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Abstract. Front dynamics with delays in a spatially extended bistalyitem of the
reaction-diffusion type is studied by the use of nonlineartipl differential equation
(PDE) of the parabolic type. The response of the self-odifant, joining two steady
states of the different stability in the system, to the mi#timonic (step-like) force is
examined. The relaxation rate of the system, that chaiaetethe delayed response of
the front to the alternating current (ac) drive, is found éosensitive to the peculiarities
(shape) of the rate function (nonlinearity) of the govegniPDE. By using computer
simulations of the drift motion of the ac driven bistablerft¢BF) we are able to show
that the characteristic relaxation time of the system desae with the increasing outer
slope parameters of the rate function and is not sensititleetnner one.

Keywords: dissipative systems, self-organization, spontaneousisméd front-
structures, nonlinear partial differential equationstheanatical physics.

I ntroduction

Continuous bistable systems driven far beyond their theemalibrium have been widely
studied as the simplest examples of self-organization bistable fronts, i.e. the sponta-
neously formed front-structures, joining two states ofadiént stability in a spatially ex-
tended system out of thermal equilibrium, have been widalywkn in physically diverse
systems and have attracted increasing attention in mamghes of physics, chemistry,
biophysics, etc [1,2]. The prototype evolution equatiaat thescribes the self-ordered BF
propagating in the ac driven system reads,

Ut — Uy — cuy + R(u) = f(t), Q)
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where the functioru(z,t) denotes the step-like field of the front propagating at the
moment velocitye(t), z = x — ct is the traveling coordinate ¢ time). The disturbing
force f(t) describes the action of the external fields on the system. rdtiee(reaction)
function R(u), which characterizes the rate of the transient process#iseirsystem,

is given by theN-shapedR-u dependence with three zero-pointsuat= uq, uz, us,
witch are found fromR(u) = 0. In addition, the free parametess satisfy the relation

u1 < uz < ug. Inthe considered case of the bistable system one ha&that 3) > 0
andR’'(u2) < 0, where the prime denotes the derivative. The front-satutibthe free,
undisturbed BRu(z, t) is found from equation:

Ut — U0zz — CUOz + R(U‘O) = 07 (2)

It should be noted that general methods for the analytidatisa of the governing
equation of BF are presently lacking; an analytic solutibthe governing equation with
an arbitrary rate function is not feasible even in the caskefree, unperturbed’(¢) =0)
system. Free front-solutions of BFs are presently knowly anifew special cases of
the rate function approximated by the cubic polynomialusitype and piecewise linear
dependencies (e.g., see [3-9]). On the other hand, thet&rtadatment of the ac driven
BFs requires the use of the approximate approaches. Thegtianachniques that are
frequently used in the studies of the ac driven BFs are oftdichusefulness, namely,
they involve two very special cases of the forcing functf@n) that describes the slightly
disturbed and the slowly (quasi-stationary) driven fronts

Elementary self-ordered structures in bistable dissipatiedia simulated by both
versions of the stochastic (noisy driver) and determinigtigular driver) external forces
relevant issues when researching self-organizantiongrhenon in physically diverse
systems [3-8, 10, 11]. Previous results showed [7, 8] thattiforced dc motion (the
ratchet-like transport) of BFs was sensitive to the symynettoperties of the considered
R-u dependence. In common case of bistable dissipative meelia tire two types of
rate functions with different symmetry properties: symriegiunctions and asymmetric
ones [7,8]. Control of the front-structures by symmetriefanctionR(u), described by
the linear pieces (see Fig. 1), has been studied in the éxditsrature analytically and
by numerical simulations [7,8,12,13].

ar(u+1), u<up,
R(u) = Ro(u) +C, Ro(u) = { —au, Uy < U < Upm, 3)

as(u—1), u > Up,

where C' is the free constanty; — the slope coefficient of the rate function, and the
parameters:y, andu,, — the extremes of the rate functidd(u). Whena; = as,
then we have type ofymmetric functions, and withusymmetric functionsa; # as.
The analytical front solutions of this pseudolinear modmaléhnbeen presented in [9]. In
addition, in the case of symmetric rate functions, numénzthods to obtain the solution
of equation (1) have been used. It has been shown [12, 13p#inametersa;, a3 of the
rate function have influence on the dynamic properties of @Rudated by zero-mean
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forcesf(t). The response of front-solution on the zero-mean forceyasveeelays: the
response delay time depends on the parameteend az, which describe the rate of
relaxation processes in the bistable system — the delayopiemon reduces the effect of
the soliton ratchet and at the same time, decreases thgydbiliontrol fronts with the
help of zero-mean forces.

R
Rl

R‘n _______________

Fig. 1. The piecewise-linear rate function.

The present study investigates the dependence of the thidstic relaxation rates
on the strength (magnitude) of the driving force and the patarsa;, as of the asym-
metric rate function, using numerical methods to obtainsthl@tion of equation (1) and
pseudolinear “flexible” rate function (3). In this case, wepeoximate the driving force
by the step-like forcing function

f(t) = Fo©(t — to). (4)

The retardation effects in dynamics of the ac driven BFs gead by the asymmetri-
cal rate functions breaking the rigorous symmetry relation- a3 have not been studied
as yet.

2 Themathematical modd

The solution of the non-linear parabolic type partial diffietial equation (1) is obtained
in two steps. Firstly, homogeneous problem (2) is solvecemff (¢) = 0). The initial
conditions of the homogeneous equatior=(0)

uo(z,t = 0) = a tanh(gz) + b, (5)

whena = ¢ = 0.5(us — u1),b = 0.5(us + u1). Consequently, the boundary conditions
areug(t; z — —o0) — uy andug(t; 2 — +00) — ug.

In this step the front-solution of the free, undisturbed &fz, ¢) are found. Sec-
ondly, the solution of homogeneous problem (2) is sustaasethe initial conditions of
the non-homogenous problem (1). Boundary conditions ata&mdxd from the solution of
us + R(u) = f(¢) problem with the initial condition®? (t = to) = u1, V3(t = to) = us,
whereu, 3 are the boundary conditions of the homogenegiis)(= 0) problem.
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The problem (1) with the initial condition (2) can be solvedttvo methods: analy-
tical and numerical ones. The perturbation theory can bbeapip the analytical solution
but this method can be used only for very narrow set of theatades, therefore it can not
be applied to the common case. One of the methods to solvatfl)he initial condition
(2) is using numerical methods.

Seeking to obtain the results, the numerical method of tlite filifferences [14] was
employed. This method has been chosen due to its simpldiy,calculation speed, and
software unexceptionality. We use the discrete latticerttathe stepg\t andAx in the
area Q, where:

Ax = X/N,, z;=iAzx, i=0...Ng,

The definitions of the finite differencesty. = u(x;, t;). Therefore the equation
using this definition takes the form:
uitL?i+1 B uijq o ufEJ:H»l B 2“? + ufgz‘—l ui’jHl - ufvji

Y 7 — T LR = f(t). (6)

3 Resultsand discusion

The occurrence of delays (lag time) between the drivingdand the propagation ve-
locity on the spurious drift of BF, applying the asymmetrite function, has not been
considered as yet. We will use the introduced [7, 8] auxilparametergs, which charac-
terizes the rate of the temporal relaxation of the speediome(t) of BF being under the
action of the step-like force (4). More specifically, itsémser g ! indicates the steepness
of the step-likes-t dependence. Using the following expression,

__} So, t<tg
s(t) = {So-i-ASx [1—exp(—(t—to)/7s)], t>to, "

we were able to describe with good accuracy the numericalind s-¢ dependencies.
Both discussed-t ands.-t dependencies show that the approximation (7) is good enough
(see Fig. 2). This implies that the numerically found speamtcfion s(t) follows the
exponential law in the case of theymmetric piecewise-linear rate functioR(u).

Let us turn to the “speed relaxation” and investigate it inager detail. Namely,
the response of BF to extremely fast driving force (4) wassagred. The typicats-a;
dependencies that have been derived by the direct (hurfjes@dation of the governing
equation (1) are presented in Fig. 3. One can see that therpeelss — a» characteristics
shown by curves a, b and ¢ demonstrate that the speed relaxiatie 75 is independent
of the inner slope coefficient. Thus, the relaxation time derived within the perturbative
approach does not depend@n However, thers-a; dependencies obtained by changing
slope coefficients, » are presented by dashed curves A, B, C shows that the speed rel
xation timerg dependents on the outer slope coefficient (or a;) when theasymmetric
rate functionR(u) is used.
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Fig. 2. The dependence of propagation velocity of the drddigmt versus time. Solid

curves show the actual motion described by governing equéti), and dashed curves

shows--t dependence described by expression (7). The parametes\aleias = 5,

Seo = 0.256, 7s = 0.93, 7r = 1 (curves 1);as = 0.2, s = 0.212, 75 =

5.04, 7r = 5 (curves 2);az = 1, s = 0.296, 7¢ = 1.23, 7T = 1 (curves 3).

The remaining parameters are as followsi» = 1, Fo = —0.5fmz, to = 0,
Dr=1,ga=1, so=0.

6.0
4.5 -

30 -

0.0 -

Fig. 3. The dependence of the relaxation timeversus the slope coefficients of the
rate functiona;. 1) The solid curves a, b, ¢ show-a2 dependencies derived for the
different slope coefficients;, 3. The parameter values argy = 1.2, Fo = —2fm2/3,

a1 = 1.0. The remaining parameters are as follows: = 0.2 (curve a);as = 1.0
(curve b);as = 5.0 (curve ¢). 2) The dashed curves A, B, C shayvas dependencies
derived for the different slope coefficienis ».The parameter values argi; = 1.2,
Fy = —2fmz/3, a2 = 1.0. The remaining parameters are as follows: = 0.2

(curve A);a1 = 1.0 (curve B);a1 = 5.0 (curve C).
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4

Conclusions

Front dynamics with time delays, namely, the propagaticheBF, joining two states of
different stability in a bistable reaction-diffusion sgst under the action of fast driving
was considered within the asymmetric piecewise linear hofleaction kinetics. The

results presented show that (i) the numerically found fpeed function follows the
exponential law in the case of theymmetric piecewise rate function. (ii) The lag time
that describes the size of the retardation depends on tlee slope coefficients of the
asymmetric piecewise linear rate function. The lag time is found to kependent of

the inner slope coefficient of the rate function.
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