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Abstract. Let 0 denote the set of positive rational numbers. We define discrete probability meagsures
on theo-algebra of subsets @. We introduce additive functiong: Q. — G and obtain a bound for

v (f(r) € X + X — X) using a probability related to some independent random variables. This inequality
is an analogue to that proved by I. Ruzsa for additive arithmetical functions.
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1. INEQUALITIESFOR ADDITIVE FUNCTIONS

Parallelism between the value distributions of arithmetical functions and the distri-
butions related to systems of independent random variables is the essential idea of
probabilistic number theory.

Let f: N — G be an arithmetical additive function taking values in some Abelian
groupG, and letv, (x > 1) be the discrete probabilistic measure assigning the weights

1 .
= ifn<x,
Vx(n):{ [x] h

0, if n>x,

to positive integers. Then the accompanying independent random variables indexed by
prime numbers are specified by

Pe=0= Y —(1-3).

Fp=a P p

If G consists of real (or complex) numbers, the moments of an additive function and
random variables can be considered. The inequality proved by Kubilius in 1955 for a
complex-valued additive functiofi is, in fact, the statement about the second central
moments:

Exlf — Exf?< Y Ely — E&[%,

px
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where, forg: N — C,
1
Eyg =/gdvx = D g,
* n<x

and bys? we denote the independent random variables associated with “truncated” ad-
ditive function f, defined byf, (p*) = f(p%) for p* < x and f, (p*) = 0 for p® > x.
Efforts were made to prove similar inequalities for other moments and functionals of
additive functions. Various aspects of research in this field are reviewed in [1]-[3].

In 1984, I. Ruzsa proved a surprisingly general inequality. In [4], it is proved that
if G is an Abelian group ang': N — G an additive function, then, for each subset
X CG,

n(FmgxX+X-X)<P( Y & ¢X). (1)

pP<X

This inequality can be used as a tool to transfer the problem of estimating some mo-
ments off to that of estimating moments related to independent random varigples
The reader should see [4] for details.

2. ADDITIVE FUNCTIONSIN THE DOMAIN OF RATIONAL NUMBERS
Let O be the set of positive rational numbéfs we always suppose that:, n) = 1.
Forg =" andq’ = ’,”1— we denote

(m, m")

(n,n)

(q.9) =

Definition. Let G be an arbitrary Abelian group. We call a functigh 0. — G
additive if

fla-ah=rf@+ fq"
forallg,q’ € Q4 suchthatg,q¢) = (¢ 1. ¢") =1

For”- € 0+ and a prime numbep such thatp|mn, we define

my o, if p* | m,
al’(;) - { —a, if p¥| n.
If p ymn,we setu,(7) = 0. Then, for an additive functiorf: 0 — G,

()=
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There are many possibilities to assign weightsntn € Q4 and to define discrete
measures o . In this paper, we confine ourselves to the numbers of intg¢fzdl)
and define, fod C O+,

Ve (A) = ,  where fx:{%:m<n<x,(m,n):1}, x>1. (2

We associate with an additive functigh Q. — G two systems of independent ran-
dom varlable$(1) andé(z) (p is a prime number) such that

P o= T o(-55)

aeZ pla‘
f(pmax@.0)y—=q
1 2
@2 _ ) — _ =
PEP=a)= ) pll (1 p+1)' (3)

ae”Z
f([,min(a.O)):a
The aim of this paper is to prove Ruzsa’s inequality (1) in the setting just defined.

THEOREM. Let f: QO+ — G bean additive function with values in Abelian group
G; XD, X@ cG,x=XD + X@_ Then, for the measure v, defined by (2) and
independent random variables (3), the inequality

n(F(E)ex+x-x)<P( Ll gx®)+P( L2 ¢x?) @)

P<X pP<X

holds with the constant in < independent of X, X@  and f.

In [4], it is explained how from the inequality like (4) the bounds for the moments
can be derived. For example, I1étm/n) be a complex-valued additive function such
that £ (p*) = 0 for p/*! > x. We denote

AP =3 B, A® =Y g2,

PSX pP<X
A= AD 4 4@ = Zf(P)( 2 )
o Pl

rer
ThenwithX® = {z: |z — AP <u/6} andX@ = {z: |z — A®| < u/6} we have

XD 4 xOD XD =tz 12 - AV <u/2), X+X—-X={z |z— A <u},
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and inequality (4) can be rewritten as

u([£(5) = ad] 2 ) < P(| o€ — E6)| > us6)
p<x
+P(| €2 - Ee?)|>u6). )
P<X

Using the equality

E|5|2=2/muP(|s|>u>du,
0

we have
Exlf = A= P () -adf =2 [T r(%) - a2 u) e,
E| §C<s,§“ e = ZfOOOuP(\ Ig(s;” — E&{)| > u) du
- LS

Hence, from (5) we can derive that

2 2
Edf = AP < E| D6 - Ee| + E| D6 - Ee?)|,
P psx

which after some calculations can be reduced to the Kubilius-type number-theoretic
inequality:

o (2
* HF, - ) —|f;pal){ :

2 () -

m/neFy

plel<x
acZ

Note that similar inequalities were proved in [5] with
F={% mm=1n<x|n@p),
n

using the large sieve inequalities, approach initiated by Elliott (see, [1], [2]).
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PROOF OF THE THEOREM

First note that the independent random variabesp < x, with distributions (3) can
be realized as functiorts: 04 — G:

m m i
S},l’(;) zf(pmamp(m/m,m), 5;2>(;> _ f<pm'n((¥p(m/n),0)>’
if we define the discrete measuPe= 1, on subsetst C Q. by
1\-1 1
m=( X )T Y
mn mn
m/neQy m/neQyNA
where
m_
0x={=: ptomm) <xf.

andp™ (k) denotes the greatest prime divisorkofThen
G =r0C) oG G =2 ()

Let
Fr= {ﬂ: (m,n)=1m,n gx}.
n

X

Evidently, 7, C F} C Qx, #F} = 2#F,, and

6
#f;:ZZgo(m)N ;xz as x — oo, (6)

m<x
wherep(m) is the Euler function. FoA C Q., we define

. HANFY
Vi(A) = #7]__;.
Then
#A N Fy < #HFY ' HANFY
#F.  #F.  #F:
and it is sufficient to prove inequality (4) witlf instead ofv,.
If fO2)yeXx® 4+ xD —xOfori=1,2 thenf(2)e X + X — X, hence,

() e x=x) () e xt - x)

m
. <f<2>(;> ¢X@ L x@ _ X<2>>'

vy (A) = S27(4),
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Then it suffices to prove the inequalities

(fo)( ) ¢ X0 1 xO _ X<’>) <A (f(’)< ) ¢X<l>), i=12 ()

We proceed with the proof far= 1; the proof fori = 2 is almost identical.
For a nonempty set of positive integé#sC N, we denote

we = {% meWw, (m,n):l}.
Then taking

U=i{m: fm)e XV}, V={m: fm)ex®+x®_x®)
we can rewrite inequality (7) far=1 as

VE(VO) « A (UQ), 8)

whereB denotes the complement of a $2tWe need some results aboyt

Lemma. For any set W C N, we have

o[- > Ape-d)

P<x EWﬁQ)C plm
:< 3 w(m)> 3 w(m)‘ ©)
meQy meWnQ,

Let
E:{pk: p<x;meW,(m, p)=1=mpkew).
If A, (W2) >99/100, then

l -
> <BA(WO). (10)

pkeE

Proof of Lemma. Equalities (9) can be established by a straightforward calculation.

If we denote
P10 5= (X 59

p<x meQy
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then

WO =P Y H(l——)

meWﬂQx plm

Z (p(m), Px~6(|09x>_1a5x—>oo.

meWﬂQx

Let k € Q. be a positive integer, i.eg* (k) < x. By A,y C N we denote the set of
multiples ofk. Using the obvious inequalities

p(Dep(m) < p(m) <lp(m),

from (9) we obtain that

1
p(k) < (AQ) 1
k2 k
We have
WO =P Y O _ 1 e et
! ot m2 T T 100

meWNQy

Forg = p*, wherep is prime, denote
W, = {qm: (m,p)=1me W}.
If g € E, thenW, C W, hence,
1
€> A, (WQ)——<1——> P Y &’Z)
p meWnNQx m
(m,p)=1
1 1 1 1 1 49 1
>(1-= Q) _ )y>(1-=Y(1—-e==)> — . =,
(1) na) > 2o 2) (s 2)> 222
SinceUyeg W, C W, we have
exn(UW) =X awd - 3 awnwd). (12)
qeE qgeE q1,92€E

If g1 andgo are powers of the same prime number, tmeﬁ N Wqu = (. We denote

=32

qu
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Using in (12) the inequalities

49 1 1
W > == A W2nwE) <aAl,)<—

200g qq2’
we obtain
€>co—0o? c= ﬁ
- © 200
If o <c/2, then
€> 2>1 <26 4006 5¢
>co0—0“>2—=co, 0L —=—€<be,
2 c 49

and the statement is proved. We show that ¢/2 can never occur.
Leto > ¢/2. Because of (11), for eache E, we have

1 200 e
<

S @ T

Then it is possible to choose a subgétsuch that

Having in mind what is already proved, we obtain

, 2
o < —.
C
Now we conclude that there must be

2¢ € c
- _Z >

c
> — €> —.
c 2 ¢’ 6

This is not true withe = 55, ande < 755 Sincec?/6 > 0,0010004 The proof of
lemma is complete.

Let us return to the proof of (8). It is sufficient to prove this inequality for
U={m: fm)e XV}, v={m fm)eXP+x®_xDy wcv
with A, (U2) > 155 Let

x —

T = log— =logx - #(Ve NF}) — = I .

; g9 gx -#VEeNFH-S, S ; ogm
m/neVenF; m/neVenF;
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We establish the bounds
T K leogx -Ax(ﬁ), S« leogx -Ax(ﬁ); (13)
using them and (6), we obtain inequality (8) from
logx - #(VCNF¥ < T +S.

In what follows, we use the simple asymptotics

> 1=x]](1- %) +0(2m).

(nflrf)le plm
We have
X 1 1 1
T = log — = 1=x2 - (1 _ _)
> logwxy S 3 =22 ] ;
mineVenz; A SR
2a)(m) - Zw(m)
+O(XZ ><<x2|09x')»x(VQ)+O<xZ )
mEV mEV
m<x m<x
Now we get
2w(m) d 1 1
SIS (=) a—e [T (14 L) < a0
v M > M P p—1
nel ny P Pl

Sincew (m) « logm/loglogm, we haved,, < m¢ (¢ > 0) and

2w (m)

< xlogx - A, (V9),
-~ m

meV

m<x

T K leogx ~)\X(W) < leogx .)\x(ﬁ).

The first inequality of (13) is established.
We define the seE as in Lemma withW = U. If pk ¢ E, then there exist$ e
U, (, p) =1, such thatp* - [ € U. The important observation of |. Ruzsa [4] is that,

k
forme U, p* € E, (m, p) = 1, we havep*m = pTl -m and

F(prEm)y = F(p*D + fm) — F) e V.
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We now proceed witls:

S= Y logm= ) logp* > 1=S$1+S$.

m/neﬁﬂf;‘ pE<x p];—lm evOnF;
(m,p)=1
= log p* 1 = log p* 1
S1= ogp , So= ogp -
P 2y Ony Py 2 ey Onrs
preE (m.p)=1 pEgE (m.p)=1

For S1, we apply the statement of lemma:

1 _
S1<x?logx Y = < x%logx - A (UO).
pkeE

EstimatingS,, we use the arguments fpf ¢ E explained above:

S2< Y logpt >0 1<) D logpt Y1
14

I = s St
- €x
1
<> <xl_[ <l— —) +2“’(’“)> - Y logp*
mel plm p pRCE
m<x m
2 1 1 o) 2| 770
<Y ZaT(1=2) +x < x2logx - A, (UD).
2 IT(-2)+ 2=, gx -1 (U9)
melU plm m€<U
m<x m<x

Hence,
S« x? logx - Ay (ﬁ),

and the proof of the theorem is complete.

REFERENCES

P.D.T.A. Elliott, Probabilistic Number Theory, I, Springer, New York (1979).

P.D.T.A. Elliott,Duality in Analytic Number Theory, Cambridge University Press (1997).

J. Kubilius, On some inequalities in the probabilistic number theory, in: A. Léilaset al. (Eds.),
New Trends in Prob. And Sat., vol. 4, VSP/TEV (1997), pp. 345-356.

. 1.Z. Ruzsa, Generalized moments of additive functidnisiumber Theory, 18(1), 27-33 (1984).

. J. Siaulys and V. Sta&kas, The Kubilius inequality for additive functions in rational argumerith,
Math. J., 30(1), 72—77 (1990).

wn e

(S0



266 V. Stakénas

REZIUME

V. Stakénas. Tikimybinés skai€iu teorijos nelygybes

|rodyti tikimybinés skatiu teorijos nelygyhi adityviy funkciju dazniams analogai, kai adityviosios funkci-
jos nagrirgjamos racionaliju skatiy aibeje. Naudojantis Siomis nelyggmis galima gauti adityvju
funkciju moment jvercius.



