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Abstract. The Sharpe-Lotka-Mckendrick-von Foerster one-sex populatiomeino
and Fredrickson-Hoppensteadt-Staroverov two-sex population m@nevell known in
mathematical biology. But they do not describe dynamics of populatidthschild care.
In recent years some models were proposed to describe dynantieswild population
with child care. Some of them are based on the notion of the density ofiofispunder
maternal (or parental) care. However, such models do not ensufadththat offsprings
under maternal (or parental) care move together with their motherofoparents). In
recent years to solve this problem, some models of a sex-age-stuipiulation, based
on the discrete set of newborns, were proposed and examined aaldlytidumerical
schemes for solving of a one-sex age-structured population modelandhwithout
spatial dispersal taking into account a discrete set of offsprings hitd care are
proposed and results are discussed in this paper. The model cofigstsial integro-
differential equations subject to conditions of the integral type. Numlegiqaeriments
exhibit the stability of the separable solutions to these models.
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1 Introduction

Many species of wild animals care for their offsprings. TpiEnomenon is natural for
many species of mammals and birds &orans the main difference between the behavior

of the population taking child care and that without maternal (or parental) duties[1, 8].

But child care for every species is different. Offspringsneimmals and birds spend
some time with their mother or both parents, while youngmffeys of some species
of fishes, reptilia, and amphibia are left to the own fate. Maats and birds feed,
warm, and defend their young offsprings from enemies. If ohéhese native duties
is not realized, young offsprings die and the populationistaes. For many species of
mammals, (e.g., beafMifalarctos maritimus and Ursus arctos horribilis), whale Ba-

laenoptera musculus), and pantherRannthera onca)), only females takes care of their
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young offsprings. For some species of mammals and birdg, (ed fox {/ulpes vulpes),
gnawer Dalichotis patagonium), penquin Pygoscelis adeliae), heron @rdea purpurea),
falcon (Falco ciolumbarius), and tawny owl §rix aluco)), both parents take care of their
young offsprings.

The Sharpe-Lotka-McKendrick-von Foerster one-sex pdjmuamodel and Fred-
rickson-Hoppensteadt-Staroverov two-sex populationeto@ee, e.g., [1,8] and referen-
ces there) are well known in mathematical biology. Howeattthese models do not treat
the child care phenomenon and cannot be used to describedio¢i@en of the population
taking care of its offsprings. Thus, these models can onlapgied to describe the
dynamics of populations which do not take care of their yooffgprings, e.g., some
species of fishes, reptilia, and amphibia. Since the beha¥ithe population taking care
of its young offsprings essentially differs from that of thepulation without child care,
the models mentioned above have to be essentially modified.

In [2-5], four age-structured population dynamics modeith whild care are pro-
posed, two for one-sex and the other two for two-sex pomratihe main requirement
in these papers is that all offsprings under maternal (cergaf) care die if their mother
(or any of their parents) dies. In [6], a model for two sex gapian with strong maternal
and weak paternal care is given. The care of this type meanalityoung offsprings die
if their mother dies, but they are protected from the indléaleath in the case of death of
their father. All these models are based on the notion of &msitly of young offsprings.
However, such models do not ensure the fact that offspringsumaternal (or parental)
care move together with their mothers (or both parents).

To solve this problem, some models of a sex-age-structuopdlation, based on
the discrete set of newborns, were proposed. In [1, 7, 8]g@owith temporal pairs and
one-sex population models, based on a discrete set of inffiprare proposed. In [9],
we discussed numerical results of model [2] for two-sex petmn with temporal pairs
and child care. The present paper is devoted to the numeanestigation of the models
studied in [1, 8].

The paper is organized as follows. In Sections 3 and 4, thdispersing population
model and the model with spatial diffusion are given. In #ech, we give the numerical
schemes and discuss the numerical solution of models giv@adtions 3 and 4. Remarks
in Section 6 conclude the paper.

2 Notation

We use the notation of papers [1, 8].

R™ the Euclidean space of dimensionwith = (z1,...,z.,),

K the diffusion modulus,

(0,7), (T1,T3),

(T'<Ty<T3) the child care and reproductive age intervals, respdgtive

u(t, 71, ) the age-space-density of individuals agedat timet¢ at the position
2 who are of juvenilef, € (T,T1)), single ¢4 € (11,753)), or post-
reproductive f; > T3) age,
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ug(t, 71, m72,2) the age-space-density of individuals agedt timet at the positionz
who take care of theik offsprings aged- at the same time,

v(t,m,x) the natural death rate of individuals agedat timet¢ at the positionz
who are of juvenile or adult age,

vp(t, 71, m2,2) the natural death rate of individuals agadat timet at the position:
who take care of theik offsprings aged-,

vs(t, 71, 72,2) the natural death rate @ s young offsprings aged. at timet at the
positionz whose mother is aged at the same time,

ag(t,m,x)dt  the probability to producé offsprings in the time intervdk, ¢ + dt] at
the locationz for an individual aged,

N sum of spatial densities of juvenile and adult individuals,

p(N) the death rate conditioned by ecological causes (overéngaaf the
population),p(0) = 0,

ug(T1, ),

ugo(T1,72,2)  the initial age distributions,

[t] 7y =7] the jump discontinuity of: at the pointr; = 7,

a= Y o m(mn)=max(0,mn —T3), 2(m)=min(r —T1,T),
k=1

k=1

Uy =Vk+ Y, Vkss
s=0
T, =T +T  the minimal age of an individual finishing care of offsprirgfghe first

generation,
T,=T3+T the maximal age of an individual finishing care of offsprimjshe last
generation,

o= (T,13), o2=(T1,Ty), o3=(12,Ty),
o1x = (T,00) \ 01, o09x=(T,00)\ 02, o3x=(T,00)\ o3,
Q={(r,m):m € (T1 + 12, T3+ 72), 12 € (0,T)}.

In what follows,x, T', T}, andT3 are assumed to be positive constants. In the case of
nondispersing populations, all functionsuy, v, vk, Vs, g, ug, andugy do not depend
on the spatial position.

3 The nondispersing population model

In this section, we give the nondispersing age-structugalijation model [1, 8] with
stationary vital rates. This model involves the environtakpressurep(NV), by the death
rates of juvenile an adult individuals depending on the siinof their spatial densities.
It is assumed that young offsprings are subject to naturatatity and are protected
from density related increases of mortality dependeniNodirectly. At ager; = T all

young offsprings go to the juvenile group and at age= T3 all juveniles become adult
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individuals. The model consists of the equations

Opu + Oryu+ (v + p(N))u = {0’ L € O1%,

au, T €01

0 € o2, 0, — )
Y2(m1) " f2 0
+ + >0,
ZVkondTQ, T1 € 09 Zuk|72:T7 T, € 03,
k=1
y1(71)
k—1
Dutur + O, + Oryur + (vic+ Y vis + p(V) )
s=0
0, k=mn, 2
Y v, 1<ksno1, THRIEQ 0
s=k-+1
T3t72
N = /udﬁ —|—/d7'2 / Zukdﬁ ?3)
Th+72 k=1

subject to the conditions

n
U|7—1:T:/E kug|zy=rdr,
J k=1

U |r,=0 = agu, 4)

ult=0 = uo, Uk|t=0 = Uko,
[u|'rl:'r] =0 for 7= Ty, Ts, T3, Ty.

Hered, andd., denote partial derivatives, whiteis the biologically possible max-
imal number of newborns of the same generation produced hgdiwvidual. The first
term on the right-hand side in equation (1) means the pamdifiduals who produce
offsprings, the second and third terms describe the pamd¥iduals whose aII young
offsprings die and who finish child care, respectively. Tiaasition termz ykquk
on the left-hand side in equation (2) describes the part difiduals agedr; at timet
who take child care ok young offsprings and whose at least one young offspring dies
Similarly, the term on the right-hand side in this equati@satibes a part of individuals
agedr; at timet who take care of more than1 < k < n — 1, young offsprings aged,
whose number after the death of the other offsprings beceueal tok. The condition
[u|r,=-] = 0, 7 = T, Tz, T3, andT, means that the functiom must be continuous at
the point,-; = 7, of the discontinuity of the right-hand side of equation (1).

Given functions/, v, v, g, ug, andugg and the unknown onasanduy, are to be
positive. The positive constaritsandT’; are also to be given.
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We use the following compatibility conditions:

n
u0|T1:T:/ZkukO|72:TdTI7
k=1

©)
Uko|ry=0 = tk|t=0Uo,
[U0|7—1:7—} :O for T:T15T27T37T4'
Using the following transformations,
u(t,m) = fOU(t, 1), ux(t,m1,72) = f(L)Ur(t,71,72), [f(0)=1, (6)
model (1)—(5) can be decomposed into the problenifandUy,
0, T € 1%,
U + 0., U +vU =
O[U, T € 01
0, T1 € O2%, 0, € ogx, @
'72(7'1) n n ¢ O
+ + >0,
ZVkondTQ, T1 € 02 ZUk|T2:Ta T1 € 03,
71(71) k=1 k=1
OUk + 0-, Uy, + 0, Ui, + .Uy,
0, k=n,
). ( JeQ. t>0 (8)
N Z Vsk,Us; 1§k’§n71, T2 ’ ”
s=k-+1
subject to the conditions
U|7—1:T = /Z kUk|72:Td7_1;
oy k=1
Uk|7’2:0 - OZkU, (9)
Ult=o = uo, Uk|t=0 = uro,
Uln=r] =0, 7=T, T5,T3,Ty,
and the equations fof and NV,
fr=—p(fB)f, [f(0)=1, (10)
fe%s) T Ts+7o n
8= / Udr + / dry / > Udm, (12)
T 0 Ty 4y k=1
N = f4. (12)
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The existence and uniqueness theorem for problems (7¥5Q)and (10), (11) is
proved and, in the case of stationary vital rates, the ldange behavior of solution (6) is
givenin [1,8].

In the case of time-independent vital rates;, v, anday, the existence of sepa-
rable solutions of the form

U =UvMm)exp{At}, wuo=UvM7), oNT)=1,
U = UvMry — 7)op (11, 72) exp{Mt},  ugo = UvMm — m)vp (11, 72),  (13)

'U2|7-2:0 - Oék;

with unique real is also proved in [1,8]. Her& > 0 is an arbitrary constant, while the
constant\ and positive functions* andv; are to be determined. Function$ andv;
satisfy the problems

0 € o1%*
@MH(V+AMA{’A LS
av”, T €01
0, T1 € O9%,
72(7'1) n
Z I/ko’l)]i,\(Tl,TQ)’UA(Tl — T)dTe, T1 € 09
1

71 (1) k=

+
(14)
0, T1 € O3%,

(Tl,T)v/\(Tl -T), 71 € o3,

MNT) =1, [PMD)] =0, 7=T1,T5,T5 Ty,
where the prime denotes the differentiatiorvdfwith respect to age;, and
0, k=n,

A A ot A n
a‘rlvk + aTZUk‘ + (Vk + )\)vk - Z Vskvi7 1 S k S n — 1 |n Q7 (15)

s=k+1
A —
vk |7'2:O - Oék»,

while the constanh is a root of the characteristic equation
1= /Zkvg‘(ﬁ,T)vA(ﬁ —T)dn. (16)
k=1

Set

o = UO(Tl) exp{—X(1 —T)}, v,i‘ = vg(ﬁ, To) exp{—A72}, a7
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wherev® andv) satisfy equations (14) and (15) far= 0. From equations (16) and (17)
we get the characteristic equation far

IN\) =1,1()) := /exp{—x/\}vo(x) Z kvd(x + T, T)dx. (18)
o k=1
Under minimal restrictions on the time-independent viééés, vy, v, anday and
initial functionsu® anduy, it is proved in [1, 8] that the solution of problem (7)—(9) and
(5) for u® andu? of the general type tends, as— oo, to separable solution (13) with
uniqueﬁ and exponenA satisfying equation (18). Thereforg,can also be determined
by the formula

IR0
Aihmt—tllnﬁ(tl) as t >ty — oo. (29)

Equation (10) for the large time can be written in the form

F = fhyexp{At}, F =F(x—p(F)),

wheref, is a positive constant andhas a positive derivative. It is well known that, for
F(0)>0,F—0if A<0andF — F, p(F) = Xif A> 0.
Results of numerical investigation of problem (5) and (I}B(are discussed in

Section 5.

4 A population model with spatial diffusion

In this section, we consider the population dynamics indgdhe spatial diffusion in the
interval (0, 1) with the extremely inhospitable points= 0 andz = 1. We use the model
analyzedin[1, 8],

0
O+ dru+ (v + p(N))u — kOpeu = — T € ok,

—N—

au, T €01

0, T1 € O2%,

+ 72(7_1) n + 27 7_1 E 03*7
/ ZVkOdeT% T € 02 ZWH:T, T € 03, (20)
k=1 k=1
71(71)

n
U|7—1:T:/§ kug|r,=rdm,
J k=1

u|t:0 = Uo, [ul‘rl:‘r] = 0; T = TI;T2>T37T47 u|x:0;1 = 07
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Orui + O up + Oryup + (ﬁk + p(N))uk — KOpg Uk
0, k=n,

S vy, 1<k<n—1, (0 EQE>02E0D), 2D

s=k+1
Uk |rp=0 = QU Uk|t=0 = Uko, Uk|z=0;1 = 0,

o T Ts+71o n
N = /udn —|—/d72 / Zukdﬁ, (22)
T 0 T 4ry =1

where the constant is the diffusion modulus. We assume that;,, oy, andv,, do not
depend ort andx and use the following compatibility conditions:

n
Uolr =1 = /Zkuk0|'rz:TdTla Uolz=0;1 =0,
k=1

(23)
[Uolry=-] =0, 7=T1,T,T3,T4,
Uko|ry—0 = ()|t=0U0, Uko|z=0;1 = 0.
In the case of product initial functions,
uo (1, ) = Up(1) fo(z), (24)
Uko (71,72, 2) = Uko (11, 72) fo(2)

with positiveUy andUyg, and fo(0) = fo(1) =0, fo(x) > 0in (0;1), by the transform

{u(t,ﬁ,x) = U(t, ) f(t,z) exp{—At}, (25)
u(t, 71,72, 7) = Uk(t, 71, 72) f(t, ¥) exp{—At},
we split (20)—(23) into problem (7)—(9) and (5) forandU,, and the problem fof,
nf=A=pN))f+KOpaf, x€(0,1), t>0,
N = fBexp{—At}, (26)

f(07.%‘) :fo(x)7 T € (071)7
f|a;=0;1 = 07 t> Oa

whereg(t) and ) are defined by equations (11) and (19), respectively.
Numerical results are discussed in Section 5.

5 Numerical results

In this section by using computer modelling, we study bothdispersing population
model (1)—(5) and model (20)—(23) of the population with gmatial diffusion. We
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assume that integer in both models is equal to 3. This corresponds to species, e.g
Felis yagouarundi (2-3 children),Pseudocheirus peregrinus (1-3 children), Tremarctos
ornatus (1-3 children), andArtictis binturong (1-3 children). We solved system (1)—(5)
directly and by using its decomposition (6) into problems-(9) with conditions (5) and
(10)—(12).

Similarly, to verify the result, we solved model (20)—(23)tbe population with
spatial dispersal and product initial distributions (24&edtly and by using its splitting
(25) into problems (7)—(9) with conditions (5) and (26).

The general type of initial functions does not allow to splibblem (20)—(23) into
two problems. In this case we solved system (20)—(23) dyjrect

Before solving the problem (26), we determine the expondmm equations (14)—
(15), (17), and (18). It follows, from [1, 8] that function§)(tend to a positive steady—
state solution of problem (1)—(5) ¥ > 0 and equationp(N) = X has a unique positive
root. The similar result is proved in [1, 8] for model (20)4§2i.e., functions (25) tend
to a positive inQ) steady-state solution of problem (20)—(23)\if> x7? and to O if
0 < X < kw2, provided that equatiop(N) = X has a unique positive root and initial
functions (24) are used.

We also study separable solutions (13)—(16) numerically @etermine a unique
real \.

In all calculations, excluding Fig. 16, we use the vital sate

v(m) = mti 4+ p2, q>1,

ve(71,72) = i T+ g2, g > 1,

Uks(T1,T2) = pkst|T2 — 10|74 prs2, 70 < T (27)
ag(m1) = agrexp{—(m1 — (T3 + T1)/2)% Jar2}, qo > 1

p(N)=poN*, & >0

and initial functions

uo(T1) = B3(11 + B2) exp{—Fi71 }, B 28)
uko (71, 72) = ag(ti — 72)up(11 — 72)Uk(72)

for nondispersing population model and
uo (71, %) = fo(x)Bs(p(x)m1 + fa) exp{—rim}, (29)
ko (71, T2, ) = (11 — T2)uo(T1 — T2, ) Uk (72)

for the population with the spatial diffusion. Here

Ox(rs) = 1+ Z(OT) = 1), pla) = 1+ pra® (1 —2)*,
fo(z) = Az® (1 —2)%, & and & > 1.
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Using compatibility conditions (23) we determine the function
Ts 4
Ba() :p(af)Uk(T)/Zkak(Tl)(Tl —T)exp{—pim}dm
k=1

30
Ts 3 1 ( )

X {exp{—ﬁlT} - ﬁk(T) / Z kag (1) exp{—ﬂln}dﬁ} —p(x)T.
7 k=1

Note that formula (30) witlp; = 0 determines the constag} in equations (28). The
positive constants

M1, U2, Ukl k2, Hksls Hks2s 4O > 1a q> 17 qr > 1a 617 537UR(T)7 P1, 517
E0>1,86&>1, T<Ty <T3, A, agt, age, 79 < T, andpg remain free

It is easy to see that (29) represent the sum of two produddtifurs, and is the
particular case of functions (4.2.1) considered in [1, 8].
Now we describe numerical schemes for both (1)—(5) and (28)-models.

Brief description of the procedure for solving system(1)—(5). We solve this system
using the Chiu [10] (see, also, [11]) scheme applied to theilGtMacCamy model. To
do this, we write model (1)—(5) on the characteristic lined then replace it by a discrete
system using the same step for ages and time. At each tine levave use the following
iteration procedure:

1. DetermineN (¢y), to = 0;

2. DetermineN(©)(t,) by the formulaN ) (¢,) = N(t,_1), s = 1,2,... using known
u anduy, for t,_q;

3. Determineu\" for t, exceptu.™ o B=1,2.3;

4. Determineu(™ for ¢, by the explicit scheme. To do this, we use the rectangle
formula to calculate the second term of the right-hand sfdmjaation (1);

5. Determineu,(c”)]w:(], k=123, fort,;
6. DetermineN (™ using foundu(™) andu} for t,, and repeat steps 3, 4, 5, 6 until
inequalitymax [N — N(»=1| < ¢, n =0,1,2,... s satisfied.

Brief description of the procedure for solving system(7)<12) and (5) is similar to that
used to solve model (1)—(5). Here, we do not use iteratioogmtore. We apply steps 2, 3,
and 4 from the procedure above and use the explicit schenetaondinef from equation
(20). Then, by equation (6), we determim@nduy.

To solve systen{20)—(23), we use the Crank—Nicholson scheme and theiganatocess:

1. DetermineN (¢, z), to = 0;
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2. DetermineN(©)(t,, z) by the formulaN ) (t,,2) = N(t,_1,z), s = 1,2,... using
knownw anduy, for t5_q;

3. Determineug’) for t, exceptu,(cn) k=1,23;

7'2:0’
4. Determineu(™ for t, by the explicit scheme. To do this, we use the rectangle

formula to calculate the second term of the right-hand sfasgaation (1);
5. Determineu!" o B =1,2,3,fort;

6. DetermineN ™ using foundu™ andu} for t,, and repeat steps 3, 4, 5, 6 until
inequalitymax [N — N(»=1| < ¢, n =0,1,2, ... is satisfied.

Procedure for solving of system(7)—«9), (5), and (24)((26). We determinel/ and

Uk, K = 1,2,3, in the same way as in the procedure for solving of system {2)-(
(5). Then determing from problem (26) using the iteration procedure with therBra
Nicholson scheme. At last, by equation (6), we deternia@duy,.

Brief description of the procedure for solving equation(18).

1. Determinevd, v9, v{ from equation (15) written on the characteristic lines. \We u
these values for calculation of (7;) from equation (14).

2. Determine)’(r), T < 71 < T3 by explicit scheme.

3. Determinev’(r,), Ty < 71 < Ty. To do this, we apply the rectangle formula to
calculate the second term on the right-hand side of equétidpand then use the
explicit scheme.

4. Determines®(y), 7, > Ty by explicit scheme.

5. Fix A and calculatd (\) from equation (18).

6. Decrease if I(\) < 1 orincrease\ if I(\) > 1.

7. Calculation stopsiff(A\) — 1| < e.

Results of numerical calculations are displayed in Figd6lfer

01 =0.55, (=57,
a; = 0.07, a1 =01, o192 = a9y = agy =5,
H32k = p21k = Mok = 0.0012,
paik = pook = 0.001, g0 = 0.0008, k=1,2,
Uy(T) = 0.7, Us(T)=06, Us(T)=05 T=1,
A=3, 171=02 Ty=4,
§1=86=E§ =15,
G0 =15 q¢=qa=¢@=qg=2,

(1)

and the constants given in Table 1. Hame = p;, = g1 = pge, k=1, 2, 3.
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Table 1. Constants used for calculations of graphs in Figs. 1-16

Figs. x-10> po-10° p Ty az - 10 p* 107
1 0.1 0 2 1.3 10
2 0;0.1;1 0 2 1.3 10
3 1 0 2 1.3;2;3 1
4 0 0 2 1.3 1;10;100
5 0 0 2 1;1.2;1.4 10
6 0 0 1.9;2;2.1 1.3 10
7 0.1 0 1.7;2;2.3 1.3 1
8 0.01 0;0.1 0 1.7 1.7 10
9 0.01 0.1 0 1.7 1.7 10
10 0.01 0.1 0;1;2 1.7 1.7 10
11 0.01 0;0.1;1 0 1.7 1.7 10
12 0.1;1;10 0.1 0 1.7 1.7 10
13 0.1;1;10 0 0 1.7 1.7 10
14 0.1 0.1 0 1.7 1.7 1
15 0.01 0 0 1.7 1.68;1.8 1
16 0.01 0 1 1.7 2.5 10
Discussion of the results
Define
To+T3 3 T
v(t, o, x) = / Zkukdﬁ, Vit,z) = /v(t,ww)dm,
To+T1 k=1 0
T To+T3 ~
_ / T 1 B(t)
zi(t,x) = | dra [ ug(t,71,72,2)dr, A=lim——In=—= ast>t; — oo,
t—1t /B(tl)
0 To+T1
where

8= /1 N(t,z)dz.
0

Herev(t, 72, x), V(t, x), andz(t, z) mean the number of offsprings agegdat time
t at the positionse, the total number of offsprings at timeat the positions:, and the
number of individuals taking care éfoffsprings at time at the location.

Figs. 1-7 represent the solution to problem (1)—(5). Theuénfte of death rates,
environmental pressure, and the rateon the behavior of densities uy, v, andN +V
is investigated.

Fig. 1 describes the behavior®f, u,, andus for t=10 and the vital parameters from
Set (31) and Table 1. We observe the inequality< us < ug for a1y < as; < az; and
fixed the other parameters.
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Figs. 2 and 3 show the behavior oft, 1), € [1;25], andv(t, 72), 72 € [0;1],
for pg = 0, 0.001, 0.01 andaz; = 0.13, 0.2, 0.3, respectively. The other parameters
are used from (31) and Table 1. We see that population degeass; decreases gy
increases.

Fig. 4 shows the behavior af(t,71), m € [1;35], andv(t,72), 2 € [0;1], for
Ty = 1.7, 2, 2.3, and the other parameters from (31) and Table 1. Functioasd v
decrease monotonically d3 increases.

5,0

Fig. 1. Graphs ofi1, ug, andus fort = 10 Fig. 2. Graphs otu(¢, 1), 71 € [1;25], and

and parameters from (31) and Table 1. v(¢,72), 72 € [0;1], for po = 0 (graph 1),
0.001 (graph 2), and 0.01 (graph 3), and the

other parameters from (31) and Table 1.

Fig. 3. The behavior ol (¢, 1), 71 €[1;20], Fig. 4. Graphs ofi(t, 1), 71 € [1;35], and
andv(t,m2), 72 € [0;1], for as1 = 0.13  w(t,m2), 72 € [0;1], for Th = 1.7, 2, 2.3,
(graph 1) 31 =0.2 (graph 2), andvs; =0.3 and the other parameters from (31) and
(graph 3), and the other parameters from (31) Table 1.

and Table 1.

Fig. 5illustrates the total populatioN + V' versust for py, = pg1 = pre = 0.0001,
0.001, 0.01 withk = 1,2, 3, and the other parameters from (31) and Table 1. We see that
N + V decreases as deaths rates increase. It also possessdsrabioaum in time.

Fig. 6 describes the behavior 8f + V' versust for az; = 0.14, 0.12, 0.1, and the
other parameters from (31) and Table 1. Funcir- V' decreases with decreasing;
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and possesses a local maximum in time.

Fig. 7 exhibits the behavior af with respect ta for 77 = 1.9, 2, 2.1, and the other
parameters from (31) and Table 1. Functiérecreases &g, increases.

We determined exponentby solving equation (18) and by using formula (19). The
numerical results differs by an error of calculation.

N+V
5
8
!
2
l\.)\\\
—/
N+V
-
5 3

(2 120 4
50 \/ - 1004/ /
y é\‘ 804/,

o T T T T T T T 1
0 200 400 600 800 0 200 400 600 800

t t

Fig. 5. Plot of N + V versust for u1 = Fig. 6. Plot of N + V versust for az1 =
te = pr1 = pre = 0.0001 (curve 1), 0.14 (curve 1), 0.12 (curve 2), and 0.1
0.001 (curve 2), and 0.01 (curve 3) with (curve 3), and the other parameters from (31)
k = 1,2,3, and the other parameters from and Table 1.

(31) and Table 1.

22
1

20 \1}\

0
|
|
|
|
|
|
O)

Fig. 7. Plot of V' versust for 77 = 1.9
(curve 1), 2 (curve 2), and 2.1 (curve 3), and
the other parameters from (31) and Table 1.

Figs. 8-16 represent the solution of (20)—(23).

Fig. 8 illustrates the influence of parameggron the behavior ofi(t, 71,0.5), 7 €
[1;20], andv(t, 12, 0.5), T2 € [0;1]. The other parameters are used from (31) and Table 1.
We observe that andv are both decreasing as increases.

Fig. 9 shows the graphs af(¢, 71, x), 71 € [1;20], andv(t, 72, x), 72 € [0;1], for
t = 10, 20, 30, and parameters from (31) and Table 1.

Fig. 10 exhibits the behavior of(t,1,0.5), 71 € [1;30], andv(t,72,0.5), 72 €
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[0;1], for p; = 0, 1, 2, and the other parameters from (31) and Table 1. We observe the
increase of; andv asp; increases. This result can also be proved analytically
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Fig. 8. Graphs ofi(t,71,0.5), 71 € [1;20] Fig. 9. Graphs ofu(¢, 71, z), 71 € [1;20]
andv(t,72,0.5),72 € [0;1], for po = 0 and v(¢,72,z), T2 € [0;1], fort =
(graph 1), 0.001 (graph 2), and the otherl0, 20, 30, and parameters from (31) and
parameters from (31) and Table 1.

Table 1.
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Fig. 10. Graphs ofi(t, 1,0.5), 71 €[1; 30],

andv(t, m2,0.5), 72 € [0;1],forp =0,1,2

and the other parameters from (31) and
Table 1.

Fig. 11 illustrates the influence of, on the behavior ofV (¢, z). The other parame-
ters are used from (31) and Table 1.

Figs. 12 and 13 describe the influence:afn the behavior oN (¢, z) for py = 0.001
andp, = 0, respectively. The other parameters are used from (31) abkk Ta N
decreases as ar « increase.

Fig. 14 illustrates the influence afs; = 0.168 and 0.18 on the behavior of
(t,m,0.5). The other parameters are used from (31) and Table 1

Fig. 15 shows the dynamics oef,(¢,z), k = 1, 2, 3 for time ¢ = 10, 20, 30, and

parameters from (31) and Table 1. For the vital parametexs\tle used, we obtain
21 < z9 < 23 whenever; < ao; < 31
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Fig. 11. Graphs of N(t,z) for po = Fig. 12. Graphs ofV(¢,z) for x = 0.001
0, 0.001, 0.01, and the parameters from (graph 1), 0.01 (graph 2), and 0.1 (graph
(31) and Table 1. 3), and the other parameters from (31) and
Table 1.
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Fig. 13. Graphs ofV(¢,x) for k = 0.001  Fig. 14. Graphs of(¢,71,0.5) for as1 =
(graph 1), 0.01 (graph 2), and 0.01 (graphD.168 (graph 1) and 0.18 (graph 2), and the
3), and the other parameters from (31) and other parameters from (31) and Table 1.

Table 1.
Fig. 16 illustrates the influence of initial functions (29)da(32) on the behavior of

z for the parameters from (31) and Table 1.
We also solved model (20)—(23) with initial functions of fleem

ug(1,2) = fo(z)Bs(m1 + B2) exp { — ﬂ171£($)}7 (32)
ugo(T1, T2, ) = ag (11 — T2)ug(m1 — 72, 2)Uk(72),
where
T; 4
5a(2) = Ou() [ 3 kau(m)(n = T) exp{~1mip(o)}dn

7 k=1 N T3 5 1

X { exp{ — 51 Tp(z)} — Up(T) / Z kay (1) exp { — ﬁlﬁp(w)}dn} —T.

) k=1
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Note that (32) do not belong to the class of the product irfitiactions. It is shown,
in [1, 8], that solution of model (20)—(23) with = 0 and initial functions of type (24)
and (29) tend to a separable solution with exporert A — k2, where) is defined by
formula (19). Numerical calculations confirm this resultdaiso show that the solutions
of model (20)—(23) withp = 0 and initial functions (32), for large time, possess the
exponentA = A. This result can also be shown analytically using the satugigpansion
by the eigenfunctions of the Dirichlet problem to the Laplaperator.

Fig. 15. Plots of:; (left curves),z2 (central  Fig. 16. Plot ofz; with functions (29) (left
curves), andzs (right curves) fort = 10 curves) and (5.6) (right curves) for= 40
(curves 1), 20 (curves 2), and 30 (curves 3)(curves 1)t = 60 (curves 2)t = 80 (cur-
and parameters from (31) and Table 1. ves 3),t = 100 (curves 4). All parameters
are used from (31) and Table 1.

6 Concluding remarks

A one-sex age-structured population dynamics model [ &dso [8]) is examined nu-
merically herein, taking into account an environmentalsptee, a discrete set of off-
springs, and child care. Both the nondispersing populatimdel and that describing
the spatial diffusion are considered. Numerical schemesbased on the method of
the characteristic lines. Numerical results are exhibitethe graphs and illustrate the
behavior of the solution to these models depending on theusvalues of the parameters
determining vital functions.

Nondispersing population model (1)—(5) is solved direattg by using decomposed
problem (7)—(12) and (5).

The model (20)—(23) with homogenous Dirichlet conditioasolved directly for
initial functions of types (29) and (32). Additional solgirof the decomposed problem
(7)—(9), (5), (25), and (26) with product initial functio(4) corroborates results obtained
by using the first scheme for initial functions (24).

Numerical experiments show that, in the case of zeroth enmiental pressure and
initial functions of the general type (at least for functo{82)), the solution of model
(20)—(23) tends to a separable solution with an expofesat A — k72 as time tends to
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infinity, where\ is defined by formula (19). This result can also be provedydically.
For initial functions of type (24) and (29) this result is ped analytically in [1, 8].

As follows from [1] (see also [8]) the solution of model (13)-(vith p(N) = 0 tends
to 0 if A < 0, a steady-state ik = 0, andco if A > 0. In the case of positive(N) for
N > 0, the solution of (1)—(5) tends to 0 ¥ < 0 and to a unique steady-state if equation
p(N) =)\, A > 0, has a unique positive root.

In [1, 8] it is also shown that the solution of model (20)—(28}h p(N) = 0 and
product initial functions tends 0 X — k72 < 0, a steady-state X — k72 = 0, andoo if
A — km? > 0. In the case of positive(V) for N > 0 and product initial functions, the
solution of (20)—(23) tends to 0 X — k72 < 0, and to a steady-statef— kw2 > 0, with
p(N) = X having a unique positive root.
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