS T12 T22 T ﬁl K- 10_2 D21 f(ﬁ) g(i)
1 9 9 1 0.85 0.5 0.95 fo &
2 9 9 1 0.85 0.5 0.95 fa &
3 9 10 1 0.85 0.5 0.95 fo &
4 9 10 1 0.85 0.5 0.95 f &
5 9 9 1 0.85 0.5 0.95 f &
6 9 9 1 0.85 0.5 0.95 f3 &
7 9 9 1 0.85 0.5 0.95 f3 &
8 9 10 1 0.85 0.5 0.95 f3 &
9 9 9 1 0.85 0.5 0.95 f3 &
10 [5;11] [8;14] 1 0.85 0.5 0.95 f3 &
11 9 9 [0.6; 0.85 0.1 0.95 f3 &

1.8] 1
12 9 9 1 0.95 0.5 [0.6;0.95] f3 &
Here
filz) = f(z) =2(1 —2), =x€l0:1],
0, x € (0.5; 1},
xTr) = xTr) =

fo(@) = Jlx) {J:(O,S —x), x € [0;0.5],

folw) = fla) =2+ 2¥2(1 - )2,z e [0;1],

&(z) =&(x) =1,z € [0;1],

0, x € (0.5;1],

Sa() = £(@) = {x(0,5 —z), x € [0;0.5].

In addition to set (16) we use constants and functions from Table 1.

Figs. 1, 2, and 3 represent numerical solution to the Dirichlet problem for
£(x) = &o(a).

Fig. 1 shows that the total population

o) [e’s) T T22+73
N(Jj,t) = /U1d7'1 + /UQdTg + /dT3 / usdry
0 0 0 T21+73

with initial support][0; 0.5] spreads in time over all intervi; 1].
In Fig. 2 and 3 graphs of functions (¢, 1, z), andus(t, 72, ) are exhibited
fort =0,t=2,t = 4.
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Fig. 3. The graph ofi» (¢, 72, x) for the solution of the Dirichlet problem with
f2 andfg, t=0;2;4.
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In Figs. 4 and 5 we illustrate the numerical solution to the Dirichlet problem
takingé(x) = &1(x), x € [0;1]. Figs. 4 and 5 represents functionsandus.

Figs. 6, 7, 8, and 9 illustrate the numerical solution of the Neumann problem
for f(x) = f3(z) and{(z) = & (x),x € [0;1]. Fig. 6 represents the graph of
the function N(x,t) while graphs 7 and 8 exhibit functiansandu,. We see that
function N(x,t) loses the dependencemin time very fast forx = 0.1.

In Fig. 9 we illustrate the graph of the function

T T22+73
Nl(l',t) = /dTg / usdry.
0 T21+73

FunctionN; (z, t) means the total number of fertilized females. We see that
function N loses the dependence orin time very slowly fors = 0.001

Fig. 4. The graph ofi; (¢, 71, x) for the solution of the Dirichlet problem with
frand&y,t = 0;2;4.

01

Fig. 5. The graph ofi»(¢, 72, ) for the solution of the Dirichlet problem with
fi and§1, t=0;2;4.
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Fig. 9. The behavior oV, (x, t) for the solution of the Neumann problem.

In Figs. 10-12 the behavior of = t1<tlzi,£r11—>oo o M N (t2, ) /N(t1,2) is
demonstrated. Note thatis independent af.

In Fig. 10 functions\(r12) (curve 1) and\(722) (curve 2) are exhibited. We
can see that the behavior of these curves is different.

Fig. 11 shows that the dependence of functign, ') on « is weak.

The last Fig. 12 shows graphs of functioh@sz;) and A\(52) whereps; =
p2(T21).

The existence of shows the local stability of separable solutions given in
Section 4.
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-0.0025 4
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5 6 7 8 9 10 11 12 13 14
2'11, 7'-22

Fig. 10. Plot ofA. Curvel represents\(ri2). Curve 2 illustrates\(7s2).

379



S. Repsys, V. Skakauskas

0.00030 ~

2
0.00025
1
0.00020
0.00015
A
0.00010
0.00005
T T T T T T T
0.6 0.8 1.0 12 1.4 16 18
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T

Fig. 11. Plot ofA(T). Curvel for x = 0.1. Curve 2 forx = 0.001.
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-0.0008 /
-0.0010 /

-0.0012 1

T
0.4 0.5 0.6 0.7 0.8 0.9 1.0

p21’ ﬂz
Fig. 12. Plot ofA(p21) (curve 1) and\(82) (curve 2).

6 Concluding remarks

The numerical analysis of the two-sex age-structual population dynamidelmo
is presented taking into account formation of temporal pairs and spatiairdép
The homogenous Dirichlet and Neumann problems are examined. The naimeric
experiment shows that the solution of the homogeneous Neumann problésn ten
in time to the solution of the non-dispersing population model.

The existence of at least one one-parameter class of separable sadution
proved to the non-dispersing population model. Numerical results showdak lo
stability of a separable solutions.
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