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Abstract. The Sharpe-Lotka-Mckendrick-von Foerster one-sex population model
and Fredrickson-Hoppensteadt-Staroverov two-sex population one are well known in
mathematical biology. But they do not describe dynamics of populations with child care.
In recent years some models were proposed to describe dynamics ofthe wild population
with child care. Some of them are based on the notion of the density of offsprings under
maternal (or parental) care. However, such models do not ensure the fact that offsprings
under maternal (or parental) care move together with their mothers (or both parents). In
recent years to solve this problem, some models of a sex-age-structured population, based
on the discrete set of newborns, were proposed and examined analytically. Numerical
schemes for solving of a one-sex age-structured population model withand without
spatial dispersal taking into account a discrete set of offsprings and child care are
proposed and results are discussed in this paper. The model consists of partial integro-
differential equations subject to conditions of the integral type. Numerical experiments
exhibit the stability of the separable solutions to these models.
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AMS classifications:92D25, 65N06.

1 Introduction

Many species of wild animals care for their offsprings. Thisphenomenon is natural for
many species of mammals and birds andforms the main difference between the behavior
of the population taking child care and that without maternal (or parental) duties [1, 8].
But child care for every species is different. Offsprings ofmammals and birds spend
some time with their mother or both parents, while young offsprings of some species
of fishes, reptilia, and amphibia are left to the own fate. Mammals and birds feed,
warm, and defend their young offsprings from enemies. If oneof these native duties
is not realized, young offsprings die and the population vanishes. For many species of
mammals, (e.g., bear (Thalarctos maritimus and Ursus arctos horribilis), whale (Ba-
laenoptera musculus), and panther (Pannthera onca)), only females takes care of their
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young offsprings. For some species of mammals and birds, (e.g., red fox (Vulpes vulpes),
gnawer (Dolichotis patagonium), penquin (Pygoscelis adeliae), heron (Ardea purpurea),
falcon (Falco ciolumbarius), and tawny owl (Strix aluco)), both parents take care of their
young offsprings.

The Sharpe-Lotka-McKendrick-von Foerster one-sex population model and Fred-
rickson-Hoppensteadt-Staroverov two-sex population models (see, e.g., [1,8] and referen-
ces there) are well known in mathematical biology. However,all these models do not treat
the child care phenomenon and cannot be used to describe the evolution of the population
taking care of its offsprings. Thus, these models can only beapplied to describe the
dynamics of populations which do not take care of their youngoffsprings, e.g., some
species of fishes, reptilia, and amphibia. Since the behavior of the population taking care
of its young offsprings essentially differs from that of thepopulation without child care,
the models mentioned above have to be essentially modified.

In [2–5], four age-structured population dynamics models with child care are pro-
posed, two for one-sex and the other two for two-sex population. The main requirement
in these papers is that all offsprings under maternal (or parental) care die if their mother
(or any of their parents) dies. In [6], a model for two sex population with strong maternal
and weak paternal care is given. The care of this type means that all young offsprings die
if their mother dies, but they are protected from the inevitable death in the case of death of
their father. All these models are based on the notion of the density of young offsprings.
However, such models do not ensure the fact that offsprings under maternal (or parental)
care move together with their mothers (or both parents).

To solve this problem, some models of a sex-age-structured population, based on
the discrete set of newborns, were proposed. In [1, 7, 8] two-sex with temporal pairs and
one-sex population models, based on a discrete set of offsprings, are proposed. In [9],
we discussed numerical results of model [2] for two-sex population with temporal pairs
and child care. The present paper is devoted to the numericalinvestigation of the models
studied in [1,8].

The paper is organized as follows. In Sections 3 and 4, the nondispersing population
model and the model with spatial diffusion are given. In Section 5, we give the numerical
schemes and discuss the numerical solution of models given in Sections 3 and 4. Remarks
in Section 6 conclude the paper.

2 Notation

We use the notation of papers [1,8].

R
m the Euclidean space of dimensionm with x = (x1, . . . , xm),

κ the diffusion modulus,

(0, T ), (T1, T3),
(T <T1 <T3) the child care and reproductive age intervals, respectively,

u(t, τ1, x) the age-space-density of individuals agedτ1 at time t at the position
x who are of juvenile (τ1 ∈ (T, T1)), single (τ1 ∈ (T1, T3)), or post-
reproductive (τ1 > T3) age,
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uk(t, τ1, τ2, x) the age-space-density of individuals agedτ1 at timet at the positionx
who take care of theirk offsprings agedτ2 at the same time,

ν(t, τ1, x) the natural death rate of individuals agedτ1 at timet at the positionx
who are of juvenile or adult age,

νk(t, τ1, τ2, x) the natural death rate of individuals agedτ1 at timet at the positionx
who take care of theirk offsprings agedτ2,

νks(t, τ1, τ2, x) the natural death rate ofk-s young offsprings agedτ2 at timet at the
positionx whose mother is agedτ1 at the same time,

αk(t, τ1, x)dt the probability to producek offsprings in the time interval[t, t + dt] at
the locationx for an individual agedτ1,

N sum of spatial densities of juvenile and adult individuals,

ρ(N) the death rate conditioned by ecological causes (overcrowding of the
population),ρ(0) = 0,

u0(τ1, x),
uk0(τ1, τ2, x) the initial age distributions,

[u|τ1=τ ] the jump discontinuity ofu at the pointτ1 = τ,

α =
n∑

k=1

αk, γ1(τ1) = max(0, τ1 − T3), γ2(τ1) = min(τ1 − T1, T ),

ν̃k = νk +
k−1∑
s=0

νks,

T2 = T1 + T the minimal age of an individual finishing care of offspringsof the first
generation,

T4 = T3 + T the maximal age of an individual finishing care of offspringsof the last
generation,

σ1 = (T1, T3), σ2 = (T1, T4), σ3 = (T2, T4),

σ1∗ = (T,∞) \ σ1, σ2∗ = (T,∞) \ σ2, σ3∗ = (T,∞) \ σ3,

Q = {(τ1, τ2) : τ1 ∈ (T1 + τ2, T3 + τ2), τ2 ∈ (0, T )}.

In what follows,κ, T, T1, andT3 are assumed to be positive constants. In the case of
nondispersing populations, all functionsu, uk, ν, νk, νks, αk, u0, anduk0 do not depend
on the spatial positionx.

3 The nondispersing population model

In this section, we give the nondispersing age-structured population model [1, 8] with
stationary vital rates. This model involves the environmental pressure,ρ(N), by the death
rates of juvenile an adult individuals depending on the sum,N, of their spatial densities.
It is assumed that young offsprings are subject to natural mortality and are protected
from density related increases of mortality dependent onN directly. At ageτ1 = T all
young offsprings go to the juvenile group and at ageτ1 = T1 all juveniles become adult
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individuals. The model consists of the equations

∂tu + ∂τ1
u +

(
ν + ρ(N)

)
u =

{
0, τ1 ∈ σ1∗,

αu, τ1 ∈ σ1

+





0, τ1 ∈ σ2∗,
γ2(τ1)∫

γ1(τ1)

n∑

k=1

νk0ukdτ2, τ1 ∈ σ2
+





0, τ1 ∈ σ3∗,
n∑

k=1

uk|τ2=T , τ1 ∈ σ3,
t > 0,

(1)

∂tuk + ∂τ1
uk + ∂τ2

uk +
(
νk +

k−1∑

s=0

νks + ρ(N)
)
uk

=





0, k = n,
n∑

s=k+1

νskus, 1 ≤ k ≤ n − 1,
(τ1, τ2) ∈ Q, t > 0,

(2)

N =

∞∫

T

udτ1 +

T∫

0

dτ2

T3+τ2∫

T1+τ2

n∑

k=1

ukdτ1 (3)

subject to the conditions





u|τ1=T =

∫

σ3

n∑

k=1

kuk|τ2=T dτ1,

uk|τ2=0 = αku,

u|t=0 = u0, uk|t=0 = uk0,

[u|τ1=τ ] = 0 for τ = T1, T2, T3, T4.

(4)

Here∂t and∂τk
denote partial derivatives, whilen is the biologically possible max-

imal number of newborns of the same generation produced by anindividual. The first
term on the right-hand side in equation (1) means the part of individuals who produce
offsprings, the second and third terms describe the part of individuals whose all young
offsprings die and who finish child care, respectively. The transition term

∑k−1
s=0 νksuk

on the left-hand side in equation (2) describes the part of individuals agedτ1 at time t
who take child care ofk young offsprings and whose at least one young offspring dies.
Similarly, the term on the right-hand side in this equation describes a part of individuals
agedτ1 at timet who take care of more thank, 1 ≤ k ≤ n− 1, young offsprings agedτ2

whose number after the death of the other offsprings becomesequal tok. The condition
[u|τ1=τ ] = 0, τ = T1, T2, T3, andT4 means that the functionu must be continuous at
the point,τ1 = τ, of the discontinuity of the right-hand side of equation (1).

Given functionsν, νk, νks, αk, u0, anduk0 and the unknown onesu anduk are to be
positive. The positive constantsT andTs are also to be given.
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We use the following compatibility conditions:





u0|τ1=T =

∫

σ3

n∑

k=1

kuk0|τ2=T dτ1,

uk0|τ2=0 = αk|t=0u0,

[u0|τ1=τ ] = 0 for τ = T1, T2, T3, T4.

(5)

Using the following transformations,

u(t, τ1) = f(t)U(t, τ1), uk(t, τ1, τ2) = f(t)Uk(t, τ1, τ2), f(0) = 1, (6)

model (1)–(5) can be decomposed into the problem forU andUk,

∂tU + ∂τ1
U + νU =

{
0, τ1 ∈ σ1∗,

αU, τ1 ∈ σ1

+





0, τ1 ∈ σ2∗,
γ2(τ1)∫

γ1(τ1)

n∑

k=1

νk0Ukdτ2, τ1 ∈ σ2
+





0, τ1 ∈ σ3∗,
n∑

k=1

Uk|τ2=T , τ1 ∈ σ3,
t > 0,

(7)

∂tUk + ∂τ1
Uk + ∂τ2

Uk + ν̃kUk

=





0, k = n,
n∑

s=k+1

νskUs, 1 ≤ k ≤ n − 1,
(τ1, τ2) ∈ Q, t > 0

(8)

subject to the conditions





U |τ1=T =

∫

σ3

n∑

k=1

kUk|τ2=T dτ1,

Uk|τ2=0 = αkU,

U |t=0 = u0, Uk|t=0 = uk0,

[U |τ1=τ ] = 0, τ = T1, T2, T3, T4,

(9)

and the equations forf andN,

f ′ = −ρ(fβ)f, f(0) = 1, (10)

β =

∞∫

T

Udτ1 +

T∫

0

dτ2

T3+τ2∫

T1+τ2

n∑

k=1

Ukdτ1, (11)

N = fβ. (12)
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The existence and uniqueness theorem for problems (7)–(9),(5), and (10), (11) is
proved and, in the case of stationary vital rates, the large time behavior of solution (6) is
given in [1,8].

In the case of time-independent vital ratesν, νk, νks, andαk, the existence of sepa-
rable solutions of the form

U = Ũvλ(τ1) exp{λt}, u0 = Ũvλ(τ1), vλ(T ) = 1,

Uk = Ũvλ(τ1 − τ2)v
λ
k (τ1, τ2) exp{λt}, uk0 = Ũvλ(τ1 − τ2)v

λ
k (τ1, τ2),

vλ
k |τ2=0 = αk

(13)

with unique realλ is also proved in [1,8]. HerẽU > 0 is an arbitrary constant, while the
constantλ and positive functionsvλ andvλ

k are to be determined. Functionsvλ andvλ
k

satisfy the problems





(vλ)′ + (ν + λ)vλ = −

{
0, τ1 ∈ σ1∗,

αvλ, τ1 ∈ σ1

+





0, τ1 ∈ σ2∗,
γ2(τ1)∫

γ1(τ1)

n∑

k=1

νk0v
λ
k (τ1, τ2)v

λ(τ1 − τ2)dτ2, τ1 ∈ σ2

+





0, τ1 ∈ σ3∗,
n∑

k=1

vλ
k (τ1, T )vλ(τ1 − T ), τ1 ∈ σ3,

vλ(T ) = 1,
[
vλ(τ)

]
= 0, τ = T1, T2, T3, T4,

(14)

where the prime denotes the differentiation ofvλ with respect to ageτ1, and




∂τ1
vλ

k + ∂τ2
vλ

k + (ν̃k + λ)vλ
k =





0, k = n,
n∑

s=k+1

νskvλ
s , 1 ≤ k ≤ n − 1 in Q,

vλ
k |τ2=0 = αk,

(15)

while the constantλ is a root of the characteristic equation

1 =

∫

σ3

n∑

k=1

kvλ
k (τ1, T )vλ(τ1 − T )dτ1. (16)

Set

vλ = v0(τ1) exp{−λ(τ1 − T )}, vλ
k = v0

k(τ1, τ2) exp{−λτ2}, (17)
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wherev0 andv0
k satisfy equations (14) and (15) forλ = 0. From equations (16) and (17)

we get the characteristic equation forλ,

I(λ) = 1, I(λ) :=

∫

σ1

exp{−xλ}v0(x)

n∑

k=1

kv0
k(x + T, T )dx. (18)

Under minimal restrictions on the time-independent vital ratesν, νk, νks, andαk and
initial functionsu0 andu0

k, it is proved in [1, 8] that the solution of problem (7)–(9) and
(5) for u0 andu0

k of the general type tends, ast → ∞, to separable solution (13) with
uniqueŨ and exponentλ satisfying equation (18). Therefore,λ can also be determined
by the formula

λ = lim
1

t − t1
ln

β(t)

β(t1)
as t > t1 → ∞. (19)

Equation (10) for the large time can be written in the form

F = fβ0 exp{λt}, F
′

= F
(
λ − ρ(F )

)
,

whereβ0 is a positive constant andρ has a positive derivative. It is well known that, for
F (0) > 0, F → 0 if λ ≤ 0 andF → F̃ , ρ(F̃ ) = λ if λ > 0.

Results of numerical investigation of problem (5) and (7)–(11) are discussed in
Section 5.

4 A population model with spatial diffusion

In this section, we consider the population dynamics including the spatial diffusion in the
interval(0, 1) with the extremely inhospitable pointsx = 0 andx = 1. We use the model
analyzed in [1,8],





∂tu + ∂τ1
u +

(
ν + ρ(N)

)
u − κ∂xxu = −

{
0, τ1 ∈ σ1∗,

αu, τ1 ∈ σ1

+





0, τ1 ∈ σ2∗,
γ2(τ1)∫

γ1(τ1)

n∑

k=1

νk0ukdτ2, τ1 ∈ σ2
+





0, τ1 ∈ σ3∗,
n∑

k=1

uk|τ2=T , τ1 ∈ σ3,

u|τ1=T =

∫

σ3

n∑

k=1

kuk|τ2=T dτ1,

u|t=0 = u0, [u|τ1=τ ] = 0, τ = T1, T2, T3, T4, u|x=0;1 = 0,

(20)
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



∂tuk + ∂τ1
uk + ∂τ2

uk +
(
ν̃k + ρ(N)

)
uk − κ∂xxuk

=





0, k = n,
n∑

s=k+1

νskus, 1 ≤ k ≤ n − 1,
(τ1, τ2) ∈ Q, t > 0, x ∈ (0, 1),

uk|τ2=0 = αku, uk|t=0 = uk0, uk|x=0;1 = 0,

(21)

N =

∞∫

T

udτ1 +

T∫

0

dτ2

T3+τ2∫

T1+τ2

n∑

k=1

ukdτ1, (22)

where the constantκ is the diffusion modulus. We assume thatν, νk, αk, andνsk do not
depend ont andx and use the following compatibility conditions:





u0|τ1=T =

∫

σ3

n∑

k=1

kuk0|τ2=T dτ1, u0|x=0;1 = 0,

[u0|τ1=τ ] = 0, τ = T1, T2, T3, T4,

uk0|τ2=0 = (αk)|t=0u0, uk0|x=0;1 = 0.

(23)

In the case of product initial functions,
{

u0(τ1, x) = U0(τ1)f0(x),

uk0(τ1, τ2, x) = Uk0(τ1, τ2)f0(x)
(24)

with positiveU0 andUk0, andf0(0) = f0(1) = 0, f0(x) > 0 in (0; 1), by the transform
{

u(t, τ1, x) = U(t, τ1)f(t, x) exp{−λt},

uk(t, τ1, τ2, x) = Uk(t, τ1, τ2)f(t, x) exp{−λt},
(25)

we split (20)–(23) into problem (7)–(9) and (5) forU andUk and the problem forf,





∂tf =
(
λ − ρ(N)

)
f + κ∂xxf, x ∈ (0, 1), t > 0,

N = fβ exp{−λt},

f(0, x) = f0(x), x ∈ (0, 1),

f |x=0;1 = 0, t > 0,

(26)

whereβ(t) andλ are defined by equations (11) and (19), respectively.
Numerical results are discussed in Section 5.

5 Numerical results

In this section by using computer modelling, we study both nondispersing population
model (1)–(5) and model (20)–(23) of the population with thespatial diffusion. We
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assume that integern in both models is equal to 3. This corresponds to species, e.g.,
Felis yagouarundi (2-3 children),Pseudocheirus peregrinus (1-3 children),Tremarctos
ornatus (1-3 children), andArtictis binturong (1-3 children). We solved system (1)–(5)
directly and by using its decomposition (6) into problems (7)–(9) with conditions (5) and
(10)–(12).

Similarly, to verify the result, we solved model (20)–(23) of the population with
spatial dispersal and product initial distributions (24) directly and by using its splitting
(25) into problems (7)–(9) with conditions (5) and (26).

The general type of initial functions does not allow to splitproblem (20)–(23) into
two problems. In this case we solved system (20)–(23) directly.

Before solving the problem (26), we determine the exponentλ from equations (14)–
(15), (17), and (18). It follows, from [1, 8] that functions (6) tend to a positive steady–
state solution of problem (1)–(5) ifλ > 0 and equationρ(N) = λ has a unique positive
root. The similar result is proved in [1, 8] for model (20)–(24), i.e., functions (25) tend
to a positive inΩ steady-state solution of problem (20)–(23) ifλ > κπ2 and to 0 if
0 < λ ≤ κπ2, provided that equationρ(N) = λ has a unique positive root and initial
functions (24) are used.

We also study separable solutions (13)–(16) numerically and determine a unique
realλ.

In all calculations, excluding Fig. 16, we use the vital rates





ν(τ1) = µ1τ
q
1 + µ2, q > 1,

νk(τ1, τ2) = µk1τ
qk

1 + µk2, qk > 1,

νks(τ1, τ2) = µks1|τ2 − τ0|
q + µks2, τ0 < T,

αk(τ1) = αk1 exp{−(τ1 − (T3 + T1)/2)q0/αk2}, q0 > 1

ρ(N) = ρ0N
ξ1 , ξ1 > 0

(27)

and initial functions
{

u0(τ1) = β3(τ1 + β2) exp{−β1τ1},

uk0(τ1, τ2) = αk(τ1 − τ2)u0(τ1 − τ2)Ũk(τ2)
(28)

for nondispersing population model and

{
u0(τ1, x) = f0(x)β3(p(x)τ1 + β2) exp{−β1τ1},

uk0(τ1, τ2, x) = αk(τ1 − τ2)u0(τ1 − τ2, x)Ũk(τ2)
(29)

for the population with the spatial diffusion. Here

Ũk(τ2) = 1 +
τ2

T
(Ũk(T ) − 1), p(x) = 1 + p1x

ξ2(1 − x)ξ2 ,

f0(x) = Axξ3(1 − x)ξ3 , ξ2 and ξ3 ≥ 1.
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Using compatibility conditions (23)1, we determine the function

β2(x) =p(x)Ũk(T )

T3∫

T1

3∑

k=1

kαk(τ1)(τ1 − T ) exp{−β1τ1}dτ1

×

{
exp{−β1T} − Ũk(T )

T3∫

T1

3∑

k=1

kαk(τ1) exp{−β1τ1}dτ1

}
−1

− p(x)T.

(30)

Note that formula (30) withp1 = 0 determines the constantβ2 in equations (28). The
positive constants

µ1, µ2, µk1, µk2, µks1, µks2, q0 > 1, q > 1, qk > 1, β1, β3, Ũk(T ), p1, ξ1,

ξ2 ≥ 1, ξ3 ≥ 1, T < T1 < T3, A, αk1, αk2, τ0 < T, andρ0 remain free.

It is easy to see that (29) represent the sum of two product functions, and is the
particular case of functions (4.2.1) considered in [1,8].

Now we describe numerical schemes for both (1)–(5) and (20)–(23) models.

Brief description of the procedure for solving system(1)–(5). We solve this system
using the Chiu [10] (see, also, [11]) scheme applied to the Gurtin–MacCamy model. To
do this, we write model (1)–(5) on the characteristic lines and then replace it by a discrete
system using the same step for ages and time. At each time level ts+1 we use the following
iteration procedure:

1. DetermineN(t0), t0 = 0;

2. DetermineN (0)(ts) by the formulaN (0)(ts) = N(ts−1), s = 1, 2, . . . using known
u anduk for ts−1;

3. Determineu(n)
k for ts exceptu(n)

k

∣∣
τ2=0

, k = 1, 2, 3;

4. Determineu(n) for ts by the explicit scheme. To do this, we use the rectangle
formula to calculate the second term of the right-hand side of equation (1);

5. Determineu(n)
k

∣∣
τ2=0

, k = 1, 2, 3, for ts;

6. DetermineN (n) using foundu(n) andun
k for ts, and repeat steps 3, 4, 5, 6 until

inequalitymax |N (n) − N (n−1)| < ǫ, n = 0, 1, 2, . . . is satisfied.

Brief description of the procedure for solving system(7)–(12)and (5) is similar to that
used to solve model (1)–(5). Here, we do not use iteration procedure. We apply steps 2, 3,
and 4 from the procedure above and use the explicit scheme to determinef from equation
(10). Then, by equation (6), we determineu anduk.

To solve system(20)–(23), we use the Crank–Nicholson scheme and the iteration process:

1. DetermineN(t0, x), t0 = 0;
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2. DetermineN (0)(ts, x) by the formulaN (0)(ts, x) = N(ts−1, x), s = 1, 2, . . . using
knownu anduk for ts−1;

3. Determineu(n)
k for ts exceptu(n)

k

∣∣
τ2=0

, k = 1, 2, 3;

4. Determineu(n) for ts by the explicit scheme. To do this, we use the rectangle
formula to calculate the second term of the right-hand side of equation (1);

5. Determineu(n)
k

∣∣
τ2=0

, k = 1, 2, 3, for ts;

6. DetermineN (n) using foundu(n) andun
k for ts, and repeat steps 3, 4, 5, 6 until

inequalitymax |N (n) − N (n−1)| < ǫ, n = 0, 1, 2, . . . is satisfied.

Procedure for solving of system(7)–(9), (5), and (24)–(26). We determineU and
Uk, k = 1, 2, 3, in the same way as in the procedure for solving of system (7)–(12),
(5). Then determinef from problem (26) using the iteration procedure with the Crank–
Nicholson scheme. At last, by equation (6), we determineu anduk.

Brief description of the procedure for solving equation(18).

1. Determinev0
3 , v0

2 , v0
1 from equation (15) written on the characteristic lines. We use

these values for calculation ofv0(τ1) from equation (14).

2. Determinev0(τ1), T < τ1 < T1 by explicit scheme.

3. Determinev0(τ1), T1 < τ1 < T4. To do this, we apply the rectangle formula to
calculate the second term on the right-hand side of equation(14) and then use the
explicit scheme.

4. Determinev0(τ1), τ1 > T4 by explicit scheme.

5. Fix λ and calculateI(λ) from equation (18).

6. Decreaseλ if I(λ) < 1 or increaseλ if I(λ) > 1.

7. Calculation stops if|I(λ) − 1| < ǫ.

Results of numerical calculations are displayed in Figs. 1–16 for

β1 = 0.55, β2 = 5.7,

α11 = 0.07, α21 = 0.1, α12 = α22 = α32 = 5,

µ32k = µ21k = µ10k = 0.0012,

µ31k = µ20k = 0.001, µ30k = 0.0008, k = 1, 2,

Ũ1(T ) = 0.7, Ũ2(T ) = 0.6, Ũ3(T ) = 0.5, T = 1,

A = 3, τ0 = 0.2, T3 = 4,

ξ1 = ξ2 = ξ3 = 1.5,

q0 = 1.5, q = q1 = q2 = q3 = 2,

(31)

and the constants given in Table 1. Hereµ⋆ = µk = µk1 = µk2, k = 1, 2, 3.
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Table 1. Constants used for calculations of graphs in Figs. 1–16

Figs. κ · 102 ρ0 · 102 p1 T1 α31 · 10 µ⋆
· 104

1 0.1 0 2 1.3 10
2 0;0.1;1 0 2 1.3 10
3 1 0 2 1.3;2;3 1
4 0 0 2 1.3 1;10;100
5 0 0 2 1;1.2;1.4 10
6 0 0 1.9;2;2.1 1.3 10
7 0.1 0 1.7;2;2.3 1.3 1
8 0.01 0;0.1 0 1.7 1.7 10
9 0.01 0.1 0 1.7 1.7 10

10 0.01 0.1 0;1;2 1.7 1.7 10
11 0.01 0;0.1;1 0 1.7 1.7 10
12 0.1;1;10 0.1 0 1.7 1.7 10
13 0.1;1;10 0 0 1.7 1.7 10
14 0.1 0.1 0 1.7 1.7 1
15 0.01 0 0 1.7 1.68;1.8 1
16 0.01 0 1 1.7 2.5 10

Discussion of the results

Define

v(t, τ2, x) =

τ2+T3∫

τ2+T1

3∑

k=1

kukdτ1, V (t, x) =

T∫

0

v(t, τ2, x)dτ2,

zk(t, x) =

T∫

0

dτ2

τ2+T3∫

τ2+T1

uk(t, τ1, τ2, x) dτ1, Λ̃ = lim
1

t − t1
ln

β̃(t)

β̃(t1)
ast > t1 → ∞,

where

β̃ =

1∫

0

N(t, x)dx.

Herev(t, τ2, x), V (t, x), andzk(t, x) mean the number of offsprings agedτ2 at time
t at the positionsx, the total number of offsprings at timet at the positionsx, and the
number of individuals taking care ofk offsprings at timet at the locationx.

Figs. 1–7 represent the solution to problem (1)–(5). The influence of death rates,
environmental pressure, and the rateα3 on the behavior of densitiesu, uk, v, andN +V
is investigated.

Fig. 1 describes the behavior ofu1, u2, andu3 for t=10 and the vital parameters from
Set (31) and Table 1. We observe the inequalityu1 < u2 < u3 for α11 < α21 < α31 and
fixed the other parameters.
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Figs. 2 and 3 show the behavior ofu(t, τ1), τ1 ∈ [1; 25], andv(t, τ2), τ2 ∈ [0; 1],
for ρ0 = 0, 0.001, 0.01 andα31 = 0.13, 0.2, 0.3, respectively. The other parameters
are used from (31) and Table 1. We see that population decreases asα31 decreases orρ0

increases.
Fig. 4 shows the behavior ofu(t, τ1), τ1 ∈ [1; 35], and v(t, τ2), τ2 ∈ [0; 1], for

T1 = 1.7, 2, 2.3, and the other parameters from (31) and Table 1. Functionsu andv
decrease monotonically asT1 increases.
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Fig. 1. Graphs ofu1, u2, andu3 for t = 10
and parameters from (31) and Table 1.
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Fig. 2. Graphs ofu(t, τ1), τ1 ∈ [1; 25], and
v(t, τ2), τ2 ∈ [0; 1], for ρ0 = 0 (graph 1),
0.001 (graph 2), and 0.01 (graph 3), and the

other parameters from (31) and Table 1.
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Fig. 3. The behavior ofu(t, τ1), τ1∈ [1; 20],
and v(t, τ2), τ2 ∈ [0; 1], for α31 = 0.13
(graph 1),α31 =0.2 (graph 2), andα31 =0.3
(graph 3), and the other parameters from (31)

and Table 1.
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Fig. 4. Graphs ofu(t, τ1), τ1 ∈ [1; 35], and
v(t, τ2), τ2 ∈ [0; 1], for T1 = 1.7, 2, 2.3,

and the other parameters from (31) and
Table 1.

Fig. 5 illustrates the total populationN +V versust for µk = µk1 = µk2 = 0.0001,
0.001, 0.01 withk = 1, 2, 3, and the other parameters from (31) and Table 1. We see that
N + V decreases as deaths rates increase. It also possesses a local maximum in time.

Fig. 6 describes the behavior ofN + V versust for α31 = 0.14, 0.12, 0.1, and the
other parameters from (31) and Table 1. FunctionN + V decreases with decreasingα31
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and possesses a local maximum in time.
Fig. 7 exhibits the behavior ofV with respect tot for T1 = 1.9, 2, 2.1, and the other

parameters from (31) and Table 1. FunctionV decreases asT1 increases.
We determined exponentλ by solving equation (18) and by using formula (19). The

numerical results differs by an error of calculation.
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Fig. 5. Plot ofN + V versust for µ1 =
µ2 = µk1 = µk2 = 0.0001 (curve 1),
0.001 (curve 2), and 0.01 (curve 3) with
k = 1, 2, 3, and the other parameters from

(31) and Table 1.
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Fig. 6. Plot ofN + V versust for α31 =
0.14 (curve 1), 0.12 (curve 2), and 0.1
(curve 3), and the other parameters from (31)

and Table 1.
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Fig. 7. Plot of V versust for T1 = 1.9
(curve 1), 2 (curve 2), and 2.1 (curve 3), and
the other parameters from (31) and Table 1.

Figs. 8–16 represent the solution of (20)–(23).
Fig. 8 illustrates the influence of parameterρ0 on the behavior ofu(t, τ1, 0.5), τ1 ∈

[1; 20], andv(t, τ2, 0.5), τ2 ∈ [0; 1]. The other parameters are used from (31) and Table 1.
We observe thatu andv are both decreasing asρ0 increases.

Fig. 9 shows the graphs ofu(t, τ1, x), τ1 ∈ [1; 20], andv(t, τ2, x), τ2 ∈ [0; 1], for
t = 10, 20, 30, and parameters from (31) and Table 1.

Fig. 10 exhibits the behavior ofu(t, τ1, 0.5), τ1 ∈ [1; 30], andv(t, τ2, 0.5), τ2 ∈
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[0; 1], for p1 = 0, 1, 2, and the other parameters from (31) and Table 1. We observe the
increase ofu andv asp1 increases. This result can also be proved analytically.
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Fig. 8. Graphs ofu(t, τ1, 0.5), τ1 ∈ [1; 20],
and v(t, τ2, 0.5), τ2 ∈ [0; 1], for ρ0 = 0
(graph 1), 0.001 (graph 2), and the other

parameters from (31) and Table 1.
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Fig. 9. Graphs ofu(t, τ1, x), τ1 ∈ [1; 20],
and v(t, τ2, x), τ2 ∈ [0; 1], for t =
10, 20, 30, and parameters from (31) and

Table 1.
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Fig. 10. Graphs ofu(t, τ1, 0.5), τ1∈ [1; 30],
andv(t, τ2, 0.5), τ2 ∈ [0; 1], for p = 0, 1, 2,

and the other parameters from (31) and
Table 1.

Fig. 11 illustrates the influence ofρ0 on the behavior ofN(t, x). The other parame-
ters are used from (31) and Table 1.

Figs. 12 and 13 describe the influence ofκ on the behavior ofN(t, x) for ρ0 = 0.001
and ρ0 = 0, respectively. The other parameters are used from (31) and Table 1. N
decreases as asρ or κ increase.

Fig. 14 illustrates the influence ofα31 = 0.168 and 0.18 on the behavior of
u(t, τ1, 0.5). The other parameters are used from (31) and Table 1.

Fig. 15 shows the dynamics ofzk(t, x), k = 1, 2, 3 for time t = 10, 20, 30, and
parameters from (31) and Table 1. For the vital parameters that we used, we obtain
z1 < z2 < z3 wheneverα11 < α21 < α31.
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Fig. 11. Graphs ofN(t, x) for ρ0 =
0, 0.001, 0.01, and the parameters from

(31) and Table 1.
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Fig. 12. Graphs ofN(t, x) for κ = 0.001
(graph 1), 0.01 (graph 2), and 0.1 (graph
3), and the other parameters from (31) and

Table 1.
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Fig. 13. Graphs ofN(t, x) for κ = 0.001
(graph 1), 0.01 (graph 2), and 0.01 (graph
3), and the other parameters from (31) and

Table 1.
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Fig. 14. Graphs ofu(t, τ1, 0.5) for α31 =
0.168 (graph 1) and 0.18 (graph 2), and the

other parameters from (31) and Table 1.

Fig. 16 illustrates the influence of initial functions (29) and (32) on the behavior of
z1 for the parameters from (31) and Table 1.

We also solved model (20)–(23) with initial functions of theform
{

u0(τ1, x) = f0(x)β3(τ1 + β2) exp
{
− β1τ1p(x)

}
,

uk0(τ1, τ2, x) = αk(τ1 − τ2)u0(τ1 − τ2, x)Ũk(τ2),
(32)

where

β2(x) = Ũk(T )

T3∫

T1

3∑

k=1

kαk(τ1)(τ1 − T ) exp{−β1τ1p(x)}dτ1

×

{
exp

{
− β1Tp(x)

}
− Ũk(T )

T3∫

T1

3∑

k=1

kαk(τ1) exp
{
− β1τ1p(x)

}
dτ1

}
−1

− T.
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Note that (32) do not belong to the class of the product initial functions. It is shown,
in [1, 8], that solution of model (20)–(23) withρ = 0 and initial functions of type (24)
and (29) tend to a separable solution with exponentΛ = λ − κπ2, whereλ is defined by
formula (19). Numerical calculations confirm this result and also show that the solutions
of model (20)–(23) withρ = 0 and initial functions (32), for large time, possess the
exponent̃Λ = Λ. This result can also be shown analytically using the solution expansion
by the eigenfunctions of the Dirichlet problem to the Laplace operator.
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Fig. 15. Plots ofz1 (left curves),z2 (central
curves), andz3 (right curves) fort = 10
(curves 1), 20 (curves 2), and 30 (curves 3),

and parameters from (31) and Table 1.
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6 Concluding remarks

A one-sex age-structured population dynamics model [1] (see also [8]) is examined nu-
merically herein, taking into account an environmental pressure, a discrete set of off-
springs, and child care. Both the nondispersing populationmodel and that describing
the spatial diffusion are considered. Numerical schemes are based on the method of
the characteristic lines. Numerical results are exhibitedin the graphs and illustrate the
behavior of the solution to these models depending on the various values of the parameters
determining vital functions.

Nondispersing population model (1)–(5) is solved directlyand by using decomposed
problem (7)–(12) and (5).

The model (20)–(23) with homogenous Dirichlet conditions is solved directly for
initial functions of types (29) and (32). Additional solving of the decomposed problem
(7)–(9), (5), (25), and (26) with product initial functions(24) corroborates results obtained
by using the first scheme for initial functions (24).

Numerical experiments show that, in the case of zeroth environmental pressure and
initial functions of the general type (at least for functions (32)), the solution of model
(20)–(23) tends to a separable solution with an exponentΛ̃ = λ − κπ2 as time tends to
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infinity, whereλ is defined by formula (19). This result can also be proved analytically.
For initial functions of type (24) and (29) this result is proved analytically in [1,8].

As follows from [1] (see also [8]) the solution of model (1)–(5) with ρ(N) ≡ 0 tends
to 0 if λ < 0, a steady-state ifλ = 0, and∞ if λ > 0. In the case of positiveρ(N) for
N > 0, the solution of (1)–(5) tends to 0 ifλ ≤ 0 and to a unique steady-state if equation
ρ(N) = λ, λ > 0, has a unique positive root.

In [1, 8] it is also shown that the solution of model (20)–(23)with ρ(N) = 0 and
product initial functions tends 0 ifλ − κπ2 < 0, a steady-state ifλ − κπ2 = 0, and∞ if
λ − κπ2 > 0. In the case of positiveρ(N) for N > 0 and product initial functions, the
solution of (20)–(23) tends to 0 ifλ−κπ2 ≤ 0, and to a steady-state ifλ−κπ2 > 0, with
ρ(N) = λ having a unique positive root.
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