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Abstract: The main aim of this article is to analyze the efficiency of general solvers for parabolic
problems with fractional power elliptic operators. Such discrete schemes can be used in the cases of
non-constant elliptic operators, non-uniform space meshes and general space domains. The stability
results are proved for all algorithms and the accuracy of obtained approximations is estimated by
solving well-known test problems. A modification of the second order splitting scheme is presented,
it combines the splitting method to solve locally the nonlinear subproblem and the AAA algorithm
to solve the nonlocal diffusion subproblem. Results of computational experiments are presented
and analyzed.
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1. Introduction

In recent decades fractional differential equations proved to be important techniques
for modeling diffusive type processes when an anomalous diffusion is important. A
very good review on fractional calculus methods and techniques to solve differential and
integro-differential equations with fractional derivatives is presented in [1,2].

Fractional derivatives are nonlocal integro-differential operators. They allow to sim-
ulate more accurately various complex physical system. From the modelling point it is
very useful that fractional derivatives incorporate in a unified framework asymmetric
non-Fickian transport, non-Markovian effects, including long memory effects. We will
mention only a few important investigations. Applications of fractional calculus to de-
scribe generalized dynamical systems and discrete maps, non-local statistical mechanics
and kinetics, dynamics of open quantum systems with non-local properties and memory
are considered in [3], the analysis of fluid flow in fractal porous medium is done in [4].
The fractional calculus techniques are used intensively in quantum mechanical problems,
for example a fractional generalization of the free particle problem is found, the correspond-
ing fractional Schrödinger equation is derived in [5], analysis of statistic and dynamical
systems [6]. A generalization of fractional Dirac operators and applications in deformed
field theory are considered in [7]. Integral and fractional derivatives of order (α, β) and
dynamical fractional integral exponents are investigated in [8], and a useful table of some
basic fractional calculus formulae derived from a modified Riemann–Liouville derivative
for non-differentiable functions is presented in [9].

In this paper we restrict to one important class of problems dealing with nonlocal
diffusion operators defined as fractional powers of elliptic operators. Such mathematical
models describe a broad class of real-world processes. We will mention only applications
in cell biology [10], models used to describe chemical and contaminant transport in hetero-
geneous aquifer [11], physics [12], finance [13], medicine [14], and image processing [15].
The fractional-order models appear to be more adequate than the standard models in the
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description of the long range interactions, memory and hereditary properties of different
substances [16]. More examples are given in [17].

The fractional power of an elliptic operator Aα
h can be defined in non-unique way. In

this paper we use the spectral definition (the details are given in Section 2). It is important
to note, that the given spectral algorithm can be used for practical computations to solve
parabolic type problems with nonlocal operator Aα

h . However, this strategy is efficient only
if the problem is solved in a rectangular domain, the complete set of eigenfunctions of
operator Ah are known in advance and FFT techniques can be applied.

Thus in the case of non-uniform space meshes and/or elliptic operators with non-
constant coefficients for solution of nonlocal problems with fractional power operators
alternative approaches are used. The main idea is to transform non-local problems into
the local classical differential problems. Here we briefly mention the most interesting
transformations, a very good review on these methods is given in [18].

First we mention a general integral representation of the solution with standard
Laplacian operator [19]. After approximation of integrals by some efficient specialized
quadrature formula a set of local elliptic problems is solved and an approximation of the
solution of non-local problem is constructed.

A more general approach is to change the nonlocal discrete operator Aα
h by its rational

approximation. A few different implementations are proposed. In the BURA method the
best uniform rational approximation formula is used [20]. For the negative power of a
matrix A−β

h a rational function approximating the mapping z → z−β is constructed via
a modified Remez algorithm. It should be noted that the determination of coefficients
for this rational function is very sensitive to rounding errors and therefore it requires
non-trivial computations.

Another very robust and accurate technique to construct rational approximations
is based on the so-called AAA algorithm proposed in [21]. In this paper we will use
this method widely as an essential part of three algorithms proposed to solve parabolic
problems with fractional power elliptic operators.

We also mention an interesting approach when the original nonlocal fractional prob-
lem in a d-dimensional domain is transformed into a Neumann-to-Dirichlet map for a
local, elliptic problem in a d + 1-dimensional cylinder built on the original domain [22].
Efficient multilevel and tensor FEM solvers for the resulting d + 1-dimensional problems
are described in [23,24].

One more original transformation is proposed in [25], where the nonlocal problem is
transformed into a classical local pseudo-parabolic problem. The accuracy and efficiency
of this method is essentially improved in [26,27], where high-order modifications are
proposed, including a special time grid to integrate the problem in time.

Recently many papers are devoted to solve nonstationary (parabolic) problems with
fractional power elliptic operators. The proposed discrete schemes are mainly based
on spectral methods and the approximation and stability analysis is done for various
multidimensional problems (see [17,28–30] and references given therein). An original
Fourier spectral exponential time differencing method is proposed in [31].

In this paper we are interested to compare general methods suited to solve nonsta-
tionary problems for elliptic operators with non-constant coefficients, in non-rectangular
domains discretized by using non-uniform meshes. We restrict to application models based
on nonlinear reaction and nonlocal diffusion models. As examples of such methods we
can mention the approach based on the extension method [32,33], the algorithms based on
matrix function vector product f (Ah)b computation [34,35]. A special attention is given
for development of splitting techniques to solve efficiently nonlinear reaction problems,
see [36,37]. Another computational challenge is to select algorithms most fitted to imple-
ment adaptive in time meshes, when the time step can be changed very frequently. In this
case the costs of finding the parameters of the discrete scheme (e.g., the rational functions
used to approximate the transfer operators) can be important. Last but not least, we point
to a comparison of solvers with respect to their parallelization properties. An extensive



Mathematics 2021, 9, 1344 3 of 18

analysis of various parallel solvers for stationary fractional power elliptic problems was
done in [38,39].

We also mention papers [40,41], where efficient discrete schemes are proposed to
solve nonstationary applied problems with fractional derivatives or different definitions of
fractional powers of elliptic operators. Such techniques are also important in the case of
fractional powers of elliptic operators, when the spectral definition is used.

The rest of the paper is organized in the following way. In Section 2 the problem
is formulated. It is described as a semidiscrete parabolic problem with the fractional
power discrete elliptic operator. Implicit finite difference approximations are presented
in Section 3. The most important case is given by the Crank–Nicolson scheme, when the
weight parameter σ = 0.5. The stability of the presented difference schemes is investi-
gated and some general sufficient stability conditions are proved. In Section 4 efficient
implementation algorithms are analyzed. Three different algorithms are compared and the
complexity of each algorithm is estimated. The efficiency of parallel versions of these algo-
rithms is analyzed. The stability conditions are derived and compared. In Section 5 results
of computational experiments are presented and experimental estimates of the accuracy
of each method are obtained. In Section 6 fractional in space nonlinear reaction-diffusion
parabolic problems are solved. The splitting second order discrete scheme is proposed,
when only one nonlocal fractional subproblem is solved at each time step. We will apply
the proposed discrete scheme to solve the fractional enzyme-catalyzed reactions model
and Allen–Cahn equations. For the first problem nonhomogeneous boundary conditions
are formulated. Some final conclusions are done in Section 7.

2. Problem Formulation

Let Ω be some open and bounded domain Ω ⊂ Rd, α ∈ (0, 1). Define a self-adjoint
elliptic diffusion operator

Au = −div(K∇u) in Ω (1)

withK(x) ∈ Rd×d symmetric and uniformly positive definite. OperatorA is supplemented
with homogeneous Dirichlet boundary conditions on ∂Ω.

For (1) we define the bilinear form

a(u, v) = (K∇u,∇v),

where (·, ·) denotes the L2-inner product in Ω and the norm is defined as ‖u‖ = (u, u)1/2.
Next we discretize the differential problem. Let Vh ⊂ H1

0(Ω) denote a finite-dimensional
space of functions that satisfy the homogeneous Dirichlet boundary conditions and we assume
that this space is spanned by piecewise linear basis {ϕj, j = 1, . . . , J}. Then the discrete
elliptic operator Ah is defined as

(AhU, V) = a(U, V), ∀ U, V ∈ Vh.

In this paper we will use the spectral definition of fractional power of the operator Ah
(this approach is also called the discrete eigenfunctions method) [18,19]. Under standard
assumptions on the diffusion coefficients K and the boundary ∂Ω, discrete operator Ah
admits a system of eigenfunctions Φj with corresponding eigenvalues λj > 0 such that

AhΦj = λjΦj, j = 1, . . . , J. (2)

Then a fractional power of Ah is defined as

Aα
hU = −

J

∑
j=1

λα
j (U, Φj)Φj. (3)
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It is easy to see that Aα
h is also self-adjoint and positive definite:

Aα
h = (Aα

h)
∗, 0 < λα

1 I 6 Aα
h 6 λα

J I. (4)

Our main aim is to find the solution of a Cauchy problem for the evolutionary first-
order equation:

dU
dt

+ Aα
hU = F(t), 0 < t 6 T, (5)

U(0) = U0, U0 ∈ Vh.

3. Implicit Approximations of Parabolic Problems with Fractional Powers of Discrete
Elliptic Operators

Let us define a nonuniform time grid

ωt = {tn : tn = tn−1 + τn−1, n = 0, . . . , N, t0 = 0, tN = T}.

Let Un be a numerical approximation to the exact solution U(tn) of problem (5). We define
the averaging operator

Un+σ = σUn+1 + (1− σ)Un, 0 6 σ 6 1.

In this paper we restrict to two values of the weight parameter σ = 0.5 and σ = 1.
Let us consider the implicit scheme

Un+1 −Un

τn
+ Aα

hUn+σ = F(tn+σ), n = 0, . . . , N − 1, (6)

U0 = U0, U0 ∈ Vh.

For σ = 1 the difference scheme (6) is the fully implicit Euler scheme, it approximates the
differential problem with the first order, and for σ = 0.5 the symmetrical scheme has the
second order of approximation.

The stability of the difference scheme (6) is investigated by using standard techniques.

Lemma 1. For σ > 0.5 the difference scheme (6) is unconditionally stable

‖Un+1‖ 6 ‖Un‖+ τn‖F(tn+σ)‖, n = 0, . . . , N − 1. (7)

Proof. The solution of (6) can be written as

Un+1 =
(

I + τn+1σAα
h
)−1(I − τn(1− σ)Aα

h
)
Un + τn

(
I + τnσAα

h
)−1F(tn+σ).

Since Aα
h is self-adjoint and positive definite, then for σ > 0.5 the following estimates

‖
(

I + τnσAα
h
)−1(I − τn(1− σ)Aα

h
)
‖ < 1, ‖

(
I + τnσAα

h
)−1‖ < 1

are valid. They lead to the required stability estimate (7).

If the direct application of the spectral formula (3) is possible, then the FFT algorithm
enables us to solve efficiently the problem (7) at each time layer. Still this approach is valid
only in very special cases, when the system of eigenfunctions {Φj} is known and the FFT
algorithm can be applied.
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In general case the implementation of the constructed discrete schemes requires to use
some approximations of the operators with fractional powers of discrete elliptic operators.
Let us write the discrete scheme in the following form

Un+σ −Un

στn
+ Aα

hUn+σ = F(tn+σ). (8)

The solution Un+σ is obtained by solving the equation(
I + στn Aα

h
)
Un+σ = Un + στnF(tn+σ).

Next we approximate the non-local operator (I + στn Aα
h)
−1 by some linear local operator(

I + στn Aα
h
)−1 ≈ Bh

and compute an approximate solution

Ũn+σ = Bh
(
Ũn + στnF(tn+σ)

)
. (9)

In the next lemma simple sufficient stability conditions of scheme (9) are formulated
(see also [37]).

Lemma 2. Let assume that

B−1
h = I + στnCh, Ch = C∗h > 0.

Then for σ > 0.5 the difference scheme (9) is unconditionally stable

‖Ũn+1‖ 6 ‖Ũn‖+ τn‖F(tn+σ)‖, n = 0, . . . , N − 1. (10)

Proof. The discrete scheme (9) can be written in the following form

Un+σ −Un

στn
+ ChUn+σ = F(tn+σ),

therefore the stability estimate (10) follows trivially, since Ch = C∗h > 0 and σ > 0.5.

4. Efficient Implementations of Discrete Schemes

In this section we consider three approaches how to construct the efficient operators
Bh to solve the implicit nonlocal system (8).

4.1. The AAA Algorithm

The construction of Bh is based on the so-called AAA algorithm proposed in [21]. We
will apply this general algorithm for implementation of the discrete scheme (8). Let us
consider a function

f (z) =
1

1 + στnzα
, z > 0.

A rational approximation of f (z) is given in partial fraction decomposition form

rm(z) =
Nm(z)
Dm(z)

= c0 +
m

∑
j=1

cj

z− dj
. (11)

Then the approximate solution of the scheme (8) is computed as

Ũn+σ =
(

c0 I +
m

∑
j=1

cj
(

Ah − dj I
)−1
)(

Ũn + τnF(tn+σ)
)
. (12)
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Let Z = {z1, . . . , zM} be an arbitrary set of distinct real numbers, f j = f (zj), j = 1, . . . , M.
In order to find optimal values of coefficients cj, dj the AAA method uses a representation of
rm−1(z) in barycentric form

rm−1(z) =
m

∑
j=1

wj f j

z− zj

/ m

∑
j=1

wj

z− zj
.

At each iteration m = 1, 2, . . . the AAA algorithm selects the next support point zm ∈ Z by
the greedy algorithm and then the weights w1, . . . , wm are chosen to solve the following
minimization problem

minimize ‖ f Dm−1 − Nm−1‖Z(m) , ‖w‖m = 1,

where Z(m) = Z\{z1, . . . , zm}. The next support point zm is chosen as a point z ∈ Z(m−1)

where the residual | f (z)− rm−1(z)| takes its maximum value. The iterations are terminated
when the nonlinear residual is sufficiently small.

This method proved to be very efficient in solving stationary equations for fractional
power elliptic operators (see results given in a survey paper [18]).

Stability Analysis

Since the approximation of the AAA algorithm is based on a rational approximation
of function f (z), the stability of scheme (12) is guaranteed if the following condition
is satisfied

max
zL6z6zR

1
σ

∣∣rm(z)− (1− σ)
∣∣ 6 1. (13)

The results of numerical experiments confirmed that for fractional powers α = 0.25, 0.5, 0.75,
time steps τ = 10−k, k = 1, . . . , 4, σ = 0.5 and zL, zR defined by the minimal and maximal
eigenvalues of the operator Ah, the stability condition (13) was satisfied unconditionally.

4.2. The Extension Method

In this subsection we present the second algorithm for the implementation of the
discrete scheme (6). This algorithm is derived by the approach proposed in [22] for
fractional powers of elliptic operators. Important modifications of the basic algorithm and
the accuracy analysis of such algorithms are presented in [23,24]. A direct application of
this idea for the fractional nonstationary problems is described in [33,42].

Next we present a short derivation of the extension algorithm to implement one time
step of the discrete scheme (8). Let us denote s = 1 − 2α and introduce an extended
semi-discreet boundary value problem for the function Ûn+σ(x, y), x ∈ Ω, y ∈ (0, Y)
given by

− ∂

∂y

(
ys ∂Ûn+σ

∂y

)
+ ys AhÛn+σ = 0, x ∈ Ω, y ∈ (0, Y), (14)

− lim
y→0

ys ∂Ûn+σ

∂y
= dα

(
F(tn+σ)− 1

στ

(
Ûn+σ

∣∣
y=0 −Un)), x ∈ Ω,

Ûn+σ = 0, (x, y) ∈
(
∂Ω× (0, Y)

)
∪
(
Ω× {y = Y}

)
,

where

dα = 21−2α Γ(1− α)

Γ(α)
.

Then the approximate solution of the discrete scheme (8) is given by

Ũn+σ(x) = Ûn+σ(x, 0), x ∈ Ω.
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Next we define a fully discrete scheme. We introduce a graded mesh with a parameter
γ > 1 as suggested in [18,22]:

yj = Y
( j

m

)γ
, j = 0, . . . , m. (15)

By using the finite volume method the following discrete scheme is constructed

Jj+1/2
(
Ûn+σ

)
− Jj−1/2

(
Ûn+σ

)
+ ỹs

j
(

AhÛn+σ
)

j = 0, x ∈ Ω, j = 1, . . . , m− 1, (16)

J1/2
(
Ûn+σ

)
= dα

(
F(tn+σ)− 1

στ

(
Ûn+σ

0 − Ũn)), x ∈ Ω,

Ûn+σ
m = 0, x ∈ Ω,

where the flux and ỹs are defined as

Jj+1/2
(
Ûn+σ

)
= −ys

j+1/2

Ûn+σ
j+1 − Ûn+σ

j

yj+1 − yj
, ỹs

j =
ys+1

j+1/2 − ys+1
j−1/2

s + 1
, ys+1
−1/2 = 0.

In order to solve the obtained system of linear equations (16), we introduce the
eigenvalue decomposition of the discretization in the extended dimension

Jj+1/2
(
Ψl
)
− Jj−1/2

(
Ψl
)
= ỹs

j µlΨl j, j = 1, . . . , m− 1, (17)

J1/2
(
Ψl
)
+ dα

1
στ

Ψl0 = ỹs
0 µlΨl0,

Ψlm = 0,

where {µ0, . . . , µm} are the discrete eigenvalues and {Ψ0, . . . , Ψm} define a complete set of
orthonormal eigenvectors. Now we represent the solution of (16) in the form

Ûn+σ =
m−1

∑
l=0

Wn+σ
l (x)Ψl(yj), j = 0, . . . , m. (18)

Substituting this expression into (16) and using basic properties of the eigenvectors, the dis-
crete problems are obtained to define Wn+σ

j

(µl I + Ah)Wn+σ
l = Ψl0 dα

(
F(tn+σ) +

1
στn

Ũn
)

, l = 0, . . . , m− 1.

Thus an approximation of the solution of discrete scheme (8) is represented as

Ũn+σ =
m−1

∑
l=0

Ψ2
l0 dα(µl I + Ah)

−1
(

F(tn+σ) +
1

στn
Ũn
)

. (19)

We see that the structure of this solution is the same as for the AAA algorithm and it is
based on the solution of m independent systems of elliptic type. Again all subproblems
can be solved in parallel.

Stability Analysis

The stability analysis for the fractional nonstationary problems given in [33,42] is
based on results obtained for the fractional stationary problems. Mainly the stability
estimates are derived by using the fact that an approximate operator Bh is symmetric and
positive definite

Bh ≈ Aα
h , Bh = BT

h > 0.
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Due to spectral representation of the solution (18) we can investigate the stability of
the extension scheme directly, applying the same analysis as for the AAA algorithm. The
stability of scheme (19) is guaranteed if the following condition is satisfied

max
zL6z6zR

1
σ

∣∣∣ 1
στ

Rm(z)− (1− σ)
∣∣∣ 6 1. (20)

where

Rm(z) = dα

m−1

∑
l=0

Ψ2
l0

1
µl + z

.

The results of numerical experiments confirmed that for fractional powers α = 0.25, 0.5, 0.75,
time steps τ = 10−k, k = 1, . . . , 4, σ = 0.5 and zL, zR defined by the minimal and maximal
eigenvalues of the operator Ah, the stability condition (20) was satisfied unconditionally.

4.3. Splitting Scheme

This scheme is constructed using ideas presented in [20] for development of BURA
type discrete approximations of stationary problems with fractional powers of elliptic
operators. Similar splitting schemes were proposed in [37].

First we rewrite Equation (8) in the following form

Un+1 −Un

τn
+ A−β

h Ah
(
σUn+1 + (1− σ)Un) = F(tn+σ), (21)

where β = 1− α. Next, the AAA method is used to construct a rational approximation
of A−β

h

A−β
h ≈ Rm(β) = c0 I +

m

∑
j=1

cj
(

Ah − dj I
)−1.

Let us write the obtained discrete scheme as

Un+1 −Un

τn
+

m

∑
j=0

B−1
h,j Ah

(
σUn+1 + (1− σ)Un) = F(tn+σ).

Since all operators in this approximation commute, the solution Ũn+1 is computed by using
the classical splitting technique in m + 1 steps:

Ũn,j − Ũn,j−1

τn
+ B−1

h,j Ah
(
σŨn,j + (1− σ)Ũn,j−1) = 1

m + 1
F(tn+σ), j = 0, . . . , m.

The splitting algorithm is defined as:

1. Ũn,−1 = Un.

2. (
Dj + στncj Ah

)
Ũn,j =

(
Dj − στncj Ah

)
Ũn,j−1 +

τn

m + 1
DjF, j = 0, . . . , m. (22)

3. Ũn+1 = Ũn,m,

where
D0 = I, Dj = Ah − dj I, j = 1, . . . , m.

This algorithm is again based on the solution of (m + 1) systems of elliptic type. However,
in the case of the splitting scheme such subproblems should be solved sequentially. Thus
the splitting algorithm is less suited for parallelization in comparison to the AAA and
extension algorithms.
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Stability Analysis

Since coefficients of the AAA rational approximation of A−β
h satisfy inequalities dj < 0,

cj > 0, then operators Dj are positive definite Dj > 0 for j = 0, . . . , m. If σ > 0.5, then the
splitting scheme (22) is unconditionally stable. The proof of this result is similar to one
used in the proof of Lemma 1.

A Modification of the Algorithm to Resolve the Source Function

We can compute the dynamics of the solution in time and to resolve the influence of
the source function separately. This modification is quite general and can be applied also
for the AAA and extension methods.

First, we solve an auxiliary stationary problem

Aα
hWn+σ = F(tn+σ), x ∈ Ω. (23)

Again the AAA method can be used to construct a rational approximation of A−α
h

A−α
h ≈ Rm(α) = c̃0 I +

m

∑
j=1

c̃j
(

Ah − d̃j I
)−1.

Then the solution of the discrete problem (21) is represented as

Uk = Vk + Wn+σ, k = n, n + 1

and function Vn+σ is computed by using the splitting scheme (22) for the homogeneous problem

Vn+σ −Vn

στn
+ A−β

h AhVn+σ = 0. (24)

The price we pay for this modification is that two nonlocal problems (23) and (24) should
be solved instead of one (21). If the source function F(t) is stationary, then problem (23) is
solved only once and the complexity of the modified algorithm is the same as of the basic
algorithm (21).

Nonuniform and Adaptive Time Meshes

It is well known that adaptive time meshes efficiently resolve fast and slow dynamics
of the solution, including stiff problems. All numerical techniques, which are developed
for classical parabolic problems can be applied also for parabolic problems with fractional
power of elliptic operators.

The important advantage of the splitting method over the AAA and extension methods
is that after each change of the time step there is no need to recompute coefficients of the
rational approximation polynomial.

5. Numerical Experiments

In this section, we perform a numerical comparison of the methods described in the
previous section. As a test problem we solve 1D case of (5), where

AhU = −
Uj+1 − 2Uj + Uj−1

h2 , xj = jh, j = 1, . . . , J − 1, xJ = 1, (25)

Fj(t) =

{
−1, 0 6 xj 6 0.5,
1, 0.5 < xj 6 1.

Here we follow the motivation given in [18], that a restriction to an one-dimensional
problem don’t limit a generality of results, since the performance of rational approximation
methods depends essentially only on the spectrum of the discretized problem. For discrete
problems this spectrum depends only on the mesh size h and not the dimension. Thus the
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obtained stability and approximation accuracy results are representative also for 2D and
3D problems. It is clear that the complexity of the constructed solvers depend strongly
on the dimension of the problem, some aspects of this question will be considered in the
following sections.

In all experiments the space mesh size is fixed to J = 256, the problem is solved till
T = 0.6 for the fractional power parameter α = 0.5 and T = 0.8 for α = 0.25.

We define the error in the mesh uniform norm:

eC(N, J) = max
(xj ,tn)∈ω̄h×ωt

|U(xj, tn)− Ũn
j |,

where the space mesh is defined as ω̄h = {xj : xj = jh, j = 0, . . . , J}. The exact solution
U(xj, tn) is computed using the FFT method. We remind that this technique can be applied
in the case of a uniform space mesh and constant elliptic operators.

First we consider the AAA method. For the AAA approximation method described
in Section 4, we sample function (1 + 0.5τzα)−1 with M = 25,000 points over the exact
interval [λhmin, λhmax]. The resulting errors for α = 0.5 and α = 0.25 and various orders
m of the rational functions rm(z) are presented in Table 1. It follows from the presented
results, that a very small number m = 6 is sufficient to reach the optimal error level for
τ = 0.01, 0.005 and m = 10 is sufficient for a smaller time step τ = 0.0025. These values
of m do not depend on the fractional parameter α. It can be stated in advance that this
approach is very robust and performs better than all other studied methods.

Table 1. The AAA algorithm: errors eC(N, J) of the solution of the discrete scheme (12) for
α = 0.5, 0.25 and a sequence of parameters m.

τ m = 4 m = 5 m = 6 m = 10

α = 0.5 T = 0.6

0.01 2.84× 10−3 1.004× 10−4 7.207× 10−4 7.208× 10−4

0.005 4.980× 10−3 2.641× 10−4 2.642× 10−4 2.642× 10−4

0.0025 6.863× 10−3 1.109× 10−4 1.740× 10−4 6.755× 10−5

α = 0.25 T = 0.8

0.01 1.201× 10−3 9.488× 10−5 5.105× 10−5 5.151× 10−5

0.005 1.374× 10−3 1.399× 10−4 1.440× 10−5 1.284× 10−5

0.0025 1.421× 10−3 1.577× 10−4 1.556× 10−5 3.210× 10−6

Next in Table 2 we present results for the extension method. We always choose the
cutoff at Y = 3 and introduce a graded mesh (15) with a parameter γ = 12 for α = 0.25
and γ = 5 for α = 0.5 as suggested in [18]. In the case of the fractional parameter α = 0.5
the efficiency and accuracy of the extension method is similar to the AAA method results.
However, in the case of α = 0.25 a much larger m must be taken in order to get the same
accuracy as for the AAA method.

In Table 3 we present results for numerical experiments with the splitting method
discrete scheme (22). Here our main aim is to test the accuracy of the modification (23)
which is proposed to resolve the source term. The AAA method is used to construct the
rational approximation functions rm(z). In addition we present the accuracy with which
the approximation of the stationary solution is computed for the specified values of m.
The presented results show that this combination of two methods increases the accuracy of
the discrete scheme, while the additional computational costs are small in this case, since
the stationary problem is solved only once.
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Table 2. The extension method: errors eC(N, J) of the solution of the discrete scheme (16) for
α = 0.5, 0.25 and a sequence of parameters m.

τ m = 5 m = 10 m = 15 m = 20

α = 0.5 T = 0.6 γ = 3

0.01 2.468× 10−3 6.945× 10−4 7.210× 10−4 7.208× 10−4

0.005 2.464× 10−3 2.482× 10−4 2.643× 10−4 2.642× 10−4

0.0025 2.463× 10−3 5.991× 10−5 6.760× 10−5 6.756× 10−5

m = 20 m = 40 m = 80 m = 160

α = 0.25 T = 0.8 γ = 12

0.01 2.999× 10−3 7.230× 10−4 1.846× 10−4 5.954× 10−5

0.005 2.894× 10−3 7.190× 10−4 1.805× 10−4 4.522× 10−5

0.0025 2.894× 10−3 7.179× 10−4 1.795× 10−4 3.976× 10−6

Table 3. The splitting method: errors eC(N, J) of the solution of the modified discrete scheme (23)–(24)
for α = 0.5, 0.25 and a sequence of parameters m.

τ m = 6 m = 10 m = 15

α = 0.5 T = 0.6

0.01 3.746× 10−5 9.103× 10−6 4.760× 10−6

0.005 1.993× 10−5 7.559× 10−6 4.079× 10−6

0.0025 5.870× 10−6 2.660× 10−6 1.465× 10−6

Stat. 4.586× 10−6 6.187× 10−8 1.149× 10−11

m = 6 m = 10 m = 15

α = 0.25 T = 0.8

0.01 2.637× 10−5 1.103× 10−6 8.124× 10−7

0.005 2.637× 10−5 2.762× 10−7 2.072× 10−7

0.0025 2.517× 10−5 8.281× 10−8 5.599× 10−8

Stat. 2.428× 10−5 2.520× 10−8 8.445× 10−9

6. Fractional in Space Nonlinear Reaction-Diffusion Parabolic Problems

In this section we solve 1D nonlinear reaction-diffusion problems. For simplicity of
notations the Dirichlet type boundary conditions are used here:

∂u
∂t = k

(
∂2

∂x2

)α
u + G(u), (x, t) ∈ Ω× (0, T],

u(a, t) = f (t), u(b, t) = g(t), t ∈ [0, T],

u(x, 0) = u0(x), x ∈ Ω,

(26)

where Ω = (a, b).
In addition to the nonlinearity, boundary conditions can be nonhomogeneous. In order

to resolve nonhomogeneous boundary conditions we apply a general technique described
in [43]. Let us consider the discrete approximation of the diffusion operator Ah as defined
in (25). Next we write the nonlocal discrete operator Aα

h in the following form

Aα
h = A−β

h Ah, β = 1− α.
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Then nonhomogeneous boundary conditions are taken into account for the classical discrete
diffusion operator and therefore

Aα
hU = A−β

h AhU − A−β
h

(
1
h2 E1 f +

1
h2 EJ−1g

)
= Aα

hU − A−β
h

(
1
h2 E1 f +

1
h2 EJ−1g

)
,

where E1, EJ−1 are the first and (J − 1)th canonical basis vectors in the vector space RJ−1.
Thus we approximate the problem (26) by the following implicit scheme

Un+σ−Un

στn
+ kAα

hUn+σ = kA−β
h

(
1
h2 E1 f n+σ + 1

h2 EJ−1gn+σ
)
+ G(Un+σ),

n = 0, . . . , N − 1,

U0 = U0, U0 ∈ Vh.
(27)

For σ = 1 the difference scheme (27) is the fully implicit Euler scheme, it approximates the
differential problem with the first order, and for σ = 0.5 the symmetrical scheme has the
second order of approximation.

The obtained system of nonlinear equations can be linearized by applying the standard
predictor-corrector method

Un+σ,l−Un

στn
+ kAα

hUn+σ,l = kA−β
h

(
1
h2 E1 f n+σ + 1

h2 EJ−1gn+σ
)
+ G(Un+σ,l−1), l = 1, 2,

Un+σ = Un+σ,2, Un+σ,0 = Un.
(28)

For σ = 0.5 this discrete scheme has the second order of approximation.

Remark 1. The source term due to nonhomogeneous boundary conditions should be computed only
once for each time step. If functions f and g are constant, then it is sufficient to compute this term
only once for all time steps.

In order to implement one iteration of the algorithm (28), the AAA or extension
methods can be used to construct a rational approximation of the fractional operator A−β

h

A−β
h ≈ Rk(β).

Note that this rational approximation is already constructed for the splitting method.
It follows from (28) that the nonlocal operator Aα

h should be resolved at each iteration.
Thus this step is done twice for the given predictor-corrector algorithm, or even more times
if iterations are computed till reaching some convergence accuracy. This drawback can be
avoided if a splitting of nonlinear and nonlocal operators is applied (see [17,36]). Let us
consider the following second-order symmetrical splitting scheme

Un+1/3,l −Un

τn/2
= G

(Un+1/3,l−1 + Un

2

)
, l = 1, 2, Un+1/3,0 = Un, (29)

AhWn+1/2 =
1
h2 E1 f n+1/2 +

1
h2 EJ−1gn+1/2, (30)

Vn+2/3 −Vn+1/3,2

τn
+ kAα

h
Vn+2/3 + Vn+1/3,2

2
= 0, (31)

Un+2/3 = Vn+2/3 + Wn+1/2, Un+1/3,2 = Vn+1/3,2 + Wn+1/2,

Un+1,l −Un+2/3

τn/2
= G

(Un+1,l−1 + Un+2/3

2

)
, l = 1, 2, Un+1,0 = Un+2/3, (32)
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and the solution at the new time level tn+1 is defined by Un+1 = Un+1,2. Only one subprob-
lem involving the nonlocal operator Aα

h is solved and all three algorithms defined above
can be used to solve this subproblem. At step (30) the influence of the nonhomogeneous
boundary conditions is taken into account by solving the classical discrete elliptic problem.

6.1. Enzyme-Catalyzed Reactions

The classic model for the enzyme-substrate interaction is the induced fit model [44,45].
This model proposes that the initial interaction between enzyme and substrate is relatively
weak, but that these weak interactions rapidly induce conformational changes in the en-
zyme that strengthen binding. Most existing mathematical models describe a complicated
interaction of the linear diffusion and nonlinear reaction processes, therefore it is important
to investigate the influence of the nonlocal diffusion transport to a general dynamics of
the system. In this section we consider the one-dimensional in space enzyme-catalyzed
reaction model, where classical Fick’s diffusion is changed by the fractional power diffusion
operator [44]:

∂u
∂t = −k

(
− ∂2

∂x2

)α
u− Vu

KM+u , (x, t) ∈ Ω× (0, T],
u(0, t) = 0, u(b, t) = g(t), t ∈ [0, T],

u(x, 0) = 0, x ∈ [0, b],

(33)

where u is the substrate, k is the substrate diffusion coefficient, V is the maximal enzymatic
rate, and KM is the Michaelis constant. In all the numerical experiments, the following
typical values of the parameters were taken

g(t) = 100 µM, k = 200 µm2/s, V = 2 µM/s, KM = 100 µM, b = 250 µm.

In order to reduce the number of these parameters, it is convenient to introduce the
dimensionless variables

x̃ =
x
b

, t̃ =
kt
b2 , ũ =

u
KM

, Ṽ =
Vb2

kKM
, k̃ = 1.

Then we rewrite the differential problem (33) (for simplicity of notations we again use u, x
and t instead of ũ, x̃ and t̃):

∂u
∂t = −

(
− ∂2

∂x2

)α
u− Vu

1+u , (x, t) ∈ (0, 1)× (0, T],

u(0, t) = 0, u(1, t) = 1, t ∈ [0, T],

u(x, 0) = 0, x ∈ [0, 1],

(34)

where dimensionless V is known as the Damköhler number. For the selected parameters
V = 6.25.

The domain Ω is discretized using J = 100 points, the time step τ = 0.002 is selected
for time integration. The discrete approximation of the diffusion operator Ah is defined
in (25). The same parameter m = 12 of the AAA algorithm is used in all experiments. The
results are presented in Figure 1.

It is clearly seen that the level of the substrate inside of a tube is decreased when the
fractional power parameter is decreased and this change is most expressed at the boundary
of the domain.
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Figure 1. Distribution of the substrate at t = 0.5 for different fractional power parameters
α = 1, 0.75, 0.5, 0.25.

Next we demonstrate the universality of the proposed algorithms, since they can be
used without any changes to solve the problem on non-uniform space meshes and for more
general diffusion operators, when the diffusion coefficient is not constant. As an example
we solve problem (34), when the following non-uniform graded mesh is used:

ωh =
{

xj : xj = xj−1 + hj−1/2, j = 1, . . . , J, x0 = 0, xJ = 1
}

, hj−1/2 = he−2j/J .

Then the discrete operator Ah is defined as

AhU = − 1
hj

(Uj+1 −Uj

hj+1/2
−

Uj −Uj−1

hj−1/2

)
, hj =

hj−1/2 + hj+1/2

2
, j = 1, . . . , J − 1. (35)

The eigenvalues of this operator can be bounded from above as λj 6 4/(h2
J−1), this estimate

is used in the AAA algorithm to compute the rational approximation of A−β
h . In Figure 2

we compare the solutions for the case of α = 0.25, J = 200, t = 0.5. It is clearly seen that the
solution obtained using the non-uniform mesh resolves the boundary layer much better.

0,97 0,98 0,99 1
x

0,6

0,8

1

uniform 

non-uniform 

Figure 2. Distribution of the substrate at t = 0.5 for the fractional power parameter α = 0.25 in the
cases of uniform and non-uniform meshes.
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6.2. Allen–Cahn Equation

The Allen–Cahn equation is a simple nonlinear reaction-diffusion model that is used
to study a formation and motion of phase boundaries. The fractional in space version of
this equation is defined as [30]

∂u
∂t = −k

(
− ∂2

∂x2

)α
u + u− u3, (x, t) ∈ Ω× (0, T],

∂u
∂x (−1, t) = 0, ∂u

∂x (1, t) = 0, t ∈ [0, T],

u(x, 0) = u0(x), x ∈ [−1, 1],

(36)

where k is a small positive constant. It is well known, that the two steady states u = ±1 are
attracting, and the third one u = 0 is unstable. Solutions exhibit flat areas around these
two stable values separated by interfaces of increasing sharpness as the control parameter
k is reduced to zero.

The homogeneous Neumann boundary conditions are used in this model. A discrete
approximation of these conditions is done by using the finite volume method. The accuracy
of discrete boundary conditions is of the second order, i.e., the same as approximation
accuracy of the differential equation. The obtained discrete operator Ah is self-adjoint and
positive definite.

Some effects of fractional diffusion on the metastability of the solutions has been
studied in [30]. Our main aim is to test the accuracy of the general splitting scheme
(29)–(32) in resolving these metastability effects. We note that the proposed discrete scheme
gives at least two additional advantages—first, it can be used on non-uniform space meshes,
second, even for strong nonlinear reactions only one non-local subproblem is solved at
each time step. Again, we use the AAA algorithm to construct the rational approximation
of fractional power elliptic operators.

As in [30] we have investigated the effect of varying fractional power parameter α in
the metastability of solutions of the Allen–Cahn equation with parameter k = 0.01 and
initial data u0(x) = 0.5 sin(1.5πx)(cos(πx)− 1). In all numerical experiments the number
of space mesh points is J = 100 and the time step τ = 0.01.

First, the case of the classical diffusion α = 1 is investigated. The results are presented
in Figure 3a. At the initial stage the solution evolves to intermediate state with alternating
steady states u = ±1 (see the solution at t = 50). This state is unstable and at t = 200 a
rapid transitions begins and the solution moves to a stable state with just one interface (see
the solution at t = 400). Next we consider the case, when the fractional power parameter is
decreased till α = 0.65. The results are presented in Figure 3b. It follows that the lifetime
of the unstable left interface is prolonged to t = 750, but after that a transition begins to a
stable state with one interface (see solutions at t = 1500, 2500).

-1 -0,5 0 0,5 1
x

-1

-0,5

0

0,5

1

t=0

t=50

t=250

t=400

-1 -0,5 0 0,5 1
x
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-0,5

0

0,5

1

t= 0

t= 50

t= 750

t= 1500

t= 2500

(a) (b)

Figure 3. Dynamics of the solutions of the Allen–Cahn equation for varying the fractional power
parameter: (a) the classical diffusion process α = 1, (b) the fractional diffusion process α = 0.65.
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7. Conclusions

The given analysis show, that parabolic nonlinear reaction—nonlocal diffusion prob-
lems can be solved efficiently by the presented three discrete schemes. On the basis of
obtained theoretical results and computational experiments we recommend to use the new
scheme which combines the second order splitting scheme and the AAA algorithm.

One modification of the new algorithm includes an additional step when the influence
of the source function is resolved at each time step by solving a nonlocal problem with a
fractional power elliptic operator.

It is shown how to include nonhomogeneous boundary conditions into the dis-
crete schemes.

Two important nonlinear reaction nonlocal diffusion models are solved. The first
model describes enzyme-catalyzed reactions, the second model solves the well-known
Allen–Cahn equations. The obtained results show that the nonlocal diffusion changes
dynamics of nonlinear processes.

For future work it will be interesting to compare the parallel versions of the presented
algorithms for solution of 3D nonstationary problems.
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I.D.: software; computational experiments, analysis of results. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Podlubny, I. Fractional Differential Equations, Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1999.
2. Kilbas, A.A.; Srivastava, H.H.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier Science B.V:

Amsterdam, The Netherlands, 2006.
3. Tarasov, V. Fractional Dynamics: Applications of Fractional Calculus to Dynamics, of Particles, Fields, and Media; Springer: Heidelberg,

Germany, 2010; ISBN10 3642140025.
4. Balankin, A.S.; Espinoza Elizarraraz, B. Map of fluid flow in fractal porous medium into fractal continuum flow. Phys. Rev. E

2021, 85, 056314. [CrossRef]
5. El-Nabulsi, R.A. Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal. J. Stat. Phys. 2018,

172, 1617–1640. [CrossRef]
6. Gomez-Aguilarb, J.F. Fractional derivatives with no-index law property: Application to chaos and statistics. Chaos Solitons Fractals

2018, 114, 516–535.
7. El-Nabulsi, R.A. Fractional Dirac operators and deformed field theory on Clifford algebra. Chaos Solitons Fractals 2009,

42, 2614–2622. [CrossRef]
8. El-Nabulsi, R.A.; Wu, C.G. Fractional Complexified Field Theory from Saxena-Kumbhat Fractional Integral, Fractional Derivative

of Order (α, β) and Dynamical Fractional Integral Exponent. Afr. Diaspora J. Math. New Ser. 2012, 13, 45–61.
9. Jumarie, G. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-

differentiable functions. Appl. Math. Lett. 2009, 22, 378–385. [CrossRef]
10. Saxton, M.J. Anomalous subdidiffusion in fluorescence photobleaching recovery: A Monte Carlo study. Biophys. J. 2001,

81, 2226–2240. [CrossRef]
11. Baeumer, B.; Benson, D.A.; Meershaert, M.M.; Wheatcraft, S.W. Subordinated advection-dispersion equation for contaminant

transport. Water Resour. Res. 2001, 37, 1543–1550. [CrossRef]
12. Metzler, R.; Klafter, J. The restaurant at the end of the random walk: Recent developments in the description of anomalous

transport by fractional dynamics. J. Phys. A Math. Gen. 2004, 37, R161–R208. [CrossRef]
13. Sabatelli, L.; Keating, S.; Dudley, J.; Richmond, P. Waiting time distributions in financial markets. Eur. Phys. J. B 2002, 27, 273–275.

[CrossRef]

http://dx.doi.org/10.1103/PhysRevE.85.056314
http://dx.doi.org/10.1007/s10955-018-2116-8
http://dx.doi.org/10.1016/j.chaos.2009.04.002
http://dx.doi.org/10.1016/j.aml.2008.06.003
http://dx.doi.org/10.1016/S0006-3495(01)75870-5
http://dx.doi.org/10.1029/2000WR900409
http://dx.doi.org/10.1088/0305-4470/37/31/R01
http://dx.doi.org/10.1140/epjb/e20020151


Mathematics 2021, 9, 1344 17 of 18

14. Bueno-Orovio, A.; Kay, D.; Grau, V.; Rodriguez, B.; Burrage, K. Fractional diffusion models of cardiac electrical propagation: Role
of structural heterogeneity in dispersion of repolarization. J. R. Soc. Interface 2014, 11, 20140352. [CrossRef] [PubMed]

15. Harizanov, S.; Margenov, S.; Marinov, P.; Vutov, Y. Volume constrained 2-phase segmentation method utilizing a linear system
solver based on the best uniform polynomial approximation of x−1/2. J. Comput. Appl. Math. 2017, 310, 115–128. [CrossRef]

16. Pozrikidis, C. The Fractional Laplacian; CRC Press: Boca Raton, FL, USA, 2016.
17. Lee, H.G. A second-order operator splitting Fourier spectral method for fractional-in-space reaction–diffusion equations. J. Comput.

Appl. Math. 2018, 333, 395–403. [CrossRef]
18. Hofreither, C. A unified view of some numerical methods for fractional diffusion. Comput. Math. Appl. 2020, 80, 332–350.

[CrossRef]
19. Bonito, A.; Pasciak, J.E. Numerical approximation of fractional powers of elliptic operators. Math. Comput. 2015, 84, 2083–2110.

[CrossRef]
20. Harizanov, S.; Lazarov, R.; Margenov, S.; Marinov, P.; Vutov, Y. Optimal solvers for linear systems with fractional powers of sparse

SPD matrices. Numer. Linear Algebra Appl. 2018, 25, e2167. [CrossRef]
21. Nakatsukasa, Y.; Sete, O.; Trefethen, L.N. The AAA algorithm for rational approximation. SIAM J. Sci. Comput. 2018,

40, A1494–A1522. [CrossRef]
22. Nochetto, R.H.; Otarola, E.; Salgado, A.J. A PDE approach to fractional diffusion in general domains: A priori error analysis.

Found. Comput. Math. 2015, 15, 733–791. [CrossRef]
23. Bonito, A.; Borthagaray, J.P.; Nochetto, R.H.; Otarola, E.; Salgado, A.J. Numerical methods for fractional diffusion. Comput. Vis. Sci.

2018, 19, 19–46. [CrossRef]
24. Banjai, L.; Melenk, J.M.; Nochetto, R.H.; Otarola, E.; Salgado, A.J.; Schwab, C. Tensor FEM for spectral fractional diffusion.

Found. Comput. Math. 2019, 19, 901–962. [CrossRef]
25. Vabishchevich, P.N. Numerically solving an equation for fractional powers of elliptic operators. J. Comput. 2015, 282, 289–302.

[CrossRef]
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