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A Beveridge—Nelson filters for the self normalization
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Abstract. Let X, = Zi"io Yi€,—; bealinearprocess,whesgr € Z, arei.i.d. r.v.'sin the domain of attrac-

tion of a normal law with zero mean and possibly infinite variance. Generalizing the class of Beveridge—
Nelson filters this article proves a central limit theorem for the self-normalized ﬂJIﬁSZ';:l X,
whereU? is a sum of squares of block-sums of size m, as m and the number of bVoeks/m tend

to infinity.
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1. Introduction

Since the work of Peter C.B. Phillips and V. Solo [3] a method of deriving asymptotics
for weakly dependent linear processes has been used with an explicit algebraic de-
composition of the linear filter. The method offers a simple unified approach to strong
laws, central limit theorem and invariance principles for w. d. linear processes. In the
article [2] Juodis and R&auskas proves self-normalized central limit theorem for the
Beveridge—Nelson [1] linear processes. In this paper we generalize this theorem al-
lowing to widen the class of filters. We deal with the linear process of the following
form

Xe=) Ve, V=) Vi 1)
i=j

j=0

In this section we consider filters satisfying the main summation condition
o¢]
D W) <oo. )
j=0

This condition is important in the sense that the Beveridge—Nelson remains must be
stationary. Now we are ready to define a new class of linear filters

r, ::U{(wi)i20:]§kp|wk|l’<oo}. 3)

p<2
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Observe that this class is smaller than

> K2yl < oo. (4)

k=0

But the difference between them is measured only by the slowly varying factor.
An important class of linear processes is the so called Hall-Heyde condition

o0

Y KA < oo (5)

k=0

Observe that both of them imply (2) but they differs from each other. Indeed filters
V= 1/j%/2In(j + 1) satisfies (4), but fails on (5). The essence that all classes men-
tioned above are of order/3, and they only can differ by slowly varying factor. And
even the class (2) can't afford the filtergj#/2.

The classical B-N case considers the filters

>kl < oo. (6)
k=0

This condition allows classical Beveridge—Nelson decomposition, but it is very
strong(i.e., filters); = 1/j2 fails to satisfy it).
2. Results

Let X; be a linear process of the form (1), wheyer € Z, are independent identically
distributed random variables in the domain of attraction of a normal law with zero
mean and possibly infinite variance (i.e., there exists consbgrsch thab, (X1 +

XD _r, N(0, 1) denotedX; € DAN, here and throughoutL means
n—o00 n—o00

weak convergence, and (0, 1) standard normal law). Denotg, = X1 + ... + X,,.

SetUy = 0 and define

k
2
Un:=Uhr=> (Sjm—SG-vm)" k=1....N, 1<m<n, (7)
j=1

whereN = [n/m] and[a] denotes the integer part of In the paper [2] the main result
is Theorem 2 which states

_ D
u-ls, —— N, 1), (8)

for the class (6). The following theorem is the main result of this paper, and actually it
generalizes Juodis Rkduskas Theorem 2 for the bigger clags

THEOREM 1. If () e 'y, ande; € DAN, Eg; =0, then

Uy 'S, —— N(O,1).
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Proof. If we check the proof of the Theorem 2 [2] we see that we only need to
re-estate the following statements

N jm-1 2
W2 (X vitems) "0 ©)
j=1 k=0
and
N 00 2
V2 (X W = U—vmas)e ) =" 0. (10)

j=1 k=0

Observe that by stationarity of the procésg/ V?, k=1, ...,n) we have

N jm-1 00 N
EO Y (X viem) <o Yo wp?+ g (i)’
j=1 k=0 k=0 k=0

and by Jensen’s inequality one has
N & CN? &
< *\ 2 * 2_
<- k:ZO(wk> +— kzzo(w

Thus condition (2) is sufficient for the (9) convergence. Recall that

N 00

2
FIZV = Z (Z (wjerk - 1ﬁ(*jfl)erlc)E*]‘) :

j=1 k=0

Now convergence (10) reduces in showing thgtis stochastically bounded. To this
aim we need seven steps. First observe that
N oo p
Tyl <> ‘ Y (Wi — w(*jfl)erk)S*k‘

j=1 k=0

Next we use the moment inequality

E|> &' <2) El&”, (1)
which is true for any r.v.'g; if 0 < p < 1 and for any martingale differencéss if
l<p<g2.

Hence
N oo k+jm p
EIT, /P <2Eleal? Y > | > Wi
j=1k=0"i=k+(j—Dm+1

Third we interchange the summation order
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k+jm

oo N
=2Elell’ YD D W

k=0 j=1 i=k+(j—Dm+1

p

Fourth step
k+jm

<2Eley? ii( > wl)

k=0 j=1 i=k+(j—Lm+1

Since(al + - - + aX)Y/? is monotonically decreasing, thus

o) k+n »
<2Elexl? Y (3 wal)
k=0 i=k+1

Next step
oo oo
<2El” Y (3 i)
k=0 i=k+1
And finally the seventh step we use [3] page 987 top inequality

o0
< 2E|£1|p(const . Zk!’mv’).

k=0

Hence
k+jm

N 00
EL<Elel”d > > il

j=1 k=0i=k+(j—Dm+1

o0
p
<cEle]” Y kP [ynl”.
k=0

Thus the proof for generalized clt fdy, class is completed.
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REZIUME
M. Juodis. Beveridge—Nelson filtr apibendrinimai autonormuotoms sumoms

Darbejrodoma blokais autonormuota centinbiné teorema. Nagrigjami tiesiniai procesai su apiben-
drintu Beveridge—Nelson filtru.



