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Abstract. LetXt = ∑∞
i=0 ψiεt−i be a linear process, whereεt , t ∈ Z, are i.i.d. r.v.’s in the domain of attrac-

tion of a normal law with zero mean and possibly infinite variance. Generalizing the class of Beveridge–
Nelson filters this article proves a central limit theorem for the self-normalized sumsU−1

n

∑n
t=1 Xt ,

whereU2
n is a sum of squares of block-sums of size m, as m and the number of blocksN = n/m tend

to infinity.
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1. Introduction

Since the work of Peter C.B. Phillips and V. Solo [3] a method of deriving asymptotics
for weakly dependent linear processes has been used with an explicit algebraic de-
composition of the linear filter. The method offers a simple unified approach to strong
laws, central limit theorem and invariance principles for w. d. linear processes. In the
article [2] Juodis and Raˇckauskas proves self-normalized central limit theorem for the
Beveridge–Nelson [1] linear processes. In this paper we generalize this theorem al-
lowing to widen the class of filters. We deal with the linear process of the following
form

Xt =
∞∑

j=0

ψjεt−j , ψ∗
j =

∞∑
i=j

ψi. (1)

In this section we consider filters satisfying the main summation condition

∞∑
j=0

(ψ∗
j )2 < ∞. (2)

This condition is important in the sense that the Beveridge–Nelson remains must be
stationary. Now we are ready to define a new class of linear filters

�ψ :=
⋃
p<2

{
(ψi)i�0 :

∞∑
k=0

kp|ψk|p < ∞
}
. (3)
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Observe that this class is smaller than
∞∑

k=0

k2|ψk|2 < ∞. (4)

But the difference between them is measured only by the slowly varying factor.
An important class of linear processes is the so called Hall-Heyde condition

∞∑
k=0

k1/2|ψk| < ∞. (5)

Observe that both of them imply (2) but they differs from each other. Indeed filters
ψj = 1/j3/2 ln(j + 1) satisfies (4), but fails on (5). The essence that all classes men-
tioned above are of order 3/2, and they only can differ by slowly varying factor. And
even the class (2) can’t afford the filters 1/j3/2.

The classical B-N case considers the filters
∞∑

k=0

k|ψk| < ∞. (6)

This condition allows classical Beveridge–Nelson decomposition, but it is very
strong(i.e., filtersψj = 1/j2 fails to satisfy it).

2. Results

Let Xt be a linear process of the form (1), whereεt , t ∈ Z, are independent identically
distributed random variables in the domain of attraction of a normal law with zero
mean and possibly infinite variance (i.e., there exists constantsbn such thatb−1

n (X1 +
. . . + Xn)

D−−−→
n→∞ N(0,1) denotedXi ∈ DAN , here and throughout

D−−−→
n→∞ means

weak convergence, andN(0,1) standard normal law). DenoteSn = X1 + . . . + Xn.
SetU0 = 0 and define

Un := U2
m,k =

k∑
j=1

(
Sjm − S(j−1)m

)2
, k = 1, . . . ,N, 1� m < n, (7)

whereN = [n/m] and[a] denotes the integer part ofa. In the paper [2] the main result
is Theorem 2 which states

U−1
n Sn

D−−−→
n→∞ N(0,1), (8)

for the class (6). The following theorem is the main result of this paper, and actually it
generalizes Juodis Raˇckauskas Theorem 2 for the bigger class�ψ .

THEOREM 1. If (ψn) ∈ �ψ , andεi ∈ DAN , Eεi = 0, then

U−1
n Sn

D−−−→
n→∞ N(0,1).



524 M. Juodis

Proof. If we check the proof of the Theorem 2 [2] we see that we only need to
re-estate the following statements

(V ε
n )−2

N∑
j=1

( jm−1∑
k=0

ψ∗
k εjm−k

)2 →P 0 (9)

and

(V ε
n )−2

N∑
j=1

( ∞∑
k=0

(
ψ∗

jm+k − ψ∗
(j−1)m+k

)
ε−k

)2 →P 0. (10)

Observe that by stationarity of the process(εk/V ε
n ,k = 1, . . . ,n) we have

E(V ε
n )−2

N∑
j=1

( jm−1∑
k=0

ψ∗
k εjm−k

)2
� N

n

∞∑
k=0

(ψ∗
k )2 + CN

n2

( N∑
k=0

|ψ∗
k |

)2

and by Jensen’s inequality one has

� N

n

∞∑
k=0

(ψ∗
k )2 + CN2

n2

∞∑
k=0

(ψ∗
k )2.

Thus condition (2) is sufficient for the (9) convergence. Recall that

�2
N =

N∑
j=1

( ∞∑
k=0

(
ψ∗

jm+k − ψ∗
(j−1)m+k

)
ε−k

)2
.

Now convergence (10) reduces in showing that�N is stochastically bounded. To this
aim we need seven steps. First observe that

|�N |p �
N∑

j=1

∣∣∣
∞∑

k=0

(
ψ∗

jm+k − ψ∗
(j−1)m+k

)
ε−k

∣∣∣
p
.

Next we use the moment inequality

E
∣∣∑ ξi

∣∣p � 2
∑

E|ξi |p, (11)

which is true for any r.v.’sξi if 0 < p � 1 and for any martingale differencesξi ’s if
1< p � 2.

Hence

E|�n|p � 2E|ε1|p
N∑

j=1

∞∑
k=0

∣∣∣∣
k+jm∑

i=k+(j−1)m+1

ψi

∣∣∣∣
p

.

Third we interchange the summation order



A Beveridge–Nelson filters for the self normalization 525

= 2E|ε1|p
∞∑

k=0

N∑
j=1

∣∣∣
k+jm∑

i=k+(j−1)m+1

ψi

∣∣∣
p

.

Fourth step

� 2E|ε1|p
∞∑

k=0

N∑
j=1

( k+jm∑
i=k+(j−1)m+1

|ψi |
)p

.

Since(a
p
1 + · · · + a

p
N)1/p is monotonically decreasing, thus

� 2E|ε1|p
∞∑

k=0

( k+n∑
i=k+1

|ψi |
)p

.

Next step

� 2E|ε1|p
∞∑

k=0

( ∞∑
i=k+1

|ψi |
)p

.

And finally the seventh step we use [3] page 987 top inequality

� 2E|ε1|p
(
const ·

∞∑
k=0

kp|ψk|p
)
.

Hence

E|�n|p � E|ε1|p
N∑

j=1

∣∣∣
∞∑

k=0

k+jm∑
i=k+(j−1)m+1

|ψi |
∣∣∣
p

� cE|ε1|p
∞∑

k=0

kp|ψk|p.

Thus the proof for generalized clt for�ψ class is completed.
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REZIUMĖ

M. Juodis. Beveridge–Nelson filtr↪u apibendrinimai autonormuotoms sumoms

Darbe ↪irodoma blokais autonormuota centrin˙e ribinė teorema. Nagrin˙ejami tiesiniai procesai su apiben-

drintu Beveridge–Nelson filtru.


