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Abstract. We describe an extremely simple second order analogueiesdircuit for
simulating the two-well Duffing-Holmes mathematical otidor. Numerical results and
analogue electrical simulations are illustrated with thapshots of chaotic waveforms,
with the phase portraits (the Lissajous figures) and with dtieboscopic maps (the
Poincaré sections).
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1 Introduction

Electrical circuits generating complex and chaotic wausf® are convenient tools for
imitating temporal evolution of nonlinear dynamical systeand for simulating differen-
tial equations. An example is the well known Mackey-Glas&{Mystem [1, 2] given
by a delay differential equation. An analogue electricedwit, which imitates dynamical
behaviour of the MG system, has been designed, built andtigeted in [3,4]. It has been
used to test experimentally various techniques developemntrol chaos, specifically
to stabilise either unstable steady states [4, 5] or urestpbtiodic orbits [6], to tune
the correlation dimension of the strange attractor [7], ytochronize coupled infinite-
dimensional hyperchaotic dynamical systems [8—10].

In this paper, we describe an extremely simple analoguériglalccircuit dedicated
for simulation the Duffing-Holmes (DH) equation [11-14]. éfk are three different
approaches developed to process the DH equation and itsoslielectrically. The
first technique is a hybrid one making use of simulation the &jdation in a digital
computer and a of digital-to-analogue conversion of thetaligoutput for its further
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analogue processing [15, 16]. The second method emplogdymmalogue means based
on analogue computer design [17, 18]. For example, analogm@uter has been used to
simulate the DH equation and to investigate scramblingéedffef chaotic signals in linear
feedback shift registers [17,18]. Later analogue compsterulating the DH equation
and displaying the electrical output voltages on the scrdaan oscilloscope, has been
suggested for chaos demonstration in the undergradualergtiaboratories [19].

Evidently, the first and the second techniques are rathesrgeand can be applied
to other differential equations as well. In contrast, thedthpproach is based on building
some specific analogue electrical circuit for a given déféral equation. Despite its
limitation to a specific equation, the "intrinsic” electaiccircuits have an attractive ad-
vantage due to their simplicity and cheapness. Such cércaoinprise only small number
of discrete electrical components: resistors, capagcitodsictors, semiconductor diodes,
also may include a single (sometimes several) operationglifier.

We note, that any analogue computer is a standard collecfitire following main
blocks: inverting RC integrators, inverting adders, inwes, inverting and noninverting
amplifiers, multipliers, and (if necessary) piecewisedineonlinear units. Programming
of the differential equations on an analogue computer iplimiring these units accor-
ding to strictly predetermined rules. Differences betwise'intrinsic” analogue electri-
cal circuits, simulating behaviour of dynamical systenrs] ¢he conventional analogue
computers are discussed and emphasised in [20].

2 Equations and numerical results

The Duffing-Holmes oscillator is given either by the secontko nonautonomous diffe-
rential equation [11-14]:

&4 bi—z+ 2> =asinwt D
or by an equivalent set of two first order nonautonomous éojust

&=y, (2a)
y = F(x) — by + asinwt (2b)
with F(z) = z — 3. In (1) and (2)b, a, andw are the damping coefficient, the amplitude

and the frequency of the external driving force, respebtiequations (1) or (2) describe
an externally driven particle in a two-well nonparaboli¢graial (sketched in Fig. 1):

VV(:E)/F(a:)da::;erz4 )

By adjusting any of the control parameters, namelyw or b, one can observe
periodic and chaotic oscillations. Numerical results otgd from (2) using the software
package MATHEMATICA are shown in Fig. 2 and Figs. 3—7.
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Fig. 1. Two-well nonparabolic potenti&l (x) from (3).
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Fig. 2. Chaotic waveform(¢) from (2).a = 0.45,b = 0.1, w = 1.3.
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Fig. 3. (a) Phase portraits (Lissajous figures), (b) strobpis maps (Poincaré sections)
from (2) at drive amplitude. = 0.200. b = 0.1, w = 1.3.
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Fig. 4. (a) Phase portraits (Lissajous figures), (b) strobpis maps (Poincaré sections)
from (2) at drive amplitude = 0.250. b = 0.1, w = 1.3.
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Fig. 5. (a) Phase portraits (Lissajous figures), (b) strobpis maps (Poincaré sections)
from (2) at drive amplitude. = 0.300. b = 0.1, w = 1.3.
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Fig. 6. (a) Phase portraits (Lissajous figures), (b) strobpis maps (Poincaré sections)
from (2) at drive amplitude. = 0.305. b = 0.1, w = 1.3.
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Fig. 7. (a) Phase portraits (Lissajous figures), (b) strobpis maps (Poincaré sections)
from (2) at drive amplitude. = 0.450. b = 0.1, w = 1.3.

3 Electrical circuit and its equations

The suggested circuit is shown in Fig. 8. It is an externallyesh damped RLC oscillator
with all elements linear. The nonlinearity is involved byetpositive feedback loop
consisting of the resistor R3 and two diodes D1-D2. The djmral amplifier OA
plays the role of both, the buffer for the external sinusbidece and the amplifying
stage for the positive nonlinear feedback. The electrizalit resembles the Young-
Silva oscillator [21], but is essentially simpler. It indies a single operational amplifier,
two diodes, and four resistors only, in contrast to the Yo8ilga circuit containing four
operational amplifiers, four diodes, and nine resistors.
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Fig. 8. Circuit diagram of the Duffing-Holmes oscillator.

Differential equations describing the circuit can be gasibtained using the Kirch-
hoff’s laws:

dVe

e _ g 4

C 7 L, (4a)
diy, :

L—r = Fp(Vo) = ILR + Asin(wt — ), (4b)

wherely is the voltage across the capacifoand;, is the current through the inductor
L. In (4a) an assumption thé&t; >> p = /L/C has been made. The constant phase
in the external forcel sin(wt — ) can be omitted since it does not influence the dynamics
of the system. The nonlinear functi@i; (V) can be given by a three-segment piecewise
linear approximation:

(Ve +kV™®), Vo< -=V*,
(Ve —kV®), Ve >V

wherek = Ry/R; + 1 is the gain of the amplifying stage and* is the voltage drop
across an opened diode (for silicon diodés ~ 0.5V at 0.1 mA). It is convenient to
choosek = 2 by settingR, = R;. In (5) it is assumed thaR,y >> Rs >> Ryi,
where R4y and R4, are the resistances of the diode in the closed and the optated,s
respectively. By introducing the following set of dimendliess variables and parameters

v YT gy
t
—— > t, WwVLC —w,

VLC

P S N
72‘/*7 7p) - C}

equations convenient for analysis and numerical simuiaie obtained:

X

T =y, (6a)
y = Fgp(z) — by + asinwt (6b)
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with
—(x+1), z<-0.5,
Fg(x) =< =, —0.5 <z <0.5, @)
—(z—1), z>0.5.
The structure of the circuit equations (6) is exactly thesamof (2). The corresponding
nonparabolic potentidli’s (x) has somewhat different form compared to (3) (especially
at larger values af) and is presented by a piecewise parabolic function (seeFids 9):
) (x+1)2-0.5, x<—0.5,
Wg(x) = f/FE(:c)d:c =3 —x2, —0.5 <z <0.5, (8)
(r—1)2-0.5, x>0.5.

2.0 'WE(X)
1.5
1.0

0.5

-05L

Fig. 9. Two-well nonparabolic potenti&Vz (x) from (8).

4 SPICE simulation results

The circuit in Fig. 8 has been simulated using the “Electsmorkbench Professional
package which is based on the SPICE software. The followinegitelement values have
been usedZ = 19 mH, C' = 470 nF (resonance frequengy ~ 1.7 kHz, p =~ 200 Q0),
Ry =Ry =R3 =10k, R =209, f = w/27 = 1.5 kHz. The operational amplifier
OA is the LM741 type chip, the diodes D1 and D2 are genergb@se 1N4148 or similar
type silicon devices. Simulation results are shown in Fiyadd Figs. 11-15.

2
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Fig. 10. Chaotic waveformvc (t), A = 240 mV.
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Fig. 11. (a) Lissajous figures, (b) Poincaré sections atreat drive amplitude
A =120 mV.
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Fig. 12. (a) Lissajous figures, (b) Poincaré sections atreat drive amplitude
A =140 mV.

L) - VC
(b)
Fig. 13. (a) Lissajous figures, (b) Poincaré sections atreat drive amplitude
A =160 mV.
I I
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Fig. 14. (a) Lissajous figures, (b) Poincaré sections atreat drive amplitude
A =196 mV.
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Fig. 15. (a) Lissajous figures, (b) Poincaré sections atreat drive amplitude
A =240 mV.

5 Experimental results

A series of experimental results are presented in the Figntig-igs. 17-21.

Itv
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Fig. 17. (a) Lissajous figures, (b) Poincaré sections atreat drive amplitude
A =120 mV.

Currently (t) has been taken by means of a differential amplifier as a weltiagp
Vr(t) across resistor R. The plots represent either periodicawtahimode of oscillations.
With the increase of the drive amplitudethe oscillator undergoes period-doubling route
(Figs. 17, 18) to chaos, typical scenario for many nonlirmatems. Odd-period, e.g.
the period-5 “two-heart” oscillations (Fig. 20) intersperbetween the chaotic modes
(Figs. 19, 21). The Poincaré sections have been taken aatheling rate of one dot
per period of the external driving force and contain 50 aygping dots in the periodic

and 1500 scattered dots in the chaotic plots.
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(b)

Fig. 18. (a) Lissajous figures, (b) Poincaré sections atreat drive amplitude
A =140 mV.

(b)

Fig. 19. (a) Lissajous figures, (b) Poincaré sections atreat drive amplitude
A =150 mV.

(b)

Fig. 20. (a) Lissajous figures, (b) Poincaré sections atreat drive amplitude
A =160 mV.

Fig. 21. (a) Lissajous figures, (b) Poincaré sections atreat drive amplitude
A =200 mV.
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Agreement between numerical integration of (2), the SPI@kation of the circuit
in Fig.8 and experimental results taken from a hardwardréat circuit is quite good,
including the “two-heart” attractor, which can be obserieda very small region of
control parameters, b andw.

6 Concluding remarks

We have designed and investigated an electrical circuiiciwtan be treated as an elec-
trical analogue of the Duffing-Holmes mathematical ostwlaThe circuit is extremely
simple, easy to build and operate. Nevertheless, it exhiptical behaviour of chaotic
systems, including period-doubling route to chaos, nadd+period windows in chaotic
regime, etc. We have shown that many basic qualitative cheniatics, such as the wave-
forms, the phase portraits (the Lissajous figures), andtbbascopic maps (the Poincaré
sections) can been easily taken in experiment. These dhdgtics coincide very well
with the numerically obtained characteristics from the filgtHolmes equation. This
allows us to conclude that dynamical behaviour of the Duffttaimes type systems is
not sensitive to the details of the nonparabolic potential.

Very recently the developed analogue circuit has been graglm hardware exper-
iments to test novel chaos control techniques [22, 23]. i&abon of unstable periodic
orbits in the Duffing-Holmes chaotic oscillator, namely tbits in the side wells of
the two-well potential has been demonstrated experimgrita[22] by means of the
resonant negative feedback method. Stabilisation of tiérade torsion-free orbit (an
orbit characterized by an odd number of positive Floqueberpts) by means of the
unstable delayed feedback control technique has beeregkeifiperimentally in [23].
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