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Abstract. Let Q+ denote the set of positive rational numbers. We define discrete probability measuresνx

on theσ -algebra of subsets ofQ+. We introduce additive functionsf : Q+ → G and obtain a bound for
νx(f (r) �∈ X + X − X) using a probability related to some independent random variables. This inequality
is an analogue to that proved by I. Ruzsa for additive arithmetical functions.
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1. INEQUALITIES FOR ADDITIVE FUNCTIONS

Parallelism between the value distributions of arithmetical functions and the distri-
butions related to systems of independent random variables is the essential idea of
probabilistic number theory.

Let f : N → G be an arithmetical additive function taking values in some Abelian
groupG, and letνx (x � 1) be the discrete probabilistic measure assigning the weights

νx(n) =
{

1
[x] , if n � x,

0, if n > x,

to positive integers. Then the accompanying independent random variables indexed by
prime numbers are specified by

P(ξp = a) =
∑

f (pα)=a

1

pα

(
1− 1

p

)
.

If G consists of real (or complex) numbers, the moments of an additive function and
random variables can be considered. The inequality proved by Kubilius in 1955 for a
complex-valued additive functionf is, in fact, the statement about the second central
moments:

Ex |f − Exf |2 �
∑
p�x

E|ξx
p − Eξx

p |2,
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where, forg: N → C,

Exg =
∫

g dνx = 1

[x]
∑
n�x

g(n),

and byξx
p we denote the independent random variables associated with “truncated” ad-

ditive functionfx, defined byfx(p
α) = f (pα) for pα � x andfx(p

α) = 0 forpα > x.
Efforts were made to prove similar inequalities for other moments and functionals of
additive functions. Various aspects of research in this field are reviewed in [1]–[3].

In 1984, I. Ruzsa proved a surprisingly general inequality. In [4], it is proved that
if G is an Abelian group andf : N → G an additive function, then, for each subset
X ⊂ G,

νx(f (n) �∈ X + X − X) � P
( ∑

p�x

ξp �∈ X
)
. (1)

This inequality can be used as a tool to transfer the problem of estimating some mo-
ments off to that of estimating moments related to independent random variablesξp.

The reader should see [4] for details.

2. ADDITIVE FUNCTIONS IN THE DOMAIN OF RATIONAL NUMBERS

Let Q+ be the set of positive rational numbersm
n
; we always suppose that(m,n) = 1.

Forq = m
n

andq ′ = m′
n′ , we denote

(q, q ′) = (m,m′)
(n,n′)

.

Definition. Let G be an arbitrary Abelian group. We call a functionf : Q+ → G

additive if

f (q · q ′) = f (q) + f (q ′)

for all q, q ′ ∈ Q+ such that(q, q ′) = (q−1, q ′) = 1.

For m
n

∈ Q+ and a prime numberp such thatp|mn, we define

αp

(m

n

)
=

{
α, if pα ‖ m,
−α, if pα ‖ n.

If p � |mn, we setαp(m
n
) = 0. Then, for an additive functionf : Q+ → G,

f
(m

n

)
=

∑
p

f
(
pαp(m/n)

)
.
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There are many possibilities to assign weights tom/n ∈ Q+ and to define discrete
measures onQ+. In this paper, we confine ourselves to the numbers of interval(0;1)

and define, forA ⊂ Q+,

νx(A) = #A ∩Fx

#Fx

, where Fx =
{m

n
: m < n � x, (m,n) = 1

}
, x > 1. (2)

We associate with an additive functionf : Q+ → G two systems of independent ran-
dom variablesξ (1)

p andξ
(2)
p (p is a prime number) such that

P(ξ(1)
p = a) =

∑
α∈Z

f (pmax(α,0))=a

1

p|α|
(
1− 2

p + 1

)
,

P (ξ (2)
p = a) =

∑
α∈Z

f (pmin(α,0))=a

1

p|α|
(
1− 2

p + 1

)
. (3)

The aim of this paper is to prove Ruzsa’s inequality (1) in the setting just defined.

THEOREM. Let f : Q+ → G be an additive function with values in Abelian group
G; X(1),X(2) ⊂ G,X = X(1) + X(2). Then, for the measure νx defined by (2) and
independent random variables (3), the inequality

νx

(
f

(m

n

)
�∈ X + X − X

)
� P

( ∑
p�x

ξ (1)
p �∈ X(1)

)
+ P

( ∑
p�x

ξ (2)
p �∈ X(2)

)
(4)

holds with the constant in � independent of X(1),X(2), and f.

In [4], it is explained how from the inequality like (4) the bounds for the moments
can be derived. For example, letf (m/n) be a complex-valued additive function such
thatf (pα) = 0 for p|α| > x. We denote

A(1)
x =

∑
p�x

Eξ(1)
p , A(2)

x =
∑
p�x

Eξ(2)
p ,

Ax = A(1)
x + A(2)

x =
∑
p�x
α∈Z

f (pα)

p|α|
(
1− 2

p + 1

)
.

Then withX(1) = {z: |z − A
(1)
x | < u/6} andX(2) = {z: |z − A

(2)
x | < u/6} we have

X(i) + X(i) − X(i) = {z: |z − A(i)
x | < u/2}, X + X − X = {z: |z − Ax | < u},
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and inequality (4) can be rewritten as

νx

(∣∣∣f (m

n

)
− Ax

∣∣∣ � u
)

� P
(∣∣∣ ∑

p�x

(ξ (1)
p − Eξ(1)

p )

∣∣∣ � u/6
)

+ P
(∣∣∣ ∑

p�x

(ξ (2)
p − Eξ(2)

p )

∣∣∣ � u/6
)
. (5)

Using the equality

E|ξ |2 = 2
∫ ∞

0
uP (|ξ | � u)du,

we have

Ex |f − Ax |2 = 1

#Fx

∑
m/n∈Fx

∣∣∣f (m

n

)
− Ax

∣∣∣2 = 2
∫ ∞

0
uνx

(∣∣∣f (m

n

)
− Ax

∣∣∣ � u
)

du,

E

∣∣∣ ∑
p�x

(ξ (i)
p − Eξ(i)

p )

∣∣∣2 = 2
∫ ∞

0
uP

(∣∣∣ ∑
p�x

(ξ (i)
p − Eξ(i)

p )

∣∣∣ � u
)

du

= 1

18

∫ ∞

0
uP

(∣∣∣ ∑
p�x

(ξ (i)
p − Eξ(i)

p )

∣∣∣ � u

6

)
du.

Hence, from (5) we can derive that

Ex |f − Ax |2 � E

∣∣∣ ∑
p�x

(ξ (1)
p − Eξ(1)

p )

∣∣∣2 + E

∣∣∣ ∑
p�x

(ξ (2)
p − Eξ(2)

p )

∣∣∣2,

which after some calculations can be reduced to the Kubilius-type number-theoretic
inequality:

∑
m/n∈Fx

∣∣∣f (m

n

)
− Ax

∣∣∣2 � #Fx ·
∑

p|α|�x
α∈Z

|f (
pα

)∣∣2
p|α| .

Note that similar inequalities were proved in [5] with

Fx =
{m

n
: (m,n) = 1, n � x

}
∩ (α,β),

using the large sieve inequalities, approach initiated by Elliott (see, [1], [2]).
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PROOF OF THE THEOREM

First note that the independent random variablesξ
(i)
p ,p � x, with distributions (3) can

be realized as functionsξ (i)
p : Q+ → G:

ξ (1)
p

(m

n

)
= f

(
pmax(αp(m/n),0)

)
, ξ (2)

p

(m

n

)
= f

(
pmin(αp(m/n),0)

)
,

if we define the discrete measureP = λx on subsetsA ⊂ Q+ by

λx(A) =
( ∑

m/n∈Qx

1

mn

)−1 ∑
m/n∈Qx∩A

1

mn
,

where

Qx =
{m

n
: p+(mn) � x

}
,

andp+(k) denotes the greatest prime divisor ofk. Then

f
(m

n

)
= f (1)

(m

n

)
+ f (2)

(m

n

)
, f (i)

(m

n

)
=

∑
p

ξ (i)
p

(m

n

)
.

Let

F∗
x =

{m

n
: (m,n) = 1,m,n � x

}
.

Evidently,Fx ⊂F∗
x ⊂ Qx, #F∗

x = 2#Fx, and

#F∗
x = 2

∑
m�x

ϕ(m) ∼ 6

π2
x2 as x → ∞, (6)

whereϕ(m) is the Euler function. ForA ⊂ Q+, we define

ν∗
x (A) = #A ∩F∗

x

#F∗
x

.

Then

νx(A) = #A ∩Fx

#Fx

� #F∗
x

#Fx

· #A ∩F∗
x

#F∗
x

� 2ν∗
x (A),

and it is sufficient to prove inequality (4) withν∗
x instead ofνx.

If f (i)(m
n
) ∈ X(i) + X(i) − X(i) for i = 1,2, thenf (m

n
) ∈ X + X − X, hence,

ν∗
x

(
f

(m

n

)
�∈ X + X − X

)
� ν∗

x

(
f (1)

(m

n

)
�∈ X(1) + X(1) − X(1)

)
+ ν∗

x

(
f (2)

(m

n

)
�∈ X(2) + X(2) − X(2)

)
.
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Then it suffices to prove the inequalities

ν∗
x

(
f (i)

(m

n

)
�∈ X(i) + X(i) − X(i)

)
� λx

(
f (i)

(m

n

)
�∈ X(i)

)
, i = 1,2. (7)

We proceed with the proof fori = 1; the proof fori = 2 is almost identical.
For a nonempty set of positive integersW ⊂ N, we denote

WQ =
{m

n
: m ∈ W,(m,n) = 1

}
.

Then taking

U = {m: f (m) ∈ X(1)}, V = {m: f (m) ∈ X(1) + X(1) − X(1)},

we can rewrite inequality (7) fori = 1 as

ν∗
x (V Q) � λx(UQ), (8)

whereB denotes the complement of a setB. We need some results aboutλx.

Lemma. For any set W ⊂ N, we have

λx(W
Q) =

∏
p�x

(
1− 1

p + 1

) ∑
m∈W∩Qx

1

m

∏
p|m

(
1− 1

p

)

=
( ∑

m∈Qx

ϕ(m)

m2

)−1 ∑
m∈W∩Qx

ϕ(m)

m2
. (9)

Let

E = {
pk: p � x;m ∈ W,(m,p) = 1 ⇒ mpk �∈ W }.

If λx(W
Q) � 99/100, then

∑
pk∈E

1

pk
� 5λx(WQ). (10)

Proof of Lemma. Equalities (9) can be established by a straightforward calculation.
If we denote

Px =
∏
p�x

(
1− 1

p + 1

)
=

( ∑
m∈Qx

ϕ(m)

m2

)−1
,
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then

λx(W
Q) = Px

∑
m∈W∩Qx

1

m

∏
p|m

(
1− 1

p

)

= Px

∑
m∈W∩Qx

ϕ(m)

m2
, Px ∼ c

(
logx

)−1
asx → ∞.

Let k ∈ Qx be a positive integer, i.e.,p+(k) � x. By Ak ⊂ N we denote the set of
multiples ofk. Using the obvious inequalities

ϕ(l)ϕ(m) � ϕ(lm) � lϕ(m),

from (9) we obtain that

ϕ(k)

k2
� λx(A

Q
k ) � 1

k
.

We have

λx(W
Q) = Px

∑
m∈W∩Qx

ϕ(m)

m2
= 1− ε, ε � 1

100
.

Forq = pk , wherep is prime, denote

Wq = {
qm: (m,p) = 1,m ∈ W

}
.

If q ∈ E, thenWq ⊂ W, hence,

ε � λx(W
Q
q ) = 1

q

(
1− 1

p

)
· Px ·

∑
m∈W∩Qx
(m,p)=1

ϕ(m)

m2

� 1

q

(
1− 1

p

)(
λx(W

Q) − λx(A
Q
p )

)
� 1

q

(
1− 1

p

)(
1− ε − 1

p

)
� 49

200
· 1

q
. (11)

Since∪q∈EWq ⊂ W, we have

ε � λx

( ⋃
q∈E

WQ
q

)
�

∑
q∈E

λx(W
Q
q ) −

∑
q1,q2∈E

λx(W
Q
q1

∩ WQ
q2

). (12)

If q1 andq2 are powers of the same prime number, thenW
Q
q1 ∩ W

Q
q2 = ∅. We denote

σ =
∑
q∈E

1

q
.
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Using in (12) the inequalities

λx(W
Q
q ) � 49

200

1

q
, λx(W

Q
q1

∩ WQ
q2

) � λx(A
Q
q1q2

) � 1

q1q2
,

we obtain

ε � cσ − σ 2, c = 49

200
.

If σ � c/2, then

ε � cσ − σ 2 � 1

2
cσ, σ � 2ε

c
= 400

49
ε < 5ε,

and the statement is proved. We show thatσ > c/2 can never occur.
Let σ > c/2. Because of (11), for eachq ∈ E, we have

1

q
� 200

49
ε = ε

c
.

Then it is possible to choose a subsetE′ such that

σ ′ =
∑
p∈E′

1

q
,

c

2
� σ ′ > c

2
− ε

c
.

Having in mind what is already proved, we obtain

σ ′ � 2ε

c
.

Now we conclude that there must be

2ε

c
� c

2
− ε

c
, ε � c2

6
.

This is not true withc = 49
200, and ε � 1

100 sincec2/6 > 0,0010004. The proof of
lemma is complete.

Let us return to the proof of (8). It is sufficient to prove this inequality for

U = {m: f (m) ∈ X(1)}, V = {m: f (m) ∈ X(1) + X(1) − X(1)} (U ⊂ V )

with λx(U
Q) � 99

100. Let

T =
∑

m/n∈V Q∩F∗
x

log
x

m
= logx · #(V Q ∩F∗

x ) − S, S =
∑

m/n∈V Q∩F∗
x

logm.
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We establish the bounds

T � x2 logx · λx(UQ), S � x2 logx · λx(UQ); (13)

using them and (6), we obtain inequality (8) from

logx · #(V Q ∩F∗
x ) � T + S.

In what follows, we use the simple asymptotics

∑
n�x

(n,m)=1

1 = x
∏
p|m

(
1− 1

p

)
+ O

(
2ω(m)

)
.

We have

T =
∑

m/n∈V Q∩F∗
x

log
x

m
� x

∑
m∈V
m�x

1

m

∑
n�x

(n,m)=1

1 = x2
∑
m∈V
m�x

1

m

∏
p|m

(
1− 1

p

)

+ O
(
x

∑
m∈V
m�x

2ω(m)

m

)
� x2 logx · λx(V Q) + O

(
x

∑
m∈V
m�x

2ω(m)

m

)
.

Now we get

∑
m∈V
m�x

2ω(m)

m
=

∑
m∈V
m�x

dm

m

∏
p|m

(
1− 1

p

)
, dm = 2ω(m)

∏
p|m

(
1+ 1

p − 1

)
� 4ω(m).

Sinceω(m) � logm/ log logm, we havedm � mε (ε > 0) and

∑
m∈V
m�x

2ω(m)

m
� x logx · λx(V Q),

T � x2 logx · λx(V Q) � x2 logx · λx(UQ).

The first inequality of (13) is established.
We define the setE as in Lemma withW = U. If pk �∈ E, then there existsl ∈

U, (l,p) = 1, such thatpk · l ∈ U. The important observation of I. Ruzsa [4] is that,

for m ∈ U,pk �∈ E, (m,p) = 1, we havepkm = pkl
l

· m and

f (pkm) = f (pkl) + f (m) − f (l) ∈ V.
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We now proceed withS:

S =
∑

m/n∈V Q∩F∗
x

logm =
∑

pk�x

logpk
∑

pkm
n ∈V Q∩F∗

x
(m,p)=1

1 = S1 + S2,

S1 =
∑
pk�x

pk∈E

logpk
∑

pkm
n ∈V Q∩F∗

x
(m,p)=1

1, S2 =
∑
pk�x

pk �∈E

logpk
∑

pkm
n ∈V Q∩F∗

x
(m,p)=1

1.

ForS1, we apply the statement of lemma:

S1 � x2 logx
∑
pk∈E

1

pk
� x2 logx · λx(UQ).

EstimatingS2, we use the arguments forpk �∈ E explained above:

S2 �
∑

pk�x

logpk
∑

m∈U,(m,p)=1
mpk

n ∈F∗
x

1 �
∑
m∈U
m�x

∑
pk� x

m

logpk
∑
n�x

(n,m)=1

1

�
∑
m∈U
m�x

(
x

∏
p|m

(
1− 1

p

)
+ 2ω(m)

)
·

∑
pk� x

m

logpk

� x2
∑
m∈U
m�x

1

m
x

∏
p|m

(
1− 1

p

)
+ x

∑
m∈U
m�x

2ω(m)

m
� x2 logx · λx(UQ).

Hence,

S � x2 logx · λx(UQ),

and the proof of the theorem is complete.
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REZIUMĖ

V. Stakėnas. Tikimybinės skaiči
↪

u teorijos nelygybės

↪
Irodyti tikimybinės skaǐci

↪
u teorijos nelygybi

↪
u adityvi

↪
u funkcij

↪
u dažniams analogai, kai adityviosios funkci-

jos nagriṅejamos racionali
↪
uj

↪
u skaǐci

↪
u aiḃeje. Naudojantis šiomis nelygybėmis galima gauti adityvi

↪
uj

↪
u

funkcij ↪u moment↪u ↪
iverčius.


