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Abstract. In this paper the Sturm-Liouville problem with one classiaad the other
nonlocal two-point or integral boundary condition is intigated. Critical points of the
characteristic function are analyzed. We investigate higtvidution of the critical points
depends on nonlocal boundary condition parameters. In ttstepiart of this paper we
investigate the case of negative critical points.
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1 Introduction

Differential problems with nonlocal boundary conditiomsa in various fields of biology,
biotechnology, physics, etc. Theoretical investigatibproblems with different types of
nonlocal boundary conditions is a topical problem and rdgenuch attention has been
paid to them in the scientific literature. The analysis ofeeiplues of the difference
operator with a nonlocal condition permits us to invesggiite stability of difference
schemes and corroborate the convergence of iterative oefls-5] and it is also of
interest in itself. Eigenvalues and eigenfunctions ofetéhtial problems with nonlocal
two-point boundary conditions are investigated by A.V. iGwnd V. A. Morozova [6],

N.I. lonkin and E.A. Valikova [7], M. Sapagovas and &tikonas [8], Stikonas [9],

S. Peciulyté [10-13]. Such problems with nonlocal in&édyoundary conditions are
analyzed B. Bandyrskii, I. Lazurchak, V. Makarov and M. Sapaas [14], R.éiupaila,

Z. Jesevidite and M. Sapagovas [15], G. Infante [16], 3tikonas and S. Petiulyte [10,
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17], etc. In recent decades the number of differential gisl with nonlocal boundary
conditions and numerical methods for such problems haveased significantly.

Investigation of the spectra of differential equationgwibnlocal conditions is quite
a new area related to the problems of this type. In this papeinvestigate the Sturm-
Liouville problem with a classical the first type boundaryddion on the left side of the
interval (also the second type boundary condition) and fathr cases of nonlocal two-
point and two cases of nonlocal integral boundary conditimm the right boundary. We
analyze critical and other points of a real characteristitction.

For the fixed parametef, dependence of spectra of these problems on the para-
meter~ in nonlocal boundary conditions has been investigatedemptievious research
(see, [8,11,13,15,17]) and S. Petiulyté Doctoral ThEsi$. Furthermore, conditions,
where there exist constant, negative and only real eigeasdiave been obtained in these
articles. The first results on the dependence of distributamstant and critical points on
the parametef € (0, 1) were presented in [12]. We extend here our investigatiortiaad
new results on the critical points of the characteristicctions are presented.

In the first part of this paper we formulate a few problems wittmlocal boundary
conditions in Section 2. Then we give a definition of a realrahteristic function in
Section 3, we find zeroes, poles and constant eigenvaludspiinthis function and
investigate critical points in Section 4. The distributiohnegative critical points are
presented in Section 5.

2 Some problems with nonlocal boundary conditions

Let us analyze the Sturm-Liouville problem with one clagblmoundary condition
—u" =M, te(0,1), Q)
u(0) = 0, (2)

and the other nonlocal two-point boundary condition of tlaen&rskii-Bitsadze type or
integral type:

u'(1) = yu(§), (Case 1) (31)

o' (1) = yu/(8), (Case 2) (32)

u(l) =~u'(§), (Case 3) (33)

u(1) =~yu(§), (Case 4) (34)

u(l) = fy/5 u(t)dt, (Case 5) (35)
01

u(l) = V/ u(t)dt,  (Case 6) (36)
3

with the parameters € R and¢ € [0,1]. Also, we analyze the Sturm-Liouville
problem (1) with the boundary condition

W' (0) =0 @)
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on the left side and with nonlocal boundary conditions (3)taright side of the interval.
We enumerate these cases from Cdsto LCase § respectively. We denote problems
(1), (2) in the case of nonlocal boundary conditiong){83;) as P1, P2, P3, P4, P5, P6
and problems (1), (4) in the case of nonlocal boundary cmmit(3)—(3;) as P1, P2,
P3, P4, P53, P8, respectively. Note that the index in the references dertbicase. If
there is no index, then the rule (or results) holds on in @ldhses of nonlocal boundary
conditions.

Remark 1 (Classical case)We have the classical case for= 0. Eigenvalues in this
case are well known:

2 = k272, ug(t) = sin(knt), keN; (53,4,5,6)
2= (B —1/2)%7%, wi(t) = (( —1/2)nt), keN; (51.2)
A = (k=1/2)%7%, up(t) = cos ((k— 1/2)wt), ke€N; (53,475 ,6)
A = (k—1)%7%,  ug(t) =cos ((k—1)mt), keN. (51/.27)

We get the same case fér= 0 (ProblemsP1, P4, P5, P2 P3, PB), £ =
(ProblemsP6, P6), ¢ = 1 andy # 1 (ProblemsP2, P4, P2 P4). In the case = 1
andvy = 1 (ProblemsP2, P4, P2 P4) we have degenerate case with one left boundary
condition. So, we omit these cases and defige= [0, 1] (ProblemsP3, P1), D, :=
(0, 1] (ProblemsP1, P5, P3 P8), D, := [0, 1) (ProblemsP2, P6, P4 P8), D¢ := (0,1)
(ProblemsP4, P2).

Remark 2 (Casey = oo) In this case, we define boundary conditions() = 0,
/(€)= 0,4/ (€) = 0,u(€) = 0, [ u(t)dt =0, J u(t)dt = 0, accordingly.

Firstly, let us consider the case wherés fixed. We define @onstant eigenvalue
as the eigenvalug@ = ¢? that does not depend on the parametex C [11,17]. For
any constant eigenvalue we define twnstant eigenvalue poigt € C, := {2z € C:
—m/2 < argz < w/2 or z = 0} and theconstant eigenvalug-value point(q,v) €
C, x C, respectively. For a constant eigenvalue, the setwdlue points inC, x Cis a
vert|cal line. Other eigenvalues will be namedrasconstantFor such elgenvalues we
define a nonconstant eigenvalue pajti¥) € C, and a nonconstant eigenvakygoint
(g,7(g)) € C4 x C. In the nonconstant eigenvalue case, we get eigenvaluéspasn
roots of the equatiorf; (¢) — vf2(q) = 0, wheref;(q) := sin ¢/q for Problems P1-P6,
and f1(q) := cosq for Problems P1-P8. The functionf2(q) depends on the case of
the second boundary condition. We get all the constant e@dea points by solving the
system

fi(g) =
f2(q) =
Corollary 1. The pointg = 0 cannot be a constant eigenvalue point for probleis

with boundary condition&) or (4).
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All nonconstant eigenvalues (which depend on the paramgtare~y-points of the
meromorphic functions, = v.(q) = f1(q)/f2(¢): C, — C. We call this functiony, as
acomplex characteristic function

We enumerate the eigenvalugs = A (v, &) using the classical case= 0, i.e.,
M (0,€) = X4, The eigenvalues, (and eigenvalue pointg, := /) depend on the
parametery continuously. All zeroes (zeroes of the functi¢i(q) ) and poles (zeroes
of the functionfz(g)) of the complex characteristic function for investigatedtgems
(see, [10-13]) are nonnegative real numbers. If a zero dlihetion f;(¢) is coincident
with a pole, i.e., a zero of the functigh(q), then this pointis a constant eigenvalue point.
In fact we must find the seZ of all zeroes of the real characteristic functipnThen the
set of the constant eigenvalue poifits- {km, k € N} \ Z.

We call the pointg. € C4, ¢. # 0 such thaty/(¢.) = 0, acritical point of the
complex characteristic function, and we call an image ottiteeal pointy.(q.) a critical
valueof the complex characteristic function [12].

3 Real characteristic function

If we takeq only inthe raysy = = > 0, ¢ = —iz, = < 0 instead ofg € C,, we
investigate positive eigenvalues in case thegqay = > 0, and we get negative eigen-
values in the ray; = —z, = < 0. The pointg = = = 0 corresponds ta. = 0. We

have two restrictions of the functiop : C, — R on those raysy (x) := ~.(x +i0) for

x > 0andy_(x) := v.(0 — iz) for z < 0. The functiony; corresponds to the case of
positive eigenvalues, while the functien to that of negative eigenvalues. All the real
eigenvalues

2 for >
I U ) (6)
—xj for x;, <0,

can be investigated usingeal characteristic functiony: R — R (see, [11,17]):

V- () = 7e(—iz) for

Let us write an expression of the characteristic functioedoh case of the nonlocal
boundary condition [10, 11, 17] fgre Dy:

(@) = {fw) =e(x)  for

_ 1 f(@) f(z) :=coshz, g(z):==L for x <0, 715)
TTE ) | f@)=cosa, gla) =S for 2 >0
_ f@) f(z) :=coshz, g(x):=coshx for x <0, .
7= 9(&x)’ f(z) :==cosz, g(x):=cosx for = > 0; (72,47)

f(z) f(z) = M, g(x) :=coshz for x <0,
7= ’ sinJ(x (73)
9(&x) flz) =22 g(x):=cosz for x> 0;
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__ sinhzx

() f(z) ;= SBE - g(x) = SERE - for x <0, )
€ gl&a) | f@) = gla) =2 for 2 >0;
L2 @) [ @)= gle)i= et for 2 <0, (75)
T gle) )= gla) =t for o> 0; ’
[ f(z) == xsinhx, g(z):=coshz for z <0, )
= g(&x)’ f(x) = —zsinz, g(x):=cosz for z >0; v
_¢ f(x) f(z) :==coshz, g¢g(x):=xsinhz for z <0, (72)
= g(€x)’ f(z) :==cosz, g(x):=—xsinz for z > 0; v
. 2 f(x) _ ﬁ for x <0,
[y eI Rl [ )
f(lC) = sinzha;, g(:c) = sinzha; for = < 0’ (7 )
fz):= Si‘;x, g(z) = % for z > 0; 0
o 1 f(z) _ ey for # <0,
1= g(H0)e2(F22) | smocem@n  fOr 220,

f(z) :=coshz, g¢gi(x):= %, g2(x) :=coshz for x <0,
20 (76)

f(z):=cosz, gi(z):=BZ  go(x):=cosx for

x )

Characteristic functions are the same for the problems B1P& P2 and P4 P4 and
P2, accordingly. Thus, these problems have the same spectrum.

Now we formulate obvious properties of the functiofisg, g1, g» as following
proposition. Some of these properties were investigatgtonl 1, 17].

Proposition 1. The pointzy = 0 is zero of the second order for the functigin Casel’,

and the pointy, = 27k are zeroes of the second order for the functjoim Case5 for
k € Nand in Case8' for k = 0:

f(z0) = f'(20) = 0, f"(20) #0, g(px) =g (pr) =0, g"(px) #O. (8)
Other zero pointg of the functions (x), g(z), g1(x), g2(x) are of the first order

f2)=0, f'(2) #0, g(2) =0, ¢'(2) #0, gi(2) =0, gi(z) #0, i=1,2. (9)
These positive zeroes of the first order of the funcfi@me equal to:

2= (k—1/2)7, k€N, (101,2,3,47,5,67)
zpi=km, keN; (103,4,5.17,2.6)
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the positive zeroes of the first order of the functjcare equal to:

pr:i=(k—1/2)w, keN, (1123,17,47)
P i=kmr, keN; (111,4,2/,3,5.6)

the positive zeroes of the first order are equal to:
pr:=km, ke N for gy, pri=(k—=1/2)m, ke N for go; (12)
and there are no zeroes of the first order in Cése

The graphs of characteristic functions for sofra@e presented in Fig. 1. The vertical
solid lines correspond to constant eigenvalues, vertiaahdd lines cross theaxis at
points of poles. For some cases the vertical line of the emmsigenvalue coincides with
the vertical asymptotic line at the point of a pole.
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Fig. 1. Real characteristic functions(z).
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Remark 3. Note, that the positive part of theaxis is scaledr times andr = 1 is really
x = in all figures.

3.1 Zeroes, poles and constant eigenvalues points
The characteristic function has the zero paintf f(z) = 0 andg(¢z) # 0 (Prob-
lems P1-P5, P1P3), g(11%2) # 0 or g(552) # 0 (Problem P6)g; (1152) # 0 or

gg(%z) # 0 (Problem P§. For characteristic functions (7), we have the next zero
points of the functiory:

zr=(k—1)m, kel (131)
ze=(k—1/2)7, keN; (131,2,3,47,5,67)
2y =km, keN. (135,4,5.6,2')

Note that the zero points are the same foréadind they are on the vertical lines in the
domainD, ¢ := R x D¢. The pointz = 0 is a zero point only for Problem Pand it is
zero of the second order for &lle [0, 1].

The characteristic function (Problems P1-P5HPE, ¢ # 0) has a pole poing if
g(p) =0andf(p/€&) # 0. For characteristic functions (7) we have the next zerotggin
for the functiong:

pr=(k-1/2)r, keN; (145,3.17,4/)
pr=km, keN; (141 4.2/ 57)
pr=(k—-—1m, keN; (145)
pr = 2km, k€N. (145)

In these cases the poles of the characteristic functiop;aesdp, = {pi. S0, the poles
are on the hyperbolagr = pi, £ € N, in the domainD, ¢. The pointr = 0 is a
pole point only for Problem P3and it is the pole of the second order for &le (0, 1]
and, in this case the hyperbola degenerates to thecling). The characteristic function
(Problems P2, P3, P1P4) for £ = 0 is an entire function, i.e., there are no points of
poles.

Remark 4 (Constant eigenvalue points for Problems P1-P4.P9). Note thatr = 0

is not a constant eigenvalue point. All the positive zeraed positive poles for these
problems are of the first order. If we hayéz;.) = g(p;) = 0 for someg, then this point
zr = p; = cis a constant eigenvalue point andc) # 0. Geometrically we get constant
eigenvalue points as the intersection vertical lines obesrand hyperbolae of poles in
the domainD,, ¢.

Remark 5 (Constant eigenvalue points for Problem PBYe note thatt = 0 is not a
constant eigenvalue point. Positive zeroes are of the fid¢roand positive poles for
this problem are of the first or second order. If for sognee havef(z;) = g(pi) = 0,
then this pointz;, = p; = ¢ is a constant eigenvalue point andc) # 0. We have the
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first order poles at the points of constant eigenvalues. Gocally we get constant
eigenvalues points as the intersection of vertical linesavbes and hyperbolae of poles
in the domainD,, ¢, too.

For Problem PG (z) > 0,z < 0 and for Problem P&y, (z) > 0, g2(z) > 0,z < 0.
We have the next zero poingsor the functiong, g1, g2 (see, Prop. 1):

ﬁ'rn =mr, m c N; (156:9)

pr=km, kel (15%:4:)

P = (Z - 1/2)7‘(, leN. (156/:g2)

For Problem P6 and Problem 'P&e have two families of poles,, , p,,,, andpj, p,
wherep,,, = 55p!,, bm, = opl, andpy, = SEp/, i = HEp/". These poles

are on the hyperbola@ + &)z = 2p,,, (1 — &)z = 2p,, (Problem P6) and hyperbolae
(14 &)z = 2pk, (1 — &z = 2p; (Problem P§ in the domainD,, ¢ (see, Fig. 2). In each
case, the hyperbolae families are intersected only at tteeents of the functiory, i.e.,
these intersection points are points of constant eigeagdlLir].

g
ol -

0.75
0.5

0.25 1

\
'><

00 ‘ ; T
0.0 25 50 75 100 00 25 50 75 100

Fig. 2. Points of the first and second order poles of the realaiteristic function in
Case 6 (the left figure) and Cask(the right figure).

Remark 6 (Constant eigenvalue points for Problems P6&)PAll positive zeroes and
positive poles for these problems are of the first order. Getdnally the three families of
curves (zero lines, two families of pole hyperbolae) irgetsogether, i.e., if two families
intersect, then their intersection point lies on the curf¢he third family and this point
is a constant eigenvalue point.

Proposition 2. All the constant eigenvalue points in Cag§end6’ are on the hyperbolae
x€ = km, k € Nand onz-axis ¢ = 0), too.

Proof. We get a constant eigenvalue point as the intersection afatbéhyperbolae for
& > 0 or(see, (15)):

1-¢ 14¢
D) = Pmy> B

T = Py (16¢)
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1-— 1
2556:?% ;rng:ﬁl- (166)

Note thatp,,, < pm, , D < pi for £ > 0. If we add and subtract these equalities, then
we get

= p~m1 + meza Zf = ﬁmz - p~m1; (17())
T = Pr + Pu, € = P — Pk- (176')
In the cas€ = 0, the proof follows from the first equalities (16). O

Let a line&¢ = const intersect the hyperbolae at the poinig whereh;, < hj41,

k € N. The pointsh;, k& € N are poles (of the first or second order) or constant
eigenvalue points for the real characteristic function.t ue definehy, = 0. Then
the real characteristic function is defined forr € P, := (h;_1,h;), i € N and

Py := (—00,0). If h; is a constant eigenvalue poiat or ¢, and we have finite limits:
lim, ., y(z) orlim, .., 7(x), then we add this pointto the interval, i.€;,:= (h;_1, ¢;]
orP; := [Cj—hhi) orP; := [Cj_l,Cj].

The spectrum of Sturm-Liouville problems (1)—(3) and (%), (3) were investigated
in [8,9,11,17]. Lemmas on the existence zeroes, poles,nmims and maximums
of the characteristic functions and conditions on the exris¢ of constant eigenvalues
are presented there. We note (see, [11]) that two negataleeigenvalues can exist in
the negative part of the real spectrum in problems P3 add?3omey and¢ values.
Negative multiple and complex eigenvalues can exist as Wwelbther cases of nonlocal
boundary conditions, there exists one negative real egjeafor particular values of the
parametery.

4 Critical points of real characteristic function

The pointz,, is acritical point of the real characteristic function,4f (x.,) = 0. Critical
points of the characteristic function are important for ithesstigation of multiple eigen-
values. Critical points of the characteristic function araximum and minimum points
of this function (see, Fig. 1). Generalized eigenfunctiexist for these points [9]. The
generalized eigenfunctions exist at constant eigenvalirgg too. If this point is critical
point, then we have generalized eigenfunctions of the sbawder, else generalized
eigenfunctions are of the first order.

Now, note thapy, = pi(£), ¢; = ¢ (&), zer = zcr(§), @and recall the case with non
fixed . For any critical pointe.,(€), we define theeritical point (.- (§),€) € D¢ :=
R x D¢ C R, x Re. Ifthe critical point is an extremum, i.e. the maximum or imam
point, then we use the notation “extremum?” instead of “cali. Note that the property
“to be a critical point” or “to be extremum” in thR, . is only in thez-direction. The
critical points(z.(€), &) depend on the parametgcontinuously. The set of these points
is curves in the domaiR, ¢.
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4.1 Investigation of the few auxiliary functions

Let us consider functions [17] (see, Fig. 3 and Fig. 4):

w_(x) := zcothua; o4 (x) =z cota;
Y_(x) := xtanh x; Yy(x) == —ztanz

for z € R and the functions:

p_(x) for z <0, Y_(z) for x <0,
pla) = ¢ £~ o) =)
o4 (x) for x> 0; Yy (x) for x> 0.
These two functions are related by the equality
p() - P(x) = —xlzl. (18)
R Sed b s
Fig. 3. The functionp(z). Fig. 4. The function)(x).

Proposition 3. Functionsy, ¢ are positive decreasing functions fer < 0, ¢ is a
decreasing function in the interval8, =), (7k, 7(k + 1)), k € N and is a decreasing
function in the interval$0, 7/2), (w(k — 1/2),7(k + 1/2)),k € N.

Proof. The derivatives of this function are equal to:
, __ sinh(2z) — 22 , _ sin(2z) — 2z
=) = cosh(2z) — 1~ @) = cos(2x) — 1~

sinh(2z) + 22

, _ sin(2z) + 22
cosh(2z) + 1"’ V(@) :

So, the derivatives of the functighandy are negative fox # 0. The positiveness of the
functionsy, ¢ for x < 0 is evident. O

Corollary 2. The propertiedim, .o p(x) = ¢(0) = 1, ¥(0) = 0, lim,_o ¢'(z) =
©'(0) =0, ¢’(0) = 0 are valid.
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Corollary 3. The inequalityr coth(z) > 1 is valid for all z € R and the equality is true
only forx = 0.

Proposition 4. The inequality

cothx —tanhz < —— (29)
sinh” x
is valid forz > 0.
Proof. We derive forz > 0:
1 T T
thz — tanhx = < the = ———.
cor R sinh x cosh x sinh x cosh z cor sinh? x O

Proposition 5. The functiorhy(z) := z(sinh z+z)/(cosh z+1) is an increasing positive
function forz € (0, 4+00) andhg(0) = 0.

Proof. The derivative of the function

So(z) := sinh z + sinh z coshx — 2% sinhz 4 3z + 3z cosh

S4(z) = 4coshx + cosh z(cosh z — %) + sinh® z + zsinhx + 3 > 0.
SinceSy(0) = 0, we get thatSy(x) > 0 for z > 0. The derivative of the functiohy is

B () = sinh  + sinhz coshz — 22 sinhz 4 3z + 3z coshz So(x)
o (coshz + 1)2 ~ (coshx +1)2°

Thus,h{(xz) > 0 for z > 0. The positiveness of the functidry and conditiorfy(0) = 0
is evident. O

Proposition 6. The functiom; (z) := (12 + 6z sinhz — 12 coshx)/(coshz — 1) /22 is
a decreasing positive function fare (0, +o00) andh(0) = 1, hq(+00) = 0.

Proof. The derivatives of the function
Sy (z) := —4coshz + 2 + xsinhz + 4

are
Si(z
Sy (x

SinceS;(0) = S7(0) = SY(0) = S{'(0) = 0, we get thatS;(z) > 0forx > 0. The
derivative for the functiork; is

_ 24coshx — 62> — 6zsinhaz — 24 651 (x)

(coshz — 1)z3 (coshx — 1)z3"

) = —3sinhz + 2z + 2 cosh z, S7(r) = —2coshz + 2 + xsinh z,
) =

—sinhz + 2 cosh z, SYL)(.}J) = zsinhz > 0.

hi(z) :

So,h)(z) < 0 forz > 0. The positiveness of the functidn and conditiong:; (0) = 1,
hi(4+00) = 0 are evident. O
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Proposition 7. The functiorhs(z) := 23 /(sinh z—x) /6 is a decreasing positive function
for z € (0, +00) andhz(0) = 1, ha(+00) = 0.

Proof. The derivatives of the function

Sa(x) := —3sinhz + 22 + x coshx
are
S4(z) = —2coshx + 2+ zsinhx, SY(z) = —sinhz +  cosh z,
Sy (x) = xsinhz > 0.
SinceS2(0) = S5(0) = S5(0) = 0, we get thatSy(z) > 0 for z > 0. The derivative for
the functionh, is
2

x? 3sinhx — 2z — xcoshx 22S5(x)

I =— = — )
2(7) 6 (sinhz — x)?2 6(sinhz — x)2

Consequentlyk,(z) < 0 for z > 0. The positiveness of the functidr, and conditions
ha(0) = 1, ha(+00) = 0 are evident. O

Let us consider two functions far > 0:

V(x) := 4 cosh® 2 4 4z sinh z cosh - — 4 coshz — 42 — 4z sinh z,
S(x) := —8cosh® x — 8 cosh? x + 4z sinh z cosh? z 4 422 cosh x

+ 4z sinh z cosh z + 8 coshz + 8 + 422,
We find derivatives of the first function:

V'(z) =12 cosh? zsinh x + 4z cosh® z + 4 sinh « cosh  + 4z sinh?

— 8sinhx — 8 — 4x cosh z,

V" () = 24 coshz sinh? z + 12(cosh? z — 1) cosh z + 4z sinh 2:(4 coshz — 1)

+ 8(cosh® 2 — 1) + 8sinh® z > 0.
SinceV (0) = V’(0) = 0, we get thal/(z) > 0 for z > 0.

The derivatives of the second function are:

S’(z) = — 20 cosh? zsinh x — 12 sinh « cosh  + 4z cosh®
+ 8z sinh? z cosh z + 8z cosh x + 422 sinh z + 4 cosh? z
+ 4xsinh® z + 8sinhz + 8,

S"(z) = — 32 coshz sinh® z — 16 cosh® z — 8 cosh® 2 — 8 sinh?
+ 28z sinh x cosh? © 4+ 82 sinh® 2 + 16z sinh «
+ 16 coshx + 422 cosh x + 16z sinh z cosh z + 8,
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5" () = — 24 sinh® x — 84 cosh? zsinh 2 — 16 sinh 2 cosh 2 + 28z cosh® x
+ 80z sinh? x cosh = 4+ 24z cosh x + 32sinh z + 422 sinh
+ 162 cosh? z + 162 sinh? x,
S@ () = — 160 cosh zsinh? & — 56 cosh®  + 244 sinh & cosh?
+ 80z sinh® z 4 322 sinh x + 56 cosh z + 422 cosh z

+ 64x sinh x cosh x,
S®)(z) = — 80sinh® & — 244 cosh? z sinh z + 244 cosh® z
+ 728 sinh? z: cosh 2 4 40z cosh 2 + 88 sinh x + 422 sinh 2
+ 642 cosh? z + 64 sinh z cosh 2 + 642 sinh? z,
SO)(z) =2188x sinh z cosh? z + 728z sinh® 2 + 48z sinh  + 128 cosh z
+ 4% cosh z + 256z sinh « cosh & + 128 cosh? x + 128 sinh? > 0.
Since S(0) = S’(0) = S”(0) = S®)(0) = SM(0) = S®)(0) = 0, we obtain that

S(z) > 0forz > 0.
If we define the functions:

Golz) = x(coshx +1)? — (sinhx + z) sinh = - 2+ 2coshx — xsinhz
(coshz + 1)(sinh z + x) (coshz + 1)(sinhz + )’
Folx) = x(coshac —1)? — (sinhaz — z)sinh - 2+ xsinhz — 2 coshz
(coshz — 1)(sinhz — x) (coshz — 1)(sinhz — )’
then
o S(x/2)

Fo(x) — G0($/2)

= V(@ sz 0 v70 (20)

Corollary 4 (see, Proposition 6 and Proposition Mhe functionFy(x) = hy(x)ha(z) is
a decreasing positive function fare (0, +o00) and F,(0) = 1, Fy(+o00) = 0.

Let us define positive functions far > 0:

sinhz — , sinhx + x ,
= 2 =——= 2).
P2, Gilw)i= Sy (af2)

Proposition 8. The functionF} (x) is an increasing positive function far € (0, 4+o00)
andF;(0) = 0.

F; =
1(@) coshz — 1

Proof. We derive forz > 0:
xcothx >1 = 2sinhx < sinhx + zcoshz.
Now we integrate the latter inequality from Otaand get
2coshz —2 < zsinhz = sinh®?z — zsinhz < cosh?z — 2 coshz + 1

(sinhz — z) sinh x

1.
(coshz — 1)2 <

= (sinhz — x)sinhz < (coshx — 1)?
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As a result, we have

(sinhz — z) sinh x
(coshz — 1)2

0< F{(z)=1- <1. (21)

The positiveness of the functidn and conditionF; (0) = 0 are evident. O

Corollary 5. The inequalitie® < ¢” (z) < 1 are valid forz < 0.

Corollary 6. The functionhs(xz) := z(sinha — x)/(coshz — 1)/2 is an increasing
positive function for: € (0, +o00) andhsz(0) = 0.

Remark 7. The functionG, (x) is positive and~; (z) > tanh z.
FunctionsF; andG; are both positive. Then we have the positive function

Fi(z)  cosh(yz)+1 sinhz—z ¢’ (2/2)
Gi(yz)  sinh(yz) + yx “coshz —1 (yz/2)

Hy(z;y) ==

for all y > 0. The derivative of this function is

Vg e D1@) (Fi(@)  Gi(yz)\ __Fi(2)
Hilwiy) = Gl(?ﬂﬂ( Fi) 7 G1(y33)> G1(yz)x

(Fo(z) — Go(yx)).

The graphs of the function®, () andGq(yz) fory > 1/2 are presented in Fig. 5.

Corollary 7. If the parametery > 1/2, then the functionH;(x;y) is an increasing
function forz > 0.

Remark 8. The valuey = 1/2 is not the limit value. From the Taylor series
Fy(z) — Go(yz) = (—1/15+(1/3)y?)2? + (919/403200 — (2/45)y*)z* + O (2°)
it follows that this value iy = v/5/5 = 0.447.

Let us consider a functioff (z;y) forz > 0

Hizy) : = cothz—z/sinh® z ~ cosh(2yx)+1 sinh(2x) —2x
= ytanh(yz)+1y2x/ cosh®(yz)  y(sinh(2yz)+2yz) cosh(2z)—1
1 1
=-H(2z;y) = —7—— - 221 (2x).
y 1(273y) ho(2y) 1(22)

Corollary 8 (see, Proposition 5)For fixedz > 0, the functionH . (y) := H(x;y), y > 0
is a decreasing function.

Corollary 9. For fixedy > 1/2 the functiond,(z) := H(z;y) is an increasing function
forall z > 0.
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The graphs of the functiond (z; y) for somey > 0 are presented in Fig. 6.
We note that fory > 0

1

1
lim H(z;y) = . 23
i H(zy) = (23)

Finally, we consider the functions
G(z;y) := zcothx — yxtanh(yx) = p_(z) —¥_(yz), xR, (24)
G(z;y) := yz coth(yz) — ztanh(z) = ¢_(yz) —_(z), z€R (25)

fory > 0 (see, Fig. 7 and Fig. 9). Since these functions are even,westigate them for
x> 0.

y=0 y=1/2 y=(3/3 y=2/3 y=3/4

y=4/5
\ :

\ y=2 \ y=4/3

Fig. 5. The functionsFu(xz)  Fig. 6. The function (z;y).  Fig. 7. The functiorG(z; y),
andGo(yz). z > 0.

Let us begin with functionG. We note thatz(0;y) = 1. The derivative of this
function

G'(x;y) = cothx — x/sinh? z — ytanh(yz) — y?z/ cosh? (yz)

and

H(z;y)—1) f
Gl($; ) _ yGl(yx)( (.ﬁ,y) ) or y >0, (26)
Fi(2x) for y = 0.
Lemma 1. The functionG(z; y) is even. It has the following properties:

() If y € [0,4/3/3], thenG is an increasing function for > 0 andz = 0 is the
minimum point of the functio;

(i) If y € (v/3/3,1), then there exists:,,;,(y) > 0 such that the functio; is a
decreasing function fob < x < z.,,,(y), and G is an increasing function for
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T > Tmin(y). There existSmi,(y) > 0, 0 < G(Tmin(y);y)) < 1 which is
the minimum point of functio&’ andxz = 0 is the maximum point of functiod
(—Zmin(y) is the minimum point, tgo

(i) Ify € [1,400), thenG is a decreasing function far > 0 andx = 0 is the maximum
point of functionG;

(iv) Forfixedz > 0, the functionG,(y) := G(x;y) is a decreasing function.

For all y > 0, we have5(0;y) = 1 and

Jim Gry)/e=1-y, lm Gly)/r=-(1-y), lm Gz1)=0.
Proof. G'(x;y) > 0(= 0,< 0) ifand only if H(z;y) > 1(=1,< 1). If y € (v/3/3,1),
then H(0,y) < 1 < H(+oo;y) (see, limits (22) and (23)). A4 is an increasing
function, we have only one point,,;,, (y) such thatd (2, (y); y) = 1.

If y € [1,+00), thenH(z;y) < 1 (in this caseH (+oo;y) < 1), and ify €
[1/2,4/3/3), then H(z;y) > 1 (in this caseH (+0;y) > 1). If y = /3/3 then
G(0;4/3/3) = 1, butG(x;+/3/3) > 1 for z > 0.

Fory € (0,1/2), we have (see, Corollary 8)

H(z;y) > H(z;1/2) > 1

So,G is an increasing function for sugh
The derivative?”, (y) = -2 G(z;y) = —z¢’_(yz) < 0 (see, Proposition 3).
The other properties of t%e functi@gnhare evident. O

Corollary 10. If z € (—o0,0), then
0 < (x) < plz) <(z)+1. 27)

Proof. Let us consider functiod. We note thaty(0;y) = 1,

=~ JGyx;1/y) for y >0,
G(z;y) = {1 Cu@) fory=o. (28)

The derivatives are equal to

GL(w) = 5 Glai) = ¢! (u) >0, (29)

. o

Gy () = - Clary) = Ga(@)(Alwy) ~ 1), (30)
where
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It follows that

~ _ 2yxFy(2yx)

H(x;y) = o (22) = yH:(2yz; 1/y). (32)

So, we have the following properties for functish

Corollary 11. For fixedz > 0, the functionH,, (y) := H(z;y), y > 0 is an increasing
function.

Corollary 12. For fixed0 < y < 2, the functionH,(z) := H(x;y) is an increasing
function for allz > 0.

The graphs of the function (z; i) for somey > 0 are presented in Fig. 8.
We see that foy > 0

2

. T _y
lim H(z;y) = =7, (33)
lim H(z;y) = v. (34)

T— 00

From these properties we derive the following lemma (theopi® the same as that of
Lemma 1).

Lemma 2. The functionG(z; y) is even. It has the following properties:

(i) Ify e [o,1], then~C~¥ is a decreasing function for > 0 andz = 0 is the maximum
point of functionG;

(i) If y € (1,v/3), then there exists,,:, (y) > 0 such that functior(; is a decreasing

function for0 < z < Z,n(y), andG is an increasing function for > Z,in (y).
There exist%,i,(y) > 0,0 < G(j,,mn(y);y)) < 1 which is the minimum point
of functionG andz = 0 is the maximum point of functioi (—Zmin(y) Is the
minimum point, toyy

(iiy If y € [V/3,40), thenG is an increasing function foxr > 0 andz = 0 is the
minimum point of the functio’;

(iv) For fixedz > 0, the function(?,.(y) := G(z; y) is an increasing function.
For all y > 0, we have5(0;y) = 1 and
lim G(z;y)/z=y—1, lim G(z;y)/r=—(y—1), lim G(x;1) = 0.

2500 r—Fo0
Lemma 3. The functiong and1) satisfy the Riccati differential equation

1 1

/ _ = .2 _ .
y(2) = —yla) - —y*(2) - la; (35)
Proof. We prove the lemma by substituting the functignands directly into differential
equations. O
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4.2 Critical points equation and its properties

Lemma 4. There are no critical points in Case 6 and Case 6

Proof. The functions

_ 1 e 1 (e
Vﬁ(x) 17590( 2 $)+1+§(,0( 2 l‘),
_ 1 e LINGEY:
are decreasing functions as the sum of such functions. O

Let us consider the characteristic functions for ProblerhsF5, P1-P5. These
functions are of the form (see, (7))

R ()

wheresx(§) = %, 1, 6%,5. The derivative (byr) of this function
oy f'(@)g(€x) — f(z)g' (§x)€

We can write the condition on the critical point (= 0) in the interval(h;_1, h;) as
o g'(§x)

becausg(¢x) # 0 for z € (h;—1,h;). If z. is a critical point andf(xz.) = 0 then
from (38) we derivef’(z.) = 0, i.e., the critical point is zero of the second order for the
function f, however, Proposition 1 declares that there are zeroebthy first order for

x # 0. Thus,f(z.) # 0, and we can write equality (38) as follows:

F(l‘,f) = Dlnf(x) - Dlng(fx) = 0; (39)
where
f'(x)
f(@)

Consequently, we can rewrite equality (37) as

Dinf(x) = zlog/ |f(2)| =«

for f(z) #0. (40)

V() = SOV F(1:6) = () (Dinf (2) ~ Ding(€r)). (41)
Proposition 9. For D;,, the next properties are valid:

Dln(fQ) = Dlnf + Dln97 Dln(fg> = ngnf+ngnglogfa f > 0’
Dlnfa = aDlnf; (ORS R;Dln(maf) = Dlnf +a, ac R;

Dln(ma) =a, acl; Dln(f Og(x)) = (Dlnf)(g(m)) 'Dlng(m);
Dy, (f(ax)) = (D f)(az), a€eR.
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So, we obtain

Dy, sine = zcotax = oy (x);

Dy <21 = weoth(x/2) — 2 = 2(p- (1/2) — 1);

D22 = peotz — 1= (z) — 1;

Dy, 882 — geothar — 1= ¢ () — 1;

Dy, sinhx = xcothz = p_(2);

Dy, (zsinhz) = zcothz +1 = ¢_(2) + 1;

Dy, cosx = —ztanx = ¢y (x);

D57L1;§7;$ =z cot(z/2) —2 = 2(<p+(x/2) — 1);
Dy, coshz = ztanhz = ¢_(x);

Dip(—xsinz) =xcotz+1 =4 (x) +1;

and equality (39) is valid with:

Dy f(z) = (), Ding(r) = ¢(x) — 1; (42, 5)
Dy f(z) = (), Ding(r) =9 (2); (42;,4)
Dy f(z) = p(z) — 1, Ding(z) = ¥ (x); (423)
Dinf(z) = @(x) =1,  Dug(z) = ¢(x) = 1; (4242/)
Dinf(z) =¢(@) =1,  Dpg(x) =2(p(x/2) — 1); (425)
Dinf(z) = @(x) +1,  Dig(x) = (z); (42)
Din f(z) = ¢(), Ding(r) = p(x) + 1. (423)

F(x;:€) = ¢(z) — p(§x) + 1; (4315)
F(z;€) = (x) —p(&x); (43,4)
F(x;€) = () —¢(Ex) — 1; (4%)
F(z;€) = p(x) — p(€2); (4342)
F(x;€) = o(z) — 20(§2/2) + 1; (435)
F(z;€) = p(x) — ¢(§x) + 1; (431)
F(x;:€) = ¢(z) — p(x) — 1. (433)

The equationF'(z; &) = 0 defines a set of critical points in the domdih, . This set
is graphs of functiong = &..(x) locally, as in all the Case%%sign(m) > 0 (%—? =

—z¢ (&x) or %—Ig = —xy/(&x) or %_Ig = —a¢'(§x/2)) forz # 0.

Remark 9 (The cas€ = 0). For £ = 0, (ProblemsP2, P3, P4, P4) ©(0) = 1,¢(0) = 0,
but in this case% # 0. So, we get the critical points as rootsof the equations:
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Y(xz) = 0 (Problem2, 4), ¢(x) = 1 (Problem3), ¢(x) = —1 (Problem1’). At the
points(z,0) € D, ¢, z # 0 the curveF'(z, §) has a vertical tangent line. lf ¢ D, then
lim,_,, {(x) = +oo wherez is a nonzero root of the equation:(z) = 0 (Problemsl,
5), p(z) = 1 (Problems4, 2), ¢(x) = 1 (Problem5), ¢(x) = 0 (Problem3’).

In the domainD,, ¢ there are two families of curves: vertical lines of the psiot
zeroes, and hyperbolae of the points of poles. The inteosgooints of these two families
are constant eigenvalue points. We denotdsythe complement of the union of these
two families and use the notatioR® := {(z,{) € D°: x < 0}, DS = {(x,§) €
D¢: x > 0}. This complemenD¢ is an infinite union of curvilinear subfigures: tri-
angles, and quadrangles, and so on (see, Fig. 10). Them #ith&eft or right side of
these figures is vertical lines, and the other sides are byfae, or§ = 0, 1. The curves
F(z,£) = 0 (' = 0) are inside these subdomains, and have no common points with
the vertical sides+y = 0) or parts of hyperbolae) (= ~0), except the vertices (constant
eigenvalue points) or lines= 0, 1.

A G y=2 y=3 y=3/2 R

30~ S —— =3 _
\ Pt y=6/5

1\ = Y \

259 ~-7 T y=5/2 10

- y=1 x 1 2

o]
.ull v \ N
y=3i4 0s
054 y=112 3 6\
y=415
/ X - '\\ x
S S S S S S e Y _ —12 >
. s YO\ NEVE L o

Fig. 8. The function (z;y).  Fig. 9. The functiorG(x;y), Fig. 10. The subdomains of
x> 0. the domainD®.

/

From (42) and Lemma 3 it follows that

d
aDznf(ﬂf) = —Dlnf (Dlnf ) — |z, (441 2,3/ 47 57)
d 1
Dl (@) = —;Dmf@s) - E(Dznf(w))g — o], (443.1,5,2)
d 3 1 2
aDlnf( ) = _Dlnf - E(Dlnf ) - E - |Z|7 (441’)
and
dp __1p Lo 2 45
e ng(x) = 7 ng(x) — E( lng(x)) = ||, (451 4,2/ 57)
d 1 1
—Ding(x) = ~Ding(a) = = (Ding(@))” = o], (45251
d 1 1 1
EDlng(x) = _;Dlng(x) - %(Dlng(x))2 - §|$|7 (455)
d 2
- Ding(@) = ~Ding(a) = = (Ding(@))” = = ~ Jal (45y)
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We rewrite the latter formulae at the pogt:

0
5 Ding(€2) = = Ding(€z) = 5 (Dng(€e)” ~ €%la, (@611.2.7)
0
5 Ding€2) =+ Ding(éx) - 1(Dmg<ex>)2 - %ol (@6210.1)
0 1 2
2 Ding(€r) =~ Ding(€2) — - (Dung(€n)” — 5 lal, (46)
0
= Ding(€x) = > Ding(€x) — — (Ding(&n)” ~ = — €. (46y)
At the critical pointD;,,g(éx) = Dy, f(x):
%Dlng(faz) = *éDlnf(fﬂ) - E(Dlnf(fv))Q — &z, (471 4,2/ 5)
S-Ding(Ex) = 2 Din (@) — + (Din f(2)” ~ €%l @T204)
0 1 1 2
%Dlng(fx) = *EDlnf(IC) ~ % (Dznf(fﬂ))Q - %|=’U|a (475)
S Ding(Ex) = 2 Din (@)~ +(Din f(2)” = 2 — €lal. (a7y)
Finally, we get the expressions for the derivatives:
d
f:cag (x,&) = delnf(x)Jr:c%Dlng({z)
= 2Dy, f(2) + (1 — €)z|z| = —2¢(z) + (1 — €)z|x], (48, 5)
= (1 — 52)$|$|, (48274,21,41)
=2Dp f(2) + (1 = €)alz| = 2(p(z) — 1) + (1 - €)alal, (483)
= %(Dznf(ﬂf))Q + (1 - &2/2)alz| = 1( (@) —1)" + (1 - €2/2)alz], (485)
=-2Dp, f(x)+2+ (1 — 2):c|:v| —2p(x) + (1 ):c|:c|, (48;/)
= 2D f(x) = 2+ (1= §%)alz| = 2(¢(x) — 1) + (1 — €%)lal; (483)

and

8—F(x,§) xagF(m f)
The denominator of the last fraction is positive. So, thesif,.(z) is the same as that
of expression (48).

5 Properties of the negative critical points

Theorem 1. There are no critical points for negativein problemsP1, P2, P4, P5, P1
P2, P4, P5.
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Proof. Case4 and CaseéP2. By the Mean Value Theorem we derive
F(z;€) = o(z) — (§z) = ¢'(91)(1 — )z, ¥h <0.
Sincey’ < 0 (see, Proposition 3), we gét(z;¢) > 0 for x < 0.

Case2 and CaseP4. If £ = 0,thenF'(z;0) = ¢ (x) > 0forz < 0, otherwisel'(z; &) =
U(x) —p(€x) = ¥'(92)(1 - €)z > 0, ¥2 <0.

Caseb. In this caseF'(x;€) = ¢(z) — 2p(€x/2) + 1 = @(x) — p(€x/2) + ¢(0) —
@(€$/2) = (Pl(ﬁ?;)(l - 5/2)1‘ + (,0’(194)35 >0, 193 < 0,194 < 0.

CasePY. From Corollary 10 it follows that'(z;¢) = ¢(z) — ¥(€x) + 1 > P(x) —
P(€a) +1=9¢'(¥5)(1 =z +1>1>0, ¥5 <0.

Casel and CaseP5. If £ = 1, thenF(z;1) = ¢(x) — ¢(z) + 1 > 0 for z < 0 (see,
Corollary 10), or elsé’(z; &) = ¥(z) +1—p(€x) > p(z) —p(Ex) = @' (¥6)(1— &)z >
0, ¥ < 0. O

Corollary 13. For problemsP1, P2, P4, P5, P1P2, P4, PS5, the characteristic function
is a decreasing function with negativesee(41)).

Theorem 2. For problem P3 there exists a negative critical point if and only if
¢ € (v/3/3,1) and this unique negative critical point_ is the minimum point, and
Y(z-;€) > 0.

Proof. The functionF(x;¢&) = G(z;€) — 1, £ € [0,1]. The proof follows from the
properties of functiortz. The minimum point:_ = —x,,,;,, (See, Lemma 1). O

Corollary 14. Let us consider the characteristic functigrior negativer of problemP3
Theny is

1) a decreasing function fof € [0, v/3/3];

2) a decreasing function far € (—oo,2_) and an increasing function far € (x_,0)

as¢ € (v3/3,1);
3) an increasing function fof = 1.
We havelinm(x;g) = 1forall & and if¢ < 1, then lim ~(z;€) = +oo, Or else
xr— Tr— —0Q
lim ~(z;1) =0.
r— —0Q
Proposition 10. In Case3, the functiort,. is a decreasing function and

r— —0Q
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Proof.

—xaéF’(x;g) = —aG'(2;¢) = §xG1(—€$)(H(m;€) — 1) < 0.
T O

Theorem 3. For problemP3, there exists one negative critical point for glle (0,1)
and this unique negative critical poiat_ is the minimum point ang(z_;¢) > 0. For
& = 1 there are no negative critical points.

Proof. The functionF (z;¢) = —G(z;€) — 1, £ € (0,1]. The proof follows from the

properties of functiortz. The minimum pointt_ = —Z,,, (See, Lemma 2). O

Corollary 15. Let us consider the characteristic functigrior negativer in ProblemP3.
If ¢ € (0,1), theny is a decreasing function for € (—oo,Z_) and an increasing
function forz € (Z_,0). The functiony(z; 1) is an increasing function for < 0. We
obtainwgmoy(x;f) = +oo forall € € (0,1], zgmoofy(:c;g) = 4oofor¢ € (0,1) and

lim ~(z;1) =0.
r— —0Q

Proposition 11. In Case 3/, the functioné.,. is a decreasing function fox < 0,
lim &..(z) = 1 and the graph of this function intersects (in the limitaxis at the

r— —0Q

pointaz = —ux, wherex, is the positive root of the equationtanh z = 2 or equation

G(z;0) = —1. There are no critical points for € [z.,0).

Proof.
0 ~ .
—x%F'(Jc;g) = 2G/ (2;€) = —2G1(—2)(H(z;€) — 1) < 0. .

Remark 10. We will investigate nonnegative critical points in the nasticle.
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