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Abstract. In this paper, we describe a simple representation of a circular arc in the space using quaternions.
Using this representation, we obtain a subdivision of the arc, describe circular splines, and give a few
applications with circular surfaces.
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1. INTRODUCTION

We start with the fractional linear function which produces a circle. Using this con-
struction, we describe circular splines and subdivision of a circular arc. This approach
is unusual, since we use the Bézier representation with complex (quaternion) points
and complex (quaternion) weights. The conventional approach for representing a cir-
cular arc uses the control polygon of an isosceles triapgle1, p2 and the middle
weightwi = cosa, wherea = Z(p2pop1) (see [3]). The calculation of cosine involves

a computation of a square root, which is, in turn, often required for the representation
of circular surfaces (a surface with one parameter family of circles). We describe an
alternative approach and represent an arc of a circle by two end points and an initial
(resp. final) tangent vector pointing into (resp. out) an arc. In the construction of an
arc, we do not use the center of a circle and an angle. This simplifier calculations and
is useful for representing families of circles on a circular surface (see applications in
Section 8). There are many other circle representations (see [8]) but we hope that this
approach can be useful for the subdivision of a circle and for modelling a circular
surface.

2. NOTATIONSAND DEFINITIONS

We denote by HC and IR the sets of quaternion numbers, complex humbers and
real numbers, respectively. It is convenient to identify a complex numbefi(z)
+i-3(z) =x+iy € C (M(z) andI(z) mean the real and imaginary parts of a complex
number z) with the pointx, y) in the plane IR. The notatiorg = x — iy means the
conjugated complex number and = /x2 + y2 is the length of a complex number.
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In general, the quaternion set H can be represented as
H={¢=@plreR, peR3} =R 1)

We denote the real and imaginary parts of a quatergien(r, p) by Ri(¢) =r and
J(g) = p. The multiplication in the algebra H is defined as

(r1, p1)(r2, p2) = (r1r2 — (p1. p2). (r1p2+r2p1) + p1 X p2), (2

where(p1, p2) and p1 x p2 are scalar and vector products i JRVe denote by =

(r, — p) the conjugate quaterniondo= (r, p),lq| = Vr2 + (p, p) = +/qq isthe length
of the quaterniong 1 = G/|¢1%2 = (r/191%, —p/|q|%) denote the multiplicative inverse

of g, i.e.,qq~1 = ¢1q = 1. Denote the set of pure imaginary quaternions by
Im(H)={(©0,p) | pe R®} =R ()

Assume thatu, u) = 1, u € IR3, then denote® = (cosu, (sina)u). In fact, for any
q = (r, p) such thatlg|? = r?> + (p, p) = 1, we havey = &, where cos =r,u =
p/Sina.

3. LINEAR FRACTIONAL FUNCTION
PROPOSITIONL. Let agp, az, wo, wy € C be such that wp/w1 € C\ IR. Then

_ apwo(1l—1t) + ajwqt
HOES ool F g 1€10,1], (4)

isthe arc of a circle with the first point ag and the last a1. This circle has a center &g
andtheradius R, i.e, |&£(t) — &| = R, where

_i(wowiap — wiwoa1)  wowiag — wW1Wod1

= = 5
0 2R (i wowy) Woll1 — w1tho ®)
i(wow1(ap — ay))

R = lao — kol = la1 — &0l = 20‘)%(11'11)211)1)1 , (6)
(@1 -50) _ WoW1 _ e (e, thecircular arcangleis 27 — 2¢),  (7)
(a0 —&0) wow1

cosp = w1 + Wow1 (8)

2|wol|wy]

Proof. Itis well known thatthe map — &,& = “”Z for z, & e Cis conformal. The

. . ; . > cz+ ;
image of circles and lines are lines and circles (éee [1], [5] Section 7.2). The formulas
for &o, R are taken from [1].
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Figure 1. The arc of the circlep = (—1+1,1), c1 = (1, é¥7/7), & = —1.03— 1.57;, R = 2.57.

We say that pointsg = (apwo, wo), c1 = (a1w1, w1) With weightswo, wy define
the arc (4) and denote it (co, c1)(¢). We omit(cg, c1) if from the context it is clear
(or not important) which points are taken.

Remark 1. If we change the weightsg, wi to 1, w1/wo, the arcé(¢) remains the
same. Moreover, if we change the parameterpr /(1 —t + pt) (p € IR) and weights
wo, w1 10 wo, w1/ p, then the arc also is the same. Therefore, we can always assume

that the weights are normalized, i.e;y = 1, wj = €% = % For example, if we

takewg = 1, w1 = i, then three pointag, & = “03“1, ay are collinear and the radius
is R =|9054].

Remark 2. Usually, the circle is uniquely defined by three pointsb, a1 € C.
If we setw1 = b — ag, wo = a1 — b, then the arc (4§ (¢r) goes through three points
ao, b, ay (infact,£(1/2) = b).

ProPOSITION2. We have

() = 0wl (L= )2 + (aowoibs + aywibo) (L — 1)t + aylwalr?
lwol2(1 — 1) + (wow1 + w1wo) (1 — 1)1 + w1 %12

: ©)

i.e, £(¢) isarational quadratic Bézier curve with three control pointsand real weights

> 2 apwowil + ajwiwg wowi + wiwg
(aolwol? lwol?). ( :
2 2
Proof. According to Remark 1, the ag(z) remains the same if we normalize the

[ [ /= I — g¢ — wilwol
weights, i.e.wg =1, w; =€¢ = wolwgl Therefore, we have

). (arlwal?, [wi?). (10)

(aowg(1—1) + arwit) (wo(1— 1) + wir)
(w1 —1) + win) (w1 —1) + wir)

£(n) =

_ ao(1—1)*+ (aoe ¥ +a1e?) (1 — 1)t +axr®
- (1—1)2+2cog¢)(1— 1)t + 12
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In the book [3], Chapter 14, we find that the last rational expression is a circle
parametrization.
4. QUATERNION

For representing a circle in or IR2, we use the linear space of quaternion=HR?.
Let

£(1) =qd ™1, whereq = aqwo(l— 1) + ajwat, (11)
d=wo(l—1)+wit, ag,a1, wo, wi€MH, re[0,1], (12)

denote a linear fractional function in a quaternion algebra H.
PROPOSITIONS. £(1), t € [0, 1], isanarc of acirclein IR* with end points & (0) =

ao, £(1) = a1 € H = IR*. Thiscircle hasa center &, aradius R, and 2« isthecircular
arc angle

ap+ a1 — 2w’ py lag — a|
= . R="""2  where 13
0= "0 w?) 21— w? 13)
apwowi + ajwiwo _ _
p1= w' = (wow1 + w1wo)/(2lwol|w1|) = cosa. (14)

wow1 + wiwo

Moreover, & (¢) isarational quadratic Bézier curve which hasthree control pointswith
real weights

5 5 apwowil + ajwiwg wowi + wiwg
(aolwol?, lwol?),

- SR, (@l ?). (15)

Proof. Sinced 1 =d/|d|?, we have

d

£ =qdt =15 (16)
|d|

_aolwol*(1 — )% + (aowows + arw1bo) (1 — 1)1 + ag|wy |*1? (17)

lwol?(1 — 1)? + (wow1 + wiwo) (1 — 1)1 + |w1|?r?

i.e.,£(t) is arational quadratic Bézier curve with three control points and real weights
as in (15).

Note that we can change the weightg, wy to Lwlwal, then the arct(r)
will remain the same. Moreover, if we change the parameter pt/(1 — ¢t + pt)
(p € R) and weightswg, w1 to wg, w1/p, then the arc will also remain the
same. Therefore, we can always assume that the weights are normalized, i.e.,

wo=1, wj = wlwallwollwll_l = wiwo/(Jwol|w1l). Since|w]| =1, we havew; =
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&o

Figure 2. A center of an arc.

(cosa, (sina)u) = € for somew and u € RS, (u,u) = 1. Therefore, (wyw; +
wiwg)/2 = cosa. Hence,

ao(1— )2 + (aow} + a1wy) (1 — 1) + aar?

E(n)= (1—1)2+2(1— 1)t cosx + 12

: (18)

i.e.,&(¢) is a circle with three control points
Po=(ao,1), P1=((aowy+a1w})/2,cosx), Po=(a1,1)

(see [3], Chapter 14).

For computation of the centé&p, note that three points, m = (ag + a1)/2 and
p1= (aou‘/l + alw/l)/z cosy) are collinear. An elementary observation shows that
|pim|/Imé&o| = sifa/cofa (see Fig. 2). Therefore, we obtain = (sirfa)&g +
(co€ @) p1. Hence ko = (ag + a1 — 2cog apy)/(2sirf «). Since cos = (wiwy ™ +
u_)alu")l)lwollwll’l/Z = (wow1 + wiwp)/(2lwol|w1l|), we prove the formula for the
center. The formula for the radius follows from the sinus theorem.

Remark 3. If we takewo = a1 — b’ andwy = b’ — a, wherea}y = aj *agaz, b’ =
(a1 — ao)_lb(al — a(’)), then&(1/2) = b. Indeed,£(1/2) = (ap(ay — b') + a1 (b’ —
ap))(ar — b + b — ap) ™ = (a1 — ag)b'(a1 — ap) =1 = b. So, for the construction of
the circular arc with three given points, b, a1, we can take weightsg, wy as above.

The following proposition shows how to use pure imaginary quaternions for mod-
elling a circle in I,

PROPOSITION 4. Let ag = (0, g0), a1 = (0,¢1) € Im(H) = R3, and w1wg =
(r, p) be such that (go, p) = (g1, p). Then £(t) € Im(H) = IR3 and £(¢) belongs to
theplane L in Im(H) = IR® which is orthogonal to the vector p for any . Moreover,
if a1 = wiwg 1aowow1_ ! thenthearc &(r) isthetrace of the rotation around the vector
p fromthe point gg to the point ¢1 .
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Proof. By Proposition Z(¢) has a representation as a Bézier curve with three con-
trol pointsag, p1, a1. Sincep1 = (agwow1 + ajwiwe) /(wow1 + wiwo) = ({q1, p) —
(g0, p), (g0 + q1) + (g0 — q1) x p)/(wow1 + wiwo) € Im(H) for anyr, we have
&(t) € Im(H). Moreover,£(¢) belongs to the plané which passes through three
pointsag, p1,az. In this plane, we have two vectofs: (p1 — ag) and Im(p1 — a1).
Since

(p1— ao) = (a1 — ag)w1wo/ (wow1 + wiwo) = (0, (g1 — q0) + (g1 — 90) X p),

we see thatim(p1—agp), p) = 0. Inasimilar way, we show théafm (p1—a1), p) =0.
Hence, the plané is orthogonal to the vectas.

If we takea; = wlwalaowowil, then

£(1) = (L— 1 + wiwg *aowo((L — 1 + wiwg *rywe) (19)

=1-r+ wlwalt)ao(l —t+ wlwalt)_l. (20)

Let x = |x|x, = |x|(cosa, (Sina) p) be given. It is well known that the majpn(H) =
R3 — Im(H) =R3, ¢ — xgx~1 = x,q%,, is a rotation of the vectofm(g) around

the vectorp by the angle 2 (see, for example, [4]). The formula (20) shows th&b
is a rotation around the vecta)m(wlwgl) = p. Since&(¢),t € [0, 1] is an arc of the

circle with end pointsig, a1, we see thag(¢) is the trace of the rotation around the
vector from the poinfm(ag) = go to the pointim(a1) = q1.

5. SPLINES
LEMMA 5. Let £(r) = g(r)(d(¢))~ € H. Then we have

E(1)=q' Od@) ™ —qndn)d d(0)/1dn)[*, (21)
where f7(¢) denotes the derivative of a function f(¢) at a point ¢.

Proof. Itis easy to see that1(1)g2(1)) = q1(1)g2(t) + q1(1)g5(1) and(d 1)) =
d0)/1d®)%) = (d'|d|?—d(dd))/|d|* = —dd'd /|d|*. The combination of these two
formulas gives (21).

Now it is easy to find the derivatives f§(z) at the end points (see also [6]):

£'(0) = vo = (a1 — ag)wawo ™, (22)
£'(1) = v1= (a1 — ap)wows . (23)

Remark 4. For the construction of a circle arc by two pointg, a1 and initial
tangent vectonwg pointing into the arc, we can use formula (22) for computing the
weight w1 = (a1 — ag) tvg (here we assume thatg = 1). This representation of

a circle by two end points and an initial tangent is more intuitive than that be the

weightw;.
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Now assume that we have three poings= (apwo, wo), ¢1 = (a1w1, w1),c2 =
(a2w2, w2) and two arcg1(co, ¢1)(1), £2(c1, c2)(¢). We are going to find &1 rational
(tangent continuity) spline, i.e.,

h&1(1) =£5(0), whereh > 0. (24)

So, if we take any, c1 anday, condition (24) givesv, = h(az — a1) (a1 — aog)wo,
and we obtain &1 spline.

Definition. We say that the sequeneg = (axwi, wy) € C2, k =0, ...,n, is G1
compatible if

Witz = his2(@ks2 — ax1) Hagsr —apwy, 0<k<n—2, (25)
for someh; > 0.

A G* compatible sequence defines thié curve

n—1

¢ =Jé&@arno.

k=0

It is interesting to note that the curvature of this curve is the consta®t tn every
pieceé (cxcr+1)(t), whereRy is the radius of the circle a&(crcr+1)(r). Therefore,
the splineC is only aG* (not G?) curve or aG* if C is a circle.

There are a few examples of splines which are on one circle.

Example 1. If ¢g = (a0, 1), c1 = (@r1w1, w1), c2 = (aow%, w%), thené&(coc1)(t) U
£(c1c2)(1), 0<r < 1, is afull circle.

Example2. If cg = (a0, 1), c1 = (a1w1, w1), c2 = (—ai1w1, —w1), then&(coc1) ()

U&(coc2) (1), 0<r <1, is afull circle.
|

Figure 3. The spline of two circular ar€s(z), &2(z).
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Example 3. If ¢co = (ao, 1), c1 = (a1i, i), c2 = (—aii, —i) € C?, thené& (cocy) (1) U
E(coc2) (@), 0< < 1,isafullcircle in a plane with a centétg + a1)/2.

6. SUBDIVISION OF A CIRCULAR ARC

In this section, we describe subdivision of a circular arc. This does not gives nonsta-
tionary subdivision schemes which reproduce a circle as in the sense of book [7]. A
circle reproducing subdivision scheme (in [7]) is a circle approximative scheme which
uses linear formulas for computation of new control points by old points. Below, we
present subdivision of a circular arc which is not linear and not approximative. For
one step of this subdivision we use two control points and its weights. The computa-
tion of a new point and new weight is not linear and involves calculation of two square
roots. While there is the advantage that computation of a new point involves only two
points with weights, the disadvantage is that the coordinates of new points have to be
calculated by a computation of square roots.

PROPOSITION 6. Let cg = (agwo, wo) and ¢1 = (aqw1, wi) € C2(orH?) be as
above, and let c1/2 = (a1/2w1/2, w1/2) = f(co, c1), where

c1/2 = colwi| + c1wo| = (aowolw1| 4 azwi|wol, wolw1| + wilwol).i.e, (26)
- 27)

w1/2 = wolwi| + wilwol. (28)

a1y2 = (aowo|w1| + ayw1|wol) (wolwi| + wilwol)

Then three arcs & (co, c1/2) (1), &(c1/2, c1)(t), and &(co, c1)(t) are on the same circle.
Moreover,

la1/2 — aol = lay — ay2l, (29)

i.e., the point a1/ isthe middle point of the arc £ (co, c1) (1).

Proof. An easy computation shows that

|wol
|wol + |w1]

& (co, Cl)( ) =ai)2,

ai/2

a1

Figure 4. Uniform subdivision of an arc.
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Figure 5. The subdivision of the a&cr), 33 pointsk = 5.

lwol

&(co, c1) (m) =& (co, c1/2) (%>,

&(co, c1) (%) =£&(c1/2, c1) (%)

Since two circle arcst(co, c1)(r) and &(co, c1/2)(t) have three common points
ao, § (co, ¢1/2)(1/2), a1, we conclude that

{€(co, c12) (1) |1 €10, 1]} C {&(co. c1)(®) |1 € [0, 1]}

In a similar way, we see that

{(c1y2. c1)(@) |1 € 10,11} C {&(co. c1) (1) |7 € [0, 1]},
A straightforward computation shows that formula (29) also is true.

Now we can define a subdivision process. Let

¢zt = F(eijmny2 Crn/at) = @jpwj 0 wj20) (30)

by induction ork and for odd;. The pointsz; o« define a uniform subdivision of the
arcé(r).

If we take aG' compatible sequencg, k =0, ..., n, then the subdivision process
gives points on & curve.

7. APPLICATIONS

A surface of revolution

Assume that a parametrization of a cure= {¢(u) € IR3} is given. Then, using
Proposition 4, we get the parametrization of a surface which is obtained as the rotation
of the curveC around the axig. Indeed, letig = (0, ¢(«)), wo = (1, 0), w1 = (O, p),

a1 = wiaowy 1. Then we have

par(u, 1) = (agwo(L — 1) + arwi (1)) (wo(L — 1) + wi(N) ", w1 €0, 1],

a parametrization of the surface of revolution.
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Figure 6. A hyperboloid.

For example, consider the parametrization of a segment of alliteough two
points g (u) = (1,0,0)(1 — u) + (1,1, Du and p = (0,0,1). Then par(u,t) is a
parametrization of the hyperboloid which is the rotation of the lineegment around
z axis (see Fig. 6).

A pipe surface

As an example, consider a part of a pipe surface smoothly blended with a cylinder
and a planeP. For the construction of this surface, we move around a rolling ball
touching the cylinder and the plane. Liets), s € I, denote a pencil of planes through
the center line of the cylinder, and l@i(s) € L(s) N C be the point where the rolling
ball touches the cylinder ling(s) N C. Also, denote by;1(s) a point in the plane?
where the rolling ball touches the lirfe(s) N P. We chooseig(s) = (0, go(s)), wo =

1, a1(s) = (0, g1(s)) and by formula (22) we findv1(s) = (a1(s) — ao(s))~2(0, vo),
whereuy is the direction vector of the cylinder axis Now, the map

£(s, 1) = (ao(s)wo(1 — 1) + ar(s)wi(s)t) (wo(l — 1) + wal(s)) 7, (31)
te[0,1],sel,

gives a parametrization of a neck blending the cylinder with the plane (see Fig. 7).
This is a part of the pipe surface.

For example, consider the cylindér x2 4+ y2 = 1 and the plane’: z = ay. Then
the centers of rolling balls with radius are on the planeP;: z = ay + rva?+1
(since the distance betwedhand Py is r) and on the cylinde€1: x2 + y2 = (1 +
r)2. Let [es(s), sn(s)] be a parametrization of the circk® + y2 = 1, and letL(s):
x -sn(s) =y - cs(s) be the plane through the center of the cylinderlt is easy to
see thatjo(s) = [cs(s), sn(s), a - sn(s) +r~/a? + 1] is the point where the rolling ball
touches the lind.(s) N C on the cylinderC. One can check that
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Figure 7. A part of the pipe surface smoothly connecting the cylinder and the plane.

q1(s) = [(r + Des(s), (r + Dsn(s), a(r + Dsn(s) +rva? + l]
+r[0,a,—1]/Va?+1

is the point where the rolling ball touches the libé&) N P. If we takevg = [0, 0, —1]
as the direction vector of cylinder axis and use parametrization (31), we obtain the
blending of the plane and the cylinder see Fig. 7.

A circular surface

Another application of the previous construction can be a circular surface, i.e., a sur-
face with one parameter family of circles. For example, consider two ellipses
x2/a? + y?/b® = 1 andey: x?/c? + y?/d? = 1 in the planeP: z = 0 with the same
centerO. Let us denote byo(s) = [a - cs(s), b - sn(s)], g1(s) =[c - ¢s(s),d - sn(s)]

the parametrization of ellipses, wheee(s)2 + sn?(s) = 1. Assume thatig(s) =

(0, (go(s), 0)), a1(s) = (0, (g1(s),0)), wo = 1, vg = (0,0, 0, 1) (herevg corresponds

to the directional vector of lines on the elliptic cylinder). Then by formula (22) we
computews (s) = (a1 — ag) tvo. Hence,

£(s, 1) = (ao(s)wo(1 — 1) + ar(s)wi(s)r) (wo(l — 1) + wl(S)l)_1 (32)

is a parametrization of a circular surface. This surface intersects the plaméwo
ellipses and all circles belong to planes perpendicular to the pafgee Fig. 8).

Note that this surface is not a canal surface. Then upper half of this surface may join
smoothly G1-continuity) two elliptic cylinders (see Fig. 8).

A smooth “ offset” of convex polyhedron

In the following example, we represent a smooth “offset” of convex polyhedron. By
definition, this surface is the envelope surface of the rolling ball moving over the poly-
hedron. It is easy to see that the envelope consists of faces of the polyhedron moved
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Figure 9. A polyhedron and a smooth “offset” of a polyhedron.

in its normal direction by a fixed distance. Instead of edges, we obtain a part of cylin-
ders, and a vertex is replaced by an n-sided spherical patch. Using the construction of
circular an arc (32) as above, we easily obtain a parametrization of parts for cylinders
and n-angle in the sphere (see Fig. 9).

8. CONCLUSION AND FUTURE RESEARCH

We have represented a circular arc in the space by using end points and a vector perpen-
dicular to the arc plane. Especially, this representation is useful for modelling surfaces
with one parameter family of circles since in our construction of a circle, we do not
need computation of the circle center.

There are possibilities for extensions and future research:

— Investigation of the geometry of higher degree Bézier curve (or surface) with
complex (or quaternion) points and weights. Find an implicit equation for such
curves (surfaces).

— An interesting extension concerns the Clifford algebra. For example, we can use
control points and weights as elements of the Clifford algebra. Note that the
quaternion algebra is isomorphic to the two dimensional Clifford algebra.
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REZIUME
S. Zube. Apskritimo konstravimas su kompleksiniaisir kvaternioniniais skai€iais

Darbe pateikta erdvinio apskritimo lanko dalies konstrukcija naudojant kvaterionus. Sios konstrukcijos
privalumas prie$ tradicgnBezier apskritimo reprezentagiyra tai, kad ji leidzia sumodeliuoti apskritimo
lanka Zinant tik jo prada, gah ir pradzios (arba galo) lieséss vektory. Tai labai supaprastina apskritim
Seimos modeliavim, nes nereikia rasti apskritimo centro ir lanko kampo. Darbe pateikti pavnrddelia-

vimo pavyzdziai gauti naudojant méta konstrukcia. Taip pat aprasyti apskritiminiai splainai ir pristatytas

ju padalinimo algoritmas.



