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Abstract. This paper presents a one-dimensional-in-space mathematical miodel o
an amperometric biosensor. The model is based on the reactionialiffaguations
containing a non-linear term related to Michaelis-Menten kinetics of the eatiym
reactions. The stated problem is solved numerically by applying the finiterelifEe
method. Several types of finite difference schemes are used. Tigrical results for the
schemes and couple mathematical software packages are compdreetified against
known analytical solutions. Calculation results are compared in terms gfréusion

and computation time.

Keywords: numerical simulation, finite difference, reaction-diffusion, amperoime
biosensor.

1 Introduction

The interest in biosensors is constantly growing as thegafigractical applications of
electrochemistry increases. Biosensors are small aocalytevices capable of detecting
specific compounds and therefore they are often applieckifidhds of clinical, industrial,
environmental and agricultural analyses [1-3]. A biosenlswice is composed of bio-
logically responsive material, mostly enzymes, and thetedde. Enzyme interacts with
the target substance yielding the product. This processually described by Michaelis-
Menten kinetics of the enzymatic reactions [4—6]. Amperoiodiosensors are based on
the measurement of the Faradaic current when a constamitjiadts kept. The current on
electrode results due to the direct oxidation or reducticemnoelectroactive spieces.
Analytical solutions for mathematical models of the biasmns are obtainable exclu-
sively in special cases [7,8]. In common case the modelstiodwe solved numerically [9,
10]. Finite difference method is one of the most popular apipnation techniques [11].
Numerous types of finite difference schemes can be considerghe solution of non-
linear reaction-diffusion systems [4, 11]. Three majoitdas must be taken into account
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when choosing the technique for simulation: the accuraghefsolution, computation
time needed to solve the problem and ease of use of the teshriityis work is focused on
the analysis of several most commonly known finite diffeeeachemes using computer
simulation.

2 Mathematical model

An amperometric biosensor can be considered as an ampeioelettrode, having a
layer of enzyme immobilized onto the surface of the ele@rdffe assume the symmetri-
cal geometry of the electrode and homogeneous distribafidine immobilized enzyme
in the enzyme membrane.

We consider the following enzyme-catalysed reaction

S+E=ES—E+P. 1)

In this scheme the substrate) combines reversibly with an enzyme)(to form a com-
plex (ES). The complex then dissociates into a prodijtgnd the enzyme is regenerated.
Assuming the quasi steady state approximation, the corat@nmt of the intermediate
complex ES) do not change and may be neglected when simulating the driaichl
behaviour of biosensors [1,2]. The scheme (1) reduces toalified model of enzyme-
catalyzed reaction, where the enzyrii® binds to the substrat&) producing the product
(P) is considered,

s 2 p @)

Coupling the enzyme-catalyzed reaction with the one-dsiwaral-in-space diffusion,
described by Fick’s second law, leads to the following aysté equations [8, 9]:

os %S VinazS

ot~ 0  Ky+S 3)
OP o%pP VinazS

E: Pw“rm, O<z<d, t>0,

where S(z,t) and P(z,t) are the substrate and product concentrations, respsgtivel
stands for time and — for space,Dgs and Dp are the diffusion coefficients of the
substrate and product, respectively;, is the Michaelis-Menten constarit;,, .. is the
maximal enzymatic rate attainable when the enzyme is fallyrated with substratd,is
the thickness of the enzyme membrane.

Let 2 = 0 represents the electrode surface, whike d represents the bulk solution-
membrane interface. The biosensor operation starts whae sabstrate appears on the
surface of the enzyme layer,

S(z,0)=0, 0<z<d,
S(d70) = SOa (4)
P(z,0)=0, 0<ax<d,
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whereS, stands for the concentration of substrate in the bulk swuti

In the case of amperometric biosensors, due to the elecpoldeization, the con-
centration of the reaction product at the electrode surfabeing permanently reduced
to zero. The substrate does not react at the electrode surfathe substrate is well-
stirred and in powerful motion, then the diffusion layer< = < d) remains at a constant
thickness ofd during the biosensor operation. This is used in the boundanglitions
given by:

dS
8733 =0 h O’
S(d,t) = So, 5)

P(0,t) = P(d,t) = 0.

The measured current is accepted as a response of an ampé@rdineensor in a physical
experiment. The current depends upon the flux of the reagtioduct at the electrode
surface, i.e. at the border= 0. Consequently, the densifyt) of the anodic current at a
timet can be obtained explicitly from Faraday’s and second Fileiis using the flux of
the product concentration at the surface of the electrode,
orP
I(t) =n.FDp— 6
( ) Ne P o m:O7 ( )

wheren, is a number of electrons, involved in charge transfer at thetmde surface,
andF’ is the Faraday constant.

We assume that the system (3)—(5) approaches a steadysstate o,

I, = lim I(t), (7)

t—o0

wherel, is the density of the steady state current.

3 Solution of the problem

The analytical solutions for nonlinear partial differem&quations generally do not exist.
Equations (3)—(5) describing the action of an amperomeéidsensor do not have ones
either, so numerical approximation must be used. We apfiliéd difference technique
to solve (3)—(5) the boundary value problem numerically, 10.

3.1 Analytical solutions

A non-linear term in equations (3) turns to linear one in gdecases of the substrate
concentration,
VmawS ~ Vmaz
Ky + S Ky
Vma:nS
Ky + S

S, when S < Ky, (8)

~ Vinas, When S > K. )
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The analytical solutions are known for the boundary valugbfam (3)—(5) in the
cases of linear reaction terms [7, 8]. Exact solutions atpfiiein testing models and
assessing accuracy of the solution.

If inequality Sy <« K, is satisfied, then the biosensor steady state current can be
calculated as follows [8]:

1 1
Iy =n.FD 11— 1
=M PSOd( cosha)’ (10)

wheres? is a dimensionless diffusion modulus, Damkohler number,

2 Vmaw d2

= . 11
DsKy (1)

(2

The biosensor response is known to be under mass transptnldbthe enzymatic
reaction in the enzyme layer is faster than the mass trangpocess [4, 8,9]. The
diffusion modulus essentially compares the rate of enzigmaction {,,q.. /K ar) with
the diffusion through the enzyme layeb§/d?). If 02 < 1 then the enzyme kinetics
controls the biosensor response. The response is undasidiffcontrol whemrr? > 1.

At the high concentration of the substrate) (> Kj,), the biosensor steady state
current does not depend on the concentrafigof the analyte [7],

Ne'Viazd

9 — e Qmaw . (12)
However, in the intermediate concentration cases, i.6 ifkc K, the analytical

solutions are unknown and numerical methods are used te Huvproblem [4, 9, 10].

3.2 Finite difference schemes

We introduce an uniform discrete grid, x w, to simulate the biosensor using finite
difference method,

wp ={z;: z;=1h, i=0,...,N; hN =d}, (13)
Wr = {tji ﬁj :jT, jZO,...,M; TM:T},
whereT stands for the duration of the process analysis.

The differential equations are discretized in that domasuaning the following

definitions:

SI=S(xity), P! =Platy), IL=I(),

K2

. : (14)
1=0,...,N; j=0,..., M.
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3.2.1 Explicit finite difference scheme

Using explicit finite difference scheme for the substratd product concentrations (3)
we obtain the following finite difference equations [9-11]:

2

Sf+1 e D (Sf+1 - 255 + Sg_1> Vmaxsg
s _

T h? KM—i—S{7

Pz]+1_PZJ = Dp sz+1—2sz +Pijfl + ‘/mawsg. (15)
T h? I(]\4+Sf7

i=1,... ,N—1. j—=1,..., M.

The initial conditions (4) in numerical model has the follog form

SY=0, 0<i<N,
S = So, (16)
P?’=0, 0<i<N.

For the boundary conditions (5) we obtain:

S(J) = S{,

S = So, (17)
Pl =P, =0, 1<j<M.

The formulae for calculation of current density (6) becotties (0 < j < M):

J

P
I; =n FDp (18)

-1
o

We consider the densitf; of the steady state current calculated at the morignt

Ip=1(Tg) ~I,, Tp= min izl U poy (19)
R R s R psobso T Ir ’ R

We usedt = 10~° for the calculations.

One of the most important features of the scheme is the #yaldil]. The prereg-
uisite for the stability of the explicit finite differencetseme (15)—(17) is the following
condition:

h? h?
<min{ —, — ». 2
7'_rnln{2DS7 2Dp} (20)

Because of these stability conditions, a number of the titepssmust be magnified
strongly as the number of the space steps is increased. &#ils lto the inefficient
calculations.
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3.2.2 Implicit 1 finite difference scheme

Mathematical model of a biosensor can be solved using dewgpécit finite difference
schemes [9-11]. Let us name first of them “Implicit 1 finitefeliénce scheme” and
compose its equations.

The model governing equation for the substrate conceotrati (3) is replaced by
the following finite difference equation:

(21)

T

Szj 75371 _ DS S{-i-l 723{ +Szj—l _ ‘/maxszj‘il
h? Ky + 5371 .
Known concentration values of the substrate at the upper zan be used for calculation

of the product concentration. Hence, governing equatioritfe product concentration
can be approximated with:

(22)

sz 7131?.71 DP<PiJ+1 _2Pz] +]Dzj—1> + Vmamszj
T

- h? KM-I-SZ

The rest equations (4)—(6) take the same form as those okfhieiescheme.

3.2.3 Implicit 2 finite difference scheme

The model equation for the substrate concentration in (3) beaapproximated with a
more implicit scheme than equation (21). At a numerator attien term the concentra-
tion of substrate can be used in a upper level,

(23)

Szj _Szjil D <Svj+1 _2S1j +S7j—1) Vmaxszj
4+t = Dg _

T h2 K]w + Sg_l .

Present numerical equation is linear, same as (21). The etheations match those
obtained using the explicit scheme.

3.2.4 Crank-Nicolson scheme

Using Crank-Nicolson [6, 11] method the reaction-diffusiequations (3) are approxi-
mated by linear finite difference equations,

57 — S-,j_l D X . X - . o Vmamsj_l
S (ST~ 28T+ ST+ ST 28] ST ) - e

T 2h Ky +S! 24
Pl —pPI~'  Dp, . . , ) . ) V. gJ
i ZB(pl —opiqypl 4piTtoopitlypitl) 4 marti

T 2h2 ( i+1 % + z—1+ i+1 i + i—1 )+ KJW T Sf

The rest equations (4)—(6) are approximated like in theiexglcheme.
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3.2.5 Hopscotch scheme

Using Hopscotch scheme unknown grid points are obtained@aphases [11]. On the
first phase, even grid pomt§[e]j+1, Ple}?™) are calculated explicitly using known
lower layer values§’, P?),

S[ ]]Jrl SJ =D <57J+1 B 2S1j + Sf—l) VmaerLj
L —— S -

T h? Ky + 8! (25)
P[ ]J+1 PJ —Dp (PL]+1 — 2PL] + PZJ_1> + VmaTSZ
T B h? Ky + SZJ

On the second phase, odd grid poinf§o{Z ™", PJo]/™") are calculated using odd
values of the lower level and already known even values ofifieer layer,

7

Sl 8] _ DS(S[ elii1 — 28[l " + Sle ]ﬂ“) _ VinasS

T h? K+ 5] 26
i+l _ pj j+1 j+1 i+ i1 (26)
P[O]z — Pz P[ ]z+1 2P[ ] + P[ ] VmazSi
—_—r ' — DP o) + g
T h Ky + 57

Computation continues alternating the calculation ordén® odd and even points.
Hopscotch scheme is fully explicit yet unconditionally d&afor V,,,,. = 0 and
therefore it can operate with any size of time and space steps

3.3 Mathematical software packages

The major mathematical software packages provide toolsdiwing systems of the par-
tial differential equations. However, a greater ease ofarsewider range of solvable
problems often comes at the expense of lower precision sielfisiency.

We used Maple (Maplesoft, Inc.) version 10 general-purmsugeer “pdsolve” to
find numerical solution for the system of the partial diffeial equations [13]. This
solver uses finite difference method and can be configurddelét/en classical schemes,
calculation step size and other parameters.

The biosensor action was also simulated with MATLAB (The M&brks, Inc.)
software package [14]. The problem was solved using huiftalver“pdepe”, which
provides a numerical solution for systems of differentigli&ions in single spatial di-
mension and time.

4 Results and discussion

Computer simulation was used to compare accuracy and pafare of the solution
techniques. Since the system of linear algebraic equaianigliagonal it can be solved
efficiently [11]. Calculation results are compared in tewhgrecision and computation
time. We define the relative errdf as the absolute difference of the steady state current
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density estimated by analytical and numerical solutiongldd by the steady state current
density of analytical solution.

|
E = 27
I, Iy, So> Ky, @7

In—L|  _ {Il, So < K,
wherelr is the numerical solution defined by (19) whileand/, are analytical solutions
defined by (10) and (12), respectively.

The following values of the model parameters were employed:

Ky =100 uM, S € {1072 Kp1510° Kar}, Vinaw = 100 uM/s,

) (28)

Ds =Dp =300 um=/s, n, =2, T=10s, d =100 pum.

The routines of the finite difference method were implemeirieJava programming
language [12]. For performance reasons, we executed pnsgod the mathematical
software packages using command-line approach. The expeis were performed on
the 2 GHz Intel Core 2 Duo Processor with 1GB of RAM.

As a first test problem, relative errors of the finite diffeserschemes and mathe-
matical software packages were examined using two knowlytéga solutions (10) and
(12). We appliedV = 10? for the calculations using implicit 1, implicit 2 and Crank-
Nicolson schemes antf = 10° using explicit and Hopscotch schemes because of the
stability constraints on the time step. All the considereddidifference schemes yield
very similar precision, therefore only explicit schemeutesare presented in Fig. 1 as the
example. The smallest relative errors are obtained usiitg fiifference schemes. Maple
package calculates the steady state biosensor currentancueately than MATLAB. In
cases of high substrate concentration (12) Maple’s reatdtas precise as those obtained
by explicit scheme. The numbers of steps used in calcuktdin not influence the
accuracy of the MATLAB solution.

T T T T T T T T 10°
1074

o1 —o—1

—o—2 1074 —o—2

5| o
1074 1\ 34 %\3 3
0, o
E N E oo,
[m] O O
O Owr-
\ O~0_o 1074 Q\O‘Oﬂ]\o\ ]
103< D\ ~O-o o-0 - Q~Q‘D‘O;O
D\D 0-0-0-0
oo
O—
O-p,
D\D\D\D\D*D\m;m -3
T T T T T T T T 10 T T T T T T T T
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
N N
() (b)

Fig. 1. Dependence of relative errBron the number of space stepsfor two values
of So: 1073K s (a) and10°K s (b). 1 — explicit schemel = 10°), 2 — Maple
(M = 10%), 3— MATLAB (M = 10?).

366



A Comparison of Finite Difference Schemes for Computationatibling of Biosensors

In Fig. 2 the finite difference schemes are compared to thikcebgcheme. The Hop-
scotch scheme differs very slightly from the explicit scleeim both analytical solution
cases, whereas the implicit schemes showed the maximatetiife of approximately
0.8% when the number of space ste@gsequals to 160 (Fig. 2). The relative errors
computed using the analytical solution (12pgt> K, are by a few orders of magnitude
larger than the corresponding errors$t < K, calculated using (10). This could
be explained by less accuracy of the analytical solutior) ¢bnpared to the solution
(10) [7,8]. Considered schemes yield more similar reswdisgianalytical solution (12).

In the next test problem, we consider the computation timeefasction of the rela-
tive error (Fig. 3). Introducing different limitsfor the relative erro2, the computation

1.0 T T T T : T T . 0.030 T T T T T T T T
—0—1 —0—1

08] —o 2 0.025 o> ]
c 3 c 3
S o4 S 0.020{ —v—4 ]
8 0.6+ B 2 o072
> _O~
S $ 0.015] o /SJOJO,,Q
[ [ |~ —O~
o 0.4 -] o o850
8 B8 £ 0.0104 - ]
5 _g~ S o

-0~ 9] /
£ 0.24 5= . =
& T 8 0.005 —n-rlo-d ]
o o SA;
0.04 V=0N-v-v-v-v-V-v-V-V-V-v-v-V-A 0.000] & o-v-v-v TV V-T-T-T-T- T
T ——————————————
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
N N
() (b)

Fig. 2. The percentage ratio of the relative erfdof the finite difference schemes to
the errorE of the explicit scheme for two values §f: 102K (a) and10® K (). 1
—implicit 1 scheme, 2 — implicit 2 scheme, 3 — Crank-Nicolson scheme,@psébtch

scheme.
T T =T T
Co—y s <1 <0<I—<1 <1<
10°4 —0—2 <6 E
3 —%—7

—v—4

o
X
\
1041 o\ . 1
AN

N0 -G C-CX

\VWW—VWW—VWﬁ

10 T T T T !
10°  10% 10" 10°

€

Fig. 3. The computation tim& versus the relative errar, N, M € {20, 40, 80,
160, 320, 640, 1280, 2560, 5120, 10240}. 1 — explicit scheme, 2 — implicit 1 scheme,
3 — implicit 2 scheme, 4 — Crank-Nicolson scheme, 5 — Hopscotch scteemBlaple,

7 — MATLAB.
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time Tg(¢) is given by:

TE(G) = I]\Ifllj\l} {TN’MZ E S 6}7 (29)

whereTy as is the time of calculation at given numbers of grid stépand M. T (e)

is the minimal time of computation needed to achieve thetivelaerror £ not greater
thane. The calculations were performed for very different valaéspace and time steps,
N, M € {20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240}.

As one can see in Fig. 3, the implicit and Hopscotch are theegaschemes to
achieve the required relative error. Despite being verymaationally intensive, partial
differential equation solvers in mathematical softwarekages cannot accurately calcu-
late the results. The MATLAB solver does not obtain highagsion than 0.1.

Finally, the computation times for different grid steps@gorted in Tables 1, 2. The
Table 1 shows that there is a very small difference betwele@nses implicit 2 and Crank-
Nicolson and they are the most computationally intensitestes. Explicit scheme is the
fastest computation technique. Mathematical softwardauges are significantly more
computationally intensive, particularly Maple, see Tahle

Table 1. Computation time [ms] by the finite difference scheméss 100

M Explicit Implicit1 Implicit2 Crank-Nicolson Hopscotch

10000 284 555 996 1064 659
20000 398 1108 1967 2090 1356
40000 755 2232 3974 4205 3062
80000 1480 4450 8080 8853 5563
160000 2957 8866 16542 16829 10623

Table 2. Computation time [s] by the mathematical software packages,100

M  Maple MATLAB
100 695 0.64
200 2480 0.74
400 9379 0.85

5 Conclusions

In this article, several finite difference schemes wereiagfibr modelling an amperomet-
ric biosensor. Using all the considered schemes quitefaetiisy results were obtained
when sufficient number of steps of the discrete grid is engadoy

The best accuracy is achieved using implicit calculatios ldopscotch approaches.
For the problems where accuracy is not a significant factothmispeed is, the simplest
explicit scheme should be used.
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General-purpose solvers of Maple and MATLAB are less pestissimulate the

biosensor action and need more computation time. Thosersadan be applied for basic
problems while taking advantage of the simplicity.
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