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Abstract 
This paper discusses the problem of classifying a multivariate Gaussian random field observation 
into one of the several categories specified by different parametric mean models. Investigation is 
conducted on the classifier based on plug-in Bayes classification rule (PBCR) formed by replacing 
unknown parameters in Bayes classification rule (BCR) with category parameters estimators. This 
is the extension of the previous one from the two category cases to the multi-category case. The 
novel closed-form expressions for the Bayes classification probability and actual correct classifi-
cation rate associated with PBCR are derived. These correct classification rates are suggested as 
performance measures for the classifications procedure. An empirical study has been carried out 
to analyze the dependence of derived classification rates on category parameters. 
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1. Introduction 
Much work has been done concerning the error rates in two-category discrimination of uncorrelated observa-
tions (see e.g. [1]). Several methods for estimations of the error rates in discriminant analysis of spatial data 
have been recently proposed (see e.g. [2] [3]). 

The multi-category problem, however, has very rarely been addressed because most of the methods proposed 
for two categories do not generalize. Schervish [4] considered the problem of classification into one of three 
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known normal populations by single linear discriminant function. Techniques for multi-category probability es-
timation by combining all pairwise comparisons are investigated by several authors (see e.g. [5]). Empirical 
comparison of different methods of error rate estimation in multi-category linear discriminant analysis for mul-
tivariate homoscedastic Gaussian data was performed by Hirst [6]. Bayesian multiclass classification problem 
for correlated Gaussian observation was empirically studied by Williams [7]. The novel model-free estimation 
method for multiclass conditional probability based on conditional quintile regression functions is theoretically 
and numerically studied by Xu [8]. Correct classification rates in multi-category classification of independent 
multivariate Gaussian observations were provided by Schervish [9]. We generalize results of above to the prob-
lem of classification of multivariate spatially correlated Gaussian observations. 

We propose the method of multi-category discriminant analysis essentially exploiting the Bayes classification 
rule that is optimal in the sense of minimum misclassification probability in case of complete statistical certainty 
(see [10], chapter 6). In practice, however, the complete statistical description of populations is usually not 
possible. Then having training sample, parametric plug-in Bayes classification rule formed by replacing un-
known parameters with their estimators in BCR is being used. 

Šaltytė and Dučinskas [11] derived the asymptotic approximation of the expected error rate when classifying 
the observation of a scalar Gaussian random field into one of two classes with different regression mean models 
and common variance. This result was generalized to multivariate spatial-temporal regression model in [12]. 
However, the observations to be classified are assumed to be independent from training samples in all publica-
tion listed above. The assumption of independence for the classification of scalar GRF observations was re-
moved by Dučinskas [2]. Multivariate two-category case has been considered in Dučinskas [13] and Dučinskas 
and Dreižienė [14]. Formulas for the error rates for multiclass classification of scalar GRF observation are de-
rived in [15]. The authors of the above papers have been focused on the maximum likelihood (ML) estimators 
because of tractability of the covariance matrix of these estimators. In the present paper, we extend the investi-
gation of the performance of the PBCR in multi-category case. The novel closed form expressions for the actual 
correct classification rate (ACCR) are derived. 

By using the derived formulas, the performance of the PBR is numerically analyzed in the case of stationary 
Gaussian random field on the square lattice with the exponential covariance function. The dependence of the 
correct classification rate and ACCR values on the range parameter is investigated. 

The rest of the paper is organized as follows. Section 2 presents concepts and notions concerning BCR ap-
plied to multi-category classification of multivariate Gaussian random field (MGRF) observation. Bayes proba-
bility of correct classification is derived. In Section 3, the actual correct classification rate incurred by PBCR is 
considered and its closed-form expression is derived. Numerical examples, based on simulated data, are pre-
sented in Section 4, in order to illustrate theoretical results. The effect of the values of range parameter on the 
values of ACCR is examined. 

2. The Main Concepts and Definitions 

The main objective of this paper is to classify a single observation of MGRF ( ){ }2:Z s s D R∈ ⊂  into one of 

L  categories, say 1, , LΩ Ω . 
The model of observation ( )Z s  in category lΩ  ( )1, ,l L=   is 

( ) ( ) ( );l lZ s s B + sµ ε= . 

Here lµ  represents a mean component and lB  is a matrix of parameters. The error term is generated by 

p-dimensional zero-mean stationary GRF ( ){ }:s s Dε ∈  with covariance function defined by model for all 

 s, u D∈  

( ) ( ){ } ( )cov ,s u r s uε ε = − Σ , 

where ( )r s u−  is the spatial correlation function and Σ  is the variance-covariance matrix with elements 

{ }ijσ . So we have deal with so called intrinsic covariance model (see [16]). 

Consider the problem of classification of the vector of observation of Z  at location 0s  denoted by 

( )0 0Z Z s=  into one of L  populations specified above with given joint training sample T . Joint training 



L. Dreižienė et al. 
 

 
23 

sample T  is stratified training sample, specified by n p×  matrix ( )1, , LT T T ′′ ′′=  , where lT  is the ln p×  

matrix of ln  observations of ( )Z   from lΩ , 1, ,l L=  , 
1

L

l
l

n n
=

= ∑ .  

Then the model of T  is 

( )T M B E= + , 

where ( )1, , LB B B′ ′ ′=   is the matrix of category means parameters and E  is the n p×  matrix of random 
errors that has matrix-variate normal distribution i.e. 

( )~ 0,n pE N R× ⊗Σ . 

Here R  denotes the spatial correlation matrix among components (rows) of T . In the rest of the paper the 
realization (observed value) of training sample T  will be denoted by t . 

Denote by 0r  the vector of spatial correlations between 0Z  and observations in T and set 1
0 0R rα −= , 

0 01 rρ α′= − , ( )0
0l l sµ µ= , 1, ,l L=  . 

Notice that in category lΩ , the conditional distribution of 0Z  given T t=  is Gaussian, i.e. 

( ) ( )0
0 , ~ ,l p lt otZ T t N µ= Ω Σ , 

where conditional means 0
ltμ  are  

( ) ( )( )0 0
0 0; ,     1, ,lt l lE Z T t t M B l Lµ µ α′= = Ω = + − =                      (1) 

and conditional covariance matrix 0tΣ  is 

( )0 0 ;t lV Z T t ρΣ = = Ω = Σ .                                (2) 

The marginal and conditional squared Mahalanobis distances between categories kΩ  and lΩ  ( ), 1, ,k l L=   
for observation taken at location 0s s=  are specified respectively by 

( ) ( )2 0 0 1 0 0
kl k l k lµ µ µ µ−′∆ = − Σ − , 

and 

( ) ( )2 0 0 1 0 0 2
0klt kt lt t kt lt kld µ µ µ µ ρ−′= − Σ − = ∆ . 

It is easy to notice that kld  does not depend on realizations of T  and depends only on their locations. 
Under the assumption of completely parametric certainty of populations and for known prior probabilities of 

populations lπ , 
1

1
L

l
l
π

=

=∑ , Bayes rule minimizing the probability of misclassification is based on the logarithm 

of the conditional densities ratio. 
There is no loss of generality in focusing attention on category L , since the numbering of the categories is 

arbitrary. Let the set of population parameters is denoted by { },BΨ = Σ . Set 1r L= − .  
Denote the log ratio of conditional densities in categories LΩ  and lΩ  by  

( ) ( )( ) ( )1
0 0, 2Ll Lt lt t Lt lt LlW Z Z µ µ µ µ γ−′Ψ = − + Σ − + ,                    (3) 

where ( )lnkl k lγ π π= , ,  1, ,k l L=  . 
These functions will be called pairwise discriminant functions (PDF).  
Then Bayes rule (BR) (see [10], chapter 6) is given by:  

classify 0Z  to population LΩ  if for 1, ,l r=  , ( )0 , 0LlW Z Ψ ≥ .              (4) 

3. Probabilities and Rates of Correct Classification  
Set ( )1/2

kl k la µ µ ρ−= Σ −  and set M  as r -dimensional vector with the l-th components ( )1, ,l r=   spe-
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cified as 2 2l Ll Llm a γ= + , and ( ), , 1, ,lmV v l m r= =   with lm Ll Lmv a a′= . 
Lemma 1. The conditional probability of correct classification for category L  due to BCR specified in (4) is 

( ) ( ); , d
r

L r
R

PC w M V wϕ
+

Ψ = ∫ . 

Here ( )rϕ ⋅  is the probability density function of r-variate normal distribution with mean vector M  and 
variance-covariance matrix V . 

Proof. Recall, that under the definition (see e.g. [4] [9]) a probability of correct classification due to afore-
mentioned BCR is  

( )( )0 0 ; 0, , 1, ,k t kl lPC P W Z k l L l k= Ψ ≥ = ≠ Ω .                      (5) 

It is the probability of correct classification of 0Z  when it comes from lΩ . Probability measure 0tP  is 
based on conditional distribution of 0Z  given T t= , kΩ  with means and variance-covariance matrix speci-
fied in (1), (2). 0Z  may be expressed in form  

1 2
0 t ktZ U µ= Σ + , 

where ( )~ 0,p pU N I , and pI  denotes the p  dimensional identity matrix. 

After making the substitution of variables pI  in (5) we obtain that  

( )( )0Ll lE W Z m=  and ( ) ( )( )0 0Cov ,Ll Lm lmW Z W Z v= , ,  1, ,l m r=  . 

Set ( ) ( ) ( )( )0 1 0 1 0, , , , ,L LLW Z W Z W Z−Ψ = Ψ Ψ , then probability of correct classification can be rewritten in 

the following way ( ) ( )( )0 , 0LPC P W ZΨ = Ψ > . 

After straightforward calculations we show that ( ) ( )0 1, ~ ,LW Z N M−Ψ Σ . That completes the proof of lem-
ma. 

In practical applications not all statistical parameters of populations are known. Then the estimators of un-
known parameters can be found from training sample. When estimators of unknown parameters are plugged into 
Bayes discriminant function (BDF), the plug-in BDF is obtained (PBDF). In this paper we assume that true val-
ues of parameters B  and Σ  are unknown.  

Let B̂  and Σ̂  be the estimators of B  and Σ  based on T . Set { }ˆ ˆ ˆ,BΨ = Σ . 

Then replacing Ψ  by Ψ̂  in (3) we get the plug-in BDF (PBDF) 

( ) ( )( ) ( ) ( )1
0 0 0

1ˆ ˆ ˆˆ ˆ ˆ ˆ; 2Ll L l L l LlW Z Z T M B α µ µ µ µ γ
ρ

−
′ ′Ψ = − − − + Σ − + 

 
. 

Then the classification rule based on PBCR is associated with plug-in PDF (PPDF) in the following way: 
classify 0Z  to population kΩ  if for 1, ,l L=   ( )0

ˆ, 0klW Z Ψ ≥ . 

Definition 1. The actual correct classification rate incurred by PBCR associated with PPDF is 

( )( )0 0
ˆ ˆ; 0, 1, , ,k t kl kPC P W Z l L l k= Ψ ≥ = ≠ Ω . 

Set ( )1 2 1ˆˆ ˆ ˆLl L la µ µ ρ−= Σ Σ −  and ( ) ( )( ) ( )( ) ( )1
0

ˆ ˆ ˆˆ ˆ ˆ ˆ2Ll L L l L l Llb M B M Bµ α µ µ µ µ ρ γ−′
′= + − − + Σ − + . 

Lemma 2. The actual correct classification rate due to PBDR is 

( ) ( )ˆ ˆ ˆ; , d
r

L r
R

PC w M V wϕ
+

Ψ = ∫ , 

where M̂  is r-dimensional vector with components ˆˆ l Llm b= , 1, ,l r=   and ( )ˆ ˆ ˆ ˆ , , 1, ,lm Ll LmV v a a l m r′= = = 
. 
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Proof. It is obvious that in population lΩ  the conditional distribution of BPDF ( )0
ˆ;LlW Z Ψ  given T t=  

is Gaussian, i.e., 

( ) ( )0
ˆ ˆ ˆ; ,   ~ ,Ll L l llW Z T t N m vΨ = Ω . 

Set ( ) ( ) ( )( )0 1 0 1 0
ˆ ˆ ˆ, , , , ,L LLW Z W Z W Z−Ψ = Ψ Ψ , then probability of correct classification can be rewritten in 

the following way:  

( ) ( )( )0
ˆ ˆ, 0LPC P W ZΨ = Ψ > . 

After straightforward calculations we show that ( ) ( )0 1
ˆ ˆ ˆ, ~ ,LW Z N M V−Ψ . That completes the proof of lem-

ma. 

4. Example and Discussions  
Simulation study in order to compare proposed Bayes probability of correct classification rate and the actual 
correct classification rate incurred by PBCR was carried out for three class case ( )3L = . Also the effect of the 
range parameter on these values is examined. 

In this example, observations are assumed to arise from bivariate stationary Gaussian random field ( )2p =  
with constant mean and isotropic exponential correlation function given by ( ) { }expr h h θ= − , where θ  is a 
parameter of spatial correlation (range). 

Set 1 2 21µ µ= − = , 3 20µ =  and 2IΣ = . 
Estimators of B  and Σ  have the following form: 

( ) ( ) 11 1
1 2 3

ˆ ˆ ˆ ˆ ˆ ˆ, , MLB X R X X R Tµ µ µ µ µ
−− −′ ′ ′= = = = , 

where X  denotes design matrix of training sample T  and is specified by 4 4 41 1 1X = ⊕ ⊕  and  

( )( ) ( )( ) ( )1ˆ ˆˆ 3T M B R T M B n−′
Σ = − − − . 

Considered set of training locations with indicated class labels is shown in Figure 1. 
So we have small training sample sizes (i.e. 1 2 3 4n n n= = = ) and three different locations to be classified, 

furthermore we assume equal prior probabilities 1 3lπ = , 1, 2,3l = . 
Simulations were performed by geoR: a free and open-source package for geostatistical analysis included in 

statistical computing software R (http://www.r-project.org/). Each case was simulated 100 times (runs) and 
ACCR  values are calculated by averaging ACCR over the runs. ACCR  and CCR values are presented in 
Table 1. As might be expected ACCR  values are lower than CCR. All values are increasing while range parame-
ter is increasing. That means the stronger correlation gives better accuracy of proposed classification procedures. 
 

 
Figure 1. Locations of training sample: “1” are samples from population Ω1, “2” from Ω2, “3” from Ω3, A, B and C denotes 
the locations of observation to be classified. 
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Table 1. CCR and ACCR  values. 

θ 
CCR ACCR  

A (0,0) B (−1,2) C (−2,2) A (0,0) B (−1,2) C (−2,2) 

1 0.633777 0.634955 0.487689 0.544697 0.427956 0.404184 

2 0.882716 0.839326 0.599707 0.636842 0.501045 0.483608 

3 0.973217 0.948266 0.716064 0.725356 0.565855 0.480018 

4 0.999777 0.955340 0.810298 0.773966 0.639186 0.553055 

 
It’s seen in Figure 1, that the closest location to be classified is location A and the farthest is location C. CCR 

and ACCR  are largest for location A and smallest for location C. It can be concluded that better accuracy gives 
closer locations. 

References 
[1] McLachlan, G.J. (2004) Discriminant Analysis and Statistical Pattern Recognition. Wiley, New York. 
[2] Dučinskas, K. (2009) Approximation of the Expected Error Rate in Classification of the Gaussian Random Field Ob-

servations. Statistics and Probability Letters, 79, 138-144. http://dx.doi.org/10.1016/j.spl.2008.07.042 
[3] Batsidis, A. and Zografos, K. (2011) Errors of Misclassification in Discrimination of Dimensional Coherent Elliptic 

Random Field Observations. Statistica Neerlandica, 65, 446-461. http://dx.doi.org/10.1111/j.1467-9574.2011.00494.x 
[4] Schervish, M.J. (1984) Linear Discrimination for Three Known Normal Populations. Journal of Statistical Planning 

and Inference, 10, 167-175. http://dx.doi.org/10.1016/0378-3758(84)90068-5 
[5] Wu, T.F., Lin, C.J. and Weng, R.C. (2004) Probability Estimates for Multi-Class Classification by Pairwise Coupling. 

Journal of Machine Learning Research, 5, 975-1005. 
[6] Hirst, D. (1996) Error-Rate Estimation in Multiply-Group Linear Discriminant Analysis. Technometrics, 38, 389-399.  

http://dx.doi.org/10.1080/00401706.1996.10484551 
[7] Williams, C.K.I. and Barber, D. (1998) Bayesian Classification with Gaussian Processes. IEEE Translations on Pat-

tern Analysis and Machine Intelligence, 20, 1342-1351. http://dx.doi.org/10.1109/34.735807 
[8] Xu, T. and Wang, J. (2013) An Efficient Model-Free Estimation of Multiclass Conditional Probability. Journal of Sta-

tistical Planning and Inference, 143, 2079-2088. http://dx.doi.org/10.1016/j.jspi.2013.08.008 
[9] Schervish, M.J. (1981) Asymptotic Expansions for the Means and Variances of Error Rates. Biometrica, 68, 295-299.  

http://dx.doi.org/10.1093/biomet/68.1.295 
[10] Anderson, T.W. (2003) An Introduction to Multivariate Statistical Analysis. Wiley, New York. 
[11] Šaltytė, J. and Dučinskas, K. (2002) Comparison of ML and OLS Estimators in Discriminant Analysis of Spatially 

Correlated Observations. Informatica, 13, 297-238. 
[12] Šaltytė-Benth, J. and Dučinskas, K. (2005) Linear Discriminant Analysis of Multivariate Spatial-Temporal Regressions. 

Scandinavian Journal of Statistics, 32, 281-294. http://dx.doi.org/10.1111/j.1467-9469.2005.00421.x 
[13] Dučinskas, K. (2011) Error Rates in Classification of Multivariate Gaussian Random Field Observation. Lithuanian 

Mathematical Journal, 51, 477-485. http://dx.doi.org/10.1007/s10986-011-9142-4 
[14] Dučinskas, K. and Dreižienė, L. (2011) Supervised Classification of the Scalar Gaussian Random Field Observations 

under a Deterministic Spatial Sampling Design. Austrian Journal of Statistics, 40, 25-36. 
[15] Dučinskas, K., Dreižienė, L. and Zikarienė, E. (2015) Multiclass Classification of the Scalar Gaussian Random Field 

Observation with Known Spatial Correlation Function. Statistics and Probability Letters, 98, 107-114.  
http://dx.doi.org/10.1016/j.spl.2014.12.008  

[16] Wackernagel, H. (2003) Multivariate Geostatistics: An Introduction with Applications. Springer-Verlag, Berlin.  
http://dx.doi.org/10.1007/978-3-662-05294-5 

http://dx.doi.org/10.1016/j.spl.2008.07.042
http://dx.doi.org/10.1111/j.1467-9574.2011.00494.x
http://dx.doi.org/10.1016/0378-3758(84)90068-5
http://dx.doi.org/10.1080/00401706.1996.10484551
http://dx.doi.org/10.1109/34.735807
http://dx.doi.org/10.1016/j.jspi.2013.08.008
http://dx.doi.org/10.1093/biomet/68.1.295
http://dx.doi.org/10.1111/j.1467-9469.2005.00421.x
http://dx.doi.org/10.1007/s10986-011-9142-4
http://dx.doi.org/10.1016/j.spl.2014.12.008
http://dx.doi.org/10.1007/978-3-662-05294-5


http://www.scirp.org/
mailto:submit@scirp.org
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/
http://www.scirp.org/journal/CE/
http://www.scirp.org/journal/ENG/
http://www.scirp.org/journal/FNS/
http://www.scirp.org/journal/Health/
http://www.scirp.org/journal/JCC/
http://www.scirp.org/journal/JCT/
http://www.scirp.org/journal/JEP/
http://www.scirp.org/journal/JMP/
http://www.scirp.org/journal/ME/
http://www.scirp.org/journal/NS/
http://www.scirp.org/journal/PSYCH/

	Correct Classification Rates in Multi-Category Discriminant Analysis of Spatial Gaussian Data
	Abstract
	Keywords
	1. Introduction
	2. The Main Concepts and Definitions
	3. Probabilities and Rates of Correct Classification 
	4. Example and Discussions 
	References

