

įtako

VILNIUS GEDIMINAS TECHNICAL UNIVERSITY

FACULTY OF FUNDAMENTAL SCIENCES

DEPARTMENT OF INFORMATION SYSTEMS

Ramil Mustafayev

AN EARLY WARNING AND ALERT SYSTEM FOR SOFTWARE

VULNERABILITY ASSESSMENT

Master Graduation Thesis

Information and information technologies security study programme, state code 6211BX014

Informatics engineering study field

Vilnius, 2020

VILNIUS GEDIMINAS TECHNICAL UNIVERSITY

FACULTY OF FUNDAMENTAL SCIENCES

DEPARTMENT OF INFORMATION SYSTEMS

APPROVED BY

Head of Department

(Signature)

(Name, Surname)

(Date)

Ramil Mustafayev

AN EARLY WARNING AND ALERT SYSTEM FOR SOFTWARE

VULNERABILITY ASSESSMENT

Master Graduation Thesis

Information and information technologies security study programme, state code 6211BX014

Informatics engineering study field

Supervisor _______________________ __________ _______
 (Title, Name, Surname) (Signature) (Date)

Consultant _______________________ __________ _______
 (Title, Name, Surname) (Signature) (Date)

Consultant _______________________ __________ _______
 (Title, Name, Surname) (Signature) (Date)

Vilnius, 2020

VILNIUS GEDIMINAS TECHNICAL UNIVERSITY

FACULTY OF FUNDAMENTAL SCIENCES

DEPARTMENT OF INFORMATION SYSTEMS

APPROVED BY

Head of Department

(Signature)

(Name, Surname)

(Date)

OBJECTIVES FOR MASTER THESIS
.......………...No.

Vilnius

For student Ramil Mustafayev
 (Name, Surname)

Master Thesis title: An Early Warning and Alert System for Software Vulnerability Assessment

Approved on .., 2020 by Dean‘s decree No.
 (day, Month) (year)

The Final work has to be completed by ..., 2020
 (Day, Month) (Year)

THE OBJECTIVES:

This work aims to propose automated an early warning and alert system about newly published

vulnerabilities related to software products.

Objectives:

1. To perform literature analysis on software vulnerability analysis/assessment;

2. To investigate the methods and techniques that are used for software vulnerability analysis in

existed solutions;

3. To propose a concept and create an initial version of the system;

4. To perform tests and experiments to evaluate the proposed idea.

Consultants of the Master Thesis: ………………………………………………………………….…………………

..……................
(Title, Name, Surname)

Academic Supervisor
 (Signature) (Title, Name, Surname)

Objectives accepted as a quidance for my Master Thesis

…………………………………..
 (Student‘s signature)

………………………………..
 (Student‘s Name, Surname)

……………………………..…....
 .

(Date)

Informatics engineering study field

Information and information technologies security study programme, state

code 6211BX014

Vilniaus Gedimino technikos universitetas

Fundamentinių mokslų fakultetas

Informacinių sistemų katedra

ISBN ISSN

Kopijos Nr. ………

Data ….-….-….

Informacijos ir informacinių technologijų saugos studijų programos magistro darbas.

Pavadinimas: Išankstinio įspėjimo sistema programinės įrangos pažeidžiamumų įvertinimui

Autorius Ramil Mustafayev Akademinis vadovas Vitalijus Gurčinas

Baigiamojo darbo kalba

 Lietuvių

Užsienio (Anglų)

X

Anotacija

 Baigiamajame magistro darbe buvo pasiūlyta išankstinio perspėjimo sistema (EWAS)

programinės įrangos pažeidžiamumų įvertinimui ir sukurtas sistemos prototipas. Pirmame

darbo etape buvo atliktas teorinis tyrimas: buvo surinkta ir išanalizuota aktuali informacija,

išsiaiškintos sistemos kūrimo galimybės ir apribojimai, taip pat parinkti tinkamiausi algoritmai

EWAS sistemai.

Remiantis išanalizuota informacija, buvo parengtas karkasas, kurį sudaro šie elementai:

duomenų surinkimo, duomenų apdorojimo, pažeidžiamumų nustatymo, išankstinio perspėjimo

ir rezultatų pateikimo.

Praktinei daliai atlikti buvo pasitelkta prototipų kūrimo metodika, lyginamasis ir

eksperimentinis tyrimai. Projekto rezultatai buvo įvertinti naudojant „OWASP Benchmark“

sistemą ir išbandyti atsižvelgiant į funkcinius reikalavimus. Darbo metu gauti rezultatai yra

apibendrinti, pateikti komentarai ir įžvalgos, taip pat nurodyti sistemos apribojimai.

Bendras prototipo įvertinimo rezultatas, nustatant pažeidžiamumus, buvo 92 procentai.

Sistema aptiko 2270 pažeidžiamumų, o 196 iš jų nurodė klaidingai, t.y. įdentifikavo, kad

pažeidžiamumai yra, nors jų nebuvo. Be to, sistema sugebėjo nustatyti ir pateikti 15 išankstinių

įspėjimų, susijusių su naujai paskelbtais pažeidžiamumais aptiktais komerciniuose

produktuose.

Darbą sudaro: įvadas, susijusių darbų analizė, siūlomas sprendimas, eksperimentai ir

pirminės sistemos versijos įvertinimas, išvados, naudotos literatūros sąrašas.

Dokumento apimtis - 75 psl., be priedų, 37 iliustracijos, 10 lentelių, 39 bibliografiniai

šaltiniai.

Raktažodžiai: pažeidžiamumai, pažeidžiamumų vertinimas, pažeidžiamumų vertinimo

sistemos, išankstinio perspėjimo, pažeidžiamumų nustatymas, įrankiai, kibernetinis saugumas

Vilnius Gediminas Technical University

Faculty of Fundamental Sciences

Department of Information Systems

ISBN ISSN

Copies No. ………

Date ….-….-….

Information and information technologies security study programme master thesis.

Title: An Early Warning and Alert System for Software Vulnerability Assessment

Author Ramil Mustafayev Academic supervisor Vitalijus Gurčinas

Thesis language

 Lithuanian

Foreign (English)

Annotation

In the final master's thesis, an early warning and alert system (EWAS) for software

vulnerability assessment was proposed and prototype of the system was created. In particular, a

theoretical study was carried out: relevant information was collected, analyzed and research

opportunities were identified, as well as the most suitable algorithms for EWAS were chosen.

Based on the analyzed information, a framework was prepared, which consists of

phases of the data collection and parsing of data, vulnerability identification and an early

warning selection, populating data for web-based console.

For the practical part, prototyping methodology, comparative and experimental study

were chosen. Project results were evaluated using the OWASP benchmark scoring system and

tested against functional requirements. The obtained results are summarized, comments,

insights and possible limitations are provided.

The overall, benchmark score of the prototype in identification of vulnerabilities was

92%, and the system detected 2270 vulnerabilities and 196 of them were false positives.

Additionally, the system was able to identify 15 early warnings related to newly published

vulnerabilities before the commercial products.

Structure: introduction, related works analysis, proposed solution, experiments and

evaluation of initial system, conclusions and references.

Thesis consist of: 75 p. text without appendixes, 37 pictures, 10 tables, 39

bibliographical entries.

Keywords: vulnerability, assessment, management, systems, early warning, alert,

vulnerability identification, tools, cybersecurity

x

Data controller details:

Vilnius Gediminas Technical University

Legal entity code: 111950243

Address: Saulėtekio al. 11, LT-10223 Vilnius, Lithuania

Tel. (+370 5) 274 5030

E-mail: vgtu@vgtu.lt

VAT payer code: LT119502413

Data protection officer tel. (+370 5) 251 2191, e-mail: dap@vgtu.lt

CONSENT TO THE USE OF PERSONAL DATA

 25/05/2020

 (Date)

With this consent I, Ramil Mustafayev (hereinafter referred to as the Data subject) agree to the

processing of my personal data for the learning purposes of other students by Vilnius Gediminas

Technical University, legal entity code 111950243, address – Saulėtekio al. 11, LT-10223

Vilnius (hereinafter referred to as the Data controller). I agree to the processing of the following

personal data (mark the relevant item):

☐ name, surname, Bachelor’s final thesis;

☐ Bachelor’s final thesis without name and surname;

☒ name, surname, Master’s final thesis;

☐ Master’s final thesis without name and surname.

Personal data processed for this purpose will not be transferred by the Data controller to any

third parties, students will be allowed to access the final theses in the internal information

system.

The personal data of the Data subject will be used for this purpose for a maximum of 5 years.

By this consent, the Data subject confirms that he / she is aware of the following rights:

• Access to his/her data and how it is processed (right of access);

• Require the rectification or, depending on the purposes of the processing of personal

data, the addition of incomplete personal data (right of rectification);

• Destroy his/her data or suspend the processing of data (excluding storage) (right to

destroy and right to be "forgotten");

• Require the Data controller to restrict the processing of personal data (right to

restrict);

• The right to transfer data (right to transfer);

• Do not consent to the processing of personal data when such data are processed or

are intended to be processed for other purposes;

• File a complaint with the State Data Protection Inspectorate.

The Data subject has the right to withdraw his consent at any time.

[Name, surname and signature of Data subject]

(the document of Declaration of Authorship in the Final Degree Project)

VILNIUS GEDIMINAS TECHNICAL UNIVERSITY

Ramil Mustafayev, 20185915

(Student‘s given name, family name, certificate number)

Faculty of Fundamental Sciences
(Faculty)

Information and information technologies security study

programme, ITSfmc-18
(Study programme, academic group no.)

DECLARATION OF AUTHORSHIP

IN THE FINAL DEGREE PROJECT

(Date)

I declare that my Final Degree Project entitled An Early Warning and Alert System for Software

Vulnerability Assessment is entirely my own work.

The title was confirmed on ____________________ by Faculty Dean’s order
 (Date)

No. ____________. I have clearly signalled the presence of quoted or paraphrased material and

referenced all sources.

I have acknowledged appropriately any assistance I have received by the following

professionals/advisers: __

__

__

The academic supervisor of my Final Degree Project is Vitalijus Gurčinas.

No contribution of any other person was obtained, nor did I buy my Final Degree Project.

 RAMIL MUSTAFAYEV

(Signature) (Given name, family name)

8

Table of Content
1. Introduction .. 12

1.1. Investigation Object ... 13
1.2. The aim of work and tasks ... 13

1.3. The novelty of the Topic.. 13
1.4. The relevance of the topic.. 14
1.5. Research Methodology .. 14
1.6. Scientific Value of the Work ... 14
1.7. Work Results ... 14

1.8. Structure of the Work .. 15
2. Related works analysis ... 16

2.1. Vulnerability Management .. 16
2.1.1. Vulnerability Assessment ... 16
2.1.2. Types of Vulnerability Assessments ... 17

2.1.3. Benefits of Vulnerability Assessment ... 19
2.2. Overview of Vulnerability Management Systems and Its Components 20

2.2.1. Vulnerability Databases and Dictionaries ... 24

2.2.2. Using CVE and CPE in a VMS .. 28
2.2.3. Challenges and Limitations in VMS ... 29

2.3. Importance of Early Warning Systems in IT ... 32

2.4. Conclusions of the second chapter .. 33
3. Proposed solution ... 34

3.1. Project Overview ... 34

3.2. Objectives of the system .. 36
3.3. Dynamic behaviour of the system ... 36

3.4. Components and their definitions .. 42
3.5. Design of Database for Storing CVEs and CPEs .. 43

3.6. System requirements and specification ... 45
3.7. Technical Challenges and Handling Limitations ... 49

3.8. Conclusions of the third chapter .. 52
4. Experiments and Evaluation of the EWAS .. 53

4.1. Implemented Environment .. 53
4.2. Results of Data Collection from NVD Feeds and Analysis .. 54

4.3. Identified Vulnerabilities ... 58
4.4. Identified Early Warnings.. 61
4.5. Comparison of results between related work and thesis .. 63
4.6. Evaluation Approach based on OWASP benchmark .. 64
4.7. The graphical user interface of the system (Web-based console) 66

4.8. Conclusions of the fourth chapter .. 70

5. Conclusions .. 72

6. References .. 73

9

List of Images and Figures

Figure 1. Vulnerability Scanner System Diagram .. 21
Figure 2. CVE example from MITRE related to Google Chrome .. 25

Figure 3. Vulnerabilities related to Google Chrome from the NVD official site 26
Figure 4. Modified and Recent feeds by NVD ... 26
Figure 5. Example of META file from NVD ... 27
Figure 6. CPE entry for Google Chrome 80.0.3987.149 in the official CPE dictionary 27
Figure 7. NVD Vulnerability Severity Ratings from the official site .. 28

Figure 8. CVE feed in JSON format from NVD .. 29
Figure 9. CVE example for awaiting reanalysis from the NVD ... 30
Figure 10. CVE-2020-11470 from the official Tenable website .. 31
Figure 11. Proposed Framework ... 35
Figure 12. Collecting data from NVD .. 37

Figure 13. Collecting data from assets with Agents ... 38

Figure 14. Parsing collected NVD data on the local database .. 39
Figure 15. Vulnerability Identification Matcher ... 40

Figure 16. User interaction with GUI (Web-based console) .. 41
Figure 17. Example of EER Diagram of the proposed solution ... 44
Figure 18. Example of Query with Natural Language Mode for CVEs and Results 50

Figure 19. Example of Query with Natural Language Mode for CPE identifiers and Results 51
Figure 20. Example of FuzzyWuzzy usage .. 51
Figure 21. Testing environment .. 53

Figure 22. The Most Vulnerable Vendors .. 55
Figure 23. The Most Vulnerable Products .. 56

Figure 24. Gathered information by attributes .. 56
Figure 25. CVSS Severity Distribution Over Time .. 57

Figure 26. Published vulnerabilities by year ... 58
Figure 27. Comparison of False and True Positive results ... 59

Figure 28. Early Warning related to Zoom Meetings with version 4.6 .. 62
Figure 29. CVE-2020-11500 from the Tenable .. 62
Figure 30. CVE-2020-11500 from the NVD .. 63

Figure 31. Comparison results between thesis results and related work .. 64

Figure 32. The dashboard of the system ... 66
Figure 33. Creating Alerts ... 67
Figure 34. Alert List .. 68
Figure 35. Example reports of the result ... 68
Figure 36. Example of found vulnerabilities by-products .. 69

Figure 37. Example of found vulnerabilities related to Google Chrome v78.0.3904.108 70

10

List of Tables

Table 1. Vulnerability Scanners .. 21

Table 2. Used Components and Their Definitions .. 42
Table 3. Functional Requirements .. 46
Table 4. Non-functional Requirements ... 47
Table 5. Security Requirements .. 48
Table 6. List of installed software products in the lab environment ... 54

Table 7. Last ten collected CVEs .. 55
Table 8. Found vulnerabilities by system ... 58
Table 9. Example of Found vulnerabilities related to Mozilla Firefox v48.0.2 60
Table 10. Comparison results between thesis results and related work .. 63

11

Abbreviations
VM – Vulnerability Management

IDS – Intrusion Detection System

VE – Virtual Environments

VMM – Virtual Machine Manager

IT – Information Technology

CVE – Common Vulnerabilities and Exposures

NVD – National Vulnerability Database

CRR – Cyber Resilience Review

OSVDB – Open Source Vulnerability Database

NIST – National Institute of Standards and Technology

CVSS – Common Vulnerability Scoring System

VAT – Vulnerability Assessment Tool

PC – Personal Computer

CPE – Common Platform Enumeration

EWAS – Name of a prototype for the proposed idea

SCAP – Security Content Automation Protocol

NIST – National Institute of Standards and Technology

CWE – Common Weakness Enumeration

IP – Internet Protocol

TCP – Transmission Control Protocol

ASV – Approved Scanning Vendor

12

1. Introduction

Cyber threats are growing sharply, and several cyber incidents are taking place every

second/minute; thus, hundreds of computers are compromised due to the software vulnerabilities every

day, and data breaches are continuing to increase. For example, if user persuaded for opening software

sent by cybercriminals with social engineering like a phishing attack, malicious codes attached to

software exploit the vulnerability. As a result, the user computer is being infected with malware.

According to an analysis of the National Vulnerability Database (NVD) data feeds (NVD Data Feeds,

n.d.), there were 18,154 disclosed vulnerabilities in 2018. Still, in 2019 those numbers are dramatically

increased, and 18,938 vulnerabilities were published. As seen from the statistics, weaknesses are a never-

ending problem, especially in the context of software products. Although even known and discovered

vulnerabilities are published, they are still a high risk to organizations. Therefore, companies are trying

to choose the best security approaches to prevent and investigate feasible scenarios exploited by attacks

and amend vulnerabilities before compromising. Therefore, companies are trying to select the best

security approaches to prevent and investigate potential scenarios used by attacks and prevent

vulnerabilities before compromising.

There are several ways to ensure, test and verify the security level of organizations. One of the

most generic and effective ways to implement security measures is a vulnerability assessment. The

process covers identification, analysis and ranking weaknesses in a computer/network environment.

Additionally, it provides IT personnel and management team with adequate knowledge about existing

threats in the environment. During the vulnerability, assessment organizations deploy Vulnerability

Management Systems (VMSs) in their computer or network environment. Among the critical

functionalities of VMS is scanning installed vulnerable software products inside of IT assets. For

accomplishing these operations, vulnerability scanners collect asset data from the computer system and

correlate them with information obtained from repositories such as private vendors or NVD. However,

scientific sources demonstrate that due to shortcomings of NVD, using it as a core source might give

false-negative results (Sanguino & Uetz, 2017). Also, reacting to vulnerabilities by the organizations on

time is one of the critical aspects in terms of security (Ruohonen, 2019). For instance, the presence of

newly released vulnerabilities without identifiers or detection plugins on the VMS complicates realistic

vulnerability research, brings out false-negative results and distracts organizations from the initial

objective. One of the ways to eliminate limitations of VSMs is choosing an appropriate concept based

on an early warning, and the alert system is considered.

13

1.1. Investigation Object

The Investigation Object is a software vulnerability analysis/assessment.

1.2. The aim of work and tasks

This work aims to propose automated an early warning and alert system about newly published

vulnerabilities related to software products.

1. To perform literature analysis on software vulnerability analysis/assessment;

2. To investigate the methods and techniques that are used for software vulnerability analysis in

existed solutions;

3. To propose a concept and create an initial version of the system;

4. To perform tests and experiments to evaluate the proposed idea.

1.3. The novelty of the Topic

Implementation of vulnerability analysis and assessment is mainly focused on applying third

party solutions, which synchronizes CPE identifiers with National Vulnerability Database information

regularly. If new, missing or corrected CPE identifiers exist, vendors are modifying their content

manually by human interaction accordingly (Requirements and Recommendations for CVE

Compatibility, 2017). Being dependent on third party solutions and human control changes the

vulnerability assessment process to disadvantage and makes organisations less resistance to new

disclosures.

Responding to vulnerabilities by the organisations on time is one of the crucial aspects in terms

of security. (Ruohonen, 2019). For instance, the existence of newly published vulnerabilities without

CPE identifiers or plugins for detection makes practical vulnerability analysis complicated, turns results

to false-negatives and distracts organisations from the initial aim. In this case, organisations should wait

until the vulnerability is analyzed and identifiers assigned by the NVD or third-party solutions. The

proposed concept is a solution for handling the cons of vulnerability assessment mentioned above. It

will help individuals or organisations to respond fast to active threats and create compensation measures

on time, especially in terms of software products.

14

1.4. The relevance of the topic

There are still some open issues regarding vulnerability analysis and methods. Getting late

notifications related to the newest vulnerabilities are considered a significant threat to the companies. In

the worst-case scenario – the cyber-attack can occur on the same day when the weakness is discovered

in software or mentioned on the vulnerability databases. At the moment, evaluation of methods shows

that the vulnerability analysis tools lack synchronization of CPE identifiers with NVD which prone to

losing time and getting false negatives because of not published identifiers and plugins on the

vulnerability databases. Besides, for assigning CPEs, human interaction is needed during the analysis of

vulnerabilities (Sanguino & Uetz, 2017). Thereby, automated tools are led to making errors due to NVD

shortcomings such as CPE synchronizations, missing known affected software configurations,

typographical errors and assignments of identifiers manually.

1.5. Research Methodology

For the analytical part of the work, literature review, analysis of scientific articles and library

research methodology were used. For the practical part, prototyping methodology and comparative and

experimental study were chosen. Project results were evaluated using the OWASP benchmark scoring

system and tested against functional requirements.

1.6. Scientific Value of the Work

The proposed concept for an early warning-system ensures to get updates and alerts regarding

newly published vulnerabilities, while mainly focuses on the creation of an automated tool with

decreasing human interaction.

This content can be used for further studies related to vulnerability assessment on software

products or as a new solution for existing vulnerability assessment tools.

1.7. Work Results

Analysis of related literature and existing vulnerability management platforms shows that almost

all current methodologies and concepts lack the adaptability when require to warn individuals or

companies regarding newly published vulnerabilities.

15

1.8. Structure of the Work

The first section contains the introduction.

The second section describes the analyzed literature.

The third section describes the proposed solution for EWAS.

The fourth section examines the experiments and evaluates the prototype of the system.

The fifth is conclusions of all chapters.

16

2. Related works analysis

This chapter includes the associated works done before. In more details, this section provides

background on the early warning systems in IT, vulnerability, assessment, requirements and its benefits.

Also, describes vulnerability management systems, vulnerability databases and dictionaries which can be

used as a data source in VMS. Moreover, stresses problems and potential risks in the vulnerability

management program.

2.1. Vulnerability Management

Vulnerability management is an integral and essential part of an excellent successful program.

Virtually, industry standards and regulatory organizations are frequently citing a well-functioning

vulnerability management framework, including testing and remediation, as a vital requirement and

compulsory for security compliance. Vulnerability is characterized as a computer or network

environment-related weakness which may be compromised by an intruder or threat (NIST, 2012). As a

practical matter, every technological deficiency cannot be eliminated from an environment. There are

several reasons for this. Some of the vulnerabilities remain latent until they will be revealed and publicly

available; These types of vulnerabilities are referred to a zero-days till the public disclosure. Other

vulnerabilities can stay due to difficulties related to patching devices, including those which support

legacy applications, or which are controlled by third parties. Still, other vulnerabilities might be cost-

prohibitive to address for different reasons. That means that every single system has at any given time

would have several latent vulnerabilities, and it will create a risk to organizations. In the field of

information security, the fundamental risk factors can be calculated according to the following

mathematical formula:

𝐿𝑒𝑣𝑒𝑙 𝑜𝑓 𝑅𝑖𝑠𝑘 =
(𝑇ℎ𝑟𝑒𝑎𝑡𝑠 × 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠)

𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠
 × 𝐼𝑚𝑝𝑎𝑐𝑡 (Mladenović, 2017)

 “Impact” in this formula expresses the outcome of the loss to the owner of the asset. The value

of “Threat x Vulnerability” depicts the likelihood that the unwanted event occurs, and

“Countermeasures” means an action, tool, process, or method that reduces a threat, weakness, or attack

by removing or blocking it, by reducing the damage it can cause, or by detecting and disclosing it so that

remedial step can be implemented.

2.1.1. Vulnerability Assessment

A vulnerability assessment is a method of finding and evaluating vulnerabilities that may exist

within the organization (Mladenović, 2017). Assessment of vulnerability is a critical component of

17

network protection and risk management process. TCP/ IP networks have overgrown over the last

decades. Computer weaknesses and malicious exploitation are increased along with the appearance of

this development. Updates to the operating system, vulnerability fixes, malware repositories and security

releases are becoming a vital tool for any experienced network admins or security team. It is the

implementation of patches and the use of information acquired from these tools that make the difference

between a secure network system and a network used for malicious hacker attacks as a backdoor

playground. As a system baseline analysis, routine vulnerability assessments need to be undertaken and

tailored to the company's needs to maintain a comparatively secure network system.

Vulnerability assessment today relies on manual intervention by vulnerability researchers,

vulnerability database owners, and systems/network administrators (Waltermire & Fitzgerald-McKay,

2018). Vulnerability assessment is usually carried out using network-based or host-based approaches

via automated tools to perform discovery, analysis and reporting. Manual techniques may also be used

to detect vulnerabilities related to technological, physical and governance-based weaknesses.

Assessments of vulnerabilities are not exploitative by its nature (in contrast with ethical hacking or

penetration tests). Practitioners (or the tools and methods they employ) do not usually exploit

vulnerabilities which they discovered during a vulnerability assessment. Alternatively, a vulnerability

assessment follows slightly different purposes: it helps an organization to focus on surveillance and

identification of vulnerabilities in its environment. There is usually no need to exploit a potential

vulnerability to recognize its presence and implement a patch.

2.1.2. Types of Vulnerability Assessments

NIST Special Publication 800-115, “Technical Guide to Information Security Testing and

Assessment” (Scarfone et al., 2008) is a framework for cybersecurity testing and evaluation techniques.

The standard addresses the following four practices related to vulnerability assessment:

1. Network-based scans;

2. Host-based scans;

3. Wireless scans;

4. Application scans;

During the vulnerability assessment targets do not need to know about tests and stealth

techniques which allows the tester to avoid detection. Both internal and external systems can be scanned

during the assessment. Practitioners may determine techniques for assessment such as authenticated

testing in which validated credentials are given to the scanning tool to analyze the device or application

18

at a deeper level. Technical vulnerability assessments are usually automated, but practitioners should be

involved during the process for planning, implementing and evaluating outcomes.

 Network-based scans - covers service and host discovery with an enumeration of

vulnerabilities. The identification element of network-based scans enables the assessors to identify and

define the type and possible attack vectors for each network device. In order to identify the type, the

scanning tool is starting probe a host. It examines its functioning and replies with creating a "fingerprint"

which includes device information and enables the tool to discover the characteristics of the machine.

In this way, tools might enumerate running services, scan for a range of listening TCP ports, examine

system banners or deploy any number of other techniques to determine the type and version of the host

or device. Modern scanning tools can accurately discover the computer or network system applications

of the target for all but the stealthiest of appliances, and from those features conduct targeted tests to

find vulnerabilities. For instance, if a tool has detected that a target has a Web Server (IIS), it could run

a set of tests based on known vulnerabilities and misconfigurations of that operating system and

application.

 Host-Based Scans - Network-based scans often skip vulnerabilities that can only be exploited

by a user logging into the device (i.e. local exploits) because they can only have the functionality or be

set up to check for "remotely exploitable" vulnerabilities (i.e. vulnerabilities that can be accessed from

anywhere else on the network). In comparison, host-based scans are performed from the target machine

or are managed remotely with authenticated access to the target nodes. These scans can provide more

accuracy in the configuration settings and patch information of a device while covering ports and

services that are also observable for network-based scans. Host-based scans are more detailed than

network-based scans; however, the comprehensiveness usually raises their overhead and makes them

more challenging to configure and run. Numerous network-based scanning tools also have an

authenticated scanning method, which is likely to deploy the SCAP and support with the National

Checklist Program (NCP) operated by NIST (Quinn et al., 2018).

 Wireless Network Scans - Scanning of Wi-Fi network of organizations mainly focuses on the

pattern of attack in a wireless network environment. One aspect of wireless network testing is validating

that an enterprise’s systems are appropriately configured and secured. Another aim of the wireless testing

is to detect rogue access points which mimic legitimate wireless networks where users can be tricked

into joining the intruders' network. Enterprises should consider that internal systems can be connected

to the guest wireless networks, and an intruder can target systems joined to a guest network and jump

from there into internal networks. Although guest networks can be isolated, vulnerable devices

connected to those networks can be an attack vector for hackers.

19

 Application Scans - usually concentrate on websites to detect and enumerate flaws and

misconfigurations in the software. Assessors often use manual checks or exploit kits during penetration

testing; however, techniques like software-centric Dynamic Application Security Testing (DAST) help

to detect web-specific vulnerabilities, such as cross-site scripting (XSS), SQL injection, inadequate input

validation, and sensitive data exposure. Also, network vulnerability scanning tools have security checks

for web applications, but they have fewer features that concentrate on checking weaknesses in web

applications than DAST instruments. However, application security testing can be a severe problem

since during testing, scanning software can alter databases or remove content, so companies should

either limit testing on non-production environments or be careful about scanning production

environments.

2.1.3. Benefits of Vulnerability Assessment

Regular vulnerability assessment (VA) is a way to secure IT assets, preserve an awareness of

the sensitivities in an environment and react quickly to reduce potential threats. Organizations can be

supplied with a comprehensive vulnerability assessment program on the knowledge, awareness, and

risk background necessary to comprehend threats to their environment and react accordingly. Benefits

of the vulnerability assessment include:

- Security benefits;

- Compliance benefits;

 Security Benefits - Vulnerability assessments are contained initially on the suggested measures

of industry systems and best practice guidance, and as the vulnerability assessment, security advantages

are plenty. For example, the Center for Internet Security® (CIS), as one of the first five CIS, lists regular

vulnerability assessment and remediation controls, diminishing the majority of an enterprise’s security

risk. Similarly, the determination and documentation of asset vulnerabilities are required by the NIST

Cyber-security Framework in its Identify category of controls. In addition to target remediation plans,

vulnerability assessment outcomes can be operated to point out systematic issues, such as missing

patches in patch management or life cycle of asset management.

 Compliance Requirements – these requirements are comprised of two categories: compulsory

and noncompulsory. Compulsory drivers are government or industry mandated requirements that an

enterprise must follow as a law or regulation. The General Data Protection Regulation (GDPR) and the

recent Cybersecurity Requirements for Financial Services Companies regulation from the New York

State Department of Financial Services are implied as common examples of compulsory compliance

objectives. The industry-mandated compulsory requirement example is PCI DSS. PCI DSS is not a

20

government-mandated; all credit card merchants and providers are contractually compelled to conform

the PCI DSS. Though noncompulsory drivers are not mandated; but, for some enterprises, expectations

from customers, clients or business partners may follow standards, such as ISO/IEC 27001:2013

Information technology – Security techniques – Information security management systems –

Requirements, NIST SP 800-53 Security and Privacy Controls for Federal Information Systems and

Organizations.

2.2. Overview of Vulnerability Management Systems and Its Components

A vulnerability management system can ease the discovery, test and remediation of problems,

and in this way, help enterprises become aware of the importance of vulnerability assessment. The

Vulnerability Management field centres upon the process that organizations determine, test, and control

vulnerabilities in a crucial IT or operational environment. One of the critical components in organizing

for and identifying the proper implementation for controls and risk management is vulnerability

management. It is rational to say that the centre of cyber resilience is vulnerability management. During

the vulnerability management process, organizations may often identify vulnerabilities that lead to

improving requirements and criteria for tests. The organization improves, applies and evolves the

controls that reduce the impact of a threat during the control management process (Carnegie Mellon

University for the operation of the Software Engineering & Institute, 2016).

Primarily, organizations are deploying the vulnerability scanners or devices which automate

security inspection and can operate an essential role in cybersecurity by scanning computer/network

system and web applications for several security risks during Vulnerability Management processes. An

example of the common architecture of a vulnerability scanner can be seen in Figure 1.

21

Figure 1. Vulnerability Scanner System Diagram

Source: (Harrell et al., 2018)

In other words, Vulnerability scanner is a software that used to scan the network, to report

identified vulnerabilities, and supply instructions for remediation of found weaknesses. Some of the

popular Vulnerability Scanners are shown in Table 1.

Table 1. Vulnerability Scanners

OpenVAS

OpenVAS is one of the open-source tools that offer VA tools for both identifying vulnerabilities and

managing vulnerability.

• Supports various operating systems;

• Continuously updated with the Network Vulnerability Tests;

• It is a complete VA tool detecting concerns linked to security in the servers and other devices

of the network;

• Its services are cost-free and are also licensed under the GNU General Public License (GPL).

Nessus Professional

Nessus is a branded and patented tool of Tenable Network Security which one of the great and

powerful vulnerability scanners.

• It can prevent computer and network systems from being exploited by intruders hackers by

assessing vulnerabilities at the earliest stage;

• Can identify the weaknesses that enable remote attackers to steal system's sensitive data;

22

• It supports a wide family of operating systems, hardware, software products and database

applications and many other devices across cloud, virtual and physical systems;

• Millions of users around the world have installed it and used it for vulnerability identification

and management.

Microsoft Baseline Security Analyzer (MBSA)

MBSA is a free tool offered by Microsoft that best suited to protect a Windows machine based on

Microsoft's requirements or guidelines.

• It allows protection mechanisms to be improved by probing a collection of hosts for any errors

in configuration, missed updates and any security patches;

• It looks at solely for service applications and security updates that leaving out the Primary and

Optional upgrades;

• Medium-sized and small-sized companies are using it to monitor their network security;

• MBSA will be providing a few schemes or recommendations relevant to vulnerability fixing

after testing a device.

Comodo HackerProof

One of the groundbreaking vulnerability scanning and trust-building tools that allow visitors to solve

their security concerns. Here are a few essential advantages that can be got from HackerProof:

• Decreasing cart abandonment;

• Periodic vulnerability scanning;

• PCI scanning;

• Drive-by attack blocking;

Nexpose Community

It is being developed by Rapid7, is an open-source tool used to scan the vulnerabilities and perform a

wide variety of network probes.

• Can be integrated with different frameworks such as Metasploit;

• It takes into consideration different vulnerabilities such as the malware kits, and it addresses

the problem based on its priority;

• It is also capable of detecting and testing new devices automatically, and of analyzing

weaknesses as they join the network;

• It tracks the real-time disclosure of vulnerabilities, familiarizing itself with the latest new data

breaches;

23

Nikto

It is a widely used and open-source Web scanner which determines the possible problems and

weaknesses.

• Nikto often used to verify if the application versions are obsolete, and also to search for any

particular issue affecting the server's work;

• It is used on web servers to perform a variety of tests to scan various target machines, such as

a few dangerous files or applications;

• It is for scanning the various protocols, such as HTTPS or HTTP, which provides a way for

searching multiple ports of a target server.

Tripwire IP360

Tripwire IP360 is considered one of the leading vulnerability evaluation tools employed by numerous

individuals and companies to handle their security risks.

• It uses a broad network view to detect all the bugs, settings, programs and network hosts;

• It utilizes open standards to help incorporate risk reduction and vulnerability into various

business processes.

Wireshark

It is one of the widely used network protocol analyzers, which is considered to be the most powerful

tool for security practitioners.

• It is employed to look at the networks at a deeper level across various sources such as

government departments, businesses and educational institutions;

• It captures the traffic in real-time and conducts offline analysis;

• It is a cross-platform solution.

Aircrack

Aircrack or Aircrack-NG is a range of instruments used to determine the reliability of the WiFi

network.

• Aircrack tools are also used when auditing networks;

• It supports multiple operating systems;

• It concentrates on various Wi-Fi security areas such as monitoring packets and data, checking

drivers and cards, replaying attacks and cracking;

• With Aircrack, the lost keys can be recovered by capturing packets.

24

Nmap

Nmap is an open-source network scanner that used to send packets and examine replies to identify

hosts and services on a computer network. Nmap offers a range of tools to check computer networks,

including host discovery and OS and device detection. Some of the Nmap features are as follows:

• Host discovery – Detecting hosts on a network environment;

• Port scanning – Enumeration of the open ports on target machines;

• Version detection – Cross-examination of network infrastructure on remote computers in order

to estimate the name and version number of the program;

• OS detection – Identification of OS and hardware characteristics devices on the network;

• Scriptable interaction with the target – which uses Nmap Scripting Engine (NSE) and Lua

programming language.

Source: Comodo Internet Security (last accessed on 01st of June 2019)

These vulnerability management systems can also create a priority list of the vulnerabilities we

should fix, and they also define the vulnerabilities and include measures to remedy them (Top 10

Vulnerability Assessment Scanning Tools, 2018).

2.2.1. Vulnerability Databases and Dictionaries

A vulnerability database is a collection of weaknesses designed to collect, store, and share

knowledge regarding found and published vulnerabilities targeting information/computer systems.

Shared information is covering discovered vulnerability, the possible effect on the affected systems, and

any solutions or updates to take control of the issue. The vulnerability database is also the outcome of

an attempt to collect information on all documented security vulnerabilities in software or hardware

products (Granova & Slaviero, 2017). In this section, some of the most reputable vulnerability databases

and dictionaries will be analyzed, which includes:

• Common Vulnerabilities and Exposures (CVE);

• National Vulnerability Database (NVD);

• Common Platform Enumeration (CPE);

• Common Vulnerability Scoring System (CVSS).

Common Vulnerabilities and Exposures – CVE is an open-source security project maintained

by MITRE Corporation and funded by the US Division of Homeland Security. The CVE dictionary

employs SCAP for gathering data related to security weaknesses and exposures, classifying by different

identifiers and assigning unique IDs to them. Once vulnerability data stored, MITRE shares each

25

vulnerability with a unique ID. After several days of publication of vulnerabilities in the MITRE

database, NVD publishes the CVEs with applicable security analysis. The objective of MITRE is

defining CVE list as a dictionary (see Figure 2) or glossary rather than a database which contains

vulnerabilities and exposures. Moreover, assures availability of this repository publicly for serving as an

industry baseline for communicating and dialoguing around given exposures and security weaknesses.

In other words, CVE dedicated providing a link to vulnerability database platforms and other repositories

in order to enable synchronization of security services and tools. (About CVE, 2019).

<item name="CVE-2020-6449" seq="2020-6449" type="CAN">

 <status>Candidate</status>

 <phase date="20200108">Assigned</phase>

 <desc>Use after free in audio in Google Chrome prior to 80.0.3987.149 allowed a remote

attacker to potentially exploit heap corruption via a crafted HTML page. </desc>

 <refs>

 <ref source="DEBIAN" url="https://www.debian.org/security/2020/dsa-4645">DSA-

4645</ref>

 <ref source="FEDORA" url="https://lists.fedoraproject.org/archives/list/package-

announce@lists.fedoraproject.org/message/2DDNOAGIX5D77TTHT6YPMVJ5WTXTCQEI/">FEDORA-2020-

17149a4f3d</ref>

 <ref source="FEDORA" url="https://lists.fedoraproject.org/archives/list/package-

announce@lists.fedoraproject.org/message/6IOHSO6BUKC6I66J5PZOMAGFVJ66ZS57/">FEDORA-2020-

39e0b8bd14</ref>

 <ref source="FEDORA" url="https://lists.fedoraproject.org/archives/list/package-

announce@lists.fedoraproject.org/message/JWANFIR3PYAL5RJQ4AO3ZS2DYMSF2ZGZ/">FEDORA-2020-

7fd051b378</ref>

 <ref source="GENTOO" url="https://security.gentoo.org/glsa/202003-53">GLSA-202003-

53</ref>

 <ref source="MISC" url="https://chromereleases.googleblog.com/2020/03/stable-

channel-update-for-desktop_18.html">https://chromereleases.googleblog.com/2020/03/stable-

channel-update-for-desktop_18.html</ref>

 <ref source="MISC" url="https://crbug.com/1059686">https://crbug.com/1059686</ref>

 <ref source="SUSE" url="http://lists.opensuse.org/opensuse-security-announce/2020-

03/msg00028.html">openSUSE-SU-2020:0365</ref>

 <ref source="SUSE" url="http://lists.opensuse.org/opensuse-security-announce/2020-

03/msg00037.html">openSUSE-SU-2020:0389</ref>

 </refs>

 <votes>

 </votes>

 <comments>

 </comments>

</item>

Figure 2. CVE example from MITRE related to Google Chrome

Source: CVE MITRE (last accessed on 09th of April 2020)

National Vulnerability Database – The NVD is the repository and archive of standards-based

vulnerability management data defined using the SCAP by the U.S. Government. In general, the

repository facilitates the automation in vulnerability management and enforcement in information

security. Repositories contain security checklist, references, flaws in software products,

misconfigurations, vendor and product names, as well as impact metrics. Additionally, the NVD

includes the summary and references from the CVE but provides additional resources regarding

published and known vulnerabilities. In the extra details, NVD shares CVSS as risk scoring (see Figure

26

3), categorization using CWE specification, and details about at-risk information systems applying the

CPE. (NVD | General Information, 2019).

Figure 3. Vulnerabilities related to Google Chrome from the NVD official site

Source: NVD official site (last accessed on 09th of April 2020)

The project also allows users to keep themselves up to date with the NVD data feeds. So that,

NVD offers feeds called “CVE-Recent”, “CVE-Modified” (see Figure 4) and “META” files which are

updated approximately every two hours. In more detail, the "CVE-Recent" feeds contains recently

published vulnerabilities, moreover modified feeds provide changed or modified vulnerabilities which

announced over eight days.

Figure 4. Modified and Recent feeds by NVD

Source: NVD official site (last accessed on 18th of January 2020)

Furthermore, “META” files (shown in Figure 5) are used to check whether imported feeds from

the NVD to the local database were updated or not. It ensures to avoid unneeded downloads of

information which will result in a reasonable use of requests given by NVD.

27

Figure 5. Example of META file from NVD

Source: NVD official site (last accessed on 18th of January 2020)

Common Platform Enumeration – CPE is a way of describing an IT asset naming system, such

as software, hardware products, and operating systems. CPE is a component of the SCAP standard

(Cheikes & Scarfone, 2011), developed by the National NIST. Currently, CPE 2.2 and CPE 2.3 versions

of CPE specification exist. Version 2.3 states a stack composed of five specifications, including the CPE

naming and the CPE dictionary specification. Well-Formed CPE Name (WFN), a set of attributes define

the CPE naming scheme which includes: part, vendor, product, version, update, edition, language,

sw_edition, target_sw, target_hw, and other (CPE - Common Platform Enumeration: CPE

Specifications, 2020). The CPE specification is employed for assigning identifiers to assets within a

computer/network environment and supports two formats: URI (defined in version 2.2of CPE), and

formatted string (defined in version 2.3 of CPE). NVD ensures the management and support of the CPE

dictionary provided in XML format (see Figure 6).

<cpe-item name="cpe:/a:google:chrome:80.0.3987.149">

<title xml:lang="en-US">Google Chrome 80.0.3987.149</title>

<references>

 <reference href="https://chromereleases.googleblog.com/2020/03/stable-channel-

update-for-desktop_18.html">Advisory</reference>

 <reference

href="https://www.google.com/chrome/browser/desktop/">Product</reference>

 <reference

href="http://src.chromium.org/viewvc/chrome/releases/">Product</reference>

</references>

<cpe-23:cpe23-item name="cpe:2.3:a:google:chrome:80.0.3987.149:*:*:*:*:*:*:*"/>

</cpe-item>

Figure 6. CPE entry for Google Chrome 80.0.3987.149 in the official CPE dictionary

Source: NVD official CPE dictionary (last accessed on 09th of April 2020)

Figure 6 shows a CPE entry of the official dictionary version 2.3. The listing contains the URI

(for backward compatibility with CPE version 2.2) and formatted string that identifies the application

Google Chrome 80.0.3987.149.

Common Vulnerability Scoring System – One of the open industry standards for determining

vulnerabilities by severities in a computer/network environment is The Common Vulnerability Scoring

28

System (CVSS). According to a threat, CVSS (see Figure 7) tries to set severity scores to known

vulnerabilities also provides prioritizing responses and resources.

Figure 7. NVD Vulnerability Severity Ratings from the official site

Source: NVD official site (last accessed on 09th of April)

Given rankings are computed with a formula that determined on various metrics such as

comparative ease and impact of exploit. Calculated scores vary from zero to ten, with the most severe

grade is ten (Mell et al., 2006).

2.2.2. Using CVE and CPE in a VMS

The identification of vulnerable system, hardware or software products in an IT environment is

one of the objectives of a VMS. Besides, other fields also may require a VMS, such as risk control and

remedial actions. In these situations, a significant role is played by the CPE dictionary, and CVE feeds,

but VMSs that employ CPE and CVE rely on the compatibility between both datasets. A VMS queries

the CPE dictionary to find CPE identifiers in the environment where the VMS is running that match IT

objects. Generally, the entries in the CVE feeds contain a list of vulnerable applications in CPE format

(see Figure 8), it enables the VMS to detect vulnerabilities for the IT assets using their assigned CPE

identifier.

29

Figure 8. CVE feed in JSON format from NVD

Source: NVD official site (last accessed on 09th of April 2020)

Currently, NVD stopped supporting XML for CVE feeds and offering a vulnerability data feed

using the JSON format.

2.2.3. Challenges and Limitations in VMS

There are several motives for conduction vulnerability assessment. The primary purpose is to

find out and determine vulnerabilities within the organization's computer/network system before the

attacker exploits. Thereby, organizations, companies or individuals are referring to vulnerability

management programs in order to sustain the security of valuable assets. In the market, several vendors

offer vulnerability scanning tools with plenty of features. When using vulnerability assessment tools,

enterprises can be sure that their computer system will be reliable and secure, since the tools scan and

find out existing vulnerabilities in the environment, as well as they, make very hard for computer

environment to become compromised. Despite there are many vulnerability databases which vendors

use them as a reference, however, they may be late in getting warning and alerts related to new

vulnerabilities and exposures due to synchronization or lack of identifiers. In this section, the

vulnerability detection capabilities of VMSs and current limitations on datasets were analyzed and

research opportunities identified as follow:

• CVEs without assigned CPE identifiers;

• CPE entry has been created in the official CPE dictionary;

• Deprecation process;

• Lack of synchronization with NVD;

30

• Newly published vulnerabilities without CPEs or plugins and undergoing analysis.

One of the issues in the VMSs is CVEs without assigned CPE identifiers. The CVE feeds (as of

April 5th, 2020) contain 210 CVE entries that do not have any CPE identifiers. For example, CVE-2013-

4869 is a vulnerability for the products Cisco Unified Communications Manager and the IM & Presence

Service in Cisco Unified Presence Server (CVE-2013-4869 Detail, 2013). This CVE has no CPE

identifiers, even though the official CPE dictionary and CPE Match Feed has identifiers for these

products, as shown in Figure 9. One of the primary reasons is that CVE is awaiting due to the possibility

of reanalysis, which may result in additional adjustments to the data obtained.

Figure 9. CVE example for awaiting reanalysis from the NVD

Source: NVD official site (last accessed on 09th of April)

In a result, VMSs that only use CPE identifiers to find related CVE entries for software products

deliver incomplete results. For example, if a vulnerability is found and a CVE entry is created for it

without CPE identifiers, a VMS would not generate any alert for the IT assets affected by that

vulnerability which will lead to false negatives.

Secondly, there are some products for which no CPE entry has been created in the official CPE

dictionary for them (Sanguino & Uetz, 2017). In that case, full automation (i.e., without human

interaction) of the process of assigning a CPE identifier to a software product can lead to false positives

or false negatives. Since there are software products for which no CPE identifier exists in the CPE

dictionary, a fully automated system trying to assign an existing CPE to a software product would either

assign an incorrect best match or not assign a CPE at all. Consequently, either incorrect CVE entries are

found for these software products (false positives), or the actual entries related to those products are not

found (false negative).

Another thing is deprecation process, according to the CPE dictionary specification version 2.3

(Cheikes & Scarfone, 2011), CPE identifiers are deprecated for three reasons: identifier name correction,

identifier name removal, or additional information discovery. Therefore, if a VMS assigns a CPE

31

identifier to a software product that is later corrected, then CVEs containing the corrected CPE could

not be found.

Fourthly, synchronization and being up to date with vulnerability databases. For example, there

some modules such as Advanced vulnerability scanning with Nmap NSE for NMAP (network scanner)

which turns it to vulnerability scanner as well. However, if to support the latest disclosed vulnerabilities,

clients need to keep their local vulnerability databases up to date. If they want to update local databases,

they need to go to the vulnerability databases' web sites and download files manually (scip ag, 2020).

As a result of this, if users update their local databases manually, they would miss newly published

vulnerabilities due to lack of automation.

Finally, responding to vulnerabilities by the organizations on time is one of the crucial aspects in terms

of security (Ruohonen, 2019). The existence of newly published vulnerabilities without CPE identifiers

or plugins for detection makes practical vulnerability analysis complicated, turns results to false-

negatives and distracts organizations from the initial aim. For instance, CVE-2020-11470 is a

vulnerability for Zoom Client for Meetings (CVE-2020-11470, 2020) through version 4.6.8, despite few

days passed, CPE identifier and plugins were not published for detection of weakness by the VMSs, see

Figure 10.

Figure 10. CVE-2020-11470 from the official Tenable website

Source: Official Tenable website (last accessed on 03rd of April 2020)

These limitations, mainly, being late for publishing plugins to detect vulnerabilities, spending

hours even days for analysis and audit of vulnerability, are led VMSs to get wrong and false-negative

results.

32

2.3. Importance of Early Warning Systems in IT

An Early Warning System (EWS) is a necessary technology for creating and propagation of

timely and substantial warning information on prevention which allows communities and the

organizations who are in risk group to be prepared and work correctly and a short time to decrease

potential damage or losses. The EWS ensures the gathering, processing and presentation of data in a

logical and meaningful way to aid the generation and transmission of alarm messages through warning

communication to the organizations at risk (Mulero Chaves & De Cola, 2017).

In information technology, detection techniques are vital to tackle the possible dangers of

malicious actions of attackers for fulfilling an image of abnormal activities on computer environments.

Furthermore, the EWS is a proactive detection solution like Intrusion Detection Systems (IDS) which

provides vital tools for capturing and investigating anomalies. It supplies prediction options to tackle the

further steps of continuous multi-step attacks by effectively tracking its early behaviours. Besides, there

are also Reactive solutions such as Intrusion Prevention Systems (IPS) which aim to prevent attacks and

threats by implementing a set of pre-defined security policies. To sum up, proactive approaches such as

EWS seek to analyze the current security situation and avoid the incident from before potential the attack

(Ramaki & Atani, 2016). According to proactive solutions, there are two ways after a successful

prediction of an attack:

• By taking proper security controls;

• By converting the incident from unplanned situations to planned.

Early warning systems have extended information security borders after IDSs and IPSs and

computer systems. More specifically, the functionality of EWSs focused on detecting some anomalies

from a current or normal state (Apel et al., 2010). Namely, the potentially dangerous unknown

behaviours are identified by the EWS.

In this thesis, as a terminology, the early warning has two different meanings:

(i) identifying and giving warning related to newly published vulnerabilities to prevent or

minimize the risk to an acceptable level and;

(ii) capability to process unknown and inadequate information.

33

2.4. Conclusions of the second chapter

In this section, the main idea of early warning systems, vulnerability management systems, the

different open source vulnerability databases and vulnerability management program were analyzed, as

well as highlighted potential limitations and problems in VMSs.

Despite there are many solutions, methodologies and platforms for vulnerability assessment and

management, still getting right and quick information is needed. Therefore, there are still some open

issues regarding in vulnerability analysis and methods. Getting late update related to the newest

vulnerabilities are considered a significant threat to the companies, or in a worst-case scenario – the

cyber-attack can occur on the same day a weakness is discovered in software or mentioned on the

vulnerability databases. During the analysis of related works, key points were identified, which lead

VMSs to error-prone such as:

(i) CVEs without assigned CPE identifiers,

(ii) CPE entry has been created in the official CPE dictionary,

(iii) Deprecation process,

(iv) Lack of synchronization with NVD,

(v) Newly published vulnerabilities without CPEs or plugins and undergoing analysis.

In conclusion, staying up to date on security trends is vital for hardening our computer/network

systems, as well as knowing our environment’s vulnerabilities is a high priority before attackers are

using against us. Tools that only rely on NVD lead to making errors due to shortcomings such as CPE

synchronizations, missing known affected software configurations, typographical errors or assignments

of identifiers manually.

34

3. Proposed solution

Although there are numerous vulnerability assessment and management distributions with

countless tools and scripts, the thesis goal is to propose an early warning concept based on open-source

tools and databases which can be merged to commercial products as well.

The proposed solution includes a framework which helps to understand workflow and ensures

finding answers to mentioned in the thesis. By using the Framework, weaknesses of the system can be

assessed and be informed about newly available vulnerabilities before the compromising. Diagrams were

used to represent the Framework, data flow and dynamic behaviour of the system, as well as the flow of

used algorithms.

To sum up, this section provides diagrams, system requirements and specifications, technical

challenges and offered the solution for the proposed concept.

3.1. Project Overview

The proposed solution consists of 4 (four phases), which are shown in Figure 11. In the initial

phase, also called “Collecting Data” phase, organisations ensure 2 (two) inputs – assets and vulnerability

database(s). Data Collectors gather data from the vulnerability database(s) and the IT environment.

Afterwards, collected data is sent to the second phase for normalization and storing in the MariaDB

which called “Parsing”. During the 2nd phase, the Query Parser algorithm is managing all analysis of

the dataset sent by collectors and writing to the local database. In the third stage, the most critical part

of the whole process is going to be started by Matcher algorithm under the “Vulnerability

Identifications” phase. Matcher algorithm gets asset and vulnerability data from the database and

matches them against each other using complex calculations in order to identify vulnerabilities. After

identification of vulnerabilities, the processor looks patterns of CVE data such as the published date and

description of vulnerabilities and decides whether the found vulnerability is an early warning or not.

Finally, the processor sends processed and merged data to the last phase called “Populating” which

results are populated for the user interface.

35

Figure 11. Proposed Framework

Source: by author

This research will analyze these areas and seek answers to these essential questions:

• How can we extract data from vulnerability databases/dictionaries;

• How can we obtain information from our assets (such as software products, vendors and other

details);

• How can we efficiently match these two datasets;

• How to decrease human interaction;

• How to detect early warnings and give alerts;

• Finally, how can we avoid “false negatives”?

To achieve goals and to make it easy to use, a web application for a simplified version of the

framework will be created. As a vulnerability resource, the NVD was chosen, which provides identifiers,

dictionaries and feeds for publicly disclosed security vulnerabilities. Firstly, this choice was made for

the reason that it offers a generic identifier for a specific vulnerability or exposure. Knowing this

particular identifier enables us to get details about the vulnerabilities efficiently and reliably through

numerous records linked to CVE. The NVD offers feeds for synchronization that scanner vendors are

using, and updates datasets per 2 (two) hours. If new, missing or corrected CVE or CPE entries exist,

they modify their content accordingly and publish modified and recent data feeds. Moreover, NVD

includes an improved CVE content that is completely synchronized with the CVE List, so any changes

to the CVE List instantly appear on NVD.

The whole project is going to be coded with PHP, which is a fast-growing programming language. As

well is considered one of the easiest programming languages so any user with a little programming

background can modify the code for his own needs (Powers, 2019).

36

In order to search and match vulnerabilities in the local database, Natural Language Full-Text

Searches (MySQL 8.0 Reference Manual, 2020) and Fuzzy String Matching algorithm (Fuzzy string

matching for PHP, 2020) will be used.

3.2. Objectives of the system

The objectives are mainly focused on ensuring all crucial functions for automation of the process.

The solution will provide the following functionalities:

• Collecting Data:

o Extracting and collecting data from NVD (if new vulnerabilities are published, the program

will automatically update its database);

o Collecting data from assets (vendor, product name and version);

• Parsing and storing collected data on the local database;

• Vulnerability identification:

o Identification of vulnerabilities for giving alerts (it will match assets data against

vulnerability identifiers);

o Identification of early warnings for avoiding false negatives (it will match assets data against

vulnerability summaries which do not have identifiers);

• Populating results on the Web-based console (GUI) for giving reports to users.

3.3. Dynamic behaviour of the system

This section is about the process of proposed framework related to each phase for understanding

the whole working system, as well as roughly explains written algorithms. Stages of the framework will

be depicted by activity diagrams which as follows:

1. Collecting data from NVD with NVD Data Collector;

2. Collecting data from assets with Agents;

3. Parsing collected NVD data on the local database with Query Parser;

4. Vulnerability Identification with Matcher;

5. User interaction with GUI (Web-based console).

NVD Data Collector – is one of the crucial parts of the system which is responsible for collecting

data from the NVD. It was purely written in PHP and used all capabilities of its to aggregate data in a

sufficient way. As seen from Figure 12, NVD Data Collector requests feed on the NVD. The NVD offers

37

META files which contain the hash of feed files and are updated approximately every two hours (How

to keep up-to-date with the NVD data, n.d.).

The system checks and compares shared hashes with existed hashes which are stored in its

database. If new hash exists, the system downloads archive files and extracts feed file from them or waits

2 (two) hours for rechecking the updates on the NVD. Finally, the system puts feed files (in JSON

format) to the Queue Pool, which will be processed in the next phase.

Figure 12. Collecting data from NVD

Source: by author

Agents – they are responsible for collecting data from assets or installed software products. As

seen in Figure 13, agents are installed on the operating systems in that case on the Windows OS. First

of all, agents requests to Windows Management Instrumentation (WMI) using WMI tasks in order to

obtain information such as which software is installed by the Microsoft Windows Installer (MSI) and

software versions (WMI Tasks, n.d.). Secondly, checks (every 5 min.) availability of newly installed

software on the Windows and obtains data for storing in the SQLite local database. The reason for storing

data in the local database is decreasing the massive requests to the server. Finally, the agent converts

data to JSON string for sending to the RESTful API of the system.

38

Figure 13. Collecting data from assets with Agents

Source: by author

Query Parser – this functionality ensures parsing, normalizing and storing data on the local

database, which comes from the Data Collectors. In Figure 14, will be demonstrated parsing the data

which comes from the NVD Data Collector. As mentioned in the first phase, extracted data from the

NVD was put to the Queue Pool for the parsing process. The Query Parser in the initial stage, checks

the feeds in the queue, if they are available, starts to parse them, otherwise periodically checks the queue.

Feeds are in the JSON format contains essential information related to vulnerabilities such as published

dates, CPE identifiers, summaries (CVEs), CVE ids, severities and impact scores. The necessary

extracting procedure is related to CVEs and CPEs; that is why an only small part of the process was

presented in the diagram. During the parsing feeds, the system extracts CVE summaries (additional

mentioned data as well) and identifiers (if they exist in CVEs). Then, checks those data in order to define

whether entries were inserted before or not. According to a made decision, the system is doing storing

or updating actions on the database.

39

Figure 14. Parsing collected NVD data on the local database

Source: by author

Vulnerability Identification – is a crucial part of the system, which through detecting

vulnerabilities gives alerts, as well as finds early warnings earlier than other existing solutions in the

market. In terms of thesis, an alert is a vulnerability detection and warning service, offered by the early

warning and alert engine of the system. If given alerts were met with predefined patterns and related to

newly published vulnerabilities, they are converted to early warnings by the engine. Beside the process

flow, this diagram also explains how the system’s algorithm works. In Figure 15, the example of

Vulnerability Identification Matcher algorithm and process flow chart is shown.

40

Figure 15. Vulnerability Identification Matcher

Source: by author

This algorithm is responsible for accomplishing those below-mentioned tasks:

• Requests and gets assets’ data from the local storage;

• Tokenizes data and generates search terms;

• Accomplishes matching process:

o Using Natural Language Full-Text searches (NL FTS) for getting the most relevant

results by scoring them;

o Finding the most relevant CVEs without CPE identifiers and sorting them by scores;

o Finding the most relevant CPE identifiers and sorting them by ratings;

• Compares aggregated data:

Tokenized CVE summaries which do not have CPE identifiers with generated search terms using

FuzzyWuzzy string matching algorithm and passing the over 90 percent similar results to the next step;

41

o CPE identifiers with generated search terms using FuzzyWuzzy string matching

algorithm, marking them as an alert, and forwarding over 80 per cent similar results to

the storing process;

• Identifying early warnings by looking pattern of received data such as published year (greater

than current year) for deciding whether a vulnerability is an early warning or not;

• Storing the collected data and sending to the maintenance process by the MariaDB because those

data will be populated by the Web-based console (GUI).

User interaction with GUI (Web-based console) – is the final process of the whole working

system. In this stage, user logins to the system which can configure the system and checks the reports.

In order to check the reports, the user firstly, requests reports through Web-based console. The console

by the request of the user automatically populates data from the database such as extracted vulnerabilities

from the NVD, assets data and essential results of vulnerability identification process which contains

alerts and early warnings. Then, it generates a report which user will review reports and analyze the

results.

Figure 16. User interaction with GUI (Web-based console)

Source: by author

42

3.4. Components and their definitions

In this section, important components of the project are presented, and definitions of each

component are listed (Table 2).

Table 2. Used Components and Their Definitions

CID Component Type/Category Definitions

C01 Data Feeds

• CVE;

• CPE.

Dataset CVE is a list of entries that contains an

identification number, a summary, and at least

one known reference related to publicly

disclosed vulnerabilities in IT security. CVE

records are used in various worldwide

information security products and services,

including NVD;

CPE is a standardized structure or naming

scheme for applications and products. Based

on Uniform Resource Identifiers (URI)

generic syntax, CPE holds a structured name

format which is a method for probing names

against a system, and a description format for

binding text and testing to a name.

C02 MariaDB Software MariaDB is a free and open-source fork of the

MySQL which built under the GNU General

Public License.

C03 PHP Programming

Language

PHP is a commonly used open-source,

general-purpose scripting language that can

be embedded in HTML and is especially

suited for web development.

C04 Natural Language Full-

Text Search

Function This method performs a natural language

search for a keyword against a text array and

calculates similarities between the search

43

string and the target in that row in the

columns.

C05 XAMPP Software XAMPP is a free solution kit built by Apache

Friends, contains Apache HTTP Server,

MariaDB, PHP and Perl programming

language script interpreters.

C06 Web-based console Web

Application

The console is a web-based application that

provides the interface, alert and early warning

views, reports, vulnerabilities, asset

information, and administrative functions.

C07 Vulnerable Machine Virtual

Machine

It is configured environment with known

vulnerable applications in order to experiment

and evaluation of the proposed solution.

C08 Fuzzywuzzy Library Fuzzywuzzy is an open-source library that

uses the Levenshtein Distance algorithm to

measure and calculate differences between

sequences and patterns in the given text.

Networks, including host discovery and

service and operating system detection.

C09 Agents Application Agents are developed and written in Python

for gathering asset/software products data

from the host machines.

C10 Data Collectors API-Based Applications which used to

receive/collect data from the given sources.

Source: by author

3.5. Design of Database for Storing CVEs and CPEs

In this section, database design will be given for storing the CVE and CPE identifiers in the

MariaDB by demonstrating the EER Diagram (see Figure 17). Entity Relationship Diagram is a sort of

architectural design for use in database design which is also understood as ERD or ER model. An ERD

contains various symbols and connectors which show two essential details. On the other hand, Enhanced

44

entity-relationship diagrams (EER) are essentially an extended model of ER diagrams. EER models or

diagrams are useful tools to build a high-level model of databases. With their heightened capabilities,

database models can be more accurately planned by more explicitly delving into the properties and

constraints (Database Design and Modeling, 2020).

Figure 17. Example of EER Diagram of the proposed solution

Source: by author

As mentioned in the previous chapters, the NVD offers and publishes JSON feeds in order to

keep up to date approved scanning vendors. In that case, scanning tools need to extract stored

information from the Semi-structured data. For storing the data in the MariaDB, two essential tables

were created. The “prfx_” patterns in the table names were created for security reasons which help to

prevent attackers from guessing the table names through the database. It can be a mix of random

keywords and numbers in the production environment. Those two tables include:

• prfx_vulns (T1) – for storing the CVE information such as ID, description, severities, published

date, etc.;

45

• prfx_vulns_configurations (T2) – is considered for keeping the CPE identifiers and creating

the fingerprints which will be used during the matching process by the EWAS engine.

T1 can have multiple CPE entries or not. However, without CVEs, CPE identifiers cannot exist.

T2 linked to T1 (cve_id) with a foreign key called “FK cve_id”. In the T1, two indexes were created for

improving the speed of data retrieval operations. They are as follows:

• indx_vulns_cve_id – as a standard index;

• indx_vulns_cve_description – as a full-text which is a particular type of index that provides index

access against a character or binary column data for full-text queries.

Additionally, in T2, three indexes were created, which are below:

• indx_conf_vendor_product – it includes two columns such as vendor and product names, as well

as was indexed as a full-text for Natural Language Full-Text Searches;

• fk_conf_cve_id_idx – indexed as a standard way for speeding up;

• indx_conf_fingerprint – indexed as a usual way for speeding up.

Those created tables are only for model and design, which can be improved by any of the other

scientists or researchers in order to get more accurate results.

3.6. System requirements and specification

Any system's performance depends on meeting requirements listed under two corresponding

categories. First, the functional requirements (Table 3) are the operations of the system from the user's

viewpoint, which define the internal and external interactions with the system under the predefined state.

Second, the non-functional requirements (NFRs) are primarily the constraints of the system which

impose specific requirements and qualities on the system to be built (Table 4). Acceptance of testing of

the program must also be focused on both the functional and non-functional system specifications

(Kassem Saleh, 2009). In this section, the main parts of the specification and types of requirements for

the proposed solution will be presented (Table 5).

Functional Requirements – it covers 6 (six) essential functional requirements (see Table 3) that

describes what the software system should do in order to fit criteria.

46

Table 3. Functional Requirements

Requirement

ID
Description Must/Want Fit criteria

FR01 The system should extract data

from vulnerability

databases/resources such as NVD

or CVE MITRE.

Must The system should be run

automatically and give

functionality (web-based console)

to users which they can be

configured system.

FR02 Agents should gather data from

assets such as which software

products were installed on the

environment.

Must The system should give

functionality which accepts data

from the agents and make them

able to send data to the system.

FR03 The system should be able to

parse and dispatch queries to

local vulnerability database and

get accurate results.

Want The requested data should match

with vulnerability descriptions and

identifiers which stored on local

vulnerability database.

FR04 The system should identify

vulnerabilities and ensure to

avoid false negatives.

Must The System should achieve this

goal through detecting

vulnerabilities, giving alerts and

early warnings using complex

algorithms.

FR05 The system should produce a

report regarding the result of the

identification process.

Must The system should ensure

reviewing and downloading of

reports by users.

FR06 The system should offer API for

integrated services in order to

interact with Web-based Console

and system itself.

Must The system should give

functionality which accepts data

from the agents, collectors and

integrated services and make them

able to send data to the system.

Source: by author

47

Non-functional Requirements - Through non-functional requirements, is going to be listed as

a performance characteristic of the system, while placing constraints on how the system will do so and

fit the security requirements. First of all, in Table 4, performance-based non-functional requirements

will be presented.

Table 4. Non-functional Requirements

Requirement

ID
Description Must/Want Fit criteria

NR01 The application shall be easy to

use by users, including

administrators and managers.

Must It defines how difficult it will be

for a user to learn and operate the

system.

NR02 The application shall allow

several requests to be made at the

same time without downgrading

performance.

Want The system should provide the

ability to deliver service at

specified levels for a stated

period.

NR03 Access permissions for the

system information may only be

changed by the system’s

administrator.

Must The system should ensure that the

software is protected from

unauthorized access to the system

and its stored data.

NR04 The database update process must

roll back all related updates when

any update fails.

Want The system should ensure work

without failure for a given period.

NR05 The system should have internet

access and access to vulnerability

resources.

Must The system should able to connect

to external resources in order to

update its database.

NR06 Monitoring, crawling, and

analysis process should not

influence production

environment and its availability.

Want The system should gather

information from assets once,

then should use them for

vulnerability identification.

Source: by author

Addition to requirements mentioned above, one of the important aspect is security requirements

(see Table 5) which ensure that the software is protected from unauthorized access/changes to the system

48

and its stored data. It considers different levels of authorization and authentication across different users’

roles. For instance, data privacy is a security characteristic that describes who can create, see, copy,

change, or delete information. Security also includes protection against virus/malware attacks and

exploits.

Table 5. Security Requirements

Requirement

ID
Possible Vulnerabilities Severity Minimal Security Solutions

SFR01 Transmitted data and its privacy

between communicating

applications and users can be

compromised.

Critical For information flow, encryption

methods shall be used. For

instance, Transport Layer Security

(TLS) is a cryptographic protocol

intended to provide connections

protection across a network. For

authentication, we should avoid

vulnerable protocols which can be

compromised.

SFR02 Unvalidated inputs can be

compromised by illegitimate

users.

Critical We should validate data

preventing SQL injection attacks,

using encryption methods for

preventing session/cookie

hijacking attacks, and preventing

from buffer overflow.

SFR03 Customer ‘s sensitive data is kept

in the local database, due to data

leakage, those founded

vulnerabilities of their

environment/computer system

can be compromised

intentionally/accidentally by

users/attackers which this

Critical For preventing the system from

these types of threats, database

encryption should be used, as well

as Data Leakage Prevention

Systems can be used. In addition,

the monitoring system should be

implemented for tracking traffics

and malicious behaviours or

anomalies in the system.

49

information does not belong to

them.

SFR04 If a system is compromised,

illegitimate users can escalate

their privileges.

High In order to strengthen the system,

the provider must implement

Access Control List or

Management for preventing

privilege escalation and obtaining

customer’s data using an

illegitimate way.

SFR05 Receiving malicious codes from

predefined vulnerability database

or resources. So, during retrieving

data from resources, malicious

codes can be a cause of

compromising system

accidentally.

Medium Because of that, data validation is

important by using white-listing or

black-listing, as well as filtering

input data using drivers such as

PDO.

Source: by author

3.7. Technical Challenges and Handling Limitations

One of the limitations of the proposed concept is unwanted results during the searching and

matching vulnerabilities on the database. Due to using traditional algorithms and the nature of search

engines, we are always getting the undesired search results. Another limitation that must be considered

is CVEs without CPE identifiers. In order to handle such or mentioned limitations in previous chapters,

sophisticated algorithms and functions will be proposed in this section. Used ranking methods for

identified vulnerabilities and found results are shown below:

• Natural Language Full-Text Search for:

o CVEs without CPE identifiers;

o Incorrectly assigned CPE identifiers such as typographical errors;

o Decreasing undesired search results;

• Fuzzy String Matching with Levenshtein Distance algorithm for double scoring.

On the one hand, the MySQL full-text search provides a simple way to implement various advanced

search techniques such as natural language search, Boolean text search and query expansion. This

50

method performs a natural language search for a keyword against a text array and calculates similarities

between the search string and the target in that row in the columns. Example of query for getting the

most relevant results for CVEs without CPE identifiers is shown in Figure 18. As a keyword for search

“zoom meetings” was used. The query looks CVE records in the `prfx_vulns` table which do not have

CPE identifiers in the ̀ prfx_vulns_configurations` table where keyword matches the description of CVE

by Natural Language Mode and put the score to results.

SET @keyword = 'zoom meetings';

SELECT t1.`cve_id` as cve_id, t1.`description`, t2.`cve_id` as cpe, t1.`publishedDate`,

MATCH(t1.description)

AGAINST

(@keyword IN NATURAL LANGUAGE MODE) AS score

FROM prfx_vulns as t1

NATURAL LEFT JOIN prfx_vulns_configurations as t2

where MATCH(description) AGAINST (@keyword IN NATURAL LANGUAGE MODE) and t2.`cve_id` IS

NULL group by t1.`cve_id` order by score desc limit 0,10;

Figure 18. Example of Query with Natural Language Mode for CVEs and Results

Source: by author

The score is a positive floating-point number; that is, a similarity measure between the search

string and the text. When the score is zero, it refers that there is no similarity. MySQL computes the

score or relevance based on diverse factors including the number of words in the document, the number

of unique words in the document, the total number of words in the collection, and the number of

documents (rows) that comprise a particular word. In the same way, for looking at the CPE identifiers

`prfx_vulns_configurations` in the table, the same feature was used. It is shown in Figure 19.

SET @keyword = 'zoom meetings';

SELECT `cve_id`, `part`, `vendor`, `product` , IFNULL(`exactVersion`, 0) as exactVersion,

IFNULL(`versionStartIncluding`, 0) as versionStartIncluding, IFNULL(`versionEndIncluding`,

0) as versionEndIncluding,

IFNULL(`versionStartExcluding`, 0) as versionStartExcluding,

IFNULL(`versionEndExcluding`, 0) as versionEndExcluding,

MATCH(vendor, product)

AGAINST

(@keyword IN NATURAL LANGUAGE MODE) AS score

FROM prfx_vulns_configurations

where MATCH(vendor, product) AGAINST (@keyword IN NATURAL LANGUAGE MODE) and `part` =

'a' group by cve_id order by score desc limit 0,10;

cve_id description cpe publishedDate score

CVE-2020-11876
airhost.exe in Zoom Client for Meetings 4.6.11 uses the SHA-256 hash of

0123425234234fsdfsdr3242 for initialization of an OpenSSL EVP AES-256 CBC context.
NULL 04/17/2020 16:15 21.898325

CVE-2020-11877
airhost.exe in Zoom Client for Meetings 4.6.11 uses 3423423432325249 as the

Initialization Vector (IV) for AES-256 CBC encryption.
NULL 04/17/2020 16:15 21.898325

51

Figure 19. Example of Query with Natural Language Mode for CPE identifiers and Results

Source: by author

In the first stage, a feature mentioned above of MySQL helps the system to decrease undesired

results by scoring them and avoiding returning similarities which equals to 0 (zero).

On the other hand, in order to reduce this unwanted result and finding the most similar records,

still is a problem. As seen from Figure 19, search terms were “zoom meetings”, but query returned

“vendor” and “product” columns which contain only “zoom” keyword. In that case, we do not need to

get these results, although they have pretty good scores. For solving this problem, one of the ways is

using Fuzzy String-Matching algorithm which helps to compare and measure similarities between the

word tokens. In PHP, there is an opportunity to use FuzzyWuzzy library which utilizes Levenshtein

distance algorithm for the calculating similarities and scoring the results. In Figure 20 is shown example

of extracting the most relevant result by using a specific scorer. As seen from the output, the algorithm

obtained 100% similar search term from the choices.

use FuzzyWuzzy\Fuzz;
use FuzzyWuzzy\Process;
use FuzzyWuzzy\Collection;

$fuzz = new Fuzz();
$process = new Process($fuzz);

>>> $choices = ['zoom meetings', 'zoom zoom', 'zoom_client', 'zoom_cloud_meetings']
>>> $process->extractOne('zoom meetings', $choices, null, [$fuzz, 'tokenSetRatio'])

=> [
 "zoom meetings",
 100,
]

Figure 20. Example of FuzzyWuzzy usage

Source: by author

This is the reason why the “Levenshtein distance” algorithm is selected. This algorithm helps to

measure the difference between two sequences (Haldar & Mukhopadhyay, 2011).

cve_id part vendor product exactVersion versionStartIncluding versionEndIncluding versionStartExcluding versionEndExcluding score

CVE-2020-11500 a zoom meetings * 0 4.6.9 0 0 60.45915985

CVE-2020-11470 a zoom meetings * 0 4.6.8 0 0 60.45915985

CVE-2020-11469 a zoom meetings * 0 4.6.8 0 0 60.45915985

CVE-2019-13449 a zoom zoom * 0 0 0 4.4.2 52.19481277

CVE-2019-13567 a zoom zoom * 0 0 0 4.4.53932.0709 52.19481277

CVE-2018-15715 a zoom zoom * 0 2.4.129780.0915 0 0 52.19481277

CVE-2019-13450 a zoom zoom * 0 4.4.4 0 0 52.19481277

CVE-2017-15048 a zoom zoom_client * 0 0 0 2.0.115900.1201 26.09740639

CVE-2014-5811 a zoom zoom_cloud_meetings \@7f060008 0 0 0 0 26.09740639

CVE-2017-15049 a zoom zoom_client * 0 0 0 2.0.115900.1201 26.09740639

52

3.8. Conclusions of the third chapter

Firstly, the requirements for objectives were mainly based on ensuring all important functions

for automation of the process. The system will ensure the requirements for objectives as follows:

• Extraction of data from the NVD will be done using PHP libraries and written codes from scratch;

• The system will use Agents for gathering information about installed software products in the

operating systems;

• Limitation of the system during the matching two datasets will be solved using Natural Language

Full-Text Searches and Fuzzy string-matching with Levenshtein Distance or Edit Distance

algorithm;

 Secondly, the system will give functionalities or reporting which users can review identified

vulnerabilities during the analysis of results and early warnings related to newly published

vulnerabilities. Due to the nature of the program, “false negatives” will be avoided and given accurate

results.

Finally, other functionalities were programmed, such as creating and configuring alerts regarding

identified vulnerabilities and generating the report. The proposed solution shall give more accurate

results during which searching and analysing process rather than functionalities that traditional

vulnerability scanner projects offer.

53

4. Experiments and Evaluation of the EWAS

This chapter of the thesis is focused on demonstration of functionalities of the project, listing

results of the experiments, evaluating the proposed idea and making a comparison of results between

related works done. For testing the prototype of the EWAS, functional testing was used (Ammann &

Offutt, 2016), when the EWAS was tested against the functional requirements/specifications. Moreover,

functions (or features) of the system were checked by feeding them input and testing output. Functional

testing justified that the specifications were adequately satisfied by the application. This form of research

is not about how processing occurs, but rather concerned the processing outcomes. It simulates real use

of the system but does not make assumptions about any structure of the application.

4.1. Implemented Environment

To evaluate the proposed solution, we configured an environment on the Windows 10 virtual

machine (see Figure 21). The system itself configured on the XAMPP which is freely available open-

source, cross-platform web server solution (Apache Friends, 2017) and installed on the Windows 10.

On the vulnerable virtual machine, python script installed (Roman Inflianskas, 2019). The script is

gathering information regarding installed applications in a simplified way and sends data to the system

via API.

Figure 21. Testing environment

Source: by author

In the lab environment, 24 (twenty-four) software products were installed (Table 6). Some of

them were with known vulnerable versions (Sanguino & Uetz, 2017).

54

Table 6. List of installed software products in the lab environment

 Vendor Product Version

1 Microsoft Corporation Microsoft .NET Framework 4 Client Profile 4.0.30319

2 Microsoft Corporation Microsoft .NET Framework 4 Extended 4.0.30319

3 Mozilla Mozilla Firefox 48.0.2 (x64 en-GB) 48.0.2

4 Oracle Java(TM) 6 Update 45 (64-bit) 6.0.450

5 Apple Inc. Apple Mobile Device Support 9.0.0.26

6 Oracle Java(TM) SE Development Kit 6 Update 45 (64-
bit)

1.6.0.450

7 Apple Inc. Bonjour 3.0.0.10

8 Apple Inc. iTunes 12.1.3.6

9 Oracle Corporation MySQL Server 5.7 5.7.15

10 Adobe Systems Incorporated Adobe AIR 20.0.0.260

11 Adobe Systems Incorporated Adobe Flash Player 23 NPAPI 23.0.0.207

12 Google LLC Google Chrome 78.0.3904.10
8

13 Mozilla Mozilla Thunderbird 38.6.0 (x86 en-US) 38.6.0

14 Mozilla Mozilla Maintenance Service 38.6.0

15 Mozilla SeaMonkey 2.35 (x86 en-US) 2.35

16 The Wireshark developer
community, https://www...

Wireshark 2.0.0 (64-bit) 2.0.0

17 Oracle Corporation MySQL Installer - Community 1.4.17.0

18 Adobe Systems Incorporated Adobe Reader XI (11.0.17) 11.0.17

19 Apple Inc. Apple Application Support (32-bit) 3.1.3

20 Python Software Foundation Python Launcher 3.7.6386.0

21 Apple Inc. Apple Software Update 2.1.4.131

22 Zoom Video Communications, Inc. Meetings 4.6

23 Microsoft Internet Explorer 8

Source: by author

4.2. Results of Data Collection from NVD Feeds and Analysis

As mentioned before, the project can keep up to date with the NVD data feeds. During the

experiment on the 28th of April 2020, the system collected 143,278 CVEs (see Table 7) and 2,484,591

CPE identifiers. In addition, the analysis showed that 540 CVEs do not have CPE identifiers, and

2,348,766 CPEs were marked as vulnerable.

55

Table 7. Last ten collected CVEs

CVE_ID Base
Score

Base Severity Exploitability
Score

Impact
Score

Published Date Problem Type

CVE-2020-9785 7.8 HIGH 1.8 5.9 04/01/2020 18:15 CWE-119

CVE-2020-9784 4.3 MEDIUM 2.8 1.4 04/01/2020 18:15 NVD-CWE-Other

CVE-2020-9783 8.8 HIGH 2.8 5.9 04/01/2020 18:15 CWE-416

CVE-2020-9781 5.3 MEDIUM 3.9 1.4 04/01/2020 18:15 CWE-281

CVE-2020-9780 3.3 LOW 1.8 1.4 04/01/2020 18:15 CWE-200

CVE-2020-9777 5.3 MEDIUM 3.9 1.4 04/01/2020 18:15 CWE-20

CVE-2020-9776 3.3 LOW 1.8 1.4 04/01/2020 18:15 CWE-200

CVE-2020-9775 5.3 MEDIUM 3.9 1.4 04/01/2020 18:15 CWE-665

CVE-2020-9773 3.3 LOW 1.8 1.4 04/01/2020 18:15 CWE-200

CVE-2020-9770 6.5 MEDIUM 2.8 3.6 04/01/2020 18:15 CWE-326

Source: by author

Overall, Figure 22 illustrates how many vulnerabilities belongs to vendors from the extracted

CPEs. For example, the highest percentage belongs to Google which was 26.9% and followed by Linux

(10.9%), Mozilla (6.3%), Cisco (5.5%), Apple (3.4%) and other vendors (47.1%), accordingly.

Figure 22. The Most Vulnerable Vendors

Source: by author

Furthermore, if we look at data as a product (see Figure 23), we can observe from the pie chart,

that the highest vulnerable configurations were related to chrome which was 26.18 per cent. By contrast,

seamonkey shared 1.86% of total portion; meanwhile, linux_kernel, ios, firefox and others were 10.87%,

3%, 2.57% and 55.52% respectively.

26.9%

47.1%

3.4%

5.5%

6.3%

10.9%

Google Others Apple Cisco Mozilla Linux

56

Figure 23. The Most Vulnerable Products

Source: by author

From Figure 24, we can see that 69.70 percentage of vulnerable configurations belonged to

software products, operating systems were 25.59%, and hardware configurations hold 4.71 percentage.

Figure 24. Gathered information by attributes

Source: by author

The bar graph (Figure 25) shows the distribution of vulnerabilities by severity over time. The

choice of LOW, MEDIUM and HIGH is based upon the CVSS Base score. Vulnerabilities marked as

HIGH level are increasing unlike MEDIUM level vulnerabilities are fluctuating. Although CRITICAL

vulnerabilities increased during the last three years, there are still less in 2020 than in 2019. To sum up,

vulnerabilities with LOW and not defined (Null) severities are less than other severities.

26.18%

1.86%

55.52%

10.87%

3.00%
2.57%

chrome seamonkey others linux_kernel ios firefox

69.70%

4.71%

25.59%

Software products Hardware products Operating Systems

57

Figure 25. CVSS Severity Distribution Over Time

Source: by author

Additionally, as seen from the line chart (Figure 26), published vulnerabilities from 1988 to 1996

were approximately at the same level. On the other hand, from 1998, for 18 years, changes in

vulnerabilities started to increase, and some years slightly dropped before the raising. After fluctuating,

published vulnerabilities raised to its highest level in 2019 which 18,938 CVEs were published. Finally,

the number of vulnerabilities till 28th of April 2020 is 7,266.

58

Figure 26. Published vulnerabilities by year

Source: by author

4.3. Identified Vulnerabilities

Identified vulnerabilities by alerts and early warnings are demonstrated in this subchapter. The

result of analysis expresses the capability of a system to detect vulnerabilities and early warnings without

human interaction. As seen from Table 8, the system discovered 2270 vulnerabilities and marked 15 of

them as an early warning. Moreover, the system gave 196 false positives which are relatively less than

true positives.

Table 8. Found vulnerabilities by system

 Vendor Product Vulnerable

Versions

Detected

Vulnerabilitie

s

False

Positives

Early

Warnings

1 Mozilla Firefox 48.0.2 510 0 10

2 Adobe Flash Player 23.0.0.207 116 0 0

3 Mozilla Thunderbird 38.6.0 280 0 5

4 Mozilla SeaMonkey 2.35 1 0 0

5 Adobe Adobe Reader 11.0.17 222 0 0

6 Oracle Java SE Development

Kit

1.6.0.450 8 0 0

7 Wireshar

k

Wireshark 2.0.0 82 0 0

59

8 Apple

Inc.

iTunes 12.1.3.6 436 0 0

9 Oracle MySQL Server 5.7.15 167 0 0

1

0

Adobe Adobe AIR 20.0.0.260 15 1 0

1

1

Apple Bonjour 3.0.0.10 1 1 0

1

2

Google Chrome 78.0.3904.108 117 0 0

1

3

Oracle MySQL Installer -

Community

1.4.17.0 193 193 0

1

4

Python Python Launcher 3.7.6386.0 1 1 0

1

5

Zoom Meetings 4.6 3 0 0

1

6

Microsoft Internet Explorer 8.0.7601.1751

4

118 0 0

Total: 2270 196 15

Source: by author

From the bar chart (see Figure 27) it is clear that a number of found CVEs regarding software

products were rather equal to correct results, false-positives in other word incorrect results were related

to MySQL Installer – Community, Python Launcher, Bonjour and Adobe AIR.

Figure 27. Comparison of False and True Positive results

Source: by author

Table 9 demonstrates weaknesses found on the Mozilla Firefox v48.0.2. Due to the complex

analysis of versions of software products, the system found this software product among affected

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Detected Vulnerabilities False Positives True Positives

60

products which were their versions below than 67. If the program checks only exact versions, the system

will skip these vulnerabilities mentioned in the vulnerability database.

Table 9. Example of Found vulnerabilities related to Mozilla Firefox v48.0.2

CVE ID DESCRIPTION
CVSS

Severity

CVE-2019-11691 A use-after-free vulnerability can occur when working with

XMLHttpRequest (XHR) in an event loop, causing the XHR

main thread to be called after it has been freed. This results

in a potentially exploitable crash. This vulnerability affects

Thunderbird < 60.7, Firefox < 67, and Firefox ESR < 60.7.

9.8 CRITICAL

CVE-2019-11692 A use-after-free vulnerability can occur when listeners are

removed from the event listener manager while still in use,

resulting in a potentially exploitable crash. This

vulnerability affects Thunderbird < 60.7, Firefox < 67, and

Firefox ESR < 60.7.

9.8 CRITICAL

CVE-2019-11693 The bufferdata function in WebGL is vulnerable to a buffer

overflow with specific graphics drivers on Linux. This could

result in malicious content freezing a tab or triggering a

potentially exploitable crash. *Note: this issue only occurs

on Linux. Other operating systems are unaffected.*. This

vulnerability affects Thunderbird < 60.7, Firefox < 67, and

Firefox ESR < 60.7.

9.8 CRITICAL

CVE-2019-11694 A vulnerability exists in the Windows sandbox where an

uninitialized value in memory can be leaked to a renderer

from a broker when making a call to access an otherwise

unavailable file. This results in the potential leaking of

information stored at that memory location. *Note: this issue

only occurs on Windows. Other operating systems are

unaffected.*. This vulnerability affects Thunderbird < 60.7,

Firefox < 67, and Firefox ESR < 60.7.

7.5

HIGH

61

CVE-2019-11695 A custom cursor defined by scripting on a site can position

itself over the addressbar to spoof the actual cursor when it

should not be allowed outside of the primary web content

area. This could be used by a malicious site to trick users

into clicking on permission prompts, doorhanger

notifications, or other buttons inadvertently if the location is

spoofed over the user interface. This vulnerability affects

Firefox < 67.

4.3 MEDIUM

… … …

CVE-2017-7845 A buffer overflow occurs when drawing and validating

elements using Direct 3D 9 with the ANGLE graphics

library, used for WebGL content. This is due to an incorrect

value being passed within the library during checks and

results in a potentially exploitable crash. Note: This attack

only affects Windows operating systems. Other operating

systems are unaffected. This vulnerability affects

Thunderbird < 52.5.2, Firefox ESR < 52.5.2, and Firefox <

57.0.2.

7.5

HIGH

CVE-2017-7843 When Private Browsing mode is used, it is possible for a

web worker to write persistent data to IndexedDB and

fingerprint a user uniquely. IndexedDB should not be

available in Private Browsing mode and this stored data will

persist across multiple private browsing mode sessions

because it is not cleared when exiting. This vulnerability

affects Firefox ESR < 52.5.2 and Firefox < 57.0.1.

8.8

HIGH

Source: by author

4.4. Identified Early Warnings

During the analysis of collected data from the NVD, CVEs showed that there are some

vulnerabilities or CVEs which they do not have any CPE identifiers. There are several reasons, one of

them is that after publishing new vulnerabilities, they are waiting for analysis. For example, on the 4th

of April, the system detected early warning related to Zoom Meetings with version 4.6 (see Figure 28).

62

Figure 28. Early Warning related to Zoom Meetings with version 4.6

Source: by author

However, other commercial products for vulnerability management such as Nessus (Tenable)

had not published plugins or CPE identifiers (see Figure 29) in order to detect vulnerabilities related to

CVE-2020-11500 till 6th of April 2020 10:00 pm GMT (CVE-2020-11500, 2020).

Figure 29. CVE-2020-11500 from the Tenable

Source: Official Tenable site (last accessed on 06th of April 2020 10:00 pm GMT)

63

In that way, if the system does not find any CPE identifier or Plugin for matching, there is a

possibility that the program will miss this vulnerability. This situation may increase the number of false

negatives in the results. One of the main reasons for that is that newly published vulnerability (NVD -

CVE-2020-11500 Detail, 2020) whose status was undergoing analysis by the NVD, and CPE identifiers

were not assigned (see Figure 30).

Figure 30. CVE-2020-11500 from the NVD

Source: NVD official site (last accessed on 06th of April 2020 10:00 pm GMT)

4.5. Comparison of results between related work and thesis

During vulnerability analysis, the same twelve software products were used, which also

examined in the related work (Sanguino & Uetz, 2017). In Table 10, the results of two researches were

compared, as well as in order to distinguish results were titled as “Related Research” and “Thesis

Results”. Found CVEs are divided into two pieces such as correct and incorrect results.

Table 10. Comparison results between thesis results and related work

 Products Versions
Related Research Thesis Results

Correct Incorrect Correct Incorrect

1 Mozilla Firefox 48.0.2 18 1 510 0

2 Adobe Flash Player 23.0.0.207 17 22 116 0

3 Microsoft Internet Explorer 8 340 9 118 0

4 Mozilla Thunderbird 38.6.0 9 18 280 0

5 Mozilla SeaMonkey 2.35 1 474 1 0

6 Adobe Adobe Reader 11.0.17 75 162 222 0

7 Oracle Java 8.0.1120.15 0 0 0 0

8 Oracle Java SE Development Kit 8.0.1120.15 0 0 0 0

9 Wireshark Wireshark 2.0.0 84 1 82 0

10 Apple Inc. iTunes 12.1.3.6 3 143 436 0

64

11 Oracle MySQL Server 5.7.15 0 0 167 0

12 Adobe AIR 20.0.0.260 23 41 15 1
Source: by author and (Sanguino & Uetz, 2017)

From the above Table 10 and Figure 31, we can see that thesis results were rather comprehensive

than related work. Addition to getting more correct results, system decreased incorrect results nearly to

0 (zero) by using complex matching phases. Only, results regarding Adobe AIR v. 20.0.0.260 gave false-

positive, and it was less than “Related Research”. In other words, the outcome of the thesis clearly

outweighed related work limitations in many cases.

Figure 31. Comparison results between thesis results and related work

Source: by author

4.6. Evaluation Approach based on OWASP benchmark

For the evaluation of the proposed solution, I used the OWASP benchmark for scoring the

prototype of the EWAS (Mburano & Si, 2019), which is one of the important approaches in order to

assess vulnerability scanners. The benchmark metrics used to test and evaluate results are as follows:

• True Positives (TP) - Tool correctly identifies a real vulnerability;

• False Positives (FP) - Tool fails to identify a real vulnerability;

0

100

200

300

400

500

600

Related Research Correct Related Research Incorrect

Our Research Correct Our Research Incorrect

65

• True Negatives (TN) - Tool correctly ignores a false alarm;

• False Negatives (FN) - Tool fails to ignore a false alarm.

True Positive Rate (TPR)

𝑇𝑃𝑅 =
𝑇𝑃(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

𝑇𝑃 + 𝐹𝑁

False Positive Rate (FPR)

𝐹𝑃𝑅 =
𝐹𝑃(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

𝐹𝑃 + 𝑇𝑁

Score

𝑆𝑐𝑜𝑟𝑒 = 𝑇𝑃𝑅 − 𝐹𝑃𝑅

Source: OWASP Benchmark Project (last accessed on 30th of April 2020)

The score produced by OWASP Benchmark is based on the Youden Index (OWASP Benchmark,

2020), which is one of the standard methods that summarize the accuracy of the test set. OWASP

benchmark accuracy score is Normalized distance from the “guess line”.

In order to evaluate the system, 2300 fake vulnerabilities were created and put the vulnerability

database. Then, the system triggered for detection of vulnerabilities to give alerts. As a result, the system

ignored false alarms and did not provide alerts.

TP = 2074 (True Positives)

FN = 0 (False Negatives)

TN = 2300 (True Negatives)

FP = 196 (False Positives)

Example of calculation:

𝑇𝑃𝑅 =
2074

2074 + 0
= 1

𝐹𝑃𝑅 =
196

196 + 2300
≈ 0.079

𝑆𝑐𝑜𝑟𝑒 = 1 − 0.079 ≈ 0.92

66

The formula was implemented during evaluation and the system score was 92% which was

relatively sufficient in terms of thesis.

4.7. The graphical user interface of the system (Web-based console)

This section represents GUI of the application which was used to during experiment in order to

fulfil functional requirements. The Web-based console has modules for making ease of using the system

like Dashboard, Create Alerts, List Alerts, Found Vulnerabilities and reporting which were designed and

developed.

Dashboard – This module gives an overall view regarding the results of the analysis and

identification of vulnerabilities. When a user logins to the system, the user can see metrics related to the

outcome of the system (see Figure 32).

Figure 32. The dashboard of the system

Source: by author

The dashboard offers quantitative measurements related to Total found vulnerabilities,

Scheduled Alerts, Vulnerable assets and Total assets. Furthermore, user can get information with bar

chart which depicts Alerts Overview, and Top vulnerable assets by a pie chart.

Create Alerts – Through that option, the user can create alerts and schedule which will be

monitoring on the specific date and time or repeatedly with recurrence option (see Figure 33).

67

Figure 33. Creating Alerts

Source: by author

The user can define the title of alert for distinguishing the results, and besides the start date and

time, user can put the recurrence which alert will be triggered during pre-defined intervals.

List Alerts – List of alerts gives a clue regarding triggered alerts which scheduled by the user

and helps to users to check the status of results (see Figure 34).

Finished – It means analysis process finished by the system;

Running – It expresses that analysis is going on currently;

Re-scheduled – It means analysis finished and due to recurrence alert scheduled again;

Failed – Means something went wrong during analysis and need to be checked log files;

Ready – Means report generated by the system, and it can be reviewed by the user.

68

Figure 34. Alert List

Source: by author

By selecting and opening the alert titles, users can review and check the found vulnerabilities.

Found Vulnerabilities and reporting – If the report generated by the system, users can check

the visual results of the alerts (see Figure 35). Users are able to revise results regarding found

vulnerabilities and total analyzed assets by numbers.

Figure 35. Example reports of the result

69

Source: by author

Also, users can check the Top and vulnerable products by percentage via the help of pie charts.

Moreover, this reporting functionality (see Figure 36), also aggregates and groups total found

vulnerabilities by products names which user can review detected vulnerabilities by clicking the software

products.

Figure 36. Example of found vulnerabilities by-products

Source: by author

Finally, by clicking the product or vendor title, the user can view detected vulnerabilities and

early warnings.

Information in the data table includes:

CVE ID – it links data to NVD database which user can get more detailed information regarding

found vulnerability;

Summary – Or a description of vulnerability explains the actual state and impact of weakness;

Severity – It helps users to decide which vulnerabilities should be fixed first;

Early Warning – It marks vulnerability for paying more attention due to the newest information

regarding vulnerability.

70

Figure 37. Example of found vulnerabilities related to Google Chrome v78.0.3904.108

Source: by author

In addition, the user can search for any vulnerability by using keywords, as well as copy and

extract data to different formats or print.

4.8. Conclusions of the fourth chapter

During the testing process, the agent collected a total of 23 pre-installed applications, including

12 vulnerable products which used related work. The system gathered 143,278 CVEs from the NVD,

and last import was at 28th of April 2020. Then extracted 2,484,591 CPEs (known vulnerable

configurations) from the CVEs which 2,348,766 of them marked as vulnerable by NVD and analysis

showed that 540 CVEs do not have CPE identifiers. Generally, 60.70 percentage of vulnerable

configurations belong to applications, operating systems are 25.59%, and hardware configurations make

up 4.71 percentage. This experiment focused only on applications/software products. Distribution of

vulnerabilities by severity over time depicted that vulnerabilities marked as a HIGH level is increasing,

and MEDIUM level vulnerabilities are fluctuating, the published vulnerabilities raised to the highest

level in 2019 as well. Finally, the collected data represented that the most top shares by vendors belong

to Google which was 26.9% and followed by Linux (10.09%), Mozilla (6.3%), Cisco (5.5%) and other

vendors (47.1%), accordingly.

Furthermore, matching software products information against vulnerable products Natural

Language Full-Text Searches and Fuzzy string matching was used and given scores for eliminating

irrelevant results. Addition to that, version comparison was complex analysis because the system is

looking at ranges between the vulnerable version of software products, not only at exact versions.

71

After matching data and identification of vulnerabilities, the system detected 2270 vulnerabilities

and 196 of them were false positives. Additionally, the system was able to identify 15 early warnings

related to newly published vulnerabilities before the commercial products. On the other hand, the system

leads to making slight mistakes in finding the proper weaknesses related to software products.

For tool evaluation, the OWASP benchmark was used to score a tool’s security analysis results

against it, and evaluation score was 92% that can be a significant outcome.

To conclude, the system successfully collected data from the NVD and pre-installed inventories

from the virtual machine, classified, aggregated information and stored on its database. Analysis of

gathered data showed that the system achieved this without any error-prone. The generated report

demonstrates that using “Natural Language Full-Text Searches and Fuzzy string matching” gave the best

results and eliminated irrelevant results. Besides providing true positives, the system was able to detect

early warnings. In addition to that, using sophisticated algorithms for comparison of software versions,

increased accurate outcomes and dropped incorrect results almost to zero.

72

5. Conclusions

First of all, a theoretical study was carried out: relevant information was collected, analyzed, and

research opportunities and limitations of VMSs were identified, as well as the most suitable algorithms

for the EWAS were chosen.

Secondly, based on the analyzed information regarding limitations of existed solutions, a

framework was prepared, which consists of phases of the data collection and parsing of data,

vulnerability identification and an early warning selection, populating data for the Web-based console.

In common sense, the proposed framework is a solution for handling the cons of vulnerability assessment

tools.

Thirdly, for the practical part, prototyping methodology, comparative and experimental study

were chosen. The evaluation of the system was divided into two phases, such as testing against functional

requirements and using the OWASP Benchmark scoring system. In the initial phase, the system was

tested against functional requirements and accomplished these goals with slight errors:

• Successfully collected data from NVD without any error-prone;

• Detected Early warnings with minor mistakes;

• Removed False Negatives;

• Gave more true positives than false positives during the identification of vulnerabilities;

• Decreased Human interaction;

• Finally, increased accurate outcomes and dropped incorrect results almost to zero.

Furthermore, the generated report by the Web-based console demonstrated that using “Natural

Language Full-Text Searches and Fuzzy string matching” gave accurate results and eliminated irrelevant

results during the vulnerability identification process.

In the second evaluation phase, the overall, the benchmark score of the prototype in the

identification of vulnerabilities was 92%, and the system detected 2270 vulnerabilities and 196 of them

were false positives. Additionally, the system was able to identify 15 early warnings related to newly

published vulnerabilities before the commercial products.

In conclusion, the comparison of thesis results with related work and evaluation with OWASP

benchmark scoring system characterized that system gained more proper results with slight mistakes

which overcome the limitation of vulnerability analysis by using sophisticated algorithms and methods.

The EWAS will help individuals or organizations to respond to active threats and create compensation

measures on time, especially in terms of software products.

73

6. References

About CVE. (2019). https://cve.mitre.org/about/index.html

Ammann, P., & Offutt, J. (2016). Introduction to Software Testing. In Introduction to Software Testing.

https://doi.org/10.1017/9781316771273

Apache Friends. (2017). XAMPP Installers and Downloads for Apache Friends.

Https://Www.Apachefriends.Org/Index.Html. https://doi.org/10.2212/spr.2011.1.4

Apel, M., Biskup, J., Flegel, U., & Meier, M. (2010). Towards early warning systems - Challenges,

technologies and architecture. Lecture Notes in Computer Science (Including Subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6027 LNCS(October), 151–

164. https://doi.org/10.1007/978-3-642-14379-3_13

Carnegie Mellon University for the operation of the Software Engineering, & Institute. (2016). CRR

Supplemental Resource Guide, Volume 4: Vulnerability Management, Version 1.1. 4.

https://www.us-cert.gov/sites/default/files/c3vp/crr_resources_guides/CRR_Resource_Guide-

VM.pdf

Cheikes, B. A., & Scarfone, K. (2011). Common Platform Enumeration : Naming Specification Version

2 . 3. http://csrc.nist.gov/publications/nistir/ir7695/NISTIR-7695-CPE-Naming.pdf

CPE - Common Platform Enumeration: CPE Specifications. (2020). https://cpe.mitre.org/specification/

CVE-2013-4869 Detail. (2013). https://nvd.nist.gov/vuln/detail/CVE-2013-4869

CVE-2020-11470. (2020). https://www.tenable.com/cve/CVE-2020-11470

CVE-2020-11500. (2020). CVE-2020-11500

Database Design and Modeling. (2020). https://dev.mysql.com/doc/workbench/en/wb-data-

modeling.html

Fuzzy string matching for PHP. (2020). https://github.com/wyndow/fuzzywuzzy

Granova, A., & Slaviero, M. (2017). Cyber Warfare. In Computer and Information Security Handbook

(Vol. 13, Issue April 2008). Elsevier Inc. https://doi.org/10.1016/B978-0-12-803843-7.00083-1

Haldar, R., & Mukhopadhyay, D. (2011). Levenshtein Distance Technique in Dictionary Lookup

Methods: An Improved Approach. June. http://arxiv.org/abs/1101.1232

Harrell, C. R., Patton, M., Chen, H., & Samtani, S. (2018). Vulnerability assessment, remediation, and

automated reporting: Case studies of higher education institutions. 2018 IEEE International

74

Conference on Intelligence and Security Informatics, ISI 2018, 148–153.

https://doi.org/10.1109/ISI.2018.8587380

How to keep up-to-date with the NVD data. (n.d.). https://nvd.nist.gov/vuln/data-feeds

Kassem Saleh, G. E. (2009). Modeling Security Requirements for Trustworthy Systems. In

Encyclopedia of Information Science and Technology, Second Edition (p. 8).

https://doi.org/10.4018/978-1-60566-026-4.ch424

Mburano, B., & Si, W. (2019, February 8). Evaluation of web vulnerability scanners based on OWASP

benchmark. 26th International Conference on Systems Engineering, ICSEng 2018 - Proceedings.

https://doi.org/10.1109/ICSENG.2018.8638176

Mell, P., Scarfone, K., & Romanosky, S. (2006). Common vulnerability scoring system. IEEE Security

and Privacy, 4(6), 85–89. https://doi.org/10.1109/MSP.2006.145

Mladenović, D. D. (2017). Vulnerability assessment and penetration testing in the military and IHL

context. VOJNOTEHNIČKI GLASNIK / MILITARY TECHNICAL COURIER, 65(2), 464–480.

Mulero Chaves, J., & De Cola, T. (2017). Public Warning Applications: Requirements and Examples.

Wireless Public Safety Networks 3: Applications and Uses, 1–18. https://doi.org/10.1016/B978-1-

78548-053-9.50001-9

MySQL 8.0 Reference Manual. (2020). https://dev.mysql.com/doc/refman/8.0/en/

NIST. (2012). Guide for Conducting Risk Assessments SP800-30rev1. NIST Special Publication 800-

30 Revision 1, September, 95. https://doi.org/10.6028/NIST.SP.800-30r1

NVD - CVE-2020-11500 Detail. (2020). https://nvd.nist.gov/vuln/detail/CVE-2020-11500

NVD | General Information. (2019). https://nvd.nist.gov/general

NVD Data Feeds. (n.d.). https://nvd.nist.gov/vuln/data-feeds

OWASP Benchmark. (2020). https://owasp.org/www-project-benchmark/

Powers, D. (2019). PHP 7 solutions : dynamic web design made easy.

Quinn, S. D., Souppaya, M., Cook, M., & Scarfone, K. (2018). National checklist program for IT

products - guidelines for checklist users and developers. https://doi.org/10.6028/NIST.SP.800-70r4

Ramaki, A. A., & Atani, R. E. (2016). A survey of IT early warning systems: architectures, challenges,

and solutions. Security and Communication Networks, 9(17), 4751–4776.

https://doi.org/10.1002/sec.1647

75

Requirements and Recommendations for CVE Compatibility. (2017).

https://cve.mitre.org/compatible/questionnaires/96.html

Roman Inflianskas. (2019). Python library for managing installed applications on Windows (0.1.6).

https://pypi.org/project/winapps/

Ruohonen, J. (2019). A look at the time delays in CVSS vulnerability scoring. Applied Computing and

Informatics, 15(2), 129–135. https://doi.org/10.1016/j.aci.2017.12.002

Sanguino, L. A. B., & Uetz, R. (2017). Software Vulnerability Analysis Using CPE and CVE.

http://arxiv.org/abs/1705.05347

Scarfone, K. A., Souppaya, M. P., Cody, A., & Orebaugh, A. D. (2008). Technical guide to information

security testing and assessment. https://doi.org/10.6028/NIST.SP.800-115

scip ag. (2020). vulscan - Vulnerability Scanning with Nmap. https://github.com/scipag/vulscan

Top 10 Vulnerability Assessment Scanning Tools. (2018). https://cwatch.comodo.com/blog/website-

security/top-10-vulnerability-assessment-scanning-tools/

Waltermire, D., & Fitzgerald-McKay, J. (2018). Transitioning to the Security Content Automation

Protocol (SCAP) Version 2. https://doi.org/10.6028/NIST.CSWP.09102018

WMI Tasks. (n.d.). https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmi-tasks--computer-

software

